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ABSTRACT

We establish central limit theorems for an action of a group G on a hyperbolic space
X with respect to the counting measure on a Cayley graph of G. Our techniques allow
us to remove the usual assumptions of properness and smoothness of the space, or
cocompactness of the action. We provide several applications which require our general
framework, including to lengths of geodesics in geometrically finite manifolds and to
intersection numbers with submanifolds.

1. Introduction

The goal of this paper is to provide a novel approach to the central limit theorem on groups
acting on hyperbolic spaces, for sampling with respect to the word length in the group. We shall
replace the traditional approach based on thermodynamic formalism with techniques coming from
the theory of random walks on groups. This allows us to establish new applications, including
central limit theorems for lengths of geodesics in geometrically finite hyperbolic manifolds, for
intersection numbers with submanifolds, and for homomorphisms between hyperbolic groups.

Motivation

The distribution of lengths of closed orbits for smooth flows on manifolds has long been a topic
of considerable interest. For instance, Sinai [Si60] and then Ratner [Ra73] proved a central limit
theorem (CLT) for the geodesic flow on a hyperbolic manifold (see also Lalley [La87]). One
prominent technique, pioneered by Sinai [Si72], Bowen [Bo75], Ruelle [Ru04], Parry—Pollicott
[PP90], and others, uses Markov partitions to reduce the study of smooth flows to symbolic
dynamics to which one can apply tools from thermodynamic formalism. This approach has been
successful in a variety of settings, especially applied to Anosov flows and their generalizations.

More recently, there has been a renewed interest in statistical properties of geodesic length
and other geometric quantities with respect to a different sampling, namely according to the
counting measure, i.e. uniform measure on spheres in a Cayley graph of a finitely generated
group G. For instance, Pollicott—Sharp [PS98] considered the ratio between the word length and
the geometric length, Calegari-Fujiwara [CF10] compared word lengths with respect to different
generating sets for general hyperbolic groups, and Horsham—Sharp [HS09] established a CLT for
quasimorphisms on free groups.
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In [GTT19] the authors, building on [GTT18], settled a conjecture of Chas-Li-Maskit [CLM13]
about the distribution of hyperbolic lengths of closed geodesics on compact surfaces when sam-
pling with respect to word length. Further, a CLT and statistical laws have been established for
cocompact, proper actions of hyperbolic groups on CAT(—1) spaces by Cantrell [Cal9].

All of these results are based on a symbolic coding and thermodynamic formalism. Although
these techniques are quite powerful, they necessarily impose strong constraints on the actions of
interest, usually requiring that the space X is CAT(—1) and that the action G ~ X is proper
cocompact. While this is the case in the classical setting, they are not satisfied for most actions
on Gromov hyperbolic spaces.

The goal of this paper is to provide a new approach to the central limit theorem on groups
G ~ X acting on hyperbolic spaces, which will allow us to consider in particular:

(i) groups G which are not necessarily word hyperbolic;
(ii) actions on spaces (X, d) which are d-hyperbolic, but not necessarily CAT(—1) or proper;

(iii) group actions G ~ X which need not be free, convex cocompact or even proper.

For the sake of concreteness, we will now present a version of our main theorem (Theorem
1.1) from which we will then derive several applications. Our discussion here will be a special
case of the most general theorems (Theorems 7.3, 7.4) which we will state and prove in Section
7.

Main results

Let G be a finitely generated group acting by isometries on a J-hyperbolic metric space (X, d),
and fix a finite generating set S. We require that the action is nonelementary in the sense that
there are two independent loxodromic elements.

Let S, :={g € G : |lg|]| = n} be the sphere of radius n for the word metric with respect
to S. We denote as N, the Gaussian measure dN,(t) = ﬁe_ﬁ/%z dt if o > 0, and the Dirac
measure at 0 if 0 = 0. We require that G admits a thick geodesic combing for S and we refer the
reader to Section 2.1 for definitions. We note here that these general conditions are satisfied in

a variety of settings; for example, see the applications below and Lemma 8.1.

THEOREM 1.1. Let G be a group which admits a thick geodesic combing for the generating set
S. Let G ~ X be a nonelementary action by isometries on a §-hyperbolic space (X, d), and let
o € X be a base point.

(i) (CLT for displacement) Then there exist £ > 0, o > 0 such that for any a < b we have
) ~d(o0,90) —In B b
7}5}20 #Sn#{g S —Jn € [a,b]} —/a dN,(1).

(ii) (CLT for translation length) Moreover, if 7(g) denotes the translation length of g on X, we
also have for any a < b

,ﬂ&#

#{gESn : We[a,b]}—/abd/\fa(t).

(iii) Further, o = 0 if and only if there exists a constant C' such that

|d(0, go) — Llglll < C

n

for any g € G.
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We remark that as a consequence of (3), if o = 0 then the translation length of any g € G
with respect to its action on X is a constant multiple of its translation length in the word metric.
Moreover, if the action G ~ X is not proper, then o > 0.

Another way to formulate (1) is to say that we have the convergence in distribution
d(o, go) — In
Vn

hence from now on we will use the above notation as a shorthand.

H Ng’,

Applications

There are a number of applications to the above theorems and we summarize a few of them here.
For the proofs, see Section 8.

Geometrically finite hyperbolic manifolds First, let us state an extension of our previous
work on surfaces [GTT19] to general hyperbolic manifolds, possibly with cusps. If M = H"/T"
is a hyperbolic manifold and v € I" = w1 (M), then we set () to be the length of the geodesic
freely homotopic to v unless v is peripheral (i.e. homotopic into a cusp), in which case we set

{(y) =0.
THEOREM 1.2. Suppose that M is a geometrically finite hyperbolic manifold and let S’ be any
generating set for w1 (M). Then there is a finite generating set S O S’ and ¢,0 > 0 such that
t(y) —In
vn

where 7y is chosen uniformly at random in the sphere of radius n with respect to S.

— Ng‘,

If moreover 1 (M) is word hyperbolic, then we can take S = S'.

The statement includes the cases where M is either finite volume or convex cocompact, and is
new even when M is a finite area surface. We remark that when M is either convex cocompact or
a surface, the above theorem works for any generating set S. In the convex cocompact case, the
needed action 71 (M) ~ H" is sufficiently tame so that the techniques of thermodynamics may
be applicable ([PS98], [Cal9]). However, this is not the case when the manifold M has cusps.

We note that Theorem 1.2 further extends to manifolds of variable negative curvature, as
long as the peripheral subgroups are virtually abelian, and the same proof applies.

Geometrically infinite 3-manifolds In the case of 3-manifolds, the previous result can be
strengthened further as follows.

THEOREM 1.3. Let M be a hyperbolic 3—manifold such that w1 (M) is finitely generated and not
virtually abelian. Suppose further that M does not have any rank 2 cusps. Then for any finite
generating set S of w1 (M), there are ¢,0 > 0 such that
l(y) —In
vn

where 7y is chosen uniformly at random in the sphere of radius n with respect to S.

— Ny,

Moreover, if M has rank 2 cusps, the same statement holds after enlarging the generating set
as in Theorem 1.2.
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To the authors’ knowledge, this is the first CLT for lengths of closed geodesics for possibly
geometrically infinite 3—manifolds.

Intersection numbers with a submanifold For our next application, the required actions are
on locally infinite trees, which are nonproper hyperbolic spaces.

Let M be a smooth orientable manifold and ¥ a smooth orientable codimension—1 sub-
manifold which is 7i-injective on each component. We say X is fiber-like if for each boundary
component of the cut manifold M|¥ its induced subgroup in the fundamental group of the
corresponding component of M|¥ has index at most 2.

For v € m1(M), let i(y,X) denote the minimal intersection number of ¥ with loops in M
freely homotopic to 7.

THEOREM 1.4. Suppose that M is a closed orientable hyperbolic manifold and let S be any
generating set for m(M). Let ¥ be a smooth orientable codimension—1 submanifold that is
mi-injective but not fiber-like. Then there are £, > 0 such that
i(’% Z) —In
vn

where « is chosen uniformly at random in the sphere of radius n with respect to S.

— Ng,

The theorem is new even for surfaces; in that context, Chas-Lalley [CL12]| proved a CLT for
self-intersection numbers of curves with respect to word length. Following Theorem 1.2, a similar
result could be formulated for more general hyperbolic manifolds.

Homomorphisms between hyperbolic groups Our next application is to homomorphisms be-
tween hyperbolic groups. Interestingly, the condition for nonzero variance can be recast in terms
of the induced Patterson—Sullivan measures.

THEOREM 1.5. Suppose that ¢: G — G’ is a homomorphism between hyperbolic groups such
that the image of ¢ is not virtually cyclic. For any fixed generating sets S and S’ of G and G’,
respectively, there are £ > 0 and o > 0 such that
=4
16(9)lls” — Lllglls N
lglls

for g € G chosen uniformly at random in the sphere of radius n with respect to S.

Moreover, o = 0 (i.e. the Gaussian is degenerate) if and only if ¢ has finite kernel and there
is an induced embedding d¢: 0G — OG' that pushes the Patterson—Sullivan measure class for
(G,dg) to the Patterson—Sullivan measure class for (¢(G), dg).

The above result generalizes Calegari-Fujiwara [CF10, Corollary 4.27]. It is also related to
[Cal9, Theorem 1.6], who proved a CLT where ¢ is the abelianization homomorphism, which in
turn generalizes work of Rivin [Ril0] for free groups.

Hyperplanes crossed in right-angled Artin and Coxeter groups Our final application is to a
collection of groups that is not necessarily relatively hyperbolic.

Suppose that G is a right-angled Artin group or right-angled Coxeter group that is not a direct
product. Let V be its set of vertex generators. For each v € V', define a function #,: G — Z
that counts the number of occurrences of v*! in a shortest spelling of g € G with respect to V.
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Equivalently, #,(g) is the number of hyperplanes labeled by v separating o and go in the cube
complex associated to G.

THEOREM 1.6. For G as above, there are ¢, 0 > 0 such that for any vertex v,

#v(g) —{n _)N[”

Vn
where ¢ is chosen uniformly at random in the sphere of radius n with respect to the vertex
generators.

We conclude by noting that our methods are sufficiently general to apply beyond the case of
‘nonpositively curved’ groups. Moreover, we do not need to assume that our counting measures
are associated to geodesic combings. See Theorems 7.3, 7.4 for the most general result. For
example, by using the standard graph structure associated to the language of geodesics for a free
group, we obtain a CLT for nonbacktracking random walks on any group with a nonelementary
action on a hyperbolic space X.

From thermodynamics to random walks

Most central limit theorems for counting measures established so far use a coding for geodesics
with finite paths, and then apply classical results in thermodynamic formalism, like the existence
and uniqueness of Gibbs measures for shifts of finite type. There, the observable is assumed to
be Holder continuous with respect to the standard metric on the shift space.

In this paper, instead, we do not assume any good geometric property on the action. Let
us recall that displacement is not a quasimorphism, is in general not weakly combable (in the
language of [CF10]) if the action is not convex cocompact, and it is not a Hélder weight function
in the sense of [PS98, Proposition 1] if X is not CAT(—1). Thus, the observable need not be
Holder and the thermodynamic approach does not appear to work. We also do not use transfer
operators or (-functions (as in e.g. [PP90], [Cal9]).

Rather, our general strategy is as follows.

(i) We start with a graph structure, i.e. a graph whose paths parameterize the group elements
we want to count. We first consider a vertex v of this graph, and consider a random walk
on the semigroup I';, of loops based at this vertex. Here, we apply the CLT for cocycles for
groups acting on hyperbolic spaces, as devised by Benoist-Quint [BQ16] and generalized by
Horbez [Hol8] to actions on nonproper spaces.

(ii) Then, we consider the set of paths in a maximal component for the graph as a suspension
on the space of loops at v, and we apply results of Melbourne-T6rok [MT18] to “lift” the
CLT to the suspended transformation. To be precise, we need to consider a skew product
over the shift space.

(iii) Now, we note that a thick graph structure is almost semisimple, hence there exists a power
p for which the transition matrix MP is semisimple. We use this to prove that the count-
ing measure starting at an initial vertex converges to a convex combination of stationary
measures for the Markov chains on the maximal components.

(iv) Using a coherence condition on the graph structure, we show that all the CLTs for all
Markov chains have the same mean and variance. This implies a CLT for the counting
measure on the set of paths starting at any vertex in a semisimple structure.
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(v) Finally, for a general thick structure of period p we condition on the first prefix of length r;
since all these distributions for the conditional measures converge to the same law (by (4)
above), the CLT for the entire sequence holds.

We conclude by mentioning some natural generalizations of this work, which we do not
attempt here. A Berry—Esseen type estimate of the error term appears within reach, using the
corresponding result for random walks and the bounds we work out here comparing the counting
and random walk measures. It would also be very interesting to obtain a local limit theorem, for
which, however, much further work is needed.

2. Background

2.1 Graph structures for countable groups

Given a countable group G, we define a graph structure on G as a triple (I', vg, ev), where I is a
finite, directed graph, vg is a vertex of I" which we call its initial vertex, and ev: E(I') — G is a
map that labels the edges of I' with group elements. Given this data, we extend the map ev by
defining for each finite path g = g1 ... g, the group element ev(g) = ev(g1)...ev(gn). We remark
that here and throughout, a path in I' will always mean a directed path. To simplify notation,
we will use g = ev(g) to denote the group element associated to the path g. We denote as ||g|| the
length of the path g. The graph structure is bounded if there is a uniform bound on the number
of paths in I' mapping to any single element of G.

For a graph structure I', we define 2 to be the set of all infinite paths starting at any vertex
of I" and o: Q —  to be the shift map. Given a path w = (g1,...,9n,...), we denote as

Wy, = g1 ...9gy its prefix of length n. The set of all finite paths starting at any vertex of I" will
be denoted by Q*.

We define two vertices v;,v; to be equivalent if there is a path from v; to v; and a path from
v; to v;, and the components of I" as the equivalence classes for this relation.

We will denote by M the transition matrix for I'. By Perron—Frobenius, M has a real eigen-
value of largest modulus, which we will denote by A. Moreover, such a matrix is almost semisimple
if for any eigenvalue of maximal modulus, its geometric and algebraic multiplicity agree. Fur-
thermore, such a matrix is semisimple if its only eigenvalue of maximal modulus is real positive.
We call a graph structure (almost) semisimple if its associated transition matrix is.

Let I be almost semisimple, and let A be the leading eigenvalue of M. Then we define a
vertex v to be of large growth if

1
lim — log #{paths of length n starting at v} = A
n—oo N

and of small growth otherwise (in which case, the limit above is < A). Furthermore, a component
C is maximal if

1
1i_>m — log #{paths of length n inside C'} = \.
n—oo n

As discussed in [GTT20], the global structure of I' is as follows: there is no path between
maximal components and vertices of large growth are precisely the ones which have a path to a
maximal component.

Given a vertex v, we denote as I';, the loop semigroup of v, i.e. the set of all finite paths
from v to itself. This is a semigroup under concatenation, and all its elements lie entirely in the
component of v. We denote as I, the image of ', in G under the evaluation map.
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DEFINITION 2.1 Thick graph structure. A graph structure I' is thick if for any vertex v in a
maximal component, there exists a finite set B C G such that

G=B-T,-B

where the equality is in the group G.

In what follows, we often make the evaluation map implicit in our notation. In particular, if
G acts on a metric space (X,d), o € X is a base point, and ¢ is a finite path in I', we will often
write go to mean the point go € X.

Geodesic combings For particular applications, it is also useful to define the notion of a
geodesic graph structure. A graph structure I' is geodesic if the length ||g|| of any path g is equal
the word length of g in the subgroup generated by the edge labels, using edge labels as the (finite)
generating set. A geodesic graph structure is called a geodesic combing if, in addition, there is a
directed path from vg to any other vertex of I' and the evaluation map is a bijection from the
set of finite paths starting at vy to the set of elements of G. Note that a geodesic combing is
automatically a bounded graph structure. We say that I' is a geodesic combing associated to a
finite generating set S if, up to adding inverses, .S is the set of edge labels for the graph structure.
In this case, ||g|| is equal to the word length of g with respect to S.

We emphasize that although the geodesic condition is used in the applications of our main
theorem (as in Theorem 1.1-1.6), it is not required for the most general results; see Theorems
7.3, 7.4. There we use the following more general notion:

DEFINITION 2.2 Coherent graph structure. A graph structure I' for G is coherent if it is bounded
and if for any finite set B C G there exists a constant B > 0 such that if g and h are finite length
paths in I', and g = b1 hby in G, then

gl = lIAlll < B.

The idea of coherence is simple; informally, if two group elements are close in G then a
coherent graph structure I' codes them with paths that are roughly the same length, and the
coding is uniformly bounded-to-one.

Our first lemma summarizes some properties of thick, coherent graph structures that we will
need in the sequel.

LEMMA 2.3. A thick, coherent graph structure I' is almost semisimple.

Moreover, if G ~ X is a nonelementary action on a hyperbolic space, then the actions of both
semigroups I', and T';* on X are also nonelementary, for each vertex v contained in a maximal
component.

Proof. Suppose the graph structure I' is thick and coherent. Since a coherent graph structure is
bounded, there is a b > 0 so that the evaluation map ev: Q* — G is at most b-to-one. Let B C G
be the finite set given by thickness of I' (Definition 2.1) and let B be the resulting constant from
Definition 2.2. By thickness and coherence we have

an - U U bl(Fv N Sn+k)b27

b1,b2€B |k|<B

where 5, C Q* is the set of all length n paths starting at any vertex. Then the definition of b
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implies that
#Sn <B|BI> > # Ty Snsr).
|k|<B

This, in turn, is bounded by a constant times A" since it is no more than the growth of paths in
the maximal component of I' containing v, and & is uniformly bounded. On the other hand, if the
transition matrix M of I is not almost semisimple, then M has a Jordan block for an eigenvalue
of modulus A of size k > 2 (see [GTT18, Section 2]). In particular, the growth of paths in I is
at least a constant times n*~1\”. We conclude that T' is almost semisimple.

The statement that the action of T', (and hence I';!) on X is nonelementary is proven in
[GTT20, Proposition 6.3]. O

The following lemma is immediate from the definitions:

LEMMA 2.4. A geodesic combing for G is coherent.

Other sources of (not necessarily geodesic) coherent graph structures come from biautomatic
groups, in the sense of [M097] or [EPCHLT92, Lemma 2.5.5].

2.2 Cocycles and horofunctions

Let (X, d) be a metric space, and let 0 € X be a base point. Given z € X, we define the Busemann
function p, : X — R as

pz(x) :=d(z, z) — d(o, 2).
Thus, setting
O(z2) := p,
defines a map
d: X — Lipl(X)
where Lipl(X) is the space of 1-Lipschitz functions on X which vanish at o.
We define the horofunction compactification X" as the closure of ®(X) in Lipl(X), with

respect to the topology of pointwise convergence. Elements of X" will be called horofunctions. We

denote as Y:o the space of infinite horofunctions, i.e. the set of h € X" such that infoex h(z) =
—00.

For any ¢ € Yh, the Busemann cocycle is defined as
5§($7 y) = lim [d(y7 Zn) - d(l’, Zn)}
2n—§

= he(y) — he(w),
where h¢ is the horofunction associated to §. This has the usual cocycle property f¢(z,z) =

REMARK 2.5. Benoist-Quint [BQ16] and Horbez [Ho18] define B: G x X" SR by
B(g,€) = he(g"o).

To compare their definition with ours:

B(g,ﬁ) = h{(g_l ) = legg[d(g_lo, zn) - d(O, Zn)] = /85(079_10)'
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3. CLT for random walks on the loop semigroups

Let I" be a graph structure for G, and let v be a vertex in a maximal component. Recall that
a (directed) loop is prime if it is not itself a product of nontrivial loops; since every loop can
be decomposed uniquely as a concatenation of prime loops, prime loops freely generate I';, as a
semigroup.

Given a probability measure p on the set of edges of I', one defines the first return measure
1y on Iy, as follows: if [ = g1 ... gy, is a prime loop in I',,, then we set

po(l) := p(g1) - - p(gn)-

We set j1,(1) = 0 for all other loops. Note that inversion defines a map I', — I'; ! and we define
the measure /i on I'; ! by (1) = u(I~1). These measures push forward to measures on the group
G under the evaluation map. We say that p, is nondegenerate if it gives positive measure to any
prime loop of T',,.

Let M be a metric space on which G acts by homeomorphisms. A measure v on M is u-
stationary if v = fG gxv du(g), and p-ergodic if it cannot be written as a nontrivial convex
combination of u-stationary measures.

3.1 Central limit theorems for cocycles
Recall that a cocycle is a function o: G x M — R such that

o(gh,z) = o(g,hx) + o(h,z), Vg,h € G,Vr € M.
A cocycle 0: G x M — R has constant drift A if there exists A € R such that

| ota.0) dutg) = »
for any x € M. A cocycle 0: G x M — R is centerable if it can be written as

o(g,z) = oo(g,z) + () — (g - )

where oy is a cocycle with constant drift and where ¢: M — R is a bounded, measurable function.
In this case, we say that oy is the centering of o; note that A = [, \,0(g,x) du(g)dv(z) for any
p-stationary v. We say that the cocycle o has finite second moment with respect to a measure
won G if

/ sup |o (g, 2)|* du(g) < +oc.
G zeM

We now use the following CLT for centerable cocycles: as remarked in [Hol8, Remark 1.7],
the proof is exactly the same as the proof of [BQ16, Theorem 4.7].

THEOREM 3.1 Central limit theorem for cocycles. Let G be a discrete group, M be a com-
pact metrizable G-space and . a probability measure on G. Let v be a u-ergodic, u-stationary
probability measure on M, and let My be a G-invariant subset of M of full v-measure. Let
o: G x My — R be a centerable cocycle with drift A and finite second moment. Then there exist
o > 0 such that for any continuous F': R — R with compact support, we have for v-a.e. x € M,

We now apply this result to the loop semigroup. Let F,, be the group freely generated by the
prime loops in T',,.
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Let N: T, — Z be the semigroup homomorphism N(g) := —||g||, where ||g|| is the length
in I' of the loop g. There is a natural inclusion I';, — F,, as a subsemigroup and we can extend
the semigroup homomorphism above to a group homomorphism N: F, — 7Z. Moreover, we
also extend the natural semigroup homomorphism I', — G, induced by evaluation, to a group
homomorphism e: F, — G. Now, using the homomorphism e: F, — G, the free group F, has a
nonelementary action on X, and moreover u;" is supported on I';, C F,, for all n > 1.

Finally, for some £ € R to be specified below, we define n: F,, X X" 5 Ras
U(Qaf) = BE(ng_IO) - EN(g)

LEMMA 3.2. Suppose that the action of Iy, on X is nonelementary and p, is nondegenerate.
Then for any £ € R, the restriction of i) : F,, X X" SR to F, x YZO is a centerable cocycle.

Proof. We have
1(gh, &) = Be(o,h™ g~ o) — N (gh)
(0,h™10) + Be(hto,h g7 o) — EN(g) — EN(h)
(0,h™"0) + Pue(o, g~ 0) — ¢N(g) — £N(h)
=n(h, &) + (g, h§)
hence 7 is a cocycle. Moreover, by [Hol8, Proposition 1.5, using [Hol8, Corollary 2.7] and

:55
:ﬁg

[Ho18, Proposition 2.8], the cocycle B(g,&) = B¢(0, 97 '0) is centerable on F, x YZO Then, since
n(g,€) — B(g,§) = ¢N(g) is a homomorphism and depends only on g, we have that (g, £) is also

centerable on F, X Yh . ]

[e.e]

Thus, as a consequence of Theorem 3.1, we obtain the following.

COROLLARY 3.3. Let I' be a thick structure, let v be a vertex in a maximal component of
I". Suppose that the first return measure u, is nondegenerate, and let v, be a [i,-ergodic, fi,-
stationary measure on yh. Then there exist £,0 > 0 such that for any continuous F: R — R
with compact support, we have for v,-a.e. &,

. BE(OMQO) - ZHQH *n o
Jim GF< NG > dui™(g) —/RF(t) dN,(t).

Proof. We apply Theorem 3.1 to the measure ji,,, supported on I';!, where ¢ is chosen so that

A= fF 5 1(9,€) dfin(g)dry(§) = 0. Note that by [MT18, Proposition 4.4] and the fact that

I, is nonelementary (Lemma 2.3), we have v,(X ) = 1. Moreover, for any g € ', we have

n(g~", &) = Belo, go) — Llg|l. O

3.2 Skew products and invariance on the loop semigroup

Let M be a compact metric space with a continuous G-action. We define the skew product
T:AxM—=Qx M as

—1
T(w,§) = (o(w), g1 €)
where w = (g1, g2, ... ).
A graph structure I' is primitive if its associated transition matrix M is primitive, i.e. has a

positive power. Now let I'" be a primitive graph structure, let v be a vertex of I', let I', be the
loop semigroup, and let u, be the first return measure.

10
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Finally, let Q, = (I',)Y with shift map o,. To highlight the difference, we denote the elements
of F§ as (l1,1l2,...), since each element of the sequence is a loop, while the elements of Q will be

denoted as w = (g1, 92, .- ), since its elements are edges. Let us define the map T}, : Q, x M —
Q, x M as

Tv(waf) = (Uv(w)’ lflf)
LEMMA 3.4. A measure v on M is fi,-stationary if and only if u} ® v is T,-invariant.

Proof. Fix C' C (), measurable and let C; C 2, be the subset consisting of sequences beginning
with [ € T, such that 0,(C;) = C. Then for any A C M measurable,

T, (Cx A) =] xIA.
l

Since

/§®V<UcpdA>:

l

H(C) Y w(b(14)
!
(©) 3 alt)Lv(4)
!
the lemma follows. O

LEMMA 3.5. There exists an ergodic [i,-stationary measure v, on M such that the product
measure i) ® v, is T,-invariant and ergodic.

Proof. Since M is a compact metric space, there exists a ji,-stationary measure vq on M ([Fu63,
Lemma 1.2]). Then by Lemma 3.4 the measure Aj := MEI Q1 is Ty-invariant. If Aq is not ergodic,
let us consider its ergodic decomposition, and take one of its ergodic components \,. By definition,
Ay < A1 and A, is Tp-invariant and ergodic. Then by [Mo88, Corollary 3.1], A, is of the form
Ay = pY ® v, for some measure v, on M. Finally, again by Lemma 3.4, the measure v, is
[ip,-stationary. 0

LEMMA 3.6. Consider the function f: €} x X" = R defined as
f(w,&) == Be(o, gr0).

Then for any n we have

n—1

Y (T (w,8)) = Belo,wno). (1)

j=0

Proof. The cocycle property implies

n—1 n—1
Be(0,wn0) = Be(wjo, wj110) = Zﬂwglg(o,ngO)
par i=0

for any £ € X" Moreover, by definition and G-equivariance we have
f(Tj(wag)) = Bwj_lf(()? gj+10)
and the claim follows. O

An analogous statement holds by replacing T, €2 by T, €2,.

11
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4. CLT for Markov chains of primitive graph structures

We begin by recalling the following: If ' is a directed graph whose transition matrix M is
primitive with leading eigenvalue A, then
n

lim — = pu”
n—oo A\ P ’

where Mp = Ap, u" M = ", and u”p = 1 [Wa00, Theorem 0.17]. We will consider the following
measures associated to I'. The stationary measure on vertices for the corresponding Markov chain
is given by setting the starting probability at vertex v; to be m; = p;u;. Assigning the probability
p—j_ to an edge e from v; to v; then determines the transition probability p;; from v; to v; to be

Dij = % (see e.g. [Wa00, Section 6.6 (7)]). The corresponding Markov measure P on the path
space ) determined by these probabilities gives the measure of maximal entropy for the shift on
Q (which in this Section is unique since the graph structure is assumed to be primitive) and is
known as the Parry measure [Pa64]. For a vertex v of ', we use P, to denote the measure on the
space of paths €2, C ) starting at v obtained by beginning the Markov chain at v and using the
above transition probabilities. From now on we use these edge probabilities to define the first
return measure p, as in Section 3.

We also define u, as the distribution on the space of paths of length n induced by the Markov
measure P; that is, u, is the pushforward of P to {2* under the map which sends an infinite path
to its prefix of length n. In this section we prove the following result.

THEOREM 4.1. Suppose that I' is a primitive graph structure and let u, be the associated
distribution on the space of paths of length n. There are constants ¢ and o such that for any
continuous function F: R — R with compact support, we have

Tim QF(W) diin(g) = /R F(t) dN, (b).

The main technique to obtain the CLT for the Markov chain as above from the one from
the random walk on the loop semigroup is using a suspension flow, adapting the approach of
Melbourne-T6rok [MT04] for dynamical systems.

4.1 Suspension flows

Let S: (X,\) — (X,\) be a measure-preserving dynamical system, and let r: X — N be a

measurable, integrable function, which we call the roof function. Then the discrete suspension

flow of S with roof function r is the dynamical system given by the map S: X — X where
X:={(z,n) e XxN : 0<n<r(x)—1}

with measure \ := 1 (A® ), where § is the counting measure on N and 7 := [, r d\. Then, the

map S is defined as

S0 = (86),0) ifn=r(z)—1.

Since in this case the system has discrete time, the above construction is also called a Kakutani
skyscraper.

The main theorem of Melbourne-T6rok [MT04, Theorem 1.1] is the following.

a {(x,n+1) ifn<r(z)—2

THEOREM 4.2. Let S: (X,\) — (X, ) be an ergodic, measure-preserving transformation, and
let S: (X, X) — (X, )) be the suspension flow with roof function r. Let ¢: X — R be such that

12
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[ ¢ dX =0, and define ®(x) := 370" ¢(x, k). Let ¢ € LV(X) and let r € L(X) be the roof
function, with (1 —1/a)(1 —1/b) > 1/2. Suppose that ® and r satisfy a CLT. Then ¢ satisfies a
CLT.

Moreover, if the CLT for ® has variance o3, then the CLT for ¢ has variance 0% =

1“&1\7

4.2 Invariant measure on the suspended space
For any w € §,, let r(w) be the length in I' of [;(w). This is the first return time for the loop
determined by w. Let us define the suspension of the skew product

Q) = {(w,k, &) € Qyx Nx M : 0<k <r(w)—1}

and

~ ] (w k+1,6) if k <r(w)—2

Tk, 8) = { (00(w), 0.1, 1€) i k = r{w) - 1.
Let us now denote R := [ |lgll duu(9) = [7r(w) dPy(w) and define the probability measure
) = % (1) ® 6 ® vy) on ),
LEMMA 4.3. Let v, be the [i,-stationary measure constructed in Lemma 3.5. Then v(8) on Q)
is T-invariant and ergodic.

Proof. It suffices to check invariance of the measure using cylinder sets Cj, . ;, consisting of
loops beginning with {; ...l,. We have

C x{k—1} x A it k>0
L [

C x {k} x A) = Lot e —
( 1,eln { } ) { Ile y Cl,ll,...,ln % {HZH 1} xIA k=0

where P, C I';, is the set of prime loops. Hence in the first case, the equality
VT (Cly, i, x (K} x A)) = (Cyy Ly, x {k} x A)

is obvious. In the second case,

v (T, 0, % {k} x A)) Z Lo (Do (1) + - - o (o) (LA)
ler
1
R,u'v ll Z /~Lv Vv lA
lep,
1

= E'uv(ll) oty (L) (A)
= v, x (k) x A)
hence () is T-invariant. Moreover, the suspension of an ergodic measure is ergodic, see e.g.

[Sa20, Proposition 1.11]. O

4.3 Pushforward of the T-invariant measure to € x M
Recall that €2 is the space of all infinite sample paths in I' starting at any vertex. Let us define
the projection 7 : Q) — Q x M as

W(w7 ka g) = (Uk(w)a (gl s gk>_1§)
and recall the skew product T: Q x M — Q x M is

T(w,€) = (o(w), 91 '€).

13
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LEMMA 4.4. The following diagram commutes:

T T

-y )

Q6 ) — = x M

|

(Q X M, 1y © 1)

As a consequence, in the hypotheses of the previous lemmas, the measure 7 = mw) is T-
invariant and ergodic.

Proof. We show that the horizontal arrow is equivariant for the shifts. This follows from the fact
that if we write I1(w) for the first return loop of w then I1(w) = g1(w) . . . gy(w)(w). Hence,

7o T(w,r(w) = 1,€) = ((0,(w),0,1;¢))
= (UT(W) (w)v (gl s gr(w))_lf)a

which is equal to T o w((w,r(w) — 1,£)). The other cases being trivial, this proves the first
statement.

Finally, since 7 is the pushforward of an ergodic measure, it is ergodic. O

4.4 Return times and invariant measures for the Markov chain

Recall that in the previous section we produced a measure v, on M which is fi,-stationary and
such that the product measure ;) ® v, is T,-invariant and ergodic. Then, by lifting it to the
suspension and pushing it forward to  x M, we have an ergodic, T-invariant measure 7 on

QO x M.

Now, for any vertex w other than v we define the measure v, on M as

vw(A) = Y p(y)r(vA) (2)

’Yerv,w

where the sum is over the set I', 4, of all paths v from v to w which do not pass through v in
their middle, and pu(7) is the product of the measures of the edges of . Recall also we denote as
P,, the Markov measure on the space of infinite sample paths starting at w.

LEMMA 4.5. We have

?::%ZPW@)VU,.

Proof. Let w be a vertex, and let g1, g2, ..., gy be a finite path starting from w. We have for any
measurable A C M

Co,gn X {0} x A fw=wv

—1
C x A) = .
™ (Corragn x A) { Lhery . Crgrmgn X IV} xvA if w # v

where the union is over the set I',,, of all paths v from v to the initial vertex w of g1 which do

14
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not pass through v in their middle. Thus we have

PCprrgn < A= S w)ilgr) - plga)n(A4)

’YEFU,w
1
= H(91) - 1lgn)vu(4)
1
= Epw(cgh...,gn)’/w(A)
which proves the claim, since both measures agree on all rectangles. O

Recall that R = [ 7(w) dPy(w), and set ny, = v4,(M). Here we show:

LEMMA 4.6. We have the identities:
(i) R= %; and

(ii) m, = "% for any vertex w of I,

Note that if we replace I' with the graph I' obtained by reversing the direction of each edge,
then the transition matrix for T' is M7 and so we have that p and u switch roles. In particular,
new transition probability from v; to v; is (in terms of the quantities defined in Section 4)

— _ Mjiu]' . . .
Pij = N but the stationary measure on vertices is unchanged.

Proof of Lemma /.6. (1) is the well-known Kac lemma [Ka47, Theorem 2’]. To prove (2), recall
that I'y ., is the set of all paths v from v to w which do not pass through v in their middle.
Hence, if we reverse all the paths in this set, we obtain ', the set of all paths 7 from w to v
which do not pass through v in their middle. Note that since almost every path starting at w

passes through v
1= > 7
7€lw,w
Uy .
_ v bl
Uy Z: ’
Werv,w

where 1i(7) is the product of the measures of the edges of 7 with respect to p and we have used
our previous observation about p.

Using this and the fact that

S A= 3 b,

ﬁefv,w ’Yerv,w
we compute,
Ny = V(M)
p _
= ¥ s =t 3 e
Y€ y,w Pv €Ty
— Pu U

Tl

Pv Uy Ty

Hence, the lemma follows from (1). O

15
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4.5 The Central Limit Theorem for the Markov chain

We are now in a position to prove Theorem 4.1. By Melbourne-T6rok ([MT04], Theorem 1.1),
we have:

PROPOSITION 4.7. Let ¢: Q x X — R belong to L*(Q x X v) for some b > 2, and let

m := [ ¢ dv. Define ®: €, x X" SR as P(w,&) == Z(:g qﬁ(Tk(w,{)) — mr(w), and suppose
that

S laoy
Vn
converges to a normal distribution in probability on (£, x Yh, 1 ® 1,). Then the sequence
Z;:& ¢poTI —nm
Vn

converges to a normal distribution in probability on (£ x Yh,ﬁ).

Proof. Note that since r has exponential tail (see e.g. [GTT18, Lemma 3.2 (2)]), it belongs to
L%(Q,) for any a > 1. Then the condition (1 —1/a)(1 —1/b) > 1/2 is satisfied as long as b > 2.
Moreover, (r o T (w)), is a sequence of independent random variables and so it satisfies a CLT.
Hence, we can apply Theorem 4.2 to obtain a central limit theorem for the observable ¢ om —m
and the system T with measure v(*). Moreover, since ¢ o7 o " = ¢oT"om by Lemma 4.4, this
is equivalent to a central limit theorem for the observable ¢ on the system T with the measure

W*(V(S)) =7. 0
PROPOSITION 4.8. There exist ¢, o such that for any continuous, compactly supported F': R — R
one has
L
/ F (55(0 191 9n0) — ") 47 (w, €) —>/F(t) AN (8),
axx" \/'E R
as n — oo.

Proof. Let us apply the previous Proposition with ¢ = f where f: Q0 x X" = R is defined as
f(w,&) := B¢(o, g10). Then by definition of ® and f, Lemma 3.6 gives that for every w € €2,

r(w)—1
O(w, &) = > f(TFw,©) - tr(w)

k=0
= Bﬁ(ovwr(w)o) - ET(O)) = fv(waf)a

_ [ Be(o.90) dpw(g)dvv(€)
L llgll dp(g)

/GXXh F (&(o,gf/)ﬁ— eHgH) ™ (g)dvy (€) — /RF(t) AN, (1).

Note moreover that B¢(o,11...1,0) — ||l ... 1| = Z?:_& Fo(T3 (w, €)), hence we can rewrite the
above equation as

S folTE (w,8))
/thp< = )d(pv@wv (@, ) %/ ) AN, (1),

16
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CENTRAL LIMIT THEOREMS FOR COUNTING MEASURES

Thus, by Proposition 4.7 and the above calculation, we also have (for some different o)

The claim follows by again using that by Lemma 3.6, we have Z?:_ol foT9 (w, &) = Be(0,91 - . gno).
[

Now, we will need to go from the CLT for the Busemann cocycle to the one for displacement.
To do so, we use the following variation of [BQ16, Proposition 3.3].

By [MT18, Proposition 4.4] and the fact that I';! is nonelementary (Lemma 2.3), we have
~h
vy (X

~) = 1 for any vertex wv.

LEMMA 4.9. For any € > 0 there exists T' such that for all vertices w in T, all £ € YZO and all
n > 1 we have

Py (w : |d(0,g1...9n0) — Be(0,91-..900)| <K T) > 1—e.

Proof. Recall that by [MT18, Section 3.3] there exists a G-equivariant map : YZO — 0X, where
0X is the Gromov boundary. Then, by definition of Gromov product and J-hyperbolicity, we have

d(O, gO) - /85(07 gO) = 2(907 77(5))0 + O<5) (3)

for any £ € YZO (see e.g. [Hol8, Lemma 2.4]). Now, since the pushforward of the stationary
measure P, for the Markov chain starting at w to the Gromov boundary of X is not atomic
([GTT20, Lemma 4.2]), we have that for every € > 0 there exists 7" such that

Pw(w €y - Sup(wn077r(§))o < T) >1—e

n>1

for all £ € YZO and for all w. This, combined with eq. (3), yields the desired estimate. O

Proof of Theorem 4.1. Let F': R — R be continuous with compact support. Since F' is uniformly
continuous and by Lemma 4.9, for any n > 0 there exists ng such that for any n > ng, any w

and any £ € YZO one has

s (st (st

with probability P, at least 1 — €. Thus, since v = % > w Pw ® vy, for any n > 0 there exists ng

such that for any n > ng we have
d —/ ... gno) — ¥
\/ﬁ vn

on a subset of O x X" of T- measure > 1 — €. On the other hand, by Proposition 4.8, we have

/Qxxh F <5£(0,g1 .;/.T;(l]nO) — Kn) dv(w, &) — /RF(t) AN (1).

17
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Since the integrand does not depend on &, then we also have
d(o,g1...gn0) — €n> /
F dP(w) — [ F(t) dN,(t),
(et @ [ F) ane(0)
where P is the pushforward of 7 to 2. Finally, since 7 = % > w Puw ® 1y, the pushforward of 7 to
Qequals P=)",, H Py, where n,, = vw(M). Hence Lemma 4.6 implies that P = ) 7,P, =P,

thus we also have
/Q F (d(o’gl = Vgﬁ”o) - g”) dP(w) — /R Ft) dN, (#)

as required. ]

5. Uniqueness of drift and variance

Now suppose that I' is a semisimple graph structure. In particular, each maximal component Cj
of T' gives a primitive graph structure (without an initial vertex) on G to which the results of
the previous section (in particular, Theorem 4.1) apply. Hence for each maximal component C;
of I', Theorem 4.1 gives constants ¢; and o; for the associated CLT.

In this section, we show that the CLTs for the recurrent components of I' are compatible in
the sense that they have the same drift and variance. This is the primary place where we will
use thickness and coherence of I'. For this, first recall that (2* is the set of finite length paths in
I" starting at any vertex and that the graph structure is bounded if there exists a constant b > 1
so that the evaluation map ev: Q* — G is at worst b-to-one, i.e. #(ev1(g)) < b for all g € G.
Also recall the definition of coherence from Definition 2.2.

REMARK 5.1. Our standing assumption until Section 7 is that I' is a semisimple graph structure
on GG. This implies that the transition matrix for each component of maximal growth is primitive.

5.1 Uniformly bicontinuous functions

Let us begin by introducing a class of functions that are well behaved under bounded perturba-
tions in the group.

DEFINITION 5.2. A function f: Q" — R is uniformly bicontinuous if for any finite set B C G
and any 1 > 0, there exists N > 0 such that if ||g|]] > N and b1gbs = h in G for some by,bs € B,
then

1f(g) = f(R)| <.
In our application, the uniformly bicontinuous property will be a consequence of the fact that
displacement is Lipschitz in both the right and left word metric on G. This definition is inspired

by [CF10] (in particular, the proof of [CF10, Lemma 4.24]), where the bi-Lipschitz property is
extensively used.

We next introduce the primary functions of interest used throughout this section. Define the

following functions on Q*: for any ¢ € R,

d(o, go) — £||g]| __d(o, go)
o 9T T

We remark that the constant ¢ will be chosen once and for all after the proof of Lemma 5.6.

©(g) =

18
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LEMMA 5.3. If the graph structure is coherent, then the functions i and ¢ defined above are
uniformly bicontinuous for any £.

Proof. Fix a finite set B C G, and let B be the resulting constant from Definition 2.2. Suppose
that h = bygby for some by,by € B. Then |||g]| — ||k]|]| < B and by the triangle inequality
|d(0,go) — d(o,ho)| < By where By := 2maxpcp d(o,bo). Finally, denote by L the Lipschitz
constant so that d(o, go) < L||g|| for any g € Q*.

(1) By the above estimates,
d(o,ho) _ d(o,90)| _ |(d(o, ho) — d(o, go))||g]l + d(o, go)(llgll — [IAID)]

172 gl lglllIAll
(0, ho) — d(o, go)| | d(o,g0) |llgll — [[Alll
- 17| gl 17|
B+ LB
= gl -

and the right-hand side tends to 0 as ||g|| — oc.

(2) We can write

lo(g) — p(h)| = = — 2EY
I A= T Vv d
where 2 = d(0, go) — €||g|l, y = d(o, ho) — £|h] — d(0, go) + £l|gll, n = |g]|, and d = [[A] — |g]-

Recall that by the above inequalities |d| < B, hence also |y| < By + B and |z| < (L + 0)||g].
Thus,

WiTd- i)y
n(n + d) n—+d

o x+y‘

\/77_ vn—+d

S vz R

Bl—l-fB
<(c+z>m(\/n+ — V) +

and the right-hand side tends to 0 uniformly in n. O

REMARK 5.4 Logarithmic perturbations. As a consequence of the proof that ¢ is uniformly
bicontinuous, we observe that for any n > 0 there is an N such that if ||g|| > N then for any
decomposition g = gog192 with ||go||, [|g2]] < log N we have

l(9) — @(g1)] < n.

The main reason why we introduce the bicontinuous functions is the following property. For

each i, we denote as ,ugf ) the distribution on the space of paths of length n induced by the Markov
(4)

measure associated to the maximal component C;, as defined in Section 4. In particular, py’ is
supported on length n paths of I' that are contained in Cj.

LEMMA 5.5. Suppose that the graph structure I' is thick and coherent. Let f: Q* — R be a
uniformly bicontinuous function, and suppose that for each maximal component C; there is a
finite measure D; on R so that

f(wn) — D

19
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in distribution with respect to the Markov measure on C;. If each D; is nonatomic, then there
exists a > 1 such that for any interval I C R,

L1y <Dy < a i)

Similarly, if each D; is a Dirac measure, then D; = D;.

Proof. Let v be a vertex of C;, and let C; be another maximal component. Let B C G be
the finite set given by thickness of I' (Definition 2.1) and let B be the resulting constant from
Definition 2.2. Similar to the proof of Lemma 2.3, by thickness and coherence we have

ST(Lj) - U U b1 (I'y N Spyr)b2
b1, bacB |k|<B

where Sq(zj ) is the set of paths of length n which entirely lie in C;. Hence, by uniform continuity,
for any € > 0 there exists ng such that for all n > ng,

#{ge Sy : flg) €y} <BBP Y #{g €TuNSuin = flg) €l —ey+e},
[k|<B

for any interval I = [z, y|. Here, we have used that the evaluation map is at most b-to-one. Now,
note that there exists C' > 0 such that

(4) (4)
- #ANST) o) < cHANS) (5)
AT A"
for any 4, any n and any set A. Hence, by noting that I', N S, C Sfll}rk,
g+ F(g) € lay]) SBIBPC? Y uill (g« flg) € lo— ey +4)).
|k|<B

Now taking limits and using the Portmanteau theorem, we obtain that

Dj((w,y)) < 2BO| B*C* Dy([z — e,y + €)),
for any € > 0. So if ¢ = 2Bb|B|?C?, we have that D;((x,y)) < ¢ D;([x,y]) because D;([z,y]) =
Neso Di([z — €,y + €]) for any finite measure.

Now if each D; is nonatomic, we get D;([z,y]) < ¢ D;([x,y]) and reversing the roles of ¢ and j
completes the proof in this case. Similarly, if D; and D; were distinct Dirac measures, we would
obtain a contradiction by letting (x,y) be a small interval about the atom for D; and taking e
small enough so that [x —e, y+ €] does not contain the atom for D;. This completes the proof. [

5.2 Uniqueness of drift

We now show that all maximal components of I' determine the same drift.

LEMMA 5.6. If the graph structure I' is thick and coherent, then each {¢; for each maximal
component C; are the same.

Proof. By the subadditive ergodic theorem, for each maximal component C; we have

lim d(0,wn0) =Y
n—00 n

almost surely (and hence in distribution) with respect to the measure ,ugf ). Since U(g) = d(lfs;ﬁ]lO)
is uniformly bicontinuous by Lemma 5.3, the claim then follows by Lemma 5.5.

By the above lemma, we now define ¢ using ¢ = ¢; for any (equivalently all) 4.

20
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5.3 Uniqueness of variance

To show that all maximal component of I' determine the same variance, we use the simple fact
that distinct normal distributions with mean 0 can be be distinguished by the decay of their
tails.

LEMMA 5.7. If the graph structure I' is thick and coherent, then for any two maximal components
C; and C; we have o; = 0.

Proof. We have already shown that for ¢ fixed as above and any maximal component C; of T,
¢(wn) — Na‘ia

in distribution with respect to the Markov measure on C; (Theorem 4.1). Since ¢ is uniformly
bicontinuous by Lemma 5.3, Lemma 5.5 states that there exists an a > 1 so that for any interval

Iin R,
1
/m@g/m@ga/m@
a Jr I I

But since this holds for every interval, Lemma 5.8 implies that o; = 0; as required. O

LEMMA 5.8. If there exists a > 1 such that

1/m%ﬁ§/m%j<a/mwi (6)
a Jr I I

for any interval I, then o; = o;.

Proof. If we let

n+1 1 n+1 /2
Lo = / dN, = / e 202 dt
n n

we get,

which yields

. loglng 1
i E = o ™
Then, if (6) holds, then
LS LY
a Ing,
hence, by (7)
=1 logIn,Uz' li lOgIanj L
202 00 n? 00 n? 202
which yields o; = 0. O

6. The semisimple case

In this section, we prove our main theorem for semisimple graph structures. This is completed
in Theorem 6.3.
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6.1 Convergence to the Markov measure

So far our work has been for maximal components of a semisimple graph structure. In this section
we consider the whole graph structure, still in the semisimple case.

Let T' be a semisimple graph structure for G with transition matrix M of spectral radius
A > 1. Let v; be the vertices of the graph, and let vy be a vertex of large growth, which we take
as the initial vertex. Then recall that el M "e; is the number of paths of length n from v; to v;.

Since M is semisimple, the limit
n

M
My = lim —

n—oo A"
exists. In particular, in keeping with notation at the beginning of Section 4, we denote as e; the
ith vector of the standard basis, and define
e;-rM "1 . egM e,

;= lim and wu; := lim
pi n—o0 n t n—o00 L

By construction, p = (p;) satisfies p = My.1 and Mp = \p, while u = (u;) satisfies u” M = \u”.
Finally, >, u; = po and >, uip; = po.

Note that vertices v; for which p; > 0 and u; > 0 are precisely vertices of components of
maximal growth. The large growth vertices are those with p; > 0.

As before, we use a standard construction to define a Markov measure IP on the space 2 of
infinite paths starting at any vertex of I'. First define the initial distribution of the Markov chain
to start at vertex v; with probability m; := ”;p t. Then assign an edge from v; to v; the probability

;%_ so that the transition probability from v; to v; is p;; := M“p 2. Obviously, P is supported

on paths that are entirely contained in components of max1mal growth We denote as P, the
distribution on the space of paths of length n induced by the Markov measure P.

REMARK 6.1. We remark that the induced measure on each maximal component C' of I" rescales
to give the Markov measure on C' previously considered. This follows immediately from the
construction.

The following result relates the Markov measure on the semisimple graph structure to the
counting measure. For its statement, let vy be any vertex of large growth. For each n, consider
the path given by selecting uniformly a path ~ starting at vy of length n, and take its subpath
4 from position |logn] to position n — |logn|. To avoid writing the integer part every time, we
set 1g(n) := |logn]. Let A, denote the distribution of 5.

LEMMA 6.2. With notation as above, the total variation
HPH—ng(n) - )\nHTV —0
as n — oo.

Proof. Denote n' := n — 21g(n). Let v be a path in the graph, starting at v; and ending at v;.
Then by definition the proportion of paths of length n, starting at vy, that have v as “middle
subpath” of length n’ is
5 (ed M'eMWe;) (e M'e(M1)
A =
n(7) T

On the other hand,

piA™

0 otherwise,

Tili If v; has large growth
P () = { '
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which is nonzero if both v; and v; belong to a maximal component. In this case,

dP,, PR Ag(n) el M™ mipj

dx, (v) = e%“Mlg(n)ei ’ e;-FMlg(n)l o Pi

L1 P mip;

w p; 1 p;

=1

using that m; = %. Moreover, if S5’ denotes the set of paths of length n’ from v; to vj, we have

(eiTM”/ej) (e MeMe,) (eJTMlg(”) 1)

S‘n(sf{j) =

el Mm1
(el M 1)(ef M'eMe;) (e MeM1)
= egMnl
N Piuiﬂj’

PO
hence such a probability tends to 0 unless both v; and v; belong to a maximal component.

Finally, if we denote as £, the set of paths of length n’ which lie entirely in a maximal
component, we have for any set A

P, ()~ ~ <
P, (A) — )\n(A)‘ < Z = (x)An(x) — (@) + M(AN\ L)
seanc, | An(@)
P, (z) ‘ ~
< sup |—= — 1|+ A (L5,
2€Ln | An(T) (£n)
and both terms tend to 0 as n — oo, independently of A. O

6.2 Central limit theorem for the counting measure in the semisimple case

We are now ready to prove the following. For its statement, let S, denote the set of length n
paths beginning at the initial vertex vg.

THEOREM 6.3. Let I' be a semisimple, thick, coherent graph structure for a nonelementary group
G of isometries of a 0-hyperbolic space (X, d), and let o € X be a base point. Then there exists
>0, 0 >0 such that for any a < b we have

#{gESn : We[a,b]}:/abd/\fg(t).

In the following proof and later on, we will use the notation N, (z):= [ dN,(t).

lim
no0 %8,

REMARK 6.4. Note that if the graph structure I' is semisimple and has a unique maximal com-
ponent, then Theorem 6.3 holds even without assuming that the structure is coherent.

Proof. Let C1,...,Ck be the maximal components, and let ug) be the distribution on the space

of paths of length n induced by the Markov measure associated to that component, as in Section
4. Theorem 4.1 shows a CLT for all such measures, and by Lemmas 5.6 and 5.7 all such measures
have the same drift and variance, that we denote by ¢, 0.

Now, since the starting probability (7;) in the above construction is nonzero precisely on the
set of vertices which belong to a maximal component, there exist weights ¢; > 0 with >, ¢; =1
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such that

k
P, = Z Cilh(zi)
i=1

for any n. Thus, for any x € R,

k
Pu(g : (g) <z) = anlg : olg) <) = No(x), (8)
=1

where we recall that
d(o,go) — £| gl
gl

Now, we use that the counting measure can be approximated by the distribution on finite
paths for the Markov chain. If g is a path of length n, we denote as g = ggg1g2 where gq is the
prefix of length lg(n), g1 is the middle part of length n — 21g(n) and go is the final part of length
lg(n). By Remark 5.4, there exists ng such that

lo(g) — plg1)] < e 9)

v(g) =

for any n > ng and g with ||g|| = n.
Fix z € R and € > 0. Then we have

A9 : o(9) <) =Anlg =909192 : p(9) <z
<9 =909192 © ¢(g1) <x+e) by eq. (9), for n large
=X(g1 + 9(g1) <z +e) by definition of A,
<P oigm)(91 + wlg1) <z +e€)+e by Lemma 6.2, for n large.

Hence, by eq. (8) we obtain

limsup An(g : ¢(g) <) < Ny(z+¢€) +e€

n—0o0

and, by taking e smaller and smaller and using the continuity of N,
limsup A (g : ©(g9) < ) < Ny(z).
n—oo

The lower bound follows analogously. O

Indeed, the same proof shows the following stronger statement. Let )\g) denote the counting

measure on the set of paths of length n starting at v;.

COROLLARY 6.5. Let I' be a semisimple, thick, coherent graph structure for a nonelementary
group G of isometries of a d-hyperbolic space (X, d), and let o € X be a base point. Then there
exists £ > 0, o > 0 such that for any vertex v; of large growth for I' and any a < b we have

lim AY (g . dlo90) = tgll [a,b]> - /bdNU(t).

oo gl

Proof. Let us fix a vertex v; of large growth for M. Then we can define a Markov measure P®)
on the space of infinite paths as follows. The transition probabilities will always be the same
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0

Dij = )\,’;—jpi, while for each vertex v; one finds a different set of starting probabilities ;" given by
(l) . TMn .
ﬂ'i(l) = Y pz’ where ugl) = lim u.
Pl n—o00 "
Just as before, there exist constants cgl) > 0 such that ), cz(l) =1 and
- (UG
PO = 3 el
i=1
The proof then proceeds exactly as for Theorem 6.3. ]

7. The CLT for displacement and translation length

Now suppose that I" is an almost semisimple graph structure for G with transition matrix M.
Then M has some period p > 1 such that MP is semisimple. We denote by I'? the corresponding
p step graph structure on G. That is, I'? is the graph with the same vertex set as I' and an edge
joining v; to v; for each directed path from v; to v; of length p, whose label is the word in G
spelled by the corresponding path. The transition matrix for I'? is MP, hence I' is a semisimple
graph structure for G.

Since the previous results require this structure to be thick and coherent, we need the following
lemma.

LEMMA 7.1. The following properties pass to the p step graph structure:

— If v is a large growth vertex of I, then it is also a large growth vertex of I'P.
— If T is a thick structure, then I'P is also thick.

— If T is coherent, then so is I'P.

Proof. The first statement holds because any path from v that ends in a component of maximal
growth can be extended to a path whose length is a multiple of p by adding on a path in that
component of length less than p.

Now suppose that I' is thick. Let v be a vertex in a maximal component of I'P. Then v is also
a vertex in a maximal component of I'. Let I';,;, be the semigroup of loops based at v of lengths
multiple of p. Consider the semigroup homomorphism

f: Ty - N—=N/pN

given by taking the length and reducing it mod p. Clearly, the image of f is a subsemigroup of
N/pN, which is a finite group, hence the image contains the inverse of each element and so is also
a group. Let v;,...,v C I'y, be a set of representatives for each remainder class in the image of
f. Now, let v € T';,. Then ||y|| belongs to the image of f, hence there exists ~; (the representative
of the inverse modulo p), such that vv; has length multiple of p, hence it belongs to I, ,. Hence,
by setting B’ the set {7; ' : 1 < i < k}, we have T, C T, ,B’ in the group. Since T is thick,
there exists B” such that G = B"T', B”, hence also G = B"T’,, , B'B”, hence I'? is also thick.

Finally, note that any path g in I'” of length k can be naturally thought of as a path g; in I" of

length pk such that for all i > 0: g;(pi) = g(i). From this, it follows that I'” is bounded whenever
I' is. Moreover, if B C G and B > 0 are as in the definition of coherence of I' (Definition 2.2)
and g, h are paths in I'’ with g = byhbs for b1, b2 € B, then we also have that gy = byhtbe. Then
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coherence of I implies that

- [llgll =Rl = Mgl = A4l < B,

and so coherence of I'P follows. O

Now, let us consider the semisimple matrix MP. Note that irreducible components of MP may
be proper subsets of irreducible components of M. Given a vertex v;, let us denote by /\g) the
counting measure on paths starting at v; of length k for I'. Note that if & = np, then this also
counts paths of length n in I'P starting at v;.

Since a bounded, thick graph structure I' is almost semisimple (Lemma 2.3), by applying
Corollary 6.5 to I'’, we immediately obtain:

COROLLARY 7.2. Let I be a thick, coherent structure of period p for a nonelementary group G
of isometries of a 6-hyperbolic space (X, d), and let o € X be a base point. Then there exist ¢, o
such that the following holds. For any vertex v; of large growth for I' and for any x, we have

A (g . dlo.90) ~ thgll _ ) - [

gl —o0
as n — 0o.

We are now ready to prove the following. Recall that .S, denotes the set of length n paths
beginning at the initial vertex vy.

THEOREM 7.3. Let I" be a thick, coherent graph structure for a nonelementary group G of
isometries of a -hyperbolic space (X, d), and let o € X be a base point. Then there exist £ > 0,
o = 0 such that for any a < b we have

gn#{gesn 1 We[a,b]}:Lbng(t).

Proof. Let vg be the initial vertex, let .S,, be the set of paths of length n based at vy, and let A,
be the uniform measure on S,.

Jm i

Let us fix 0 <7 < p — 1. Then we can write the counting measure on Sy, starting at the
initial vertex vg, by first picking randomly a path gg of length r from vy with a certain probability
i, and then picking a random path starting at v; = t(go) with respect to the counting measure
on the set of paths of length n starting at v;.

To compute u, let us consider a path gg of length r starting at vy and ending at v;. Then, if
v; is of large growth for I'P,

#{paths from v; of length pn}  e;MP"1 R e; My 1
#{paths from vy of length pn +r}  egMP"t"1  egM"™ M1
Thus, we define

( ) L eiMool
HA90) = M ML
Note that p(go) = 0 if the end vertex of gy has small growth and moreover
o . o1 r e,'Mool B
Z 1(go) = ZN(QO)#{QO €S, : t(go) =vi} = ZQOM ezm =1
llgoll=r i i
Let /\;m 1 be the measure on Sy, given by first taking randomly a path gg of length r from

vo with distribution x and then taking uniformly a path of length pn starting from ¢(g;).
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Now we show that the CLT holds for X\

pn+r:
o(g) == %. By Corollary 7.2, for any vertex v; of large growth, we have
g

Let £,0 be given by Corollary 7.2, and let

Mg elg) <) = No(2).

Then if g = gog1, and t(go) denotes the (index of the) end vertex of go,

Noin(g © 0(g) <2)= Y p(g0) M) (g1 (gog1) < )
goESr

— ZM(QO)NO'(‘T) = Na(x)7
g0

where we used that ¢ is uniformly bicontinuous as in the proof of Theorem 6.3.

Now we prove that

”)‘;m—i-r - Apn—l—r”TV —0

as n — oo. Indeed, if v = gpg1 is a path from vy of length pn + r and gq is its prefix of length r
ending at a vertex v; of large growth, then

)‘/anrr (’Y) ,u(go) ’ ei]\/[#lml

= T — 1.

)\IerT (7) eo MPFT]

!/

ontr(g) = 0, and also

On the other hand, if the end vertex of gq is of small growth, then A
Apn+r(9 = gog1 : go ends at a small growth vertex) — 0

asn — 0o. Now, let A, :={g : ¢(g) <z} and L, be the set of paths starting at vy whose prefix
of length r ends in a vertex of large growth. Then

Aongr(9 0 @(9) <) =Xpngr(g € L + 0(9) <)+ Apngr(9 € Ly 2 9(g) < )

)\pn+r(llz LT’) /
= A, N L)+ Appar(Az \ L,
/\;mﬂ"(Aa: N Lr) )‘pn T( ) >\p ( \ )

1 Ny(2) +0 = Ny ().

We have thus obtained a CLT for A,,4,, for any 0 <7 < p — 1, always with the same /¢, 0. Since
there are only finitely many values r, the claim follows. O

7.1 A CLT for translation length

We now prove a more general version of our second main result, Theorem 1.1 (2).

THEOREM 7.4. Let I" be a thick, coherent graph structure for a nonelementary group G of
isometries of a §-hyperbolic space (X, d), let o € X be a base point, and let ¢, o be as in Theorem
7.3. Then for any a < b we have

#{geSn : We[a,b]}—/abdj\/a(t).

Proof. Let us recall that the translation length of an isometry g of a d-hyperbolic space can be
computed by (see e.g. [MT18, Proposition 5.8])

7(g) = d(o, go) — 2(go, g~ "0)o + O(9) (10)

where O(J) is a constant which only depends on the hyperbolicity constant of X. Now, by

Jm i

n
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choosing f(n) = ey/n in [GTT20, Proposition 5.8], for any ¢ we have

Anlg t (90,97 "0)0 < ev/n) — 1
as n — 0o. The claim then follows by combining this statement and the statement of Theorem

7.3 into formula (10). O

7.2 Zero variance

We finally complete our main theorem by characterizing the case where o = 0. First, we give a
general criterion.

PROPOSITION 7.5. In the hypotheses of Theorem 7.3 we have o = 0 if and only if there is C > 0
such that for all finite length paths g in T,

|d(0, go) = l|gl]| < C.
We note that the proposition implies that o > 0 whenever the action G ~ X is nonproper.

Proof. Suppose that ¢ = 0 for the CLT for the counting measure. Then by our previous discus-
sion, we have ¢ = 0 also for the Markov chain on any maximal components. Then by Theorem
4.2, we also have 0 = 0 for the random walk on the loop semigroup driven by ji,. Hence, as in
[BQ16, Proof of Theorem 4.7 (b)], for any n

1 ~xn
= (a2 @vite) =0
where 79 is the centering of n. This implies

nO(gag) =0

for any g € Ty and v,-a.e. £ € X" Thus, since |n — no| < 2[[1]|co is bounded, we have
Be(0, 97 0) = €lglll = [n(g, )] < 2[|9]lo
hence by [Hol8, Corollary 2.3| there exists a constant C' for which
|d(0, go) — L]jg]l| < C

for any g in the support of /3" (g).

Hence, by thickness we have for any g € Q* there exist by,by € B and h € T',;! such that
h = b1gbo, thus by coherence and the triangle inequality

d(0, 90) — €lgll| < |d(o, ho) — € Rl]| + By + €8
thus there exists a constant C’ such that

|d(o, go) — {]|gll| < C"
for any g € Q*. This completes the proof. O

We conclude with a corollary that applies when the graph structure is geodesic. For the action
G ~ X, denote the translation length of h by 7x(h). We use the notation 7¢(h) to denote the
translation length of h with respect to the word metric dg induced by the graph structure I':

1
r6(h) = lim ~dg(1, ).

n—oo N
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COROLLARY 7.6. Suppose that I' is a thick geodesic combing of G. If ¢ = 0 in the CLT, then
forallh e G

Tx(h) = 1q(h),
where { is the corresponding drift.

Proof. Recall that a geodesic combing is coherent by Lemma 2.4. Let g, be a path in I' rep-
resenting h" for h € G. That is h™ = 7,,. Since the structure is geodesic, ||gn|| = dg(1,h"™).
Applying Proposition 7.5, we get that

|d(o, h"0) — ldc(1,h™)| = O(1).
The corollary follows after dividing by n and taking a limit. O

8. Applications
The main theorem of Section 1 now follows easily from the results in Section 7.

Proof of Theorem 1.1. Since G has a thick geodesic combing with respect to S, the length ||g||
of a path in the graph equals the word length with respect to S of its evaluation g € GG, and the
sphere of radius n in the Cayley graph of G is in bijection with the set of paths of length n in
the graph. Moreover, the associated graph structure is coherent by Lemma 2.4. Then (1) follows
immediately from Theorem 7.3, (2) follows from 7.4 and (3) from Corollary 7.6. O

We now give proofs of the applications in the introduction. We first recall some examples of
groups which admit thick geodesic combings; for further details, see also [GTT20].

LEMMA 8.1. The following groups admit thick geodesic combings:

(i) A (word) hyperbolic group G admits a thick geodesic combing with respect to any generating
set.

(ii) If G is relatively hyperbolic with virtually abelian peripheral subgroups, then every finite
generating set S’ can be extended to a finite generating set S for G which admits a thick
geodesic combing.

(iii) If G is a right-angled Artin group or right-angled Coxeter group that does not decompose
as a product and S is the vertex generating set, then G admits a thick geodesic combing
for S whose graph structure has only one maximal component, which is primitive.

Proof. (1) By [Ca84], a hyperbolic G has a geodesic combing with respect to any generating
set. By [AL02, Theorem 3], this geodesic combing has the growth quasitightness property (see
[GTT20, Definition 1.2], inspired by [ALO02]). Since growth quasitightness implies thickness by
[GTT20, Proposition 7.2], such a structure is thick. Alternatively, thickness can also be deduced
from the proof of [GMM18, Lemma 4.6].

(2) By [AC16, Corollary 1.9], the generating set S’ of G can be enlarged to a generating set
S, so that the pair (G,S) admits a geodesic combing. Yang [Yal9] proves that any relatively
hyperbolic group has the growth quasitightness property with respect to any finite generating
set, hence the proof is complete observing as above that growth quasitightness implies thickness.

(3) In [GTT20, Corollary 10.4], building on Hermiller-Meier [HM95], we proved that the
language of lexicographically first geodesics in the vertex generators is parameterized by a thick
graph structure. In fact, the graph structure we construct has only one maximal component,
which is primitive. O
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Proof of Theorem 1.2. Note that m (M) is hyperbolic relative to its parabolic subgroups, which
are virtually abelian since M has constant curvature. Hence, by Lemma 8.1 (2) the given gen-
erating set S’ can be enlarged to a finite generating set S that is associated to a thick geodesic
combing on 71 (M). The theorem then follows from Theorem 1.1. Finally, o > 0 by (3) since the
length spectrum is not arithmetic ([GR86], [Ki06]). O

Proof of Theorem 1.53. In the case where M has no rank 2 cusps, we have that m (M) is hy-
perbolic. Indeed, by the Tameness Theorem ([CGO06], [Ag04]), M is the interior of a compact
manifold M, which by assumption does not have tori as boundary components. Then Thurston’s
Hyperbolization Theorem (see [Ka01]), M admits a convex cocompact hyperbolic structure on
its interior. Hence, m1 (M) is hyperbolic. The result now follows from Lemma 8.1 and Theorem
1.1.

For the moreover statement, the argument above gives that M admits a geometrically finite
hyperbolic structure. Hence, 71 (M) is hyperbolic relative to its rank 2 parabolic subgroups,
which are virtually Z x Z. The proof then proceeds as in Theorem 1.2 O

Proof of Theorem 1.4. First, since 71 (M) is word hyperbolic, by Lemma 8.1 (1) it has a thick
geodesic combing with respect to any generating set.

Second, let T = Tx be the dual tree associated to ¥ C M. For details of this standard
construction and the properties we need, see [Sh02, Section 1.4]. Alternatively, T" is the Bass—
Serre tree associated to the splitting of 71 (M) induced by X. Since ¥ is not fiber-like, T is not
the real line, and since the quotient G of the action 71 (M) ~ T is compact (it is the underlying
graph of the associated graph-of-groups), the action is nonelementary.

Finally, the intersection number i(+y, ¥) equals the translation length of « with respect to the
action w1 (M) ~ T. To see this, note that the translation length of ~ for this action is equal
to the number of edges #.7v crossed by the shortest representative of v in G. If we embed G in
M dual to X, this shows that i(v,X) < #¢7. For the opposite inequality, recall that there is
a retraction r: M — G mapping each component of ¥ to the midpoint of some edge. Thus by
taking a representative of v intersecting > minimally, considering its image under the retraction,
and homotoping it off edges that it does not fully cross, we obtain that #.vy < i(y,2). Hence,
i(y,2) = £(7y) for the action on T

We now obtain the CLT by applying Theorem 1.1 to this action. If ¢ = 0, then Theorem 1.1
(3) implies that the action 71 (M) ~ T is proper and hence vertex stabilizers are finite. However,

this is impossible since only virtually free groups admit cocompact actions on trees with finite
vertex stabilizers (see e.g. [SW77, Theorem 7.3)). O

For the following application, let us assume G is a hyperbolic group, let 9G be its Gromov
boundary, and let d be a metric on G. We define the growth rate of the metric d as

1
v:=limsup —log#{g € G : d(1,9) < n}
n—oo N

and for each s > v let us consider the measure on G U 9G:
—sd(1,

[ — ZQGGG * 9)59

o 1= — .

Then any limit point of (v5) as s — v is supported on OG and is called a Patterson—Sullivan (PS)
measure. By Coornaert [Co93], any two limit measures are absolutely continuous with respect to
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each other, with bounded Radon—Nikodym derivative, so the Patterson-Sullivan measure class
is well-defined.

The following rigidity statement about Patterson-Sullivan measures is essentially due to Fur-
man [Fu02], at least in the torsion-free case. For the reader’s convenience, we assemble a complete
proof from results in the literature. Let G ~ X be a properly discontinuous and cocompact ac-
tion on a geodesic Gromov hyperbolic metric space (X,d). Let o € X, and X the Gromov
boundary. Given ¢ € 0.X, we define the Busemann function on the Gromov boundary by setting
for x,y € X b¢(x,y) :=liminf, ;¢ 8.(x,y), where z are points in X. A measure v on 0.X is called
quasiconformal with respect to d if there are constants «, C' > 0 such that

d
" exp(abe(90,0)) < = (¢) < C exp(abe(go,0))
v
for any g € G, v-a.e. ( € 9X. The constant « is called the quasiconformal dimension of v.
The Patterson-Sullivan measure on the boundary of a hyperbolic group is quasiconformal with

respect to the associated word metric [Co93].

PROPOSITION 8.2. Let G ~ X be a properly discontinuous and cocompact action on a metric
space X. Let di and dy be G-equivariant, geodesic, Gromov hyperbolic metrics on X. Let v1 and
vo be measures on 0.X, quasiconformal with respect to di and do, respectively. Then v1 and v, are
in the same measure class if and only if there are constants a,b > 0 with |ady(z,y) —d2(x,y)| < b
for any x,y € X.

Proof. Suppose |ad; — dz| < b. Then letting b’ be the Busemann functions associated to d; we
have |abé(', ) - bg(‘, ) < 2b for any ¢ € 0X. Therefore any d;-quasiconformal measure is ds-
quasiconformal and vice-versa. By Coornaert [Co93, Theorem 7.7], any two dj-quasiconformal
measures are absolutely continuous with bounded Radon-Nikodym derivative. Therefore v; and
19 are in the same measure class.

To prove the converse, we assume that v, v are in the same measure class. First, we prove that
their Radon-Nikodym derivative is bounded, as follows. As claimed in [Fu02] for the torsion-free
case and proved by Bader-Furman [BF17, Theorem 1.4] in general (see also [CDST18, Theorem
4.1] for a generalization beyond cocompact actions), the action of G on 90X x 0X is ergodic with
respect to v; X v; for ¢ = 1,2. By [CDST18, Lemma 2.6], there exist for any i = 1,2 a rescaling
m; of dv; x dv;, known as Bowen-Margulis measure, which is G-invariant. Hence, by e.g. [GT20,
Lemma 5.2], v; and v, have bounded Radon-Nikodym derivative.

Now, by the chain rule, the ratio between dquu; and c%x; is bounded independently of g € G.
Quasiconformality implies that there are ag, g, D > 0 such that

\albé(go, 0) — agbg(go, 0)| <D

for v; a.e. ( € 0X and every g € G. Now, recall that Busemann functions are coarsely continuous
(see e.g. [CDST18, Proposition 2.1]), i.e. there exists D; such that

lim sup be(x,y) — liminf be(x,y) < Dy
£—¢ §=¢

for any ¢ € 90X, any z,y € X. Since the v; have full support on the infinite 9X ([C093, Corollary
5.2]), this implies that there exists Do such that

1B (g0, 0) — a2bZ(go, 0)| < Dy

for every ¢ € X and every g € G. Since d;(0, go) = sup.cyx bé(go, 0) we obtain |aydi (o, go) —
aody (0, go)| < Ds. Since the action of G is cocompact and the metrics d; are G-equivariant, this
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implies |a1dy — aads| < D3 for some constant Ds, as required. O

Proof of Theorem 1.5. Since G is word hyperbolic, it has a thick geodesic combing by Lemma 8.1
(1). The first statement then follows immediately from Theorem 1.1, by considering the action
of G on the Cayley graph of G'.

For the moreover statement, if o = 0, Theorem 1.1 (3) implies that

llo(9)lls — £llglls|
is bounded independently of g € GG, hence ¢ has finite kernel.

Now, consider the factorization G = G := ke(r;¢> 2 G’', and define S := 7(5). Then the Cayley

graph of G carries the two metrics

di(g,h) =" glg  dalg, k) = l|6(h" g)l|s
and they satisfy
|di(g, h) — ldz(g,h)| < C (11)
for any g,h € G. In particular, ¢: G — G’ is a quasi-isometric embedding and so it admits a
continuous extension d¢: IG — G’ to an embedding.

Now, by Proposition 8.2, eq. (11) holds if and only if the Patterson—Sullivan measure classes
for dy, do on OG are the same. Finally, if ¢ has finite kernel, there exists C' > 0 for which

|di(w(g), w(h)) —ds(g, )| < C

for any g,h € G. Hence, the PS measure class for (G,dg) on 0G pushes forward to the PS
measure class for (¢(G),dg) if and only if o = 0. O

Proof of Theorem 1.6. By Lemma 8.1 (3), a right-angled Artin or Coxeter group has a graph
structure with respect to the vertex generating set, which is semisimple with only one maximal
component. Hence, the CLT follows from Theorem 6.3 (see Remark 6.4). To complete the proof,
we note that #,(g) is equal to the displacement of g with respect to the action of G on the
Bass—Serre tree for the hyperplane associated to v. The details are similar to those of Theorem
1.4. O
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