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Abstract

We establish central limit theorems for an action of a group G on a hyperbolic space
X with respect to the counting measure on a Cayley graph of G. Our techniques allow
us to remove the usual assumptions of properness and smoothness of the space, or
cocompactness of the action. We provide several applications which require our general
framework, including to lengths of geodesics in geometrically finite manifolds and to
intersection numbers with submanifolds.

1. Introduction

The goal of this paper is to provide a novel approach to the central limit theorem on groups
acting on hyperbolic spaces, for sampling with respect to the word length in the group. We shall
replace the traditional approach based on thermodynamic formalism with techniques coming from
the theory of random walks on groups. This allows us to establish new applications, including
central limit theorems for lengths of geodesics in geometrically finite hyperbolic manifolds, for
intersection numbers with submanifolds, and for homomorphisms between hyperbolic groups.

Motivation

The distribution of lengths of closed orbits for smooth flows on manifolds has long been a topic
of considerable interest. For instance, Sinai [Si60] and then Ratner [Ra73] proved a central limit
theorem (CLT) for the geodesic flow on a hyperbolic manifold (see also Lalley [La87]). One
prominent technique, pioneered by Sinai [Si72], Bowen [Bo75], Ruelle [Ru04], Parry–Pollicott
[PP90], and others, uses Markov partitions to reduce the study of smooth flows to symbolic
dynamics to which one can apply tools from thermodynamic formalism. This approach has been
successful in a variety of settings, especially applied to Anosov flows and their generalizations.

More recently, there has been a renewed interest in statistical properties of geodesic length
and other geometric quantities with respect to a different sampling, namely according to the
counting measure, i.e. uniform measure on spheres in a Cayley graph of a finitely generated
group G. For instance, Pollicott–Sharp [PS98] considered the ratio between the word length and
the geometric length, Calegari–Fujiwara [CF10] compared word lengths with respect to different
generating sets for general hyperbolic groups, and Horsham–Sharp [HS09] established a CLT for
quasimorphisms on free groups.
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In [GTT19] the authors, building on [GTT18], settled a conjecture of Chas–Li–Maskit [CLM13]
about the distribution of hyperbolic lengths of closed geodesics on compact surfaces when sam-
pling with respect to word length. Further, a CLT and statistical laws have been established for
cocompact, proper actions of hyperbolic groups on CAT(−1) spaces by Cantrell [Ca19].

All of these results are based on a symbolic coding and thermodynamic formalism. Although
these techniques are quite powerful, they necessarily impose strong constraints on the actions of
interest, usually requiring that the space X is CAT(−1) and that the action G y X is proper
cocompact. While this is the case in the classical setting, they are not satisfied for most actions
on Gromov hyperbolic spaces.

The goal of this paper is to provide a new approach to the central limit theorem on groups
Gy X acting on hyperbolic spaces, which will allow us to consider in particular:

(i) groups G which are not necessarily word hyperbolic;

(ii) actions on spaces (X, d) which are δ-hyperbolic, but not necessarily CAT(−1) or proper;

(iii) group actions Gy X which need not be free, convex cocompact or even proper.

For the sake of concreteness, we will now present a version of our main theorem (Theorem
1.1) from which we will then derive several applications. Our discussion here will be a special
case of the most general theorems (Theorems 7.3, 7.4) which we will state and prove in Section
7.

Main results

Let G be a finitely generated group acting by isometries on a δ-hyperbolic metric space (X, d),
and fix a finite generating set S. We require that the action is nonelementary in the sense that
there are two independent loxodromic elements.

Let Sn := {g ∈ G : ‖g‖ = n} be the sphere of radius n for the word metric with respect
to S. We denote as Nσ the Gaussian measure dNσ(t) = 1√

2πσ
e−t

2/2σ2
dt if σ > 0, and the Dirac

measure at 0 if σ = 0. We require that G admits a thick geodesic combing for S and we refer the
reader to Section 2.1 for definitions. We note here that these general conditions are satisfied in
a variety of settings; for example, see the applications below and Lemma 8.1.

Theorem 1.1. Let G be a group which admits a thick geodesic combing for the generating set
S. Let G y X be a nonelementary action by isometries on a δ-hyperbolic space (X, d), and let
o ∈ X be a base point.

(i) (CLT for displacement) Then there exist ` > 0, σ > 0 such that for any a < b we have

lim
n→∞

1

#Sn
#

{
g ∈ Sn :

d(o, go)− `n√
n

∈ [a, b]

}
=

∫ b

a
dNσ(t).

(ii) (CLT for translation length) Moreover, if τ(g) denotes the translation length of g on X, we
also have for any a < b

lim
n→∞

1

#Sn
#

{
g ∈ Sn :

τ(g)− `n√
n

∈ [a, b]

}
=

∫ b

a
dNσ(t).

(iii) Further, σ = 0 if and only if there exists a constant C such that

|d(o, go)− `‖g‖| 6 C

for any g ∈ G.

2



Central limit theorems for counting measures

We remark that as a consequence of (3), if σ = 0 then the translation length of any g ∈ G
with respect to its action on X is a constant multiple of its translation length in the word metric.
Moreover, if the action Gy X is not proper, then σ > 0.

Another way to formulate (1) is to say that we have the convergence in distribution

d(o, go)− `n√
n

−→ Nσ,

hence from now on we will use the above notation as a shorthand.

Applications

There are a number of applications to the above theorems and we summarize a few of them here.
For the proofs, see Section 8.

Geometrically finite hyperbolic manifolds First, let us state an extension of our previous
work on surfaces [GTT19] to general hyperbolic manifolds, possibly with cusps. If M = Hn/Γ
is a hyperbolic manifold and γ ∈ Γ = π1(M), then we set `(γ) to be the length of the geodesic
freely homotopic to γ unless γ is peripheral (i.e. homotopic into a cusp), in which case we set
`(γ) = 0.

Theorem 1.2. Suppose that M is a geometrically finite hyperbolic manifold and let S′ be any
generating set for π1(M). Then there is a finite generating set S ⊃ S′ and `, σ > 0 such that

`(γ)− `n√
n

−→ Nσ,

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

If moreover π1(M) is word hyperbolic, then we can take S = S′.

The statement includes the cases where M is either finite volume or convex cocompact, and is
new even when M is a finite area surface. We remark that when M is either convex cocompact or
a surface, the above theorem works for any generating set S. In the convex cocompact case, the
needed action π1(M) y Hn is sufficiently tame so that the techniques of thermodynamics may
be applicable ([PS98], [Ca19]). However, this is not the case when the manifold M has cusps.

We note that Theorem 1.2 further extends to manifolds of variable negative curvature, as
long as the peripheral subgroups are virtually abelian, and the same proof applies.

Geometrically infinite 3-manifolds In the case of 3-manifolds, the previous result can be
strengthened further as follows.

Theorem 1.3. Let M be a hyperbolic 3–manifold such that π1(M) is finitely generated and not
virtually abelian. Suppose further that M does not have any rank 2 cusps. Then for any finite
generating set S of π1(M), there are `, σ > 0 such that

`(γ)− `n√
n

−→ Nσ,

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Moreover, if M has rank 2 cusps, the same statement holds after enlarging the generating set
as in Theorem 1.2.
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To the authors’ knowledge, this is the first CLT for lengths of closed geodesics for possibly
geometrically infinite 3–manifolds.

Intersection numbers with a submanifold For our next application, the required actions are
on locally infinite trees, which are nonproper hyperbolic spaces.

Let M be a smooth orientable manifold and Σ a smooth orientable codimension−1 sub-
manifold which is π1-injective on each component. We say Σ is fiber-like if for each boundary
component of the cut manifold M |Σ its induced subgroup in the fundamental group of the
corresponding component of M |Σ has index at most 2.

For γ ∈ π1(M), let i(γ,Σ) denote the minimal intersection number of Σ with loops in M
freely homotopic to γ.

Theorem 1.4. Suppose that M is a closed orientable hyperbolic manifold and let S be any
generating set for π1(M). Let Σ be a smooth orientable codimension−1 submanifold that is
π1-injective but not fiber-like. Then there are `, σ > 0 such that

i(γ,Σ)− `n√
n

−→ Nσ,

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

The theorem is new even for surfaces; in that context, Chas–Lalley [CL12] proved a CLT for
self-intersection numbers of curves with respect to word length. Following Theorem 1.2, a similar
result could be formulated for more general hyperbolic manifolds.

Homomorphisms between hyperbolic groups Our next application is to homomorphisms be-
tween hyperbolic groups. Interestingly, the condition for nonzero variance can be recast in terms
of the induced Patterson–Sullivan measures.

Theorem 1.5. Suppose that φ : G → G′ is a homomorphism between hyperbolic groups such
that the image of φ is not virtually cyclic. For any fixed generating sets S and S′ of G and G′,
respectively, there are ` > 0 and σ > 0 such that

‖φ(g)‖S′ − `‖g‖S√
‖g‖S

−→ Nσ,

for g ∈ G chosen uniformly at random in the sphere of radius n with respect to S.

Moreover, σ = 0 (i.e. the Gaussian is degenerate) if and only if φ has finite kernel and there
is an induced embedding ∂φ : ∂G → ∂G′ that pushes the Patterson–Sullivan measure class for
(G, dS) to the Patterson–Sullivan measure class for (φ(G), dS′).

The above result generalizes Calegari–Fujiwara [CF10, Corollary 4.27]. It is also related to
[Ca19, Theorem 1.6], who proved a CLT where φ is the abelianization homomorphism, which in
turn generalizes work of Rivin [Ri10] for free groups.

Hyperplanes crossed in right-angled Artin and Coxeter groups Our final application is to a
collection of groups that is not necessarily relatively hyperbolic.

Suppose that G is a right-angled Artin group or right-angled Coxeter group that is not a direct
product. Let V be its set of vertex generators. For each v ∈ V , define a function #v : G → Z
that counts the number of occurrences of v±1 in a shortest spelling of g ∈ G with respect to V .
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Equivalently, #v(g) is the number of hyperplanes labeled by v separating o and go in the cube
complex associated to G.

Theorem 1.6. For G as above, there are `, σ > 0 such that for any vertex v,

#v(g)− `n√
n

−→ Nσ,

where g is chosen uniformly at random in the sphere of radius n with respect to the vertex
generators.

We conclude by noting that our methods are sufficiently general to apply beyond the case of
‘nonpositively curved’ groups. Moreover, we do not need to assume that our counting measures
are associated to geodesic combings. See Theorems 7.3, 7.4 for the most general result. For
example, by using the standard graph structure associated to the language of geodesics for a free
group, we obtain a CLT for nonbacktracking random walks on any group with a nonelementary
action on a hyperbolic space X.

From thermodynamics to random walks

Most central limit theorems for counting measures established so far use a coding for geodesics
with finite paths, and then apply classical results in thermodynamic formalism, like the existence
and uniqueness of Gibbs measures for shifts of finite type. There, the observable is assumed to
be Hölder continuous with respect to the standard metric on the shift space.

In this paper, instead, we do not assume any good geometric property on the action. Let
us recall that displacement is not a quasimorphism, is in general not weakly combable (in the
language of [CF10]) if the action is not convex cocompact, and it is not a Hölder weight function
in the sense of [PS98, Proposition 1] if X is not CAT(−1). Thus, the observable need not be
Hölder and the thermodynamic approach does not appear to work. We also do not use transfer
operators or ζ-functions (as in e.g. [PP90], [Ca19]).

Rather, our general strategy is as follows.

(i) We start with a graph structure, i.e. a graph whose paths parameterize the group elements
we want to count. We first consider a vertex v of this graph, and consider a random walk
on the semigroup Γv of loops based at this vertex. Here, we apply the CLT for cocycles for
groups acting on hyperbolic spaces, as devised by Benoist-Quint [BQ16] and generalized by
Horbez [Ho18] to actions on nonproper spaces.

(ii) Then, we consider the set of paths in a maximal component for the graph as a suspension
on the space of loops at v, and we apply results of Melbourne-Török [MT18] to “lift” the
CLT to the suspended transformation. To be precise, we need to consider a skew product
over the shift space.

(iii) Now, we note that a thick graph structure is almost semisimple, hence there exists a power
p for which the transition matrix Mp is semisimple. We use this to prove that the count-
ing measure starting at an initial vertex converges to a convex combination of stationary
measures for the Markov chains on the maximal components.

(iv) Using a coherence condition on the graph structure, we show that all the CLTs for all
Markov chains have the same mean and variance. This implies a CLT for the counting
measure on the set of paths starting at any vertex in a semisimple structure.
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(v) Finally, for a general thick structure of period p we condition on the first prefix of length r;
since all these distributions for the conditional measures converge to the same law (by (4)
above), the CLT for the entire sequence holds.

We conclude by mentioning some natural generalizations of this work, which we do not
attempt here. A Berry–Esseen type estimate of the error term appears within reach, using the
corresponding result for random walks and the bounds we work out here comparing the counting
and random walk measures. It would also be very interesting to obtain a local limit theorem, for
which, however, much further work is needed.

2. Background

2.1 Graph structures for countable groups

Given a countable group G, we define a graph structure on G as a triple (Γ, v0, ev), where Γ is a
finite, directed graph, v0 is a vertex of Γ which we call its initial vertex, and ev : E(Γ)→ G is a
map that labels the edges of Γ with group elements. Given this data, we extend the map ev by
defining for each finite path g = g1 . . . gn the group element ev(g) = ev(g1) . . . ev(gn). We remark
that here and throughout, a path in Γ will always mean a directed path. To simplify notation,
we will use g = ev(g) to denote the group element associated to the path g. We denote as ‖g‖ the
length of the path g. The graph structure is bounded if there is a uniform bound on the number
of paths in Γ mapping to any single element of G.

For a graph structure Γ, we define Ω to be the set of all infinite paths starting at any vertex
of Γ and σ : Ω → Ω to be the shift map. Given a path ω = (g1, . . . , gn, . . . ), we denote as
wn := g1 . . . gn its prefix of length n. The set of all finite paths starting at any vertex of Γ will
be denoted by Ω∗.

We define two vertices vi, vj to be equivalent if there is a path from vi to vj and a path from
vj to vi, and the components of Γ as the equivalence classes for this relation.

We will denote by M the transition matrix for Γ. By Perron–Frobenius, M has a real eigen-
value of largest modulus, which we will denote by λ. Moreover, such a matrix is almost semisimple
if for any eigenvalue of maximal modulus, its geometric and algebraic multiplicity agree. Fur-
thermore, such a matrix is semisimple if its only eigenvalue of maximal modulus is real positive.
We call a graph structure (almost) semisimple if its associated transition matrix is.

Let Γ be almost semisimple, and let λ be the leading eigenvalue of M . Then we define a
vertex v to be of large growth if

lim
n→∞

1

n
log #{paths of length n starting at v} = λ

and of small growth otherwise (in which case, the limit above is < λ). Furthermore, a component
C is maximal if

lim
n→∞

1

n
log #{paths of length n inside C} = λ.

As discussed in [GTT20], the global structure of Γ is as follows: there is no path between
maximal components and vertices of large growth are precisely the ones which have a path to a
maximal component.

Given a vertex v, we denote as Γv the loop semigroup of v, i.e. the set of all finite paths
from v to itself. This is a semigroup under concatenation, and all its elements lie entirely in the
component of v. We denote as Γv the image of Γv in G under the evaluation map.

6



Central limit theorems for counting measures

Definition 2.1 Thick graph structure. A graph structure Γ is thick if for any vertex v in a
maximal component, there exists a finite set B ⊆ G such that

G = B · Γv ·B

where the equality is in the group G.

In what follows, we often make the evaluation map implicit in our notation. In particular, if
G acts on a metric space (X, d), o ∈ X is a base point, and g is a finite path in Γ, we will often
write go to mean the point go ∈ X.

Geodesic combings For particular applications, it is also useful to define the notion of a
geodesic graph structure. A graph structure Γ is geodesic if the length ‖g‖ of any path g is equal
the word length of g in the subgroup generated by the edge labels, using edge labels as the (finite)
generating set. A geodesic graph structure is called a geodesic combing if, in addition, there is a
directed path from v0 to any other vertex of Γ and the evaluation map is a bijection from the
set of finite paths starting at v0 to the set of elements of G. Note that a geodesic combing is
automatically a bounded graph structure. We say that Γ is a geodesic combing associated to a
finite generating set S if, up to adding inverses, S is the set of edge labels for the graph structure.
In this case, ‖g‖ is equal to the word length of g with respect to S.

We emphasize that although the geodesic condition is used in the applications of our main
theorem (as in Theorem 1.1–1.6), it is not required for the most general results; see Theorems
7.3, 7.4. There we use the following more general notion:

Definition 2.2 Coherent graph structure. A graph structure Γ for G is coherent if it is bounded
and if for any finite set B ⊆ G there exists a constant B > 0 such that if g and h are finite length
paths in Γ, and g = b1hb2 in G, then

|‖g‖ − ‖h‖| 6 B.

The idea of coherence is simple; informally, if two group elements are close in G then a
coherent graph structure Γ codes them with paths that are roughly the same length, and the
coding is uniformly bounded-to-one.

Our first lemma summarizes some properties of thick, coherent graph structures that we will
need in the sequel.

Lemma 2.3. A thick, coherent graph structure Γ is almost semisimple.

Moreover, if Gy X is a nonelementary action on a hyperbolic space, then the actions of both
semigroups Γv and Γ−1

v on X are also nonelementary, for each vertex v contained in a maximal
component.

Proof. Suppose the graph structure Γ is thick and coherent. Since a coherent graph structure is
bounded, there is a b > 0 so that the evaluation map ev : Ω∗ → G is at most b-to-one. Let B ⊂ G
be the finite set given by thickness of Γ (Definition 2.1) and let B be the resulting constant from
Definition 2.2. By thickness and coherence we have

Sn ⊆
⋃

b1,b2∈B

⋃
|k|6B

b1(Γv ∩ Sn+k)b2,

where Sn ⊂ Ω∗ is the set of all length n paths starting at any vertex. Then the definition of b
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implies that

#Sn 6 b|B|2
∑
|k|6B

# (Γv ∩ Sn+k) .

This, in turn, is bounded by a constant times λn since it is no more than the growth of paths in
the maximal component of Γ containing v, and k is uniformly bounded. On the other hand, if the
transition matrix M of Γ is not almost semisimple, then M has a Jordan block for an eigenvalue
of modulus λ of size k > 2 (see [GTT18, Section 2]). In particular, the growth of paths in Γ is
at least a constant times nk−1λn. We conclude that Γ is almost semisimple.

The statement that the action of Γv (and hence Γ−1
v ) on X is nonelementary is proven in

[GTT20, Proposition 6.3].

The following lemma is immediate from the definitions:

Lemma 2.4. A geodesic combing for G is coherent.

Other sources of (not necessarily geodesic) coherent graph structures come from biautomatic
groups, in the sense of [Mo97] or [EPCHLT92, Lemma 2.5.5].

2.2 Cocycles and horofunctions

Let (X, d) be a metric space, and let o ∈ X be a base point. Given z ∈ X, we define the Busemann
function ρz : X → R as

ρz(x) := d(x, z)− d(o, z).

Thus, setting

Φ(z) := ρz

defines a map

Φ : X → Lip1
o(X)

where Lip1
o(X) is the space of 1-Lipschitz functions on X which vanish at o.

We define the horofunction compactification X
h

as the closure of Φ(X) in Lip1
o(X), with

respect to the topology of pointwise convergence. Elements of X
h

will be called horofunctions. We

denote as X
h
∞ the space of infinite horofunctions, i.e. the set of h ∈ Xh

such that infx∈X h(x) =
−∞.

For any ξ ∈ Xh
, the Busemann cocycle is defined as

βξ(x, y) := lim
zn→ξ

[d(y, zn)− d(x, zn)]

= hξ(y)− hξ(x),

where hξ is the horofunction associated to ξ. This has the usual cocycle property βξ(x, z) =
βξ(x, y) + βξ(y, z).

Remark 2.5. Benoist-Quint [BQ16] and Horbez [Ho18] define B : G×Xh → R by

B(g, ξ) = hξ(g
−1o).

To compare their definition with ours:

B(g, ξ) = hξ(g
−1o) = lim

zn→ξ
[d(g−1o, zn)− d(o, zn)] = βξ(o, g

−1o).
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3. CLT for random walks on the loop semigroups

Let Γ be a graph structure for G, and let v be a vertex in a maximal component. Recall that
a (directed) loop is prime if it is not itself a product of nontrivial loops; since every loop can
be decomposed uniquely as a concatenation of prime loops, prime loops freely generate Γv as a
semigroup.

Given a probability measure µ on the set of edges of Γ, one defines the first return measure
µv on Γv as follows: if l = g1 . . . gn is a prime loop in Γv, then we set

µv(l) := µ(g1) · · ·µ(gn).

We set µv(l) = 0 for all other loops. Note that inversion defines a map Γv → Γ−1
v and we define

the measure µ̌ on Γ−1
v by µ̌(l) = µ(l−1). These measures push forward to measures on the group

G under the evaluation map. We say that µv is nondegenerate if it gives positive measure to any
prime loop of Γv.

Let M be a metric space on which G acts by homeomorphisms. A measure ν on M is µ-
stationary if ν =

∫
G g?ν dµ(g), and µ-ergodic if it cannot be written as a nontrivial convex

combination of µ-stationary measures.

3.1 Central limit theorems for cocycles

Recall that a cocycle is a function σ : G×M→ R such that

σ(gh, x) = σ(g, hx) + σ(h, x), ∀g, h ∈ G, ∀x ∈M.

A cocycle σ : G×M→ R has constant drift λ if there exists λ ∈ R such that∫
G
σ(g, x) dµ(g) = λ

for any x ∈M. A cocycle σ : G×M→ R is centerable if it can be written as

σ(g, x) = σ0(g, x) + ψ(x)− ψ(g · x)

where σ0 is a cocycle with constant drift and where ψ : M→ R is a bounded, measurable function.
In this case, we say that σ0 is the centering of σ; note that λ =

∫
G×M σ(g, x) dµ(g)dν(x) for any

µ-stationary ν. We say that the cocycle σ has finite second moment with respect to a measure
µ on G if ∫

G
sup
x∈M

|σ(g, x)|2 dµ(g) < +∞.

We now use the following CLT for centerable cocycles: as remarked in [Ho18, Remark 1.7],
the proof is exactly the same as the proof of [BQ16, Theorem 4.7].

Theorem 3.1 Central limit theorem for cocycles. Let G be a discrete group, M be a com-
pact metrizable G-space and µ a probability measure on G. Let ν be a µ-ergodic, µ-stationary
probability measure on M, and let M0 be a G-invariant subset of M of full ν-measure. Let
σ : G×M0 → R be a centerable cocycle with drift λ and finite second moment. Then there exist
σ > 0 such that for any continuous F : R→ R with compact support, we have for ν-a.e. x ∈M,

lim
n→∞

∫
G
F

(
σ(g, x)− λn√

n

)
dµ∗n(g) =

∫
R
F (t) dNσ(t).

We now apply this result to the loop semigroup. Let Fv be the group freely generated by the
prime loops in Γv.
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Let N : Γv → Z be the semigroup homomorphism N(g) := −‖g‖, where ‖g‖ is the length
in Γ of the loop g. There is a natural inclusion Γv → Fv as a subsemigroup and we can extend
the semigroup homomorphism above to a group homomorphism N : Fv → Z. Moreover, we
also extend the natural semigroup homomorphism Γv → G, induced by evaluation, to a group
homomorphism e : Fv → G. Now, using the homomorphism e : Fv → G, the free group Fv has a
nonelementary action on X, and moreover µ∗nv is supported on Γv ⊆ Fv for all n > 1.

Finally, for some ` ∈ R to be specified below, we define η : Fv ×X
h → R as

η(g, ξ) := βξ(o, g
−1o)− `N(g).

Lemma 3.2. Suppose that the action of Γv on X is nonelementary and µv is nondegenerate.

Then for any ` ∈ R, the restriction of η : Fv ×X
h → R to Fv ×X

h
∞ is a centerable cocycle.

Proof. We have

η(gh, ξ) = βξ(o, h
−1g−1o)− `N(gh)

= βξ(o, h
−1o) + βξ(h

−1o, h−1g−1o)− `N(g)− `N(h)

= βξ(o, h
−1o) + βhξ(o, g

−1o)− `N(g)− `N(h)

= η(h, ξ) + η(g, hξ)

hence η is a cocycle. Moreover, by [Ho18, Proposition 1.5], using [Ho18, Corollary 2.7] and

[Ho18, Proposition 2.8], the cocycle B(g, ξ) = βξ(o, g
−1o) is centerable on Fv ×X

h
∞. Then, since

η(g, ξ)−B(g, ξ) = `N(g) is a homomorphism and depends only on g, we have that η(g, ξ) is also

centerable on Fv ×X
h
∞.

Thus, as a consequence of Theorem 3.1, we obtain the following.

Corollary 3.3. Let Γ be a thick structure, let v be a vertex in a maximal component of
Γ. Suppose that the first return measure µv is nondegenerate, and let νv be a µ̌v-ergodic, µ̌v-

stationary measure on X
h
. Then there exist `, σ > 0 such that for any continuous F : R → R

with compact support, we have for νv-a.e. ξ,

lim
n→∞

∫
G
F

(
βξ(o, go)− `‖g‖√

n

)
dµ∗nv (g) =

∫
R
F (t) dNσ(t).

Proof. We apply Theorem 3.1 to the measure µ̌v, supported on Γ−1
v , where ` is chosen so that

λ =
∫
Fv×X

h η(g, ξ) dµ̌v(g)dνv(ξ) = 0. Note that by [MT18, Proposition 4.4] and the fact that

Γ−1
v is nonelementary (Lemma 2.3), we have νv(X

h
∞) = 1. Moreover, for any g ∈ Γv we have

η(g−1, ξ) = βξ(o, go)− `‖g‖.

3.2 Skew products and invariance on the loop semigroup

Let M be a compact metric space with a continuous G-action. We define the skew product
T : Ω×M→ Ω×M as

T (ω, ξ) := (σ(ω), g−1
1 ξ)

where ω = (g1, g2, . . . ).

A graph structure Γ is primitive if its associated transition matrix M is primitive, i.e. has a
positive power. Now let Γ be a primitive graph structure, let v be a vertex of Γ, let Γv be the
loop semigroup, and let µv be the first return measure.

10
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Finally, let Ωv = (Γv)
N with shift map σv. To highlight the difference, we denote the elements

of ΓN
v as (l1, l2, . . . ), since each element of the sequence is a loop, while the elements of Ω will be

denoted as ω = (g1, g2, . . . ), since its elements are edges. Let us define the map Tv : Ωv ×M→
Ωv ×M as

Tv(ω, ξ) = (σv(ω), l−1
1 ξ).

Lemma 3.4. A measure ν on M is µ̌v-stationary if and only if µNv ⊗ ν is Tv-invariant.

Proof. Fix C ⊂ Ωv measurable and let Cl ⊂ Ωv be the subset consisting of sequences beginning
with l ∈ Γv such that σv(Cl) = C. Then for any A ⊂M measurable,

T−1
v (C ×A) =

⋃
l

Cl × lA.

Since

µNv ⊗ ν

(⋃
l

Cl × lA

)
= µ(C)

∑
l

µ(l)ν(lA)

= µ(C)
∑
l

µ̌(l)l∗ν(A),

the lemma follows.

Lemma 3.5. There exists an ergodic µ̌v-stationary measure νv on M such that the product
measure µNv ⊗ νv is Tv-invariant and ergodic.

Proof. SinceM is a compact metric space, there exists a µ̌v-stationary measure ν1 onM ([Fu63,
Lemma 1.2]). Then by Lemma 3.4 the measure λ1 := µNv ⊗ν1 is Tv-invariant. If λ1 is not ergodic,
let us consider its ergodic decomposition, and take one of its ergodic components λv. By definition,
λv � λ1 and λv is Tv-invariant and ergodic. Then by [Mo88, Corollary 3.1], λv is of the form
λv = µNv ⊗ νv for some measure νv on M. Finally, again by Lemma 3.4, the measure νv is
µ̌v-stationary.

Lemma 3.6. Consider the function f : Ω×Xh → R defined as

f(ω, ξ) := βξ(o, g1o).

Then for any n we have
n−1∑
j=0

f(T j(ω, ξ)) = βξ(o, wno). (1)

Proof. The cocycle property implies

βξ(o, wno) =
n−1∑
j=0

βξ(wjo, wj+1o) =
n−1∑
j=0

βw−1
j ξ(o, gj+1o)

for any ξ ∈ Xh
. Moreover, by definition and G-equivariance we have

f(T j(ω, ξ)) = βw−1
j ξ(o, gj+1o)

and the claim follows.

An analogous statement holds by replacing T,Ω by Tv,Ωv.

11
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4. CLT for Markov chains of primitive graph structures

We begin by recalling the following: If Γ is a directed graph whose transition matrix M is
primitive with leading eigenvalue λ, then

lim
n→∞

Mn

λn
= ρuT ,

where Mρ = λρ, uTM = λuT , and uTρ = 1 [Wa00, Theorem 0.17]. We will consider the following
measures associated to Γ. The stationary measure on vertices for the corresponding Markov chain
is given by setting the starting probability at vertex vi to be πi = ρiui. Assigning the probability
ρj
λρi

to an edge e from vi to vj then determines the transition probability pij from vi to vj to be

pij =
Mijρj
λρi

(see e.g. [Wa00, Section 6.6 (7)]). The corresponding Markov measure P on the path
space Ω determined by these probabilities gives the measure of maximal entropy for the shift on
Ω (which in this Section is unique since the graph structure is assumed to be primitive) and is
known as the Parry measure [Pa64]. For a vertex v of Γ, we use Pv to denote the measure on the
space of paths Ωv ⊂ Ω starting at v obtained by beginning the Markov chain at v and using the
above transition probabilities. From now on we use these edge probabilities to define the first
return measure µv as in Section 3.

We also define µn as the distribution on the space of paths of length n induced by the Markov
measure P; that is, µn is the pushforward of P to Ω∗ under the map which sends an infinite path
to its prefix of length n. In this section we prove the following result.

Theorem 4.1. Suppose that Γ is a primitive graph structure and let µn be the associated
distribution on the space of paths of length n. There are constants ` and σ such that for any
continuous function F : R→ R with compact support, we have

lim
n→∞

∫
Ω∗
F

(
d(o, go)− `n√

n

)
dµn(g) =

∫
R
F (t) dNσ(t).

The main technique to obtain the CLT for the Markov chain as above from the one from
the random walk on the loop semigroup is using a suspension flow, adapting the approach of
Melbourne-Török [MT04] for dynamical systems.

4.1 Suspension flows

Let S : (X , λ) → (X , λ) be a measure-preserving dynamical system, and let r : X → N be a
measurable, integrable function, which we call the roof function. Then the discrete suspension
flow of S with roof function r is the dynamical system given by the map Ŝ : X̂ → X̂ where

X̂ := {(x, n) ∈ X × N : 0 6 n 6 r(x)− 1}

with measure λ̂ := 1
r (λ⊗ δ), where δ is the counting measure on N and r :=

∫
X r dλ. Then, the

map Ŝ is defined as

Ŝ(x, n) =

{
(x, n+ 1) if n 6 r(x)− 2
(S(x), 0) if n = r(x)− 1.

Since in this case the system has discrete time, the above construction is also called a Kakutani
skyscraper.

The main theorem of Melbourne-Törok [MT04, Theorem 1.1] is the following.

Theorem 4.2. Let S : (X , λ) → (X , λ) be an ergodic, measure-preserving transformation, and
let Ŝ : (X̂ , λ̂)→ (X̂ , λ̂) be the suspension flow with roof function r. Let φ : X̂ → R be such that

12
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φ dλ̂ = 0, and define Φ(x) :=

∑r(x)−1
k=0 φ(x, k). Let φ ∈ Lb(X̂ ) and let r ∈ La(X ) be the roof

function, with (1− 1/a)(1− 1/b) > 1/2. Suppose that Φ and r satisfy a CLT. Then φ satisfies a
CLT.

Moreover, if the CLT for Φ has variance σ2
1, then the CLT for φ has variance σ2 =

σ2
1
r .

4.2 Invariant measure on the suspended space

For any ω ∈ Ωv, let r(ω) be the length in Γ of l1(ω). This is the first return time for the loop
determined by ω. Let us define the suspension of the skew product

Ω(s) := {(ω, k, ξ) ∈ Ωv × N×M : 0 6 k 6 r(ω)− 1}

and

T̂ (ω, k, ξ) =

{
(ω, k + 1, ξ) if k 6 r(ω)− 2

(σv(ω), 0, l−1
1 ξ) if k = r(ω)− 1.

Let us now denote R :=
∫

Γv
‖g‖ dµv(g) =

∫
r(ω) dPv(ω) and define the probability measure

ν(s) := 1
R

(
µNv ⊗ δ ⊗ νv

)
on Ω(s).

Lemma 4.3. Let νv be the µ̌v-stationary measure constructed in Lemma 3.5. Then ν(s) on Ω(s)

is T̂ -invariant and ergodic.

Proof. It suffices to check invariance of the measure using cylinder sets Cl1,...,ln consisting of
loops beginning with l1 . . . ln. We have

T̂−1(Cl1,...,ln × {k} ×A) =

{
Cl1,...,ln × {k − 1} ×A if k > 0⊔
l∈Pv Cl,l1,...,ln × {‖l‖ − 1} × lA if k = 0

where Pv ⊆ Γv is the set of prime loops. Hence in the first case, the equality

ν(s)(T̂−1(Cl1,...,ln × {k} ×A)) = ν(s)(Cl1,...,ln × {k} ×A)

is obvious. In the second case,

ν(s)(T̂−1(Cl1,...,ln × {k} ×A)) =
1

R

∑
l∈Pv

µv(l)µv(l1) . . . µv(ln)νv(lA)

=
1

R
µv(l1) . . . µv(ln)

∑
l∈Pv

µv(l)νv(lA)

=
1

R
µv(l1) . . . µv(ln)νv(A)

= ν(s)(Cl1,...,ln × {k} ×A)

hence ν(s) is T̂ -invariant. Moreover, the suspension of an ergodic measure is ergodic, see e.g.
[Sa20, Proposition 1.11].

4.3 Pushforward of the T̂ -invariant measure to Ω×M
Recall that Ω is the space of all infinite sample paths in Γ starting at any vertex. Let us define
the projection π : Ω(s) → Ω×M as

π(ω, k, ξ) = (σk(ω), (g1 . . . gk)
−1ξ)

and recall the skew product T : Ω×M→ Ω×M is

T (ω, ξ) := (σ(ω), g−1
1 ξ).

13
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Lemma 4.4. The following diagram commutes:

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv)

As a consequence, in the hypotheses of the previous lemmas, the measure ν := π?ν
(s) is T -

invariant and ergodic.

Proof. We show that the horizontal arrow is equivariant for the shifts. This follows from the fact
that if we write l1(ω) for the first return loop of ω then l1(ω) = g1(ω) . . . gr(ω)(ω). Hence,

π ◦ T̂ (ω, r(ω)− 1, ξ) = π((σv(ω), 0, l−1
1 ξ))

= (σr(ω)(ω), (g1 . . . gr(ω))
−1ξ),

which is equal to T ◦ π((ω, r(ω) − 1, ξ)). The other cases being trivial, this proves the first
statement.

Finally, since ν is the pushforward of an ergodic measure, it is ergodic.

4.4 Return times and invariant measures for the Markov chain

Recall that in the previous section we produced a measure νv on M which is µ̌v-stationary and
such that the product measure µNv ⊗ νv is Tv-invariant and ergodic. Then, by lifting it to the
suspension and pushing it forward to Ω ×M, we have an ergodic, T -invariant measure ν on
Ω×M.

Now, for any vertex w other than v we define the measure νw on M as

νw(A) =
∑

γ∈Γv,w

µ(γ)νv(γA) (2)

where the sum is over the set Γv,w of all paths γ from v to w which do not pass through v in
their middle, and µ(γ) is the product of the measures of the edges of γ. Recall also we denote as
Pw the Markov measure on the space of infinite sample paths starting at w.

Lemma 4.5. We have

ν :=
1

R

∑
w

Pw ⊗ νw.

Proof. Let w be a vertex, and let g1, g2, . . . , gn be a finite path starting from w. We have for any
measurable A ⊆M

π−1(Cg1,...,gn ×A) =

{
Cg1,...,gn × {0} ×A if w = v⊔
γ∈Γv,w

Cγ,g1,...,gn × {|γ|} × γA if w 6= v

where the union is over the set Γv,w of all paths γ from v to the initial vertex w of g1 which do

14
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not pass through v in their middle. Thus we have

ν(Cg1,...,gn ×A) =
1

R

∑
γ∈Γv,w

µ(γ)µ(g1) . . . µ(gn)νv(γA)

=
1

R
µ(g1) . . . µ(gn)νw(A)

=
1

R
Pw(Cg1,...,gn)νw(A)

which proves the claim, since both measures agree on all rectangles.

Recall that R =
∫
r(ω) dPv(ω), and set nw = νw(M). Here we show:

Lemma 4.6. We have the identities:

(i) R = 1
πv

; and

(ii) πw = nw
R for any vertex w of Γ.

Note that if we replace Γ with the graph Γ obtained by reversing the direction of each edge,
then the transition matrix for Γ is MT and so we have that ρ and u switch roles. In particular,
new transition probability from vi to vj is (in terms of the quantities defined in Section 4)

pij =
Mjiuj
λui

but the stationary measure on vertices is unchanged.

Proof of Lemma 4.6. (1) is the well-known Kac lemma [Ka47, Theorem 2’]. To prove (2), recall
that Γv,w is the set of all paths γ from v to w which do not pass through v in their middle.
Hence, if we reverse all the paths in this set, we obtain Γv,w the set of all paths γ from w to v
which do not pass through v in their middle. Note that since almost every path starting at w
passes through v

1 =
∑

γ∈Γv,w

µ(γ)

=
uv
uw

∑
γ∈Γv,w

λ−|γ|,

where µ(γ) is the product of the measures of the edges of γ with respect to p and we have used
our previous observation about p.

Using this and the fact that ∑
γ∈Γv,w

λ−|γ| =
∑

γ∈Γv,w

λ−|γ|,

we compute,

nw = νw(M)

=
∑

γ∈Γv,w

µ(γ) =
ρw
ρv

∑
γ∈Γv,w

λ−|γ|

=
ρw
ρv
· uw
uv

=
πw
πv
.

Hence, the lemma follows from (1).
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4.5 The Central Limit Theorem for the Markov chain

We are now in a position to prove Theorem 4.1. By Melbourne-Török ([MT04], Theorem 1.1),
we have:

Proposition 4.7. Let φ : Ω × X
h → R belong to Lb(Ω × X

h
, ν) for some b > 2, and let

m :=
∫
φ dν. Define Φ: Ωv ×X

h → R as Φ(ω, ξ) :=
∑r(ω)−1

k=0 φ(T k(ω, ξ)) −mr(ω), and suppose
that ∑n−1

j=0 Φ ◦ T jv√
n

converges to a normal distribution in probability on (Ωv ×X
h
, µNv ⊗ νv). Then the sequence∑n−1

j=0 φ ◦ T j − nm√
n

converges to a normal distribution in probability on (Ω×Xh
, ν).

Proof. Note that since r has exponential tail (see e.g. [GTT18, Lemma 3.2 (2)]), it belongs to
La(Ωv) for any a > 1. Then the condition (1 − 1/a)(1− 1/b) > 1/2 is satisfied as long as b > 2.
Moreover, (r ◦ Tnv (ω))n is a sequence of independent random variables and so it satisfies a CLT.
Hence, we can apply Theorem 4.2 to obtain a central limit theorem for the observable φ ◦ π−m
and the system T̂ , with measure ν(s). Moreover, since φ ◦π ◦ T̂n = φ ◦Tn ◦π by Lemma 4.4, this
is equivalent to a central limit theorem for the observable φ on the system T with the measure
π∗(ν

(s)) = ν.

Proposition 4.8. There exist `, σ such that for any continuous, compactly supported F : R→ R
one has ∫

Ω×Xh
F

(
βξ(o, g1 . . . gno)− `n√

n

)
dν(ω, ξ)→

∫
R
F (t) dNσ(t),

as n→∞.

Proof. Let us apply the previous Proposition with φ = f where f : Ω × Xh → R is defined as
f(ω, ξ) := βξ(o, g1o). Then by definition of Φ and f , Lemma 3.6 gives that for every ω ∈ Ωv

Φ(ω, ξ) =

r(ω)−1∑
k=0

f(T k(ω, ξ))− `r(ω)

= βξ(o, wr(ω)o)− `r(ω) =: fv(ω, ξ),

where ` = m =
∫
βξ(o,go) dµv(g)dνv(ξ)∫

‖g‖ dµv(g)
. Now, by Corollary 3.3, integrating in dνv we have for some

σ1 > 0 ∫
G×Xh

F

(
βξ(o, go)− `‖g‖√

n

)
dµ∗nv (g)dνv(ξ)→

∫
R
F (t) dNσ1(t).

Note moreover that βξ(o, l1 . . . lno) − `‖l1 . . . ln‖ =
∑n−1

j=0 fv(T
j
v (ω, ξ)), hence we can rewrite the

above equation as∫
Ωv×X

h
F

(∑n−1
j=0 fv(T

j
v (ω, ξ))

√
n

)
d(µNv ⊗ νv)(ω, ξ)→

∫
R
F (t) dNσ1(t).

16



Central limit theorems for counting measures

Thus, by Proposition 4.7 and the above calculation, we also have (for some different σ)∫
Ω×Xh

F

(∑n−1
j=0 f ◦ T j(ω, ξ)− `n√

n

)
dν(ω, ξ)→

∫
R
F (t) dNσ(t).

The claim follows by again using that by Lemma 3.6, we have
∑n−1

j=0 f◦T j(ω, ξ) = βξ(o, g1 . . . gno).

Now, we will need to go from the CLT for the Busemann cocycle to the one for displacement.
To do so, we use the following variation of [BQ16, Proposition 3.3].

By [MT18, Proposition 4.4] and the fact that Γ−1
v is nonelementary (Lemma 2.3), we have

νv(X
h
∞) = 1 for any vertex v.

Lemma 4.9. For any ε > 0 there exists T such that for all vertices w in Γ, all ξ ∈ Xh
∞ and all

n > 1 we have

Pw (ω : |d(o, g1 . . . gno)− βξ(o, g1 . . . gno)| 6 T ) > 1− ε.

Proof. Recall that by [MT18, Section 3.3] there exists a G-equivariant map π : X
h
∞ → ∂X, where

∂X is the Gromov boundary. Then, by definition of Gromov product and δ-hyperbolicity, we have

d(o, go)− βξ(o, go) = 2(go, π(ξ))o +O(δ) (3)

for any ξ ∈ X
h
∞ (see e.g. [Ho18, Lemma 2.4]). Now, since the pushforward of the stationary

measure Pw for the Markov chain starting at w to the Gromov boundary of X is not atomic
([GTT20, Lemma 4.2]), we have that for every ε > 0 there exists T such that

Pw(ω ∈ Ωw : sup
n>1

(wno, π(ξ))o 6 T ) > 1− ε

for all ξ ∈ Xh
∞ and for all w. This, combined with eq. (3), yields the desired estimate.

Proof of Theorem 4.1. Let F : R→ R be continuous with compact support. Since F is uniformly
continuous and by Lemma 4.9, for any η > 0 there exists n0 such that for any n > n0, any w

and any ξ ∈ Xh
∞ one has∣∣∣∣F (d(o, wno)− `n√

n

)
− F

(
βξ(o, wno)− `n√

n

)∣∣∣∣ < η

with probability Pw at least 1− ε. Thus, since ν = 1
R

∑
w Pw ⊗ νw, for any η > 0 there exists n0

such that for any n > n0 we have∣∣∣∣F (d(o, g1 . . . gno)− `n√
n

)
− F

(
βξ(o, g1 . . . gno)− `n√

n

)∣∣∣∣ < η (4)

on a subset of Ω×Xh
of ν-measure > 1− ε. On the other hand, by Proposition 4.8, we have∫

Ω×Xh
F

(
βξ(o, g1 . . . gno)− `n√

n

)
dν(ω, ξ)→

∫
R
F (t) dNσ(t).

Hence ∫
Ω×Xh

F

(
d(o, g1 . . . gno)− `n√

n

)
dν(ω, ξ)→

∫
R
F (t) dNσ(t).
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Since the integrand does not depend on ξ, then we also have∫
Ω
F

(
d(o, g1 . . . gno)− `n√

n

)
dP (ω)→

∫
R
F (t) dNσ(t),

where P is the pushforward of ν to Ω. Finally, since ν = 1
R

∑
w Pw⊗ νw, the pushforward of ν to

Ω equals P =
∑

w
nw
R Pw, where nw = νw(M). Hence Lemma 4.6 implies that P =

∑
w πwPw = P,

thus we also have ∫
Ω
F

(
d(o, g1 . . . gno)− `n√

n

)
dP(ω)→

∫
R
F (t) dNσ(t)

as required.

5. Uniqueness of drift and variance

Now suppose that Γ is a semisimple graph structure. In particular, each maximal component Ci
of Γ gives a primitive graph structure (without an initial vertex) on G to which the results of
the previous section (in particular, Theorem 4.1) apply. Hence for each maximal component Ci
of Γ, Theorem 4.1 gives constants `i and σi for the associated CLT.

In this section, we show that the CLTs for the recurrent components of Γ are compatible in
the sense that they have the same drift and variance. This is the primary place where we will
use thickness and coherence of Γ. For this, first recall that Ω∗ is the set of finite length paths in
Γ starting at any vertex and that the graph structure is bounded if there exists a constant b > 1
so that the evaluation map ev : Ω∗ → G is at worst b-to-one, i.e. #(ev−1(g)) 6 b for all g ∈ G.
Also recall the definition of coherence from Definition 2.2.

Remark 5.1. Our standing assumption until Section 7 is that Γ is a semisimple graph structure
on G. This implies that the transition matrix for each component of maximal growth is primitive.

5.1 Uniformly bicontinuous functions

Let us begin by introducing a class of functions that are well behaved under bounded perturba-
tions in the group.

Definition 5.2. A function f : Ω∗ → R is uniformly bicontinuous if for any finite set B ⊆ G
and any η > 0, there exists N > 0 such that if ‖g‖ > N and b1gb2 = h in G for some b1, b2 ∈ B,
then

|f(g)− f(h)| < η.

In our application, the uniformly bicontinuous property will be a consequence of the fact that
displacement is Lipschitz in both the right and left word metric on G. This definition is inspired
by [CF10] (in particular, the proof of [CF10, Lemma 4.24]), where the bi-Lipschitz property is
extensively used.

We next introduce the primary functions of interest used throughout this section. Define the
following functions on Ω∗: for any ` ∈ R,

ϕ(g) :=
d(o, go)− `‖g‖√

‖g‖
, ψ(g) :=

d(o, go)

‖g‖
.

We remark that the constant ` will be chosen once and for all after the proof of Lemma 5.6.
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Lemma 5.3. If the graph structure is coherent, then the functions ψ and ϕ defined above are
uniformly bicontinuous for any `.

Proof. Fix a finite set B ⊂ G, and let B be the resulting constant from Definition 2.2. Suppose
that h = b1gb2 for some b1, b2 ∈ B. Then |‖g‖ − ‖h‖| 6 B and by the triangle inequality
|d(o, go) − d(o, ho)| 6 B1 where B1 := 2 maxb∈B d(o, bo). Finally, denote by L the Lipschitz
constant so that d(o, go) 6 L‖g‖ for any g ∈ Ω∗.

(1) By the above estimates,∣∣∣∣d(o, ho)

‖h‖
− d(o, go)

‖g‖

∣∣∣∣ =
|(d(o, ho)− d(o, go))‖g‖+ d(o, go)(‖g‖ − ‖h‖)|

‖g‖‖h‖

6
|d(o, ho)− d(o, go)|

‖h‖
+
d(o, go)

‖g‖
· |‖g‖ − ‖h‖|

‖h‖

6
B1 + LB
‖g‖ − B

,

and the right-hand side tends to 0 as ‖g‖ → ∞.

(2) We can write

|ϕ(g)− ϕ(h)| = x√
n
− x+ y√

n+ d

where x = d(o, go)− `‖g‖, y = d(o, ho)− `‖h‖ − d(o, go) + `‖g‖, n = ‖g‖, and d = ‖h‖ − ‖g‖.
Recall that by the above inequalities |d| 6 B, hence also |y| 6 B1 + `B and |x| 6 (L+ `)‖g‖.

Thus, ∣∣∣∣ x√n − x+ y√
n+ d

∣∣∣∣ =

∣∣∣∣∣x(
√
n+ d−

√
n)√

n(n+ d)
− y√

n+ d

∣∣∣∣∣
6
|x|
n

n√
n(n+ d)

∣∣∣√n+ d−
√
n
∣∣∣+

|y|√
n+ d

6 (L+ `)
n√

n(n− B)
(
√
n+ B −

√
n) +

B1 + `B√
n− B

and the right-hand side tends to 0 uniformly in n.

Remark 5.4 Logarithmic perturbations. As a consequence of the proof that ϕ is uniformly
bicontinuous, we observe that for any η > 0 there is an N such that if ‖g‖ > N then for any
decomposition g = g0g1g2 with ‖g0‖, ‖g2‖ 6 logN we have

|ϕ(g)− ϕ(g1)| < η.

The main reason why we introduce the bicontinuous functions is the following property. For

each i, we denote as µ
(i)
n the distribution on the space of paths of length n induced by the Markov

measure associated to the maximal component Ci, as defined in Section 4. In particular, µ
(i)
n is

supported on length n paths of Γ that are contained in Ci.

Lemma 5.5. Suppose that the graph structure Γ is thick and coherent. Let f : Ω∗ → R be a
uniformly bicontinuous function, and suppose that for each maximal component Ci there is a
finite measure Di on R so that

f(wn)→ Di
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in distribution with respect to the Markov measure on Ci. If each Di is nonatomic, then there
exists a > 1 such that for any interval I ⊂ R,

1

a
Di(I) 6 Dj(I) 6 a Di(I).

Similarly, if each Di is a Dirac measure, then Di = Dj .
Proof. Let v be a vertex of Ci, and let Cj be another maximal component. Let B ⊂ G be
the finite set given by thickness of Γ (Definition 2.1) and let B be the resulting constant from
Definition 2.2. Similar to the proof of Lemma 2.3, by thickness and coherence we have

S
(j)
n ⊆

⋃
b1,b2∈B

⋃
|k|6B

b1(Γv ∩ Sn+k)b2

where S
(j)
n is the set of paths of length n which entirely lie in Cj . Hence, by uniform continuity,

for any ε > 0 there exists n0 such that for all n > n0,

#{g ∈ S(j)
n : f(g) ∈ [x, y]} 6 b|B|2

∑
|k|6B

#{g ∈ Γv ∩ Sn+k : f(g) ∈ [x− ε, y + ε]},

for any interval I = [x, y]. Here, we have used that the evaluation map is at most b-to-one. Now,
note that there exists C > 0 such that

C−1 #(A ∩ S(i)
n )

λn
6 µ(i)

n (A) 6 C
#(A ∩ S(i)

n )

λn
(5)

for any i, any n and any set A. Hence, by noting that Γv ∩ Sn+k ⊆ S
(i)
n+k,

µ(j)
n (g : f(g) ∈ [x, y]) 6 b|B|2C2

∑
|k|6B

µ
(i)
n+k(g : f(g) ∈ [x− ε, y + ε]).

Now taking limits and using the Portmanteau theorem, we obtain that

Dj((x, y)) 6 2Bb|B|2C2 Di([x− ε, y + ε]),

for any ε > 0. So if c = 2Bb|B|2C2, we have that Dj((x, y)) 6 c Di([x, y]) because Di([x, y]) =⋂
ε>0Di([x− ε, y + ε]) for any finite measure.

Now if each Di is nonatomic, we get Dj([x, y]) 6 c Di([x, y]) and reversing the roles of i and j
completes the proof in this case. Similarly, if Di and Dj were distinct Dirac measures, we would
obtain a contradiction by letting (x, y) be a small interval about the atom for Dj and taking ε
small enough so that [x−ε, y+ε] does not contain the atom for Di. This completes the proof.

5.2 Uniqueness of drift

We now show that all maximal components of Γ determine the same drift.

Lemma 5.6. If the graph structure Γ is thick and coherent, then each `i for each maximal
component Ci are the same.

Proof. By the subadditive ergodic theorem, for each maximal component Ci we have

lim
n→∞

d(o, wno)

n
= `i

almost surely (and hence in distribution) with respect to the measure µ
(i)
n . Since ψ(g) = d(o,go)

‖g‖
is uniformly bicontinuous by Lemma 5.3, the claim then follows by Lemma 5.5.

By the above lemma, we now define ϕ using ` = `i for any (equivalently all) i.
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5.3 Uniqueness of variance

To show that all maximal component of Γ determine the same variance, we use the simple fact
that distinct normal distributions with mean 0 can be be distinguished by the decay of their
tails.

Lemma 5.7. If the graph structure Γ is thick and coherent, then for any two maximal components
Ci and Cj we have σi = σj .

Proof. We have already shown that for ` fixed as above and any maximal component Ci of Γ,

φ(wn)→ Nσi ,

in distribution with respect to the Markov measure on Ci (Theorem 4.1). Since φ is uniformly
bicontinuous by Lemma 5.3, Lemma 5.5 states that there exists an a > 1 so that for any interval
I in R,

1

a

∫
I
dNσi 6

∫
I
dNσj 6 a

∫
I
dNσi .

But since this holds for every interval, Lemma 5.8 implies that σi = σj as required.

Lemma 5.8. If there exists a > 1 such that

1

a

∫
I
dNσi 6

∫
I
dNσj 6 a

∫
I
dNσi (6)

for any interval I, then σi = σj .

Proof. If we let

In,σ :=

∫ n+1

n
dNσ =

1√
2πσ

∫ n+1

n
e−

t2

2σ2 dt

we get

1√
2πσ

e−
(n+1)2

2σ2 6 In,σ 6
1√
2πσ

e−
n2

2σ2

which yields

lim
n→∞

log In,σ
n2

= − 1

2σ2
. (7)

Then, if (6) holds, then

1

a
6
In,σi
In,σj

6 a

hence, by (7)

− 1

2σ2
i

= lim
n→∞

log In,σi
n2

= lim
n→∞

log In,σj
n2

= − 1

2σ2
j

which yields σi = σj .

6. The semisimple case

In this section, we prove our main theorem for semisimple graph structures. This is completed
in Theorem 6.3.
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6.1 Convergence to the Markov measure

So far our work has been for maximal components of a semisimple graph structure. In this section
we consider the whole graph structure, still in the semisimple case.

Let Γ be a semisimple graph structure for G with transition matrix M of spectral radius
λ > 1. Let vi be the vertices of the graph, and let v0 be a vertex of large growth, which we take
as the initial vertex. Then recall that eTi M

nej is the number of paths of length n from vi to vj .
Since M is semisimple, the limit

M∞ := lim
n→∞

Mn

λn

exists. In particular, in keeping with notation at the beginning of Section 4, we denote as ei the
ith vector of the standard basis, and define

ρi := lim
n→∞

eTi M
n1

λn
and ui := lim

n→∞

eT0 M
nei

λn
.

By construction, ρ = (ρi) satisfies ρ = M∞1 and Mρ = λρ, while u = (ui) satisfies uTM = λuT .
Finally,

∑
i ui = ρ0 and

∑
i uiρi = ρ0.

Note that vertices vi for which ρi > 0 and ui > 0 are precisely vertices of components of
maximal growth. The large growth vertices are those with ρi > 0.

As before, we use a standard construction to define a Markov measure P on the space Ω of
infinite paths starting at any vertex of Γ. First define the initial distribution of the Markov chain
to start at vertex vi with probability πi := uiρi

ρ0
. Then assign an edge from vi to vj the probability

ρj
λρi

so that the transition probability from vi to vj is pij :=
Mijρj
λρi

. Obviously, P is supported
on paths that are entirely contained in components of maximal growth. We denote as Pn the
distribution on the space of paths of length n induced by the Markov measure P.

Remark 6.1. We remark that the induced measure on each maximal component C of Γ rescales
to give the Markov measure on C previously considered. This follows immediately from the
construction.

The following result relates the Markov measure on the semisimple graph structure to the
counting measure. For its statement, let v0 be any vertex of large growth. For each n, consider
the path given by selecting uniformly a path γ starting at v0 of length n, and take its subpath
γ̃ from position blog nc to position n− blog nc. To avoid writing the integer part every time, we
set lg(n) := blog nc. Let λ̃n denote the distribution of γ̃.

Lemma 6.2. With notation as above, the total variation

‖Pn−2 lg(n) − λ̃n‖TV → 0

as n→∞.

Proof. Denote n′ := n − 2 lg(n). Let γ be a path in the graph, starting at vi and ending at vj .
Then by definition the proportion of paths of length n, starting at v0, that have γ as “middle
subpath” of length n′ is

λ̃n(γ) =
(eT0 M

lg(n)ei)(e
T
j M

lg(n)1)

eT0 M
n1

.

On the other hand,

Pn′(γ) =

{
πiρj
ρiλn

′ If vi has large growth

0 otherwise,
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which is nonzero if both vi and vj belong to a maximal component. In this case,

dPn′
dλ̃n

(γ) =
λlg(n)

eT0 M
lg(n)ei

· λlg(n)

eTj M
lg(n)1

· e
T
0 M

n1

λn
· πiρj
ρi

−→ 1

ui
· 1

ρj
· ρ0

1
· πiρj
ρi

= 1

using that πi = uiρi
ρ0

. Moreover, if Si,jn denotes the set of paths of length n′ from vi to vj , we have

λ̃n(Si,jn ) =
(eTi M

n′ej)(e
T
0 M

lg(n)ei)(e
T
j M

lg(n)1)

eT0 M
n1

6
(eTi M

n′1)(eT0 M
lg(n)ei)(e

T
j M

lg(n)1)

eT0 M
n1

→ ρiuiρj
ρ0

,

hence such a probability tends to 0 unless both vi and vj belong to a maximal component.

Finally, if we denote as Ln the set of paths of length n′ which lie entirely in a maximal
component, we have for any set A∣∣∣Pn′(A)− λ̃n(A)

∣∣∣ 6 ∑
x∈A∩Ln

∣∣∣∣Pn′(x)

λ̃n(x)
λ̃n(x)− λ̃n(x)

∣∣∣∣+ λ̃n(A \ Ln)

6 sup
x∈Ln

∣∣∣∣Pn′(x)

λ̃n(x)
− 1

∣∣∣∣+ λ̃n(Lcn)

and both terms tend to 0 as n→∞, independently of A.

6.2 Central limit theorem for the counting measure in the semisimple case

We are now ready to prove the following. For its statement, let Sn denote the set of length n
paths beginning at the initial vertex v0.

Theorem 6.3. Let Γ be a semisimple, thick, coherent graph structure for a nonelementary group
G of isometries of a δ-hyperbolic space (X, d), and let o ∈ X be a base point. Then there exists
` > 0, σ > 0 such that for any a < b we have

lim
n→∞

1

#Sn
#

{
g ∈ Sn :

d(o, go)− `n√
n

∈ [a, b]

}
=

∫ b

a
dNσ(t).

In the following proof and later on, we will use the notation Nσ(x) :=
∫ x
−∞ dNσ(t).

Remark 6.4. Note that if the graph structure Γ is semisimple and has a unique maximal com-
ponent, then Theorem 6.3 holds even without assuming that the structure is coherent.

Proof. Let C1, . . . , Ck be the maximal components, and let µ
(i)
n be the distribution on the space

of paths of length n induced by the Markov measure associated to that component, as in Section
4. Theorem 4.1 shows a CLT for all such measures, and by Lemmas 5.6 and 5.7 all such measures
have the same drift and variance, that we denote by `, σ.

Now, since the starting probability (πi) in the above construction is nonzero precisely on the
set of vertices which belong to a maximal component, there exist weights ci > 0 with

∑
i ci = 1
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such that

Pn =

k∑
i=1

ciµ
(i)
n

for any n. Thus, for any x ∈ R,

Pn(g : ϕ(g) 6 x) =
k∑
i=1

ciµ
(i)
n (g : ϕ(g) 6 x)→ Nσ(x), (8)

where we recall that

ϕ(g) =
d(o, go)− `‖g‖√

‖g‖
.

Now, we use that the counting measure can be approximated by the distribution on finite
paths for the Markov chain. If g is a path of length n, we denote as g = g0g1g2 where g0 is the
prefix of length lg(n), g1 is the middle part of length n− 2 lg(n) and g2 is the final part of length
lg(n). By Remark 5.4, there exists n0 such that

|ϕ(g)− ϕ(g1)| 6 ε (9)

for any n > n0 and g with ‖g‖ = n.

Fix x ∈ R and ε > 0. Then we have

λn(g : ϕ(g) 6 x) = λn(g = g0g1g2 : ϕ(g) 6 x)

6 λn(g = g0g1g2 : ϕ(g1) 6 x+ ε) by eq. (9), for n large

= λ̃n(g1 : ϕ(g1) 6 x+ ε) by definition of λ̃n

6 Pn−2 lg(n)(g1 : ϕ(g1) 6 x+ ε) + ε by Lemma 6.2, for n large.

Hence, by eq. (8) we obtain

lim sup
n→∞

λn(g : ϕ(g) 6 x) 6 Nσ(x+ ε) + ε

and, by taking ε smaller and smaller and using the continuity of Nσ,

lim sup
n→∞

λn(g : ϕ(g) 6 x) 6 Nσ(x).

The lower bound follows analogously.

Indeed, the same proof shows the following stronger statement. Let λ
(l)
n denote the counting

measure on the set of paths of length n starting at vl.

Corollary 6.5. Let Γ be a semisimple, thick, coherent graph structure for a nonelementary
group G of isometries of a δ-hyperbolic space (X, d), and let o ∈ X be a base point. Then there
exists ` > 0, σ > 0 such that for any vertex vl of large growth for Γ and any a < b we have

lim
n→∞

λ(l)
n

(
g :

d(o, go)− `‖g‖√
‖g‖

∈ [a, b]

)
=

∫ b

a
dNσ(t).

Proof. Let us fix a vertex vl of large growth for M . Then we can define a Markov measure P(l)

on the space of infinite paths as follows. The transition probabilities will always be the same
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pij =
ρj
λpρi

, while for each vertex vl one finds a different set of starting probabilities π
(l)
i given by

π
(l)
i :=

u
(l)
i ρi
ρl

, where u
(l)
i := lim

n→∞

eTl M
nei

λn
.

Just as before, there exist constants c
(l)
i > 0 such that

∑
i c

(l)
i = 1 and

P(l)
n =

k∑
i=1

c
(l)
i µ

(i)
n .

The proof then proceeds exactly as for Theorem 6.3.

7. The CLT for displacement and translation length

Now suppose that Γ is an almost semisimple graph structure for G with transition matrix M .
Then M has some period p > 1 such that Mp is semisimple. We denote by Γp the corresponding
p step graph structure on G. That is, Γp is the graph with the same vertex set as Γ and an edge
joining vi to vj for each directed path from vi to vj of length p, whose label is the word in G
spelled by the corresponding path. The transition matrix for Γp is Mp, hence Γ is a semisimple
graph structure for G.

Since the previous results require this structure to be thick and coherent, we need the following
lemma.

Lemma 7.1. The following properties pass to the p step graph structure:

– If v is a large growth vertex of Γ, then it is also a large growth vertex of Γp.

– If Γ is a thick structure, then Γp is also thick.

– If Γ is coherent, then so is Γp.

Proof. The first statement holds because any path from v that ends in a component of maximal
growth can be extended to a path whose length is a multiple of p by adding on a path in that
component of length less than p.

Now suppose that Γ is thick. Let v be a vertex in a maximal component of Γp. Then v is also
a vertex in a maximal component of Γ. Let Γv,p be the semigroup of loops based at v of lengths
multiple of p. Consider the semigroup homomorphism

f : Γv → N→ N/pN

given by taking the length and reducing it mod p. Clearly, the image of f is a subsemigroup of
N/pN, which is a finite group, hence the image contains the inverse of each element and so is also
a group. Let γi, . . . , γk ⊆ Γv be a set of representatives for each remainder class in the image of
f . Now, let γ ∈ Γv. Then ‖γ‖ belongs to the image of f , hence there exists γi (the representative
of the inverse modulo p), such that γγi has length multiple of p, hence it belongs to Γv,p. Hence,
by setting B′ the set {γ−1

i : 1 6 i 6 k}, we have Γv ⊆ Γv,pB
′ in the group. Since Γ is thick,

there exists B′′ such that G = B′′ΓvB
′′, hence also G = B′′Γv,pB

′B′′, hence Γp is also thick.

Finally, note that any path g in Γp of length k can be naturally thought of as a path g† in Γ of

length pk such that for all i > 0: g†(pi) = g(i). From this, it follows that Γp is bounded whenever
Γ is. Moreover, if B ⊂ G and B > 0 are as in the definition of coherence of Γ (Definition 2.2)
and g, h are paths in Γp with g = b1hb2 for b1, b2 ∈ B, then we also have that g† = b1h†b2. Then
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coherence of Γ implies that

p · |‖g‖ − ‖h‖| = |‖g†‖ − ‖h†‖| 6 B,

and so coherence of Γp follows.

Now, let us consider the semisimple matrix Mp. Note that irreducible components of Mp may

be proper subsets of irreducible components of M . Given a vertex vi, let us denote by λ
(i)
k the

counting measure on paths starting at vi of length k for Γ. Note that if k = np, then this also
counts paths of length n in Γp starting at vi.

Since a bounded, thick graph structure Γ is almost semisimple (Lemma 2.3), by applying
Corollary 6.5 to Γp, we immediately obtain:

Corollary 7.2. Let Γ be a thick, coherent structure of period p for a nonelementary group G
of isometries of a δ-hyperbolic space (X, d), and let o ∈ X be a base point. Then there exist `, σ
such that the following holds. For any vertex vi of large growth for Γ and for any x, we have

λ(i)
pn

(
g :

d(o, go)− `‖g‖√
‖g‖

6 x

)
→
∫ x

−∞
dNσ(t)

as n→∞.

We are now ready to prove the following. Recall that Sn denotes the set of length n paths
beginning at the initial vertex v0.

Theorem 7.3. Let Γ be a thick, coherent graph structure for a nonelementary group G of
isometries of a δ-hyperbolic space (X, d), and let o ∈ X be a base point. Then there exist ` > 0,
σ > 0 such that for any a < b we have

lim
n→∞

1

#Sn
#

{
g ∈ Sn :

d(o, go)− `n√
n

∈ [a, b]

}
=

∫ b

a
dNσ(t).

Proof. Let v0 be the initial vertex, let Sn be the set of paths of length n based at v0, and let λn
be the uniform measure on Sn.

Let us fix 0 6 r 6 p− 1. Then we can write the counting measure on Spn+r, starting at the
initial vertex v0, by first picking randomly a path g0 of length r from v0 with a certain probability
µ, and then picking a random path starting at vi = t(g0) with respect to the counting measure
on the set of paths of length n starting at vi.

To compute µ, let us consider a path g0 of length r starting at v0 and ending at vi. Then, if
vi is of large growth for Γp,

#{paths from vi of length pn}
#{paths from v0 of length pn+ r}

=
eiM

pn1

e0Mpn+r1
→ eiM∞1

e0M rM∞1
.

Thus, we define

µ(g0) :=
eiM∞1

e0M rM∞1
.

Note that µ(g0) = 0 if the end vertex of g0 has small growth and moreover∑
‖g0‖=r

µ(g0) =
∑
i

µ(g0)#{g0 ∈ Sr : t(g0) = vi} =
∑
i

e0M
rei

eiM∞1

e0M rM∞1
= 1.

Let λ′pn+r be the measure on Spn+r given by first taking randomly a path g0 of length r from
v0 with distribution µ and then taking uniformly a path of length pn starting from t(g1).
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Now we show that the CLT holds for λ′pn+r. Let `, σ be given by Corollary 7.2, and let

ϕ(g) := d(o,go)−`‖g‖√
‖g‖

. By Corollary 7.2, for any vertex vi of large growth, we have

λ(i)
pn(g : ϕ(g) 6 x)→ Nσ(x).

Then if g = g0g1, and t(g0) denotes the (index of the) end vertex of g0,

λ′pn+r(g : ϕ(g) 6 x) =
∑
g0∈Sr

µ(g0)λ(t(g0))
pn (g1 : ϕ(g0g1) 6 x)

−→
∑
g0

µ(g0)Nσ(x) = Nσ(x),

where we used that ϕ is uniformly bicontinuous as in the proof of Theorem 6.3.

Now we prove that

‖λ′pn+r − λpn+r‖TV → 0

as n→∞. Indeed, if γ = g0g1 is a path from v0 of length pn+ r and g0 is its prefix of length r
ending at a vertex vi of large growth, then

λ′pn+r(γ)

λpn+r(γ)
=
µ(g0) · 1

eiMpn1
1

e0Mpn+r1

→ 1.

On the other hand, if the end vertex of g0 is of small growth, then λ′pn+r(g) = 0, and also

λpn+r(g = g0g1 : g0 ends at a small growth vertex)→ 0

as n→∞. Now, let Ax := {g : ϕ(g) 6 x} and Lr be the set of paths starting at v0 whose prefix
of length r ends in a vertex of large growth. Then

λpn+r(g : ϕ(g) 6 x) = λpn+r(g ∈ Lr : ϕ(g) 6 x) + λpn+r(g /∈ Lr : ϕ(g) 6 x)

=
λpn+r(Ax ∩ Lr)
λ′pn+r(Ax ∩ Lr)

λ′pn+r(Ax ∩ Lr) + λpn+r(Ax \ Lr)

→ 1 ·Nσ(x) + 0 = Nσ(x).

We have thus obtained a CLT for λpn+r, for any 0 6 r 6 p− 1, always with the same `, σ. Since
there are only finitely many values r, the claim follows.

7.1 A CLT for translation length

We now prove a more general version of our second main result, Theorem 1.1 (2).

Theorem 7.4. Let Γ be a thick, coherent graph structure for a nonelementary group G of
isometries of a δ-hyperbolic space (X, d), let o ∈ X be a base point, and let `, σ be as in Theorem
7.3. Then for any a < b we have

lim
n→∞

1

#Sn
#

{
g ∈ Sn :

τ(g)− `n√
n

∈ [a, b]

}
=

∫ b

a
dNσ(t).

Proof. Let us recall that the translation length of an isometry g of a δ-hyperbolic space can be
computed by (see e.g. [MT18, Proposition 5.8])

τ(g) = d(o, go)− 2(go, g−1o)o +O(δ) (10)

where O(δ) is a constant which only depends on the hyperbolicity constant of X. Now, by
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choosing f(n) = ε
√
n in [GTT20, Proposition 5.8], for any ε we have

λn(g : (go, g−1o)o 6 ε
√
n)→ 1

as n → ∞. The claim then follows by combining this statement and the statement of Theorem
7.3 into formula (10).

7.2 Zero variance

We finally complete our main theorem by characterizing the case where σ = 0. First, we give a
general criterion.

Proposition 7.5. In the hypotheses of Theorem 7.3 we have σ = 0 if and only if there is C > 0
such that for all finite length paths g in Γ,

|d(o, go)− `‖g‖| 6 C.

We note that the proposition implies that σ > 0 whenever the action Gy X is nonproper.

Proof. Suppose that σ = 0 for the CLT for the counting measure. Then by our previous discus-
sion, we have σ = 0 also for the Markov chain on any maximal components. Then by Theorem
4.2, we also have σ = 0 for the random walk on the loop semigroup driven by µ̌v. Hence, as in
[BQ16, Proof of Theorem 4.7 (b)], for any n

1

n

∫
(η0(g, ξ))2dµ̌∗nv (g)dνv(ξ) = 0

where η0 is the centering of η. This implies

η0(g, ξ) = 0

for any g ∈ Γ−1
v and νv-a.e. ξ ∈ Xh

. Thus, since |η − η0| 6 2‖ψ‖∞ is bounded, we have

|βξ(o, g−1o)− `‖g‖| = |η(g, ξ)| 6 2‖ψ‖∞
hence by [Ho18, Corollary 2.3] there exists a constant C for which

|d(o, go)− `‖g‖| 6 C

for any g in the support of µ̌∗nv (g).

Hence, by thickness we have for any g ∈ Ω∗ there exist b1, b2 ∈ B and h ∈ Γ−1
v such that

h = b1gb2, thus by coherence and the triangle inequality

|d(o, go)− `‖g‖| 6 |d(o, ho)− `‖h‖|+ B1 + `B

thus there exists a constant C ′ such that

|d(o, go)− `‖g‖| 6 C ′

for any g ∈ Ω∗. This completes the proof.

We conclude with a corollary that applies when the graph structure is geodesic. For the action
G y X, denote the translation length of h by τX(h). We use the notation τG(h) to denote the
translation length of h with respect to the word metric dG induced by the graph structure Γ:

τG(h) = lim
n→∞

1

n
dG(1, hn).
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Corollary 7.6. Suppose that Γ is a thick geodesic combing of G. If σ = 0 in the CLT, then
for all h ∈ G

τX(h) = ` τG(h),

where ` is the corresponding drift.

Proof. Recall that a geodesic combing is coherent by Lemma 2.4. Let gn be a path in Γ rep-
resenting hn for h ∈ G. That is hn = gn. Since the structure is geodesic, ||gn|| = dG(1, hn).
Applying Proposition 7.5, we get that

|d(o, hno)− `dG(1, hn)| = O(1).

The corollary follows after dividing by n and taking a limit.

8. Applications

The main theorem of Section 1 now follows easily from the results in Section 7.

Proof of Theorem 1.1. Since G has a thick geodesic combing with respect to S, the length ‖g‖
of a path in the graph equals the word length with respect to S of its evaluation g ∈ G, and the
sphere of radius n in the Cayley graph of G is in bijection with the set of paths of length n in
the graph. Moreover, the associated graph structure is coherent by Lemma 2.4. Then (1) follows
immediately from Theorem 7.3, (2) follows from 7.4 and (3) from Corollary 7.6.

We now give proofs of the applications in the introduction. We first recall some examples of
groups which admit thick geodesic combings; for further details, see also [GTT20].

Lemma 8.1. The following groups admit thick geodesic combings:

(i) A (word) hyperbolic group G admits a thick geodesic combing with respect to any generating
set.

(ii) If G is relatively hyperbolic with virtually abelian peripheral subgroups, then every finite
generating set S′ can be extended to a finite generating set S for G which admits a thick
geodesic combing.

(iii) If G is a right-angled Artin group or right-angled Coxeter group that does not decompose
as a product and S is the vertex generating set, then G admits a thick geodesic combing
for S whose graph structure has only one maximal component, which is primitive.

Proof. (1) By [Ca84], a hyperbolic G has a geodesic combing with respect to any generating
set. By [AL02, Theorem 3], this geodesic combing has the growth quasitightness property (see
[GTT20, Definition 1.2], inspired by [AL02]). Since growth quasitightness implies thickness by
[GTT20, Proposition 7.2], such a structure is thick. Alternatively, thickness can also be deduced
from the proof of [GMM18, Lemma 4.6].

(2) By [AC16, Corollary 1.9], the generating set S′ of G can be enlarged to a generating set
S, so that the pair (G,S) admits a geodesic combing. Yang [Ya19] proves that any relatively
hyperbolic group has the growth quasitightness property with respect to any finite generating
set, hence the proof is complete observing as above that growth quasitightness implies thickness.

(3) In [GTT20, Corollary 10.4], building on Hermiller–Meier [HM95], we proved that the
language of lexicographically first geodesics in the vertex generators is parameterized by a thick
graph structure. In fact, the graph structure we construct has only one maximal component,
which is primitive.
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Proof of Theorem 1.2. Note that π1(M) is hyperbolic relative to its parabolic subgroups, which
are virtually abelian since M has constant curvature. Hence, by Lemma 8.1 (2) the given gen-
erating set S′ can be enlarged to a finite generating set S that is associated to a thick geodesic
combing on π1(M). The theorem then follows from Theorem 1.1. Finally, σ > 0 by (3) since the
length spectrum is not arithmetic ([GR86], [Ki06]).

Proof of Theorem 1.3. In the case where M has no rank 2 cusps, we have that π1(M) is hy-
perbolic. Indeed, by the Tameness Theorem ([CG06], [Ag04]), M is the interior of a compact
manifold M , which by assumption does not have tori as boundary components. Then Thurston’s
Hyperbolization Theorem (see [Ka01]), M admits a convex cocompact hyperbolic structure on
its interior. Hence, π1(M) is hyperbolic. The result now follows from Lemma 8.1 and Theorem
1.1.

For the moreover statement, the argument above gives that M admits a geometrically finite
hyperbolic structure. Hence, π1(M) is hyperbolic relative to its rank 2 parabolic subgroups,
which are virtually Z× Z. The proof then proceeds as in Theorem 1.2

Proof of Theorem 1.4. First, since π1(M) is word hyperbolic, by Lemma 8.1 (1) it has a thick
geodesic combing with respect to any generating set.

Second, let T = TΣ be the dual tree associated to Σ ⊂ M . For details of this standard
construction and the properties we need, see [Sh02, Section 1.4]. Alternatively, T is the Bass–
Serre tree associated to the splitting of π1(M) induced by Σ. Since Σ is not fiber-like, T is not
the real line, and since the quotient G of the action π1(M) y T is compact (it is the underlying
graph of the associated graph-of-groups), the action is nonelementary.

Finally, the intersection number i(γ,Σ) equals the translation length of γ with respect to the
action π1(M) y T . To see this, note that the translation length of γ for this action is equal
to the number of edges #eγ crossed by the shortest representative of γ in G. If we embed G in
M dual to Σ, this shows that i(γ,Σ) 6 #eγ. For the opposite inequality, recall that there is
a retraction r : M → G mapping each component of Σ to the midpoint of some edge. Thus by
taking a representative of γ intersecting Σ minimally, considering its image under the retraction,
and homotoping it off edges that it does not fully cross, we obtain that #eγ 6 i(γ,Σ). Hence,
i(γ,Σ) = `(γ) for the action on T .

We now obtain the CLT by applying Theorem 1.1 to this action. If σ = 0, then Theorem 1.1
(3) implies that the action π1(M) y T is proper and hence vertex stabilizers are finite. However,
this is impossible since only virtually free groups admit cocompact actions on trees with finite
vertex stabilizers (see e.g. [SW77, Theorem 7.3]).

For the following application, let us assume G is a hyperbolic group, let ∂G be its Gromov
boundary, and let d be a metric on G. We define the growth rate of the metric d as

v := lim sup
n→∞

1

n
log #

{
g ∈ G : d(1, g) 6 n

}
and for each s > v let us consider the measure on G ∪ ∂G:

νs :=

∑
g∈G e

−sd(1,g)δg∑
g∈G e

−sd(1,g)
.

Then any limit point of (νs) as s→ v is supported on ∂G and is called a Patterson–Sullivan (PS)
measure. By Coornaert [Co93], any two limit measures are absolutely continuous with respect to
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each other, with bounded Radon–Nikodym derivative, so the Patterson-Sullivan measure class
is well-defined.

The following rigidity statement about Patterson-Sullivan measures is essentially due to Fur-
man [Fu02], at least in the torsion-free case. For the reader’s convenience, we assemble a complete
proof from results in the literature. Let Gy X be a properly discontinuous and cocompact ac-
tion on a geodesic Gromov hyperbolic metric space (X, d). Let o ∈ X, and ∂X the Gromov
boundary. Given ζ ∈ ∂X, we define the Busemann function on the Gromov boundary by setting
for x, y ∈ X bζ(x, y) := lim infz→ζ βz(x, y), where z are points in X. A measure ν on ∂X is called
quasiconformal with respect to d if there are constants α,C > 0 such that

C−1 exp(αbζ(go, o)) 6
dgν

dν
(ζ) 6 C exp(αbζ(go, o))

for any g ∈ G, ν-a.e. ζ ∈ ∂X. The constant α is called the quasiconformal dimension of ν.
The Patterson-Sullivan measure on the boundary of a hyperbolic group is quasiconformal with
respect to the associated word metric [Co93].

Proposition 8.2. Let G y X be a properly discontinuous and cocompact action on a metric
space X. Let d1 and d2 be G-equivariant, geodesic, Gromov hyperbolic metrics on X. Let ν1 and
ν2 be measures on ∂X, quasiconformal with respect to d1 and d2, respectively. Then ν1 and ν2 are
in the same measure class if and only if there are constants a, b > 0 with |ad1(x, y)−d2(x, y)| 6 b
for any x, y ∈ X.

Proof. Suppose |ad1 − d2| 6 b. Then letting bi be the Busemann functions associated to di we
have |ab1

ζ(·, ·) − b2
ζ(·, ·)| 6 2b for any ζ ∈ ∂X. Therefore any d1-quasiconformal measure is d2-

quasiconformal and vice-versa. By Coornaert [Co93, Theorem 7.7], any two d1-quasiconformal
measures are absolutely continuous with bounded Radon-Nikodym derivative. Therefore ν1 and
ν2 are in the same measure class.

To prove the converse, we assume that ν1, ν2 are in the same measure class. First, we prove that
their Radon-Nikodym derivative is bounded, as follows. As claimed in [Fu02] for the torsion-free
case and proved by Bader-Furman [BF17, Theorem 1.4] in general (see also [CDST18, Theorem
4.1] for a generalization beyond cocompact actions), the action of G on ∂X×∂X is ergodic with
respect to νi × νi for i = 1, 2. By [CDST18, Lemma 2.6], there exist for any i = 1, 2 a rescaling
mi of dνi × dνi, known as Bowen-Margulis measure, which is G-invariant. Hence, by e.g. [GT20,
Lemma 5.2], ν1 and ν2 have bounded Radon-Nikodym derivative.

Now, by the chain rule, the ratio between dgν1
dν1

and dgν2
dν2

is bounded independently of g ∈ G.
Quasiconformality implies that there are α1, α2, D > 0 such that

|α1b
1
ζ(go, o)− α2b

2
ζ(go, o)| 6 D

for νi a.e. ζ ∈ ∂X and every g ∈ G. Now, recall that Busemann functions are coarsely continuous
(see e.g. [CDST18, Proposition 2.1]), i.e. there exists D1 such that

lim sup
ξ→ζ

bξ(x, y)− lim inf
ξ→ζ

bξ(x, y) 6 D1

for any ζ ∈ ∂X, any x, y ∈ X. Since the νi have full support on the infinite ∂X ([Co93, Corollary
5.2]), this implies that there exists D2 such that

|α1b
1
ζ(go, o)− α2b

2
ζ(go, o)| 6 D2

for every ζ ∈ ∂X and every g ∈ G. Since di(o, go) = supζ∈∂X biζ(go, o) we obtain |α1d1(o, go) −
α2d2(o, go)| 6 D2. Since the action of G is cocompact and the metrics di are G-equivariant, this
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implies |α1d1 − α2d2| 6 D3 for some constant D3, as required.

Proof of Theorem 1.5. Since G is word hyperbolic, it has a thick geodesic combing by Lemma 8.1
(1). The first statement then follows immediately from Theorem 1.1, by considering the action
of G on the Cayley graph of G′.

For the moreover statement, if σ = 0, Theorem 1.1 (3) implies that

|‖φ(g)‖S′ − `‖g‖S |

is bounded independently of g ∈ G, hence φ has finite kernel.

Now, consider the factorization G
π→ G := G

kerφ

φ→ G′, and define S := π(S). Then the Cayley

graph of G carries the two metrics

d1(g, h) := ‖h−1g‖S d2(g, h) := ‖φ(h−1g)‖S′

and they satisfy

|d1(g, h)− `d2(g, h)| 6 C (11)

for any g, h ∈ G. In particular, φ : G → G′ is a quasi-isometric embedding and so it admits a
continuous extension ∂φ : ∂G→ ∂G′ to an embedding.

Now, by Proposition 8.2, eq. (11) holds if and only if the Patterson–Sullivan measure classes
for d1, d2 on ∂G are the same. Finally, if φ has finite kernel, there exists C > 0 for which

|d1(π(g), π(h))− dS(g, h)| 6 C

for any g, h ∈ G. Hence, the PS measure class for (G, dS) on ∂G pushes forward to the PS
measure class for (φ(G), dS′) if and only if σ = 0.

Proof of Theorem 1.6. By Lemma 8.1 (3), a right-angled Artin or Coxeter group has a graph
structure with respect to the vertex generating set, which is semisimple with only one maximal
component. Hence, the CLT follows from Theorem 6.3 (see Remark 6.4). To complete the proof,
we note that #v(g) is equal to the displacement of g with respect to the action of G on the
Bass–Serre tree for the hyperplane associated to v. The details are similar to those of Theorem
1.4.
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