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ABSTRACT. We relate the McMullen polynomial of a free-by-cyclic group to its Alexander
polynomial. To do so, we introduce the notion of an orientable fully irreducible outer
automorphism ¢ and use it to characterize when the homological stretch factor of ¢ is equal
to its geometric stretch factor.
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1. INTRODUCTION

This paper introduces the property of orientability for fully irreducible free group automor-
phisms and characterizes how it is reflected in both the stretch factors of the automorphism
and in the Alexander and McMullen polynomials of the associated free-by-cyclic group.

To motivate our work, let us recall the theory from the mapping class group setting. A
pseudo-Anosov homeomorphism ¢ of an orientable hyperbolic surface comes equipped with
two notions of stretch factor: The geometric stretch factor or dilatation A, is the value
by which ¢ stretches the leaves of its expanding foliation; A, is also characterized as the
exponential growth rate of the geodesic length of any curve under iteration by ¢, and its
logarithm log A, is both the topological entropy of ¢ and the translation length for its action
on Teichmiiller space. The homological stretch factor p, is instead the spectral radius for
the action of ¢ on the first homology of the surface. It is well-known that these two numbers
are equal if and only if the invariant foliations of ¢ are transversely orientable. Indeed,
that transverse orientability implies equality of the stretch factors was observed by Thurston
[Thu88], and the reverse implication was proven by Band and Boyland [BB07, Lemma 4.3].

In fact, a much stronger symmetry persists when ¢ preserves these transverse orientations.
Associated to the mapping torus of a pseudo-Anosov homeomorphism there are two important
polynomial invariants that arise: the classical Alexander polynomial [Ale28], which captures
homological information about monodromies, and the Teichmiiller polynomial [McMO00] of
the fibered cone, which encodes the associated geometric stretch factors. In the orientable
case, McMullen proved these invariants are closely related in that the Alexander polynomial
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divides the Teichmiiller polynomial [McMO00, Theorem 7.1]. More recently, Parlak [Par21]
extended McMullen’s work to explicitly determine the quotient polynomial, giving a precise
relation between the two polynomials and the associated stretch factors.

1.1. Orientable automorphisms. In this article, we extend the above results to the free
group setting, replacing the pseudo-Anosov homeomorphism with a fully irreducible automor-
phism of a finite rank free group F and replacing the mapping torus M, by the associated
free-by-cyclic group. In fact, we define what it means for a fully irreducible endomorphism
to be orientable and prove this occurs exactly when the geometric and homological stretch
factors agree.

The condition is best understood in the context of graph maps. For a graph map f: G — G,
we define the geometric stretch factor Ay to be the spectral radius of the transition matrix of
f, and the homological stretch factor py to be the spectral radius of the induced map f; on
Hy(G;R). An orientation on G is a choice of positive orientation for each edge of G. We say
f is positively orientable (resp. negatively orientable) if there exists an orientation on G such
that every positive edge maps to a positive (resp. negative) edge path. We often abbreviate
this terminology to pos/neg-orientable or +1-orientable. Combining these notions, the map
is called orientable if it respects some orientation on G, in that it is either positively orientable
or negatively orientable. See §2 for additional details.

Theorem A. Suppose f: G — G is a graph map whose transition matriz has a positive
power. Then Ay = py if and only if f is orientable. Moreover, Ay (resp. —Ay) is an eigenvalue
of f« if and only if f is pos-orientable (resp. neg-orientable).

By combining this with well-known properties of fully irreducible endomorphisms and
their expanding laminations (see §3), we obtain the following corollary, which is a simplified
statement of Theorem 3.6:

Theorem B. For a fully irreducible free group endomorphism ¢, the following are equivalent:

e the homological and geometric stretch factors of ¢ are equal;
e some (every) irreducible train track representative of ¢ is orientable;
e the expanding lamination E[E of ¢ is orientable.

1.2. Splittings and the BNS-invariant. To frame our results relating Alexander and Mc-
Mullen polynomials, we start with a corollary characterizing when geometric and homological
stretch factors agree for monodromies of free-by-cyclic groups.

Any group endomorphism ¢: B — B determines a generalized HNN extension

By = (B,t |t 'bt = $(b) for all be B)

that comes equipped with a projection B#, — Z sending B to 0 and ¢ to 1; we call this
element of Hom (B, Z) = H'(B#y;Z) the dual cohomology class.

In the case that I' is finitely generated, there is an open, R —invariant subset BNS(T")
of H'(I'; R)\{0} that governs finite generation of kernels of such maps I' — Z. This Bieri-
Neumann—Strebel invariant [BNS87] is defined to contain precisely those rational classes
u: I' —> Q for which ker(u) is finitely generated over the u—positive monoid, meaning there
is an element ¢ € T' with u(¢) > 0 so that ker(u) is generated by the positive conjugates
{t"Xt~"™ | n = 0} of some finite subset X < ker(u). Unpacking this, one finds that u: I' — Z
lies in BNS(I") if and only if it is the dual class of an HNN splitting I' =~ Bx, over a finitely
generated base group B [BNS87, Proposition 4.3]. We will say that any such splitting I' =~ B
(with B finitely generated) is dual to u and call ¢ a monodromy associated to wu.
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Now suppose that I' is free-by-cyclic. For any splitting I' = B, dual to a class u € BNS(I'),
the group B is free. Although the monodromy ¢ is not uniquely determined by w, its geometric
and homological stretch factors are determined by u and these are denoted by A(u) and p(u),
respectively. See §6 for details.

Theorem C. Consider the free-by-cyclic group I' = Fx,, where ¢ is a fully irreducible
automorphism, and let C be the component of BNS(I') containing the dual class of Fx,. Then
the set of all primitive integral u € C such that A(u) = p(u) is either (1) the entire cone, (2)
exactly one residue class mod 2, or (3) empty.

When ¢ is additionally atoroidal, it is known that every monodromy associated to any
primitive integral class u € C is also fully irreducible [DKL17a, Mut21]; hence in light of
Theorem A, the classes with A\(u) = p(u) described in Theorem C are precisely those whose
monodromy endomorphisms are orientable; see Remark 6.3.

1.3. Relating the Alexander and McMullen polynomials. The trichotomy in Theo-
rem C is obtained by explicitly relating two polynomial invariants attached to I' = Fx,. The
first of these, the Alexander polynomial, was originally defined by Alexander in 1928 [Ale28]
as a knot invariant, and its definition was later extended by McMullen to all finitely generated
groups [McMO2]. It is an invariant of the group I' and is formally defined, up to a unit, as
an element Ar of the ring Z[H], where H = H;(I';Z)/torsion; see §4 or the next subsection
§1.4 below for details.

The second of these, the McMullen polynomial, was defined by Dowdall-Kapovich—Leininger
in [DKL17b] as an analog of McMullen’s Teichmiiller polynomial from [McMO00]. It is defined
in terms of an irreducible train track representative f: G — G of a fully irreducible auto-
morphism ¢ of m1(G) = F and an associated folded mapping torus X' that comes equipped
with a natural semiflow 97 and is homotopy equivalent to the usual mapping torus of f. The
McMullen polynomial m € Z[H| is an algebraic invariant of this dynamical system (X1, 7).
The key features of m are that it picks out the component C of the BNS-invariant containing
the dual class of the splitting I' = Fx, and calculates the geometric stretch factors A(u) of
the classes u € C, as in Theorem C. We refer the reader to [DKL17b] and §5 for more details.

To connect these, in §5.4 we introduce an additional vertex polynomial

p=[]0 - =) ez,

]

of the dynamical system (XT,¢"), where {2} are the elements in H = H;(X';Z)/torsion
represented by the finitely many closed orbits of ¢! through the vertices of XT. Our next
theorem shows that these three polynomials are related in a precise way that moreover reflects
the positive, negative, or non-orientability of f:

Theorem D. Let f: G — G be an irreducible train track map representing a fully irreducible
automorphism ¢ of m1(G) = F, with associated free-by-cyclic group T' and folded mapping
torus (XT,¢7). If rank(H{(X,R)) = 2, then up to a unit:

(1) if f is pos-orientable, then m = Ar - p, and

(2) if f is neg-orientable, then there is an orientation involution ¢: Z[H| — Z[H] for

which t(m) = Ar - p.

(3) in general, m = Ar - p mod 2.
If instead rank(H; (T'; R)) = 1, then each equations holds after multiplying m by (z —1), where
z generates H1(I',7Z).
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Moreover, Theorem D applies not only to the original monodromy, but also to any mon-
odromy dual to a primitive integral class in the corresponding component C of the BNS-
invariant, so that its 3 conclusions pair with the trichotomy of Theorem C. Indeed, the
involution ¢ in the neg-orientable case comes from an orientation class that depends only on
C (Proposition 6.7). This more general perspective is taken in Theorems 6.4, 6.8 and 6.9,
which, respectively, give more detailed treatments of the conclusions (1), (2) and (3) and,
collectively, prove Theorem D.

1.4. Computing the Alexander polynomial. Although the Alexander polynomial can
always be efficiently computed from a group presentation via Fox Calculus (see [But07] or
[Hirl1] for relevant examples), our proof of Theorem D requires a computation of Ar that
is compatible with the definition of m. Our final result provides this by giving an explicit
‘determinant formula’ for the Alexander polynomial that is inspired by McMullen’s formula
for the Teichmiiller polynomial.

To explain, recall that any graph map f: G — G determines a mapping torus

G x [0,1]
(z,1) ~ (f(2),0)’
whose fundamental group I' splits as a generalized HNN extension, which we write as [' =~
m1(G)*¢. Here, the associated dual class of the splitting is obtained by pulling back the

fundamental class of the circle under the associated fibration X — S'.

Our determinant formula computes the Alexander polynomial Ap of T' = 71 (X) directly
in terms of the graph map f. Let X — X be the universal free abelian cover of X with
deck group H. Fix a connected component Go of the full preimage of G in X and fix a lift
f Go — Go of f. The deck group of Go — (@ is denoted by K and is naturally identified
with the image of the inclusion induced homomorphism 71(G) — 71(X) — H. Moreover,

the choice of lift f: Gy — Gy determines (see §4.4):
e a splitting H = K@ <z> where z translates against the lifted semiflow,

X:Xfiz

e 7Z|[K]-valued matrices M and P representing the action of f on the free Z[ K|-modules
of 1-chains and O-chains of GO, respectively.

Theorem E (Determinant formula for Ar). Let f: G — G be a graph map whose mapping
torus X has fundamental group T'. Then up to a unit in Z[H],

_ det(z] — M)
det(z] — P)
where r =1 € Z[H] if rank(H1(X,R)) = 2 and r = (z — 1) if rank(H;(X,R)) =1

)
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2. ORIENTABLE GRAPH MAPS AND STRETCH FACTORS

Let G be a finite graph with vertex set V = V(G) and edge set E = E(G). A graph map
f: G — @ is a continuous map sending vertices to vertices and edges to nondegenerate edge
paths. For careful definitions of standard notions like ‘graph’ or ‘edge path,” we refer the
reader to [DKL17b, §2].
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An orientation on G is a choice of a positive orientation for each edge of G. With such a
choice, we say an edge path ~y is positive if it crosses each edge with its positive orientation,
and is negative if it crosses each edge with its negative orientation. In general, if v: [0,1] — G
is an edge path, then 7 will denote the same path with the reverse orientation.

Definition 2.1 (Orientability). A graph map is positively orientable (resp. negatively ori-
entable) if there exists an orientation on G such that every positive edge is mapped to a
positive (resp. negative) edge path. We abbreviate these as pos/neg or t+1-orientable. The
map is orientable if it is either pos-orientable or neg-orientable.

Note that if f is neg-orientable, then f? is pos-orientable. Since a consistently oriented
edge path in G cannot backtrack, we observe that an orientable map is necessarily a train
track map (see §3.3). See §7 for examples.

Choosing an orientation on each edge gives a basis for the vector space C1(G;R) of sim-
plicial 1-chains. Under this identification C1(G;R) = R¥, the induced map on simplicial
1-chains is expressed as a matrix M: RF — RF with integer coefficients. The real first ho-
mology of G is the subspace H;(G;R) < RF of 1-cycles, and we denote the induced map by
fx: Hi(G;R) — H1(G;R). The homological stretch factor of f is defined to be the spectral
radius py of fi. Note that this also equals the spectral radius of M; indeed the eigenvalues
of M that are not eigenvalues of f, are eigenvalues of the action of f on Cy(G;R), which are
roots of unity.

For an arbitrary graph map f: G — G, we will denote the transition matrix of f by A,
whose (7, j) entry is the number of times the edge path f(e;) crosses the edge e; with either
orientation. The (geometric) stretch factor Ay of f is defined to be the spectral radius of A.
Equivalently, since A is non-negative, A is the eigenvalue of A of largest modulus. Since the
absolute values of the entries of M are bounded by the entries of A, we have p; < Ay by
Gelfand’s formula for the spectral radius: for any square matrix A, the spectral radius of A
is equal to lim, o | A"|Y/". The following fact relating M and A follows from the definitions.

Fact 2.2. If f: G — G is +1-orientable, then M = +A after a choice of orientation.

Recall that a non-negative square matrix A is irreducible if for each pair of indices (i, j)
there exists k& > 1 such that the (i,5) entry of A is nonzero. The matrix is moreover
primitive if there exists k = 1 such that AF is a positive matrix. Note that A is primitive if
and only if A* is irreducible for all k > 1. We extend this terminology by saying a graph map
f: G — G is irreducible / primitive if its transition matrix is irreducible/primitive. Relatedly,
[ is exzpanding if for each edge e of G the combinatorial lengths of the edge paths f*(e) tend
to infinity as k — o0. By the Perron-Frobenius theorem (see [Gan59)), if f is a primitive
graph map, then Ay > 1.

The main goal of this section is to prove the following theorem from the introduction:

Theorem A. Suppose that f: G — G is a primitive graph map. Then Ay = py if and
only if f is orientable. Moreover, Xy (resp. —Ay) is an eigenvalue of fy if and only if f is
pos-orientable (resp. neg-orientable).

2.1. The oriented edge-double. Motivated by the use of double branched covers in [BB07,
Lemma 4.3], we define the oriented edge double G of G as follows: Let p: G > Ghbea bijection
on vertices and 2-to-1 over edges such that for each oriented edge e of G, there are oriented
edges e and e_ of G labeled so that p(e;) = e and p(e_) = &. There is a natural continuous
involution o: G — G defined by e, — e_ and e_ — €,. Notice that by construction o is
neg-orientable and satisfies p = poo.
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The key feature of G is that every edge path in G has a unique positive lift to G. That is,
for any edge path ~: [0,1] — G there is a unique positive edge path 7: [0,1] — G such that
~ = po#4. Similarly v has a unique negative lift, which is simply the reverse of the unique
positive lift of 7 and is given by o o4. In particular, e, and e_ are, respectively, the positive
lifts of e and e. R R

Since o is an involution, the eigenvalues of o, : H1(G;R) — H;(G;R) are +1 and we write
FEy, E_4 for the corresponding eigenspaces.

Lemma 2.3. We have Hl(@;]R) = FE1 ® E_y. Furthermore, py: Hl(@;R) — Hi(G;R)
restricts to an isomorphism Ey = H\(G) and has kernel ker(p,) = E_1 =~ C1(G;R).

Proof. For any class ¢ € H1(G), we clearly have ¢ + 0, (c) € By and ¢ — 0 (c) € E_;. Since
c+ox(c) c—o4(c)
2 2
the direct sum splitting Hy(G) = E1 @ E_; follows. The containment E_; < ker(p) follows
immediately from p = p oo, since if ¢ € E_; then p.(c) = p«(0x(c)) = px(—c) = —p«(c).
There are natural injective maps s+ : C1(G;R) — C1(G;R) on 1-chains defined on each
basis edge e € C1(G;R) by sy (e) = (e Fe_) = 3(e; £ox(ey)). The image of s, is contained
in the fixed set of oy, that is 04 0s; = s4. Since s sends cycles to cycles, it therefore restricts
to a map s;: Hi(G;R) — F; < Hy(G;R). Further, we see that for any ¢ € C1(G;R)
we have py(sy(c)) = ¢. Similarly the image of s_ is clearly contained in E_; < Hy(G).
Now any ¢+ € Ei; necessarily has the form ¢1 = Y _~ac(e;r Feo) = > cn2aes+(e). In
particular s_ is surjective onto E_1, giving an isomorphism Ci(G;R) — E_;. We also see
that p.(cy) = D .c 2ace and hence sy (p«(C4)) = Y 2aes4+(e) = ¢4. It follows that p,
restricts to an isomorphism on E; — H;(G;R) and that additionally ker(p,) < E_;. O

Any graph map f: G — G has a unique pos-orientable lift f G — é, preserving the
specified orientation of C:‘, satisfying po f = fop. This sends e, to the unique positive lift of
f(e), and sends e_ to the unique positive lift of f(€). More generally, for any positive edge
path v in G we have

foy=1Ffopor.
We denote the transition matrix of f by A and note that A is also the induced map on
simplicial 1-chains (see Fact 2.2). Notice that for any positive edge e of G, the paths o(f(e))

and f(o(e)) are both negative lifts of f(p(e)). As such lifts are unique, we conclude that f
and o commute:

fo o =00 ']/l.\
Consequently, J?* necessarily preserves the splitting H; (é) = F1 ® FE_1 from Lemma 2.3; in
fact f. = fi« ® A with the transition matrix A describing the action on C;(G;R) = E_;.

Lemma 2.4. Let f: G — G be a primitive graph map and let f: G — G be its orientation
lift. Then )‘f = Ay and f is primitive if and only if f is not orientable.

Proof. As noted previously, for any square matrix B with spectral radius p, we have that
p = lim, o |B"||Y/" where || - || is any matrix norm. Let us take | - | to be the maximum
absolute column sum (i.e. the ¢! operator norm). Now observe that the corresponding column
sums of (all powers of) A and A are equal. Indeed, this follows from the definitions of ﬁ, A
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and the fact that for each edge e of G, po f”(e+) = f"(e) and po f”(e_) = f"(€). Therefore
|A™| = |A"|| for all > 1 and we conclude Ap=Ag.

A~

Let D(A) and D(A) be the directed graphs such that their adjacency matrices are A
and A, respectively. The vertices of D(A) and D(A) are labeled by the edges of G and G,

~

respectively. There is a natural simplicial map D(A) — D(A) that is 2-to-1 over vertices
(induced by G — G) and also 2-to-1 over edges. It is an isomorphism on the link of each
vertex, so it is a (possibly disconnected) 2-fold covering. It follows that f is orientable if and

~

only if D(A) is disconnected, and each component of D(ﬁ) gives an f-invariant orientation
of G.
Since A is irreducible, D(A) is strongly connected, i.e. for any two vertices, there is a

~

directed path from one to the other. We now understand the connectivity of D(A). By path

~

lifting, any directed path from e to e’ in D(A), lifts to a directed path in D(A) from ey to
either €/, or ¢/ (and similarly for e_). Moreover, if there is a directed path from e, to €,
then there is a corresponding directed path from e_ to e’;. This can be obtained by applying

~

the deck transformation of D(A) — D(A). Hence, there are directed loops starting at each
vertex of D(le\), and if there is a directed path from v to w then there is a directed path form
w to v. For example, suppose that there is a directed path from e; to €/,, but no directed
path from €/, to e;. Since D(A) is strongly connected, there is a directed path from €’ to
e and hence there must be a directed path from e/, to e_. This implies there is a directed
path from e’ to ey. Also there is a directed path from e_ to ¢’_. Thus, we have constructed

a directed path from €/, to e_ to €’ to ey, giving a contradiction.

~

The above discussion implies that D(A) is either strongly connected or it has two com-
ponents each of which is isomorphic to D(A). In the later case we are done since f is
orientable. So we henceforth assume that D(/T) is strongly connected, or equivalently that
A is irreducible.

Since A is primitive the ged of the lengths of directed cycles of D(A) is 1 [BR91, Theorem

~ ~

3.4.4]. Since D(A) — D(A) is a 2-fold covering, the gcd of lengths of directed cycles of D(A)
is at most 2. If it is 1, then A is also primitive and we are done. Otherwise the gcd is 2
so that A? is reducible and D(}P) has two connected components. Therefore, we must have
that f? is pos-orientable by the argument above.

We will now show that f is in fact neg-orientable. Notice that if A is not primitive, then
every odd length cycle of D(A) fails to lift to D(A). This means the edge path f¥(e) can
map over e preserving orientation only when k is even. Therefore D(fl) is bipartite with
each directed edge going from one recurrent component of D(/P) to the other. Each of these
recurrent components orients the graph map f? and with this orientation of G, f maps each
edge over a negatively oriented edge path. Hence, f is neg-orientable. ([l

2.2. Proof of Theorem A. We now give the proof of Theorem A using the oriented edge-
double construction.

Proof of Theorem A. Let f: G — G be a primitive graph map and first suppose f is ori-
entable. Recall A is the primitive transition matrix of f with spectral radius A := Ay > 1
and so there is an eigenvector v € R¥ such that Av = \v. Fact 2.2 then implies that v
represents a 1-chain (using our identification C1(G;R) = R¥) such that Mv = +\v, where
the negative sign occurs exactly in the neg-orientable case. In fact, v € H1(G;R) < C1(G;R)
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since otherwise 0: C1(G;R) — Cy(G;R) maps v to an eigenvector whose eigenvalue has ab-
solute value A > 1, contradicting that f acts on Cy(G;R) as a permutation. This shows that
f«(v) = £Av. Since it is always the case that p; < Ay, we conclude that Ay = p; when f is
orientable. A R

Next suppose that f is not orientable. Then by Lemma 2.4, f: G — G is orientable and
has primitive transition matrix A. Hence by the first paragraph above (and Lemma 2.4) we
have A := Ay = A ;= Pp By the Perron-Frobenius theorem, A is a simple eigenvalue of

//1\, i.e. it has algebraic multiplicity 1, and every other eigenvalue y of A: Hl(é) — H 1(@)
has |pu| < A. Moreover, there is a A-eigenvector 9 € Hj(G) that lies in the positive cone of
Cl(@) spanned by the 1-chains ey and e_ for all e € EG. We claim that v € E_q, where
recall Hl(G) E1 ® E_;. Indeed, since o commutes with f, o (v) is also a A—eigenvector.
Since this eigenspace is one dimensional 04(0) = 0. Now o, sends the positive cone to the
negative cone, therefore it must be that v € F_; = ker(py) as claimed. From this, we see that
any eigenvector of A in Ej corresponding to an eigenvalue p has || < A\. By Lemma 2.3,
px: E1 — Hi(G) is a linear isomorphism that conjugates the action of j"; on F; to the action
of fi on Hi(G). We conclude that each eigenvalue i of fi has |u| < A. Hence, py < Ay and
the proof is complete.

The moreover statement now follows from Fact 2.2, since if f is +1-orientable then M =
+A and so + Ay is evidently a zero of the polynomial det(ul — f;) in the variable wu. O

3. ORIENTABILITY FOR FREE GROUP ENDOMORPHISMS

In this section we introduce a notion of orientability for fully irreducible free group endo-
morphisms and characterize this property in terms of stretch factors, train track representa-
tives, and expanding laminations.

3.1. Stretch factors for endomorphisms. Let F be a finite-rank free group and ¢: F — F
any endomorphism. The (geometric) stretch factor of ¢ is defined as

A = sup limint 3/[n(w)].
weF =X

where the supremum is over all elements of F and || is the length of the conjugacy class
with respect to some (or any) fixed generating set of F. The homological stretch factor of ¢
is defined as the spectral radius for the action of ¢, on H; (IF R) and is calculated as

pp = Sup hmmf A |ler (v

veH (F,R) "™
where || denotes some (or any) fixed norm on the vector space Hi(F;R).
Since the conjugacy length on F and norm on Hi (F; R) can be chosen such that |w®”|| < [w|

for any element w € F (Where w® denotes the image in the abelianization Hy(IF;Z) of F), it
is immediate that p, < A, for any endomorphism.

abH

3.2. Dual splittings. Recall from §1.2 that any endomorphism ¢: B — B of a group de-
termines a generalized HNN extension B#4 along with a dual class given by the projection
Bxgy — Z. We say that two such HNN extensions are equivalent if there is an isomorphism
By, = DBa#4, that respects the projections to Z. Note that endomorphisms of distinct
groups B1, By may determine equivalent HNN extensions and that, in principle, such endo-
morphisms ¢1, ¢o may have distinct stretch factors. However, in the case of finite-rank free
groups, we have the following relationships between equivalent splittings:
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Lemma 3.1. Let ¢: F — F be an endomorphism of a finite-rank free group.

e There exists an injective endomorphism ¢: B — B of a free group with rank(B) <
rank(IF) such that Fx, and Bxg are equivalent.

o If Fx, is equivalent to Bxy for some endomorphism ¢: B — B of a finite-rank free
group, then A, = Ay and p, = py. In fact, the characteristic polynomials of ¢ and ¢
acting on homology agree up to multiplication by t*.

Proof. The first facts are explained in §2.4 of [DKL17b]. Specifically, Corollary 2.8 of that
paper provides an injective endomorphism ¢: B — B as in the first item and Proposition
2.9 implies the invariance of geometric stretch factors in the second. The fact that p, = pg
with equal characteristic polynomials up to a factor is a consequence of our determinant
formula for computing the Alexander polynomial, which is an invariant of the group Fx,; see
Corollary 4.9 and Remark 4.10 below. O

3.3. Train track representatives. A topological representative of an endomorphism ¢: F —
F is a graph map f: G — G for which there is a choice of basepoint v € G, path 3 from f(v)
to v, and isomorphism F = 7 (G, v) that conjugates ¢ to the endomorphism v +— 3f(y)p3 of
m1(G,v). It follows easily from the definitions that if f: G — G represents ¢, then A, < A;
and p, = py.

In part to obtain more precise control on geometric stretch factors, Bestvina and Handel
[BH92| introduced the notion of a train track map, which is a graph map f: G — G such
that for every edge e and power k > 1 the edge path f*(e) does not backtrack. The following
connection to geometric stretch factors is well-known and is originally due to Bestvina—Handel
in the case of automorphisms.

Lemma 3.2 ([DKL17b, Proposition 2.2]). If f is an irreducible train track representative of
a free group endomorphism @, then A\, = Af.

3.4. Full irreducibility. Recall that an endomorphism ¢: F — F of a free group is fully
irreducible if for any proper nontrivial free factor A < F, ¢"(A) is not conjugate into A for
any n > 1. Note that fully irreducible endomorphisms are necessarily injective (see, e.g.,
[Mut20, Lemma 2.2]).

In light of Theorem A, it will be important to know that the train track maps we consider
are automatically primitive. The following lemma is essentially well-known, at least in the
automorphism case, but we provide a proof for completeness and because it is not always
stated correctly in the literature.

Lemma 3.3. Suppose an endomorphism ¢: F — F is either fully irreducible or represented
by a pseudo-Anosov homeomorphism. Then ¢ admits a train track representative f: G — G.
Moreover, the following are equivalent for any such representative:

(1) f has no invariant forests, (3) f is expanding, and
(2) f is primitive, (4) f is irreducible.

Note that any train track representative satisfies these conditions after collapsing the in-
variant forest. In the sequel, we usually refer to such train tracks as irreducible.

Proof. 1t is a seminal result of Bestvina and Handel that automorphisms which are fully irre-
ducible [BH92] or represented by a pseudo-Anosov [BH95, Theorem 4.1.3] admit a train track
representative. The existence for non-surjective endomorphisms was proven by Reynolds
[Reyll] and independently Mutanguha [Mut20]. It is clear that (2) = (3) and that (2)
= (4) = (1). Tosee (1) = (2), suppose f does not have an invariant forest and let A
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be its transition matrix. To show that A is primitive, it suffices to show that A" is irreducible
for each n > 1. Otherwise, there is n > 1 and edges e, e’ of G such that (f")’(e) does not
cross €’ for any j > 1. Since there is no invariant forest, the lengths of the nonbacktracking
paths (f™)’(e) go to infinity in j. These iterates then fill a subgraph G’ of G which is not a
forest and for which f"(G’) ¢ G’. Since G’ does not contain €', it represents a proper free
factor which is an immediate contradiction when ¢ is fully irreducible. If instead ¢ is induced
by a pseudo-Anosov homeomorphism h: S — S of a punctured surface with 71(S) =~ F, then
G’ must be a rank 1 subgraph whose embedded core « represents a peripheral curve. Indeed,
these peripheral curves are the only free factors that are invariant under a pseudo-Anosov.
By construction, « is legal and hence its length grows under iteration. This is a contradiction
to the fact that h permutes the peripheral curves of S.

The final implication (3) = (4) is similar: For any edge e of G the union of images
f7(e) forms an f-invariant subgraph G’ = G. Since f is an expanding train track map, the
nonbacktracking edge paths f7(e) become arbitrarily long. Hence G’ cannot be a forest, since
that would force these long immersed paths f7(e) to embed in the finite graph G’. If G’ is
a proper subgraph of (G, then we obtain a contradiction by the argument above. This shows
that f is irreducible. O

3.5. Orientable laminations. Here we briefly review the theory of expanding laminations
and attracting trees for free group endomorphisms. This allows for an intrinsically motivated
definition of orientability and completes the analogy with the pseudo-Anosov theory.

In [BFH97, Section 1], Bestvina—Feighn—Handel define a canonical expanding lamination
E; for every fully irreducible automorphism ¢ of F. One may check that the automorphism
hypothesis is only used in their argument to ensure the existence of an irreducible train
track representative f: G — G. Since endomorphisms also admit such representatives
(Lemma 3.3), the canonical construction of £ from [BFH97] in fact applies to any fully
irreducible endomorphism ¢: F — F. The lamination is realized as a F-invariant collection
of properly embedded bi-infinite lines (called leaves) in the universal cover G that is invariant
under the lifted train track map f~: G—G.

The fully irreducible endomorphism ¢ also comes equipped with a canonical attracting R—
tree TJ equipped with an isometric F-action, which is the unique attracting fixed point for the
action ¢ on the closure of Culler—Vogtmann outer space; see [BFH97, LL03, Rey11, Mut20].
The tree may be obtained from the train track representative f via an explicit construction
that provides an F—equivariant, 1-Lipschitz quotient map F': G — Tsj that restricts to an
isometry on each leaf of LF. Further, ¢ is represented by \,~homothety f*: T; — T of

this tree such that F o f = fT o F; see [HM11, §2.5].

Definition 3.4. The expanding lamination E:g of a fully irreducible endomorphism ¢ is
orientable if its leaves may each be F—equivariantly oriented so that their images in the
attracting tree TJ have compatible orientations whenever they overlap.

Remark 3.5. This generalizes the notion of transverse orientability for the contracting mea-
sured foliation F_ of a pseudo-Anosov surface homeomorphism . Indeed, one may lift to
the universal cover and collapse the leaves of F_ to obtain an R—tree T J in which each leaf of
.771 maps to a properly embedded bi-infinite line. This collection of lines in T’ J is orientable

in the sense of Definition 3.4 if and only if the contracting foliation F_ of v is transversely
orientable on the surface.
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3.6. Characterizing orientability. We are now ready to establish Theorem B by proving
that the various manifestations of orientability all agree for fully irreducible endomorphisms.

Theorem 3.6. For a fully irreducible free group endomorphism p: F — F, the following
conditions are equivalent:
(1) Ay = pp with +X, (resp. —A,) an eigenvalue of ¢y acting on Hy(F),
(2) ¢ can be represented by a positively (resp. negatively) orientable graph map,
(3) every irreducible train track representative of ¢ is positively (resp. negatively) ori-
entable,
(4) the expanding lamination E; of v is orientable with the action of ¢ on the attracting
tree Tg preserving (resp. reversing) the orientations on the leaves of ﬁ;.

Accordingly, we say a fully irreducible endomorphism is (positively/negatively) orientable
if it satisfies the equivalent conditions of Theorem 3.6. To prove the characterization in terms
of laminations, we will use the following lemma:

Lemma 3.7. For any arc J in TJ, there is a finite chain of leaves ¢; of the expanding
lamination [,; such that J < £1 U -+ U £, with each {; N ;11 a nondegenerate arc (i.e it

contains at least two points).

Proof. In the case that ¢ is an automorphism, it is well-known that the action F ~ TJ is
indecomposable [CH12, Theorem 2.1]. Following Guirardel [Gui08], this means that for any
other nondegenerate arc I < TJ, there are g1,...gx € Fj, such that J c g1/ u ... U g and
gil N gi+11 is nondegenerate. Hence choosing I to be any arc in a leaf of /J;[ completes the
proof.

When ¢ is non-surjective, there is an irreducible train track f: G — G that is an immersion
with connected Whitehead graphs [Mut20]. Thus by construction the attracting tree TJ is
simply the universal cover G with an appropriate metric. Recall that the Whitehead graph of
a vertex of G records which turns are taken by leaves of the lamination. Since these graphs are
connected, for any vertex of G we may choose a chain of leaves /1, ..., ¢ with nondegenerate
overlaps ¢; n £;11 that connect any pair of directions at that vertex. Concatenating such
chains for the finitely many vertices along the arc J produces a chain covering J as in the
lemma. ]

This has two important consequences when E; is orientable: First, the orientation on any
leaf determines the orientation on all other leaves; thus the orientation is unique up to a global
reversal, and the action of f* on T ;“ either preserves or reverses the orientation. Second,
any oriented arc o in T} can be decomposed as a concatenation of subarcs of leaves of E:g.
Since leaves are consistently oriented, each subarc inherits a signed length from the metric
on T}, and we may add to get a signed length § dL? for a. This assignment a — §_dL¥ is
F-equivariant and satisfies { £+ (a) dﬁsj =+ Sa d£$, where the sign is positive or negative
depending on whether the A,~homothety f* preserves or reverses the orientation on E;f.

Lemma 3.8. If L = E;g is orientable and fT preserves (resp. reverses) its orientation and
fizes the point x € TJ, then the homomorphism £: F — R determined by

g f dL forgeF
[,92]

defines a A, -eigenvector (resp. —A,-eigenvector) of ¢* in HY(F;R).
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Proof. First note that by considering the corresponding tripod in T; , we see that for any
w,y,z e TS,

f al = J ac + f L.
[w,z] [w,y] [y:2]

Using F-equivariance, this translates into the fact that for any g,h € F, £(gh) = £(g) + £(h)
by setting w = z, y = gz, z = ghx. To complete the proof, observe that

§(pl9) = dL = £X, - £(9),

| ac -
[z, f*(g92)] [+ ([z.g7])

as required. ]

Proof of Theorem 3.6. By Lemma 3.3 every irreducible train track representative of ¢ is
primitive. Hence, the equivalence of (1), (2), and (3) follows immediately from Theorem A.
Since every subarc of a leaf of E:g in G is contained in f”(e) for some edge of CNJ, it is clear
that f being orientable allows one to consistently and equivariantly orient the leaves of 6;5
in T.7; thus (3) implies (4). Finally, Lemma 3.8 shows that (4) implies (1). O

4. COMPUTING THE ALEXANDER POLYNOMIAL

In this section, we prove Theorem E which gives a determinant formula for the Alexander
polynomial of the mapping torus of a graph map. See Example 7.3 for an explicit computa-
tion.

4.1. Fitting ideals and invariants. Let R be a unique factorization domain (UFD). Through-
out, we will use the notation p = ¢ to mean that two elements p,q of R are equal up to
multiplication by a unit. Let IV be a finitely generated R-module. If N has a presentation,

R M, gn LN 0,

then the ith Fitting ideal (also called the ith determinantal ideal) Fit;(N) < R is the ideal
generated by the (n — i) x (n — i) minors of M. It is a fact that these ideals do not depend
on the choice of presentation.

Recall that since R is a UFD the greatest common divisor (gcd) of elements of R is well-
defined up to a unit in R. For an R-module N as above, the gcd of the elements of Fit;(N),
ged(Fit;(N)), is called the ith Fitting invariant of N.

Let H be a finitely generated free abelian group. Then the group ring Z[H] is a UFD
and its augmentation ideal A is defined to be the kernel of the augmentation homomorphism
Z|H] — Z defined by extending the assignment h — 1 for h € H.

Finally, note that any P € Z[H] can be written in the form P = ), _,; aph, where each
ap € Z and ap, = 0 for all but finitely many h. Such a P € Z[H] is said to be symmetric if, up
to a unit in Z[H], it is equal to >}, _;; anh ™. In general the set supp(P) = {h € H : aj, # 0}
is called the support of P. The specialization of P at a class u € Hom(H,Z) is the the
single-variable Laurent polynomial

PU(t) = ) apt"™).
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4.2. Alexander polynomial generalities. Let X be a connected cell complex with I' =
7m1(X) and let H = H;(X)/torsion.

Let X be the universal free abelian cover of X , i.e. the cover corresponding to the kernel
of I — H whose deck group is H. Fix z € X(© and let ¥ be its full preimage in Xab,
The homology group H; ()N( @ %) naturally has the structure of a Z[H]-module and is called
the Alexander module. Its first Fitting invariant is called the Alexander polynomial and is
denoted by Ax. In other words,

Ax = ged Fity (H (X%, 7)),
which is an element of Z[H], defined up to a unit +h € Z[H]. We note that if 7" is a maximal
tree in X and 7 is its full preimage in X, then we see that the Z[H]-modules Hy (X, )
and H; ()Z' ab T) are isomorphic by considering the long exact sequence associated to the triple
(X T, 7%).
In fact, the Alexander polynomial of X depends only on its fundamental group (see

[McMO02, Section 2]), and so in what follows we also write Ar to denote the Alexander
polynomial Ax, where I' = m1 (X).

4.3. Mapping tori and homology. Let f: G — G be a graph map on a finite graph G. Fix
an arbitrary orientation on each edge of G and let V= VG and E = EG respectively denote
the sets of vertices and (oriented) edges of G. Let X := Xy be the mapping torus with the
usual cell structure, so that m1(X) = 71(G)#* is the associated generalized HNN-extension.

In a bit more detail: Give G x [0, 1] the cell structure induced from the product cell
structure so that the oriented 2-cells induce the given orientation on the edges of G x {0}
and the opposite orientation on the edges of G x {1}. Then subdivide G x {1} so that
f: G x {1} - G x {0} maps open cells homeomorphically onto their images. The mapping
torus X is then the quotient

X =G x[0,1]/(z,1) ~ (f(),0),
with its induced cellular structure. See Figure 1.

f(e)

€y Cw

>
v e

FIGURE 1. A 2-cell of X; with indicated orientations on edges.

The mapping torus comes with a natural map X — S'. In the cell structure we view
edges of G as “horizontal” and the other edges as “vertical,” oriented so that each maps to
a positively oriented based loop in S! representing the generator 1 € Z. Let £ denote the
set of (oriented) edges in X. Each vertex v € V is the tail (i.e., initial vertex) of a unique
vertical edge e, in X. This gives a bijection v — e, which we use to identify V with the
set of vertical edges of X. When we wish to be explicit, we denote this bijection by wv.
Similarly each edge e € E gives rise to an oriented 2—cell o, of X whose boundary crosses e
positively and the image path f(e) negatively. In this way we see that the 1—cells of X are
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in bijective correspondence with £ 1 V', and the 2—cells with the edges E of G. With these
identifications, the Z—modules of O—chains in X are Cyp(X) = Co(G) = Z[V], the 1-chains
are C1(X) = Z[€] = Z|E 1 V], and the 2—chains are Cy(X) = Z[FE].

The map f: G — G restricts to a map V — V which we express as an integer V x V
matrix P whose (v,w) entry equals 1 if f(w) = v and is zero otherwise. That is, the map
that f induces on 0-—chains Cy(G) = Z[V] = Z" is simply the linear map Z" — Z" given by
x ~— Pz. Similarly, the map that f induces on C1(G) = Z* is expressed as an integer E x E
matrix M whose (e, €’) entry is the number of times the edge path f(e’) crosses e, counted
with signs. The boundary maps on chains may then be written as

52 a1

Cy(X) C1(X) Co(X)
~ TEo2 > ~
ZJ/E (Wv%) , 7E i’_) v (51\E 61|v) ZJVV

That is, o1|g: Z¥ — 7V is the restriction of d;, viewed as an F x V matrix, and similarly for

01|y Likewise 0o is the E x E matrix describing the projection Z¥ D2, 7E o7V 15 7E.
and similarly for myds. Note that the boundary of a vertical edge e, corresponding to its
tail vertex v e V, is f(v) —v. Hence 01|y = P — I. Similarly, if an edge e € E < C1(X) has
image f(e) = aje; + -+ - + ager € C1(X), then the corresponding 2—cell has boundary

O2(0e) = e—aje; — -+ —ager + v o di(e).
That is to say we have mpdy = I — M, and 7wy 0y = 01| .

4.4. The universal free abelian cover of X. To calculate the Alexander polynomial for
71(X), let H = Hy(X)/torsion and as usual let X% — X be the universal free abelian cover
with deck group H. In what follows, we abbreviate Xab by X. Again, we view lifts of edges
of GG as being horizontal in X , and lifts of the oriented vertical edges in X as being oriented
upward.

Let G = X be the full preimage of (G, and choose some connected component CNT’O. Then
Go — G is the free abelian cover with deck group K, where K is the image of the homo-
morphism 71 (G) — m1(X) — H. Alternatively, K can be intrinsically characterized as the
quotient of H;(G) isomorphic to Hom(H!(G)7, Z) by duality. Here H'(G)/ is the cohomology
of G that is fixed by f (see [DKL17b, Section 8]).

The graph map f: G — G lifts to G and we fix such a lift

f:Go— Go

once and for all. This lift determines a splitting H = K @®{z) where z is the deck transforma-
tion chosen so that for any 7 € Go, f~’ (Z) is the first point in G encountered by the lift of the
arc x x [0,1] starting at zZ. Here x is the image of Z under the covering X — X. Note that
the splitting H = K @ {(z) depends on our choice of f and z has been chosen to map to —1
under 7 (X) — m1(S!). Hence, z translates downward as a deck transformation of X. For
notational convenience, we set Z = 2! € H. For each i € Z let CNJZ = Ziéo; this decomposes
G into its connected components G= Ll CNJZ-, with C:’Z-H situated above éz

For each cell in G, we fix arbitrary lifts in X as follows. For each v € V we fix a lift ¥ € Gy
and we let €, denote the lift of e, with tail v. For each edge e € E we fix, once and for all, a
lift & € Gy which may or may not be based at the chosen lifts of vertices of G. We then let
0. be the lift of the 2—cell o, whose boundary crosses € positively and Zf(g) < G1 negatively.
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Note that this chooses a preferred lift to X for each edge of £ which we call the base lifts.
Since H acts as deck transformations on X , the Z-modules of chains in X are naturally
free Z[H]-modules. Using our chosen base lifts as basis elements thus gives Z[H ]-module
isomorphisms

Co(X) = Z[H])", Ci(X) =Z[H]"®Z[H]", and Co(X)=Z[H]".
The action of K on Gg by deck transformations similarly gives C'y (Go) = Z[ 1E and Cy(Go) =~

Z[K]V. With these identifications, the maps that f induces on C1(Go) and Co(Gy) are

expressed by Z[K|-matrices M and P that respectively specialize to M and P under the
ring morphism Z[K| — Z induced by the trivial group homomorphism K — {1}.

4.5. The chain complex of X. We now examine the boundary maps 51 for the cellular
homology of X. Firstly, let us write B = 01 |zz)e for the matrix representing the restriction

of 0 to the horizontal edges of X. Since the ba51s horizontal edges € and their boundary
vertices lie in Gy, we see that B is in fact a Z|K]-valued V x E matrix. With this notation,
each basis 2—cell 7. and each basis vertical 1—cell €, has boundary

02(6e) =Doh () +e—zf(@) =Be+e—zMe  and  1(&,) = 2Py — 0.

Therefore the chain complex that computes the cellular homology of X takes the form

C2(X) : C1(X) - Co(X)
lg I—-zM lg lg
B (B zP-1)
Z[H]E Z[H]E (—BZ[H]V Z[H]V
The chain condition 5152 = 0 has a useful interpretation in terms of the coboundary

maps 01 : C%(X) - CY(X) and 52: CY(X) — C2(X) on cochains, where our bases induce
isomorphisms C*(X) =~ C;(X) =~ Z[H]% with respect to which & = af is snnply the transpose
of the boundary matrix. For any vertex w in X, the vector 51( ) € CY(X) is the sum of
those edges of X that terminate at w minus the sum of edges that start at w. Similarly, for
cach edge 1 of X, the vector 52( ) € C%(X) is the sum of 2—cells whose boundary crosses
n posmvely minus those whose boundary crosses 7 negatlvely For short hand, let us set
R, = 52( ) € C2(X) ~ Z[H]®. Thus the row of the matrix Oa corresponding to an index
z € € is precisely Rz. Now for any cochain w € C°(X), we may express (51( )e CHX) as a

vector in Z[H]¢ and apply 52 to obtain a Z[H]-linear dependence relation between the rows
of 52:

(4.1) w) =Y a,d =  0=380(w) = Ry

ze€ el

4.6. Relative homology and vertex cycles. We will use relative homology to calculate the
Alexander polynomial, and for this it will be convenient to use a well-chosen maximal tree in
XM, Let V X be the union of all vertical edges, decomposed into its connected components
V =V u---uVy,. Note that each Vy is a directed embedded vertex cycle, denoted V., with
trees hanging off. Here the loop corresponds to a periodic orbit v, f(v),..., f%(v) = v of
length £, > 1 for the action of f on V = VG and the hanging trees correspond to other
vertices w € V that map into the orbit {f(v),..., f%*(v)}. Let cx = [Vk] = [Vi] € H denote
the homology class defined by the cycle in V.
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Lemma 4.2. We have det(I — zP) = [, (1 — ¢;).
In §5.4, this formula will be used to define the vertex polynomial.

Proof. The components V; L --- u V,,, determine a block diagonal decomposition of I — zP
into blocks I — 2]32- for 1 <4 < m and so it suffices to show that det(I — 2132) =1—¢;. As
mentioned above, V; is an embedded loop V] along with trees hanging off. If we index the
vertices so that they are ordered in a way that is compatible with their distance to V!, then
it follows that det(I — zP;) = det(I — Ef’i’ ), where fN’i’ is the submatrix of P, associated to the
vertices of V.

Now let v be a vertex in V! and suppose that the vertical loop V] has the vertex sequence
v = vg,v1,...,v = v. If we lift the vertical loop V! to X starting at v, we obtain a path
from v to ¢;v. The vertex sequence of this lift is

~

U = 00,9101, - - -, 94, V¢, = iV,
where v; is the base lift of v; and g; € H. By our choice of lift f: éo - éo and splitting
H = K ®(z), it follows that g;110;41 = ZP(g;7;). So if we set x; = gj_lgjﬂ, then x;7;11 =
ZP(?;). With this, and the fact that the matrices P and P] agree on the base lifts of vertices
in V/, an easy computation now gives the needed equality

Op—1
det(I—zP))=1- [[2j=1—c: O
=0

Choose a maximal tree T} inside of each component Vj; since Vj is a loop with trees
hanging off, this amounts to deleting exactly one edge 1y so that Vi = T U ng. The union
Ty w -+ Ty, is then a forest in X, and we extend this to a maximal tree T < X by adding
horizontal edges that connect distinct components. We then use E\T to denote the set of
edges of X that are not contained in T and note that |E\T| = |E| + 1.

Let T be the full preimage of 7' in X. The Z[H]-module of relative 1—chains for the pair
(X, T) is identified with Cy(X,T) =~ Z[H]\T and the chain complex for relative homology
becomes

Co(X,T) ~ Z[H)F —2 (X, T) ~ Z[H|E\T —— Co(X,T) =0

where A is simply the (€\T') x E matrix obtained from s by deleting the rows corresponding
to edges in T'. It follows that the Z[H|-module H;(X,T) may be presented as

(4.3) Z[H)F 4 Z[H]|ET — (X, T) — 0.
The Alexander polynomial Ar € Z[H] is thus the ged of the E'x E minors of A. We emphasize

that here and throughout all identifications are made using the base lifts fixed in §4.4.
Since H acts freely on the connected components of T, fixing a component 7" gives an

~

isomorphism Ho(T) =~ Z[H| as Z[H]-modules. Let o: Z[H]*\ — Z[H] be the composition

(4.4) Z[HE\T =~ C(X,T) — H(X,T) - Ho(T) = Z[H],

where ¢ is the connecting map for the long exact sequence of the pair ()N( ,IN” ). Note that
if e is any edge of \T and € is its (nonbase) lift to X whose tail is contained in 7”, then
a(e) = g— 1, where g is represented by the loop in e U T crossing e positively. From this, we
see that the image of « is the usual augmentation ideal A < Z[H].
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4.7. The fundamental relations and the main lemma. For each ¢ =1,...,m, let w; €
C’O( X) be the sum of the vertices of T; I", which is the lift of T} contained in the fixed component
T'. The coboundary of w; then has the form &' (w;) = 3
bi € Z[H]. Let us calculate these coefficients b% for z € €.

Vertical edges: Recall the set of vertical edges V is a disjoint union Vy -+ 11V, Az eV
for some k # i, then each lift & of z is disjoint from T/ and hence has 5! (wl)( ) = 0; thus
b.. = 0 in this case. If z € V;, then it is either in T} or is equal to 7;. In the first case, there
is exactly one lift & that intersects ZN”Z-’ , but this lift has both its tip and tail in w; meaning
5 (w;)(#) = wi(01(2)) = 0. Hence bi. = 0 for each vertical edge x in T;.

For x = n;, there are precisely two lifts incident on i’l . Writing 7; for the base lift of 7;,

vee VLT for some ring elements

there is one translate, say g¢7j;, whose tip lies in i‘/ and another whose tail lies in ﬁ’ . Recall
that ¢; € H is the homology class of the unique nontrivial loop in T U 7); that crosses 7; once
positively. Lifting this loop to X, we see that the tip of g1; lying in ﬁ.’ implies the tail of g7;
lies in ci_lf’ . Thus ¢;g7; is the unique lift of 7; whose tail lies in Ti’ . Since 6! (w;) evaluates to
1 on g7; and to —1 on ¢;g7;, we conclude that the coefficient of 7); in ot (w;) is bi = g(l Ci).
Notice that by definition of a: C1(X,T) — Ho(T) =~ Z[H] we have a(gﬁz) 1 c; ! since
the tip and tail of gj; lie in 7" and C;IT,. Therefore we have b, = —g%c;ta(m) = —gia(T)
for some unit g; € Z[H].

Horizontal edges: First let x be a horizontal edge in the maximal tree T'. If both end
points both of x lie outside T}, then b%, = 0 since each lift & of x is disjoint from T’ and hence
has 6! (w;)(2) = 0. If instead 2 has exactly one end point in T}, then = has exactly one lift &
that intersects Ti’, and this lift has only one endpoint in TZ-’ : hence b’ € Z[H] is a unit. Let
D; denote the set of horizontal edges in T that have exactly one end point in 7;. Finally, the
nature of the coefficient b%, for z € E\T will not be relevant for us.

Combining these observations, we see that

o' (wi) = —gia@)W+ Y, biE
x‘GDiU(E\T)
where b’ is a unit in Z[H] for each z in D; and g; is also a unit. The Observation (4.1)
therefore gives us a relation:

(4.5) gia(n;) Ry, = Z b.R, foreachi=1,...,m.
LBEDZ'UE\T

That is: For each vertical edge 7; in £\T', multiplying the corresponding row R,, of A by
gia(1;) produces a linear combination of the rows R, for horizontal z in E\T plus a linear

combination with unit coefficients of the rows R, of 0o corresponding to z in D;.

Lemma 4.6. Let Ay denote the matriz obtained from A (from equation (4.3)) by removing
the row for the vertical edge ni € E\T. Then det(Ag) det(I — ZP) = a(1ny) det(I — zM).

Proof We need to relate the determinant of Ay to that of I — zM which is the submatrix of
Os corresponding to the horizontal edges E. The matrix Ay already contains all rows R, of Os
corresponding to horizontal edges x in F\T. However, Ay is missing the rows corresponding
to horizontal edges in T and in their place has extra rows corresponding to vertical edges
of E\T of the form 7n; except n;. We will recursively use the fundamental relation (4.5) to
replace each row for a vertical edge of A with the row for a missing horizontal edge.
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Consider det(I—zP)Ay,. By Lemma 4.2 we have det(I—zP) = [T (I=ci) = TTi% (gice(7s)).
For each i # k, let us multiply the n,—tow of Ay, by the g;o(7;) factor from det(I — zP). This
produces a matrix B’ whose n;-row is the linear combination ), _ D;U(E\T) b.R,. Since B’
contains the row R, for each z in E\T, we may perform row operations to kill the terms
bR, with x € E\T in the n;—row of B’. These operations yield a new matrix B whose row
for x € E\T is R, and whose row for n; with i # kis >, p. b.R,. Since these row operations

do not change determinants, we further see that
a(7) det(B) = det(I — zP) det(Ay).

It thus remains to show that det(B) = det(l — ZM ). For this, let A denote the set of
horizontal edges of T, that is, A = Dy U --- U D,,. Impose a partial order on A defined by
e < € if the path in the tree T from €’ to T}, passes through e. For each ¢ # k, there is a
unique tree path v from 7; to T. This path v crosses exactly one edge of D;, which we denote
y; € D;. Since the path from any other z in D; to T} must follow v and thus pass through
yi, we see that y; < x for all x € D;; hence y; is the minimal element of D;. Conversely, each
horizontal edge in 7' is equal to the minimal edge y; € D; for a unique index 7 # k. Thus we
have a bijection between A and {1,...,m}\{k}, so that A = {y; | i # k}.

Say that a partition A = A; 1 Ay is <—compatible if there do not exist A; € A; such that
A2 < Ap; that is, if for every pair (A1, A2) € A x Ag either A\; < Ay or else the pair is not
ordered. Given such a partition let B(A; u As) be the matrix obtained from B as follows:
for each ¢ # k with y; € Ag, replace the row ) D, b. R, in B corresponding to 7; with simply
the row Ry, of I — ZM corresponding to y; € D;. Clearly we have B(A u ¢J) = B and
B(ZUA) =1—zM.

We claim by induction that det(B(A; 1 Ag)) = det(B) for every <—compatible partition
A = Ay U As. This is immediate for the trivial partition A L . Now let A1 LU Ay be any
<—compatible partition. If Ay # J, we may choose a <-minimal element A € As. The
adjusted partition A} L AL = (A1 U {A}) L (A2\{\}) is then <—compatible, and by induction
we may assume det(B(A] w A})) = det(B). Let ¢ # k be the index so that A = y;. The
matrices B(A; b Ag) and B(A] L A}) then only differ in the row corresponding to 7;, which
in the latter is >, . D, b R,. Consider any edge z € D; with 2 # y;. Then by definition of
y; we have y; < x. Therefore, the fact that Ay L As is <—compatible and y; € Ay implies
we cannot have z € A;. Hence z € Ay and, since z # y; = A, furthermore z € Af. This
means B(A] u A}) contains the row R, for each x € D; with x # y;. Thus we may perform
a row operation on B(A} 1 A)) that uses the row R, to kill the b’ R, term in the n—row of
B(A} u Ab). Applying these operations for each x € D;\{y;} produces a new matrix whose
ni-row is b R,.. Multiplying this row by the unit (b )~' then yields B(A; u Ag). Thus we
have transformed B(A]wA)) into B(A;LAs) via row operations that only effect determinants
up to a unit. This proves the claim and, in particular, that det(I — 21\7) = det(B) up to a
unit in Z[H], as needed. O

4.8. The determinant formula. We will make use of the following lemma which can be
found in work of Hironaka [Hirll, Lemma 8]. The argument also appears in the proof of
[McMO02, Theorem 5.1].

Lemma 4.7. Suppose
ZIH]" == Z[H]""' = Z[H],
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is a sequence of Z|H]-modules such that cco A = 0. Let A; be the determinant of the matrix
obtained from A after removing the ith row. Then
(4.8) ale)Aj = +a(e;) Ay,
for all 1 <i,j <n+1. Here {e; : 1 <i < n+1} is the standard free basis of Z[H|"*"*.
We are now ready to prove the determinant formula for the Alexander polynomial:

Theorem E (Determinant formula for Ar). Let f: G — G be a graph map whose mapping
torus X has fundamental group I'. Then

. det(2I — M)
" det(z1 — P)
where r =1 € Z[H] if rank(H1(X,R)) = 2 and r = (z — 1) if rank(H;(X,R)) = 1.

Proof of Theorem E. Recall that |E\T| = |E| + 1 and, for 1 < i < |E| + 1, let A; be the
minor of A (from equation (4.3)) obtained by removing the ith row. Then the Alexander
polynomial is by definition

)

Angcd{Aiil<i< |E|+1}.

With a: Z[H]|®\T — Z[H] from equation (4.4), we note that a0 A = 0 and so we apply
Lemma 4.7 to conclude that

a(a)A] = ia(gj)Ai,
where {€;} are the base lifts of the edges of E\T'. Fix some index, say k, representing a vertical
edge ng of E\T so that €, = 7y as in Lemma 4.6. Then

a(ii)Ar = ged{a(ii)A; 1 < i < [B| + 1}
=ged{a(€;) 1 1 <i<|E|+ 1} - Ag.
But according to Lemma 4.6, we know that,
Ay det(I — 2P) = a(i,) det(I — zM).
After rearranging, we conclude that

p o ST o) 1< < |B]+ 1),
det(zI — P)

and so it suffices to show that ged{a(&;) : 1 < i < |E| + 1} = 1 if rank(H) > 2 and

ged{a(&;) : 1 <i<|E|+1} =2z—1if H = (2).

For this we recall the following: if e; is any edge of E\T and & is its (nonbase) lift to X
whose tail is contained in 7", then a(e;) = g; — 1, where g; is represented by the loop in e U T
crossing e positively. Since e; is a translate of the base lift €; we have that, up to a unit,
o(&;) = gi — 1. Moreover, since the {g;} correspond to edges of X1) outside of the maximal
tree T', we note that H = (g1,...,ge\7))-

If rank(H) > 2, then there are g; and g; that generate a rank 2 subgroup of H and hence
(9i — 1) and (gj — 1) are relatively prime. In particular, gcd{a(€;)} = ged{(¢; — 1)} = 1, as
required. If rank(H) = 1, then g; = 2" and since the g; generate H, in fact ged{k;} = 1.
Hence, we also have that ged{(z* —1)} = (z—1) and so ged{a(€;)} = (# —1). This completes
the proof. d
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4.9. Characteristic polynomials of monodromy. The following corollary shows that
specialization of the Alexander polynomial gives the characteristic polynomial of the mon-
odromy’s action on homology, up to replacing the indeterminate by its inverse. Similar
statements appear in the literature where the characteristic polynomial considered is that
of the deck transformation on the homology of the associated cyclic cover. See e.g. Milnor
[Mil68, Assertion 4].

Recall that f.: Hi1(G;Z) — H1(G;Z) is the induced map on first homology of G.

Corollary 4.9. Let X be the mapping torus of the graph map f: G — G and let u be its
dual class. Then

det(t™'T — fi) = (1 —t)P - A%(t),
where p = 1 if rank(H, (X)) > 2 and p = 0 if rank(H; (X)) = 1.
Proof. As before, let M represent the action of f on 1-chains Z¥ and P: ZV — ZV denote
the action of f on O—chains.

Let 0: Z¥ — ZV be the usual boundary map on the oriented edges, and let a: ZY — Z be
the augmentation map defined by >} a,v — > a,. Then there is a diagram with exact rows:

0

0 —— Hy(G) z7F A/ 0
lf* lM lP l1
0 —— Hi(G) y/ R | G 0

From this, we have the equation of characteristic polynomials (in the variable t—1),
(7' —1)-det(t ™I — M) = det(t I — f,) - det(t~1 — P).

The proof is completed by applying Theorem E and noting that the u—specializations of
det(z — M), det(zI — P), and Ar are det(¢t 11— M), det(t 11— P), and Al(z), respectively
(since u(z) = —1). O

Remark 4.10. Corollary 4.9 has the following immediate consequence: If graph maps
f:G — G and f': G — G’ produce equivalent mapping tori, in the sense that there is
an isomorphism ¢: 7 (X ) — w1 (X ) for which the dual classes satisfy u' o ¢ = u, then the
characteristic polynomials of f, and f. are the same, up to a unit in Z[t*']. In particular,
the homological stretch factors of f and f’ agree.

5. THE FOLDED MAPPING TORUS, CROSS SECTIONS, AND THE MCMULLEN POLYNOMIAL

Throughout this section, we fix a fully irreducible automorphism ¢ of F and an irreducible
train track map f: G — G representing . Asin §4.3, this determines mapping torus X = Xy
equipped with a semiflow ¢;: X — X, coming from the local upward flow on G x [0, 1],
whose fundamental group I' is the free-by-cyclic group determined by ¢. As before, we also
set H = Hy(X)/torsion. In this section, we briefly recall the main constructions and required
results from [DKL15, DKL17b].

5.1. The folded mapping torus and its cross sections. To construct cross sections
representing different splittings of I, Dowdall-Kapovich-Leininger [DKL15] constructed a
modified mapping torus equipped with its own semiflow. Given a fixed factorization of the
graph map f: G — G into a sequence of Stallings folds, the authors produce a 2-complex
Xt = X]Tc which they call the folded mapping torus. Just as for the mapping torus, X' comes
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equipped with a semiflow ¢;r : XT — XT and the two semiflows are related by a natural flow-
equivariant quotient map ¢: X — XT with the property that the set of vertex leaves of X
is mapped bijectively to the set of vertex leaves of XT. Here, a vertex leaf is a connected
component of the set of points whose forward orbit under the semiflow meets a vertex. The
map ¢ is a homotopy equivalence and we use it to once and for all identify the fundamental
groups and homology groups of the 2-complexes.

Following [DKL17b, §5.1], a cross section of X' is a finite embedded graph © that is
transverse to the flow such that every flowline hits © infinitely often in the sense that {s €
R=o | ¥l(z) € ©} is unbounded for every = € XT. In this case © has continuous first return
map fo: © — O that sends x € © to the next point at which the flowline 1/)2 (z) intersects ©.

Remark 5.1. We caution that in general a cross section © need not be m—injective and the
first return map fo need not be a homotopy equivalence.

For our purposes, we will only consider cross sections that are compatible with 1f, which
means the intersection of © with the 1-skeleton of X7 is a finite set contained in the vertex
leaves. In this case, ® may be equipped with a finite standard graph structure [DKL17b,
Definition 7.3] in which every edge lies in a 2-—cell of XT and has endpoints in vertex leaves.
Then, the first return map fg is a train track map with irreducible transition matrix Ag and
spectral radius A(fg) > 1 [DKL17b, Proposition 7.7]. According to [DKL15, Corollary 7.9],
the train track map fg satisfies the additional property that the Whitehead graphs at each
of its vertices are connected (note that the proof of [DKL15, Corollary 7.9] does not use the
standing assumption of [DKL15, Convention 7.6] that f is atoroidal).

For any cross section © of X', the semiflow ¢! can be reparameterized so that the return
time to © is constant and equal to 1 (see [DKL17b, Definition 5.1]). Then, just as above,
there is a natural flow preserving quotient map gg from the mapping torus Xy, of the first
return map fe onto X' determined by

(5.2) 0 x[0,1] — xT
(,t) — ¥ ().

Since the induced flow preserving map gqo: Xy, — X T is a 7 -isomorphism, it is a homotopy
equivalence. Compatibility of the cross section © implies that the set of vertex leaves of Xy,
is mapped bijectively to the set of vertex leaves of XT, just as for the original map ¢ defined
above. In what follows, all cross sections are assumed to be compatible.

For any cross section ©, the homotopy equivalence qg: Xy, — X T identifies the funda-
mental groups and homology groups of the 2-complexes. Hence, any cross section determines
a dual cohomology class

[0 e H'(X,;2) = H'(X";Z) = Hom(I", Z) = Hom(H, 7).

In fact, the classes dual to cross sections are precisely the primitive integral points of an
open, rational cone Cy, called the cone of cross sections (see Theorem 5.8). To explain, we
must first recall the McMullen polynomial.

5.2. The McMullen polynomial and the cone of cross sections. We next describe
a polynomial invariant of the dynamical system (XT,1) that was constructed in [DKL15,

§4.1]. Continue to let H = H;(X")/torsion and let X' — XT be the free abelian cover with
deck group H and with lifted semiflow 1/;2 s XT - XT.
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Let us define a transversal of JT to be an arc 7 contained in a 2—cell of XT that is transverse
to the flowlines and has its endpoints in vertex leaves. The action of H on Xt by deck
transformations induces an action on transversals and makes the free Z-module F(’(ZT) on the
set of transversals into a Z[H ]-module.

The module of transversals T(4) is the quotient of F(T) by the submodule generated by
subdivision relations 7 — 7 — 7o for all transversals where 7 = 7 U and 7 N 79 is a point in
a vertex leave, and flow relations 7 — 7/ whenever a transversal 7 flows homeomorphically on
to /. Proposition 4.3 of [DKL17b] proves that T(¢) is a finitely presented Z[H]-module.

Definition 5.3. The McMullen polynomial m € Z[H] of the system (X1, 1) is the O*! Fitting
invariant of T'(1)7); that is, ged of the 0" Fitting ideal of the Z[H]-module T'(¢7).

Remark 5.4. We use the natural action of H on transversals given by h-7 = h(7) for h: Xt —
X' a deck transformation. This differs from the convention used in [DKL17b], where H was
declared to act on transversals by taking preimages. As a result, our McMullen polynomial
m differs from the polynomial mpgy, introduced in [DKL17b] by the ring automorphism
inv: Z[H] — Z[H] induced by the automorphism h +> h~! of the abelian group H; that is,
m = inv(mpkr,). The convention here is chosen to more closely parallel the construction of
the Alexander polynomial, whereas the convention in [DKL17b] was used to parallel features
of the Teichmiiller polynomial in [McMO00].

While Definition 5.3 is rather opaque, [DKL15, Theorem D] proves that m may be explicitly
calculated as a determinant with respect to any compatible cross section © — XT. To explain
this, let © < X' be the full preimage and let (:)0 be a designated connected component.
Choose also a lift f@: éo — éo of fo to Q. By using the flow preserving homotopy
equivalence gg: Xyy — X T from Equation (5.2), we see that exactly as in §4.4, these choices
determine a splitting H =~ Kg @ {(zg) of the deck group H as well as an identification
Cl(C:)O) ~ Z[Ko]P® with respect to which the transition matrix of f@ is expressed as an
FEO x EO matrix ﬁ@ with entries in Z[Kg] that specializes to Ag under the augmentation
map Z[K]| — Z. With this notation, we have the following calculation of m:

Theorem 5.5 (Determinant formula [DKL17b, Theorem D]). Let © be any connected, com-
patible cross section of (X1, 1) with associated splitting H = Ko @ {ze) as above. Then the
McMullen polynomial of (X1, 1) is

m = det(zol — Z@)

Remark 5.6. In the coordinates Z[H]| = Z[t*, %] used in [DKL17b], the determinant
formula is written mpgy, = det(z] — A(t)), where x is the inverse of our element zg and
A(t) describes fo acting on C1(0g) with respect to the module structure in which deck
transformations act by taking preimages. Hence inv: Z[H] — Z[H] sends z to zg and A(t)
to Ag, so that we indeed have m = inv(mpky,) = inv(det(z] — A(t))) = det(z0] — Ao).

Notice that the dual cohomology class [@]: H — Z sends zg to —1 and Kg to 0; hence
the induced ring map Z[H] — Z[Z] = Z[t*] sends ze to t~! and Ag to the EO x EO integer
matrix Ag. Applying Theorem 5.5, we conclude that the specialization of m at [O] (see §4.1)
is simply the reciprocal characteristic polynomial of the transition matrix Ag of fo:

(5.7) ml®l(4) = det(t711 — Ag).
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To summarize: the first return map feo is a train track map with irreducible transition
matrix Aeg whose characteristic polynomial is m[®] (t~1). Hence the geometric stretch factor
AMAg) > 1 of fe is the reciprocal of the smallest root of ml®l(¢).

The construction picks out a distinguished term of the McMullen polynomial; namely the
2Bl term of det(zI — Agyt) in the coordinates H = K @(z) adapted to the base cross section
GT. Writing m = aghg + - - - + anhy, € Z[H] with aghg this distinguished term, the polynomial
determines a corresponding cone of cross sections

Co = {ue H (XT;R) | u(hg) < u(h;) for each i =1,...,n}.

Notice that this is an open polyhedral cone with finitely many rationally defined sides. The
significance of Cy, (and a justification of its name) is captured by the following main result
from [DKL17b]:

Theorem 5.8 ([DKL17b, Meta-Theorem I]). An integral cohomology class uw e H'(XT;Z) is
dual to a cross section if and only if u € Cy; this cross section may be chosen to be compatible
with ' and is connected if and only if u is primitive.

Further, Coy © HY(XT;R) is equal to the set of cohomology classes that are positive on every
closed orbit of the semiflow 1T, and also to the component of the BNS-invariant BNS(I')
containing the dual class m1(G)y, — Z of the original HNN splitting of T

5.3. McMullen polynomials via Perron polynomials. In this section, we present an
alternative characterization of the McMullen polynomial (Proposition 5.11) that will be es-
sential in understanding the relation between the McMullen polynomial and the Alexander
polynomial in the negatively orientable setting.

Let D be the directed graph with a vertex for each edge of G and a directed edge from e
to ¢’ for each time f(e) crosses e’ with either orientation. That is, D is the directed graph
whose adjacency matrix is A, and so in particular D is strongly connected. Recalling the cell
structure of X discussed in §4.3, there is an embedding i: D — X obtained by mapping
each vertex of D to the midpoint of the corresponding horizontal edge of X; and mapping
the edges out of the e-vertex into the 2—cell o, in the obvious way. See Figure 2. The map
i: D — Xy is an embedding and we often identify D with its image.

FI1GURE 2. The image of D inside the 2-cell o, whose bottom edge is e. The
original vertices of X ; are black dots and the midpoint vertices (i.e. the images
of vertices of D) are blue squares.

Lemma 5.9. The embedding i: D — Xy is w1 —surjective.

Proof. Identify D with its image under i. Begin by subdividing the horizontal edges of X
at the vertices of D and call these midpoint vertices. It suffices to show that if p is an edge
path in Xj(cl) that meets the midpoint vertices exactly at its endpoints then it is homotopic
rel vertices into D.
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First assume that p is horizontal, i.e. contained in G < X;. Then p contains exactly one
vertex v of G and two half edges with midpoints m, and my; we denote these (directed) half
edges by mqv and vmy, respectively, so that p = mgv * vmy. Note that if m is the midpoint
vertex of an edge e with both its endpoints at v, then the notation mwv is ambiguous, but in
what follows the proper meaning will be clear from context.

If the path p lies in the top of a 2-cell, then the claim is clear since p is homotopic rel
endpoints to a (nondirected) path in D of length 2. See Figure 2. Otherwise, we consider the
vertices m, and my in the Whitehead graph Whe(v). Since f represents a fully irreducible
automorphism, Whg(v) is connected and so there is a path mg, mq, ..., mg, mp in Wheg(v).
By definition of the Whitehead graph, for each 4, the corresponding path m;vm;y1 in G is
contained in the image of an edge under f™ for some n > 1. We claim that these paths are
each homotopic into D. If n = 1, then m;vm; 1 lies at the top of a 2-cell, so by the previous
case, it is homotopic into D. Otherwise, the turn of G at v associated to m;vm;,q is the
image of the turn at a vertex w associated to a path mjwm;_ ; in G, and mjwm}, , is traversed
by the image of an edge under f"~!. By induction, miwm;,, is homotopic into D and if we
denote by ¢; and ¢; 41 the 2—cells whose bottom edges contain the midpoint vertices m/ and
mj, ,, respectively, we see that ¢; and ¢;41 share the vertical edge from w to v. Moreover,
cj contains a directed edge d; of D from m] to m; for each j € {i,i + 1}. Hence, m;vm;1
is homotopic in ¢; | J¢i+1 to the path d; # miwm +1 * dir1 and hence homotopic into D. As
p = mgumy is homotopic to the concatenation mgvmsy s mivme *. .. % mpvmy, this shows that
every horizontal p is homotopic into D.

Next, suppose that p contains a single vertical edge e. If this path lies in the boundary of
a single 2-cell, then it is again clear from Figure 2 that p is homotopic into D. Otherwise,
p has the form mgv * e * wmy, where e is a vertical edge from v to w. Let o be the 2-cell
containing the vertical edge e and m, along its bottom edge. Let m. be the midpoint at the
top of o nearest e. Then p is homotopic to mgv * e * wm, * m.wmy, which we can handle
by the previous cases. Finally, if p contains multiple vertical edges, then it homotopic to a
concatenation of paths of this form mgv * e * wmy and we finish as above. O

For the embedding i: D — Xy, we denote by i, both the induced group homomorphism
H,(D) — H and ring homomorphism Z[H;(D)] — Z[H].

Now let Pp be the Perron polynomial of D, defined as Pp := det(I — A) where A is the
symbolic transition matrix of D given by

Apy = Z e,

Je=y—z

with coefficients in Z[C1(D)]. We refer the reader to [McM15] for additional details and
recall that according to [McM15, Section 3] or [AKHR15, Theorem 2.14],

(5.10) Pp=1+ Z 1)l°le € Z[H, (D)],

where the sum varies over nonempty oriented multi-cycles ¢ in D and |o| is the number of
components of the multi-cycle.

The next proposition provides an explicit connection between polynomial invariants defined
n [DKL17b] and [AKHR15]. The first claim is essentially proven by [DKL17b, Theorem
12.10], but we give a direct proof using a result from [LMT20].
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Proposition 5.11. With i: D — Xy as above, m = i,(Pp). Moreover, m' = i,(Pp) is the
unique normalizatz’on of m such that supp(m’) contains 1 and for some (any) u € Cu, u is
positive on supp(m’)\{1}.

Proof. First, Lemma 5.9 implies that the homomorphism i,: H;(D) — H is surjective. By
[LMT20, Proposition 4. 2], ix(Pp) is equal to the polynomial Ppi, defined as follows: con-

sider the preimage D of D in the universal free abelian cover X ¢ with deck group H. The
polynomial Pp ;, € Z[H] is defined as det L, where L is the endomorphism of the free Z[H |-

module generated by H—orbits of vertices of D given by L(v) = v — (v1 + ... + v;). Here,
the vertices v1,...,v; are exactly the endpoints (with multiplicity) of the directed edges of
D out of v. Since D is the graph associated to the adjacency matrix A of f, we observe that
L =1 —7%zA. From Theorem 5.5, we conclude the required equality:

ix«(Pp) = Pp,i, = det(I — ZA) = ZFm.

For the moreover statement, we first claim that m’ = i,(Pp) has the required properties.
This follows from the fact that Pp has the properties that 1 € supp(Pp) by eq. (5.10) and each
a € supp(Pp)\{1} has u(i(a)) > 0 for any u € Cyn by [DKL17b, Proposition 6.3]. Therefore,
1 € supp(ix(Pp)) and the claim is established.

Next suppose that m” is another such normalization. Since m’ and m” both contain 1 in
their support and differ by a unit, m’ = h m” implies that h € supp(m’) and h~! € supp(m”).
This must mean that h = 1 since any u € Cy has to be positive on h and h™1. O

Proposition 5.12. Let m’ be the normalization of m from Proposition 5.11. Then support
of m' generates H as an abelian group.

Proof. From Equation (5.10), we observe that the support of Pp contains (the homology
classes of) all of the simple directed cycles of D and these generate Hi(D) as an abelian
group (see e.g. [LMT20, Lemma 5.8]) . It follows from Lemma 5.9 that the i—images of these
directed cycles generate H and so i« (supp(Pp)) generates H.

By Proposition 5.11, supp(m’) is equal to supp(i«(Pp)), which may be properly contained
in i, (supp(Pp)). Nevertheless, we now show that the span of supp(i«(Pp)) is equal to the
the span of i.(supp(Pp)). We will consider the class u € H'(Xy) dual to the projection
Xt — S as a ‘norm’; it has the property that for each directed cycle y of D, u(i(y)) > 0.

Say x € supp(Pp) survives if i.(x) € supp(m’). Then we are left to show that the image of
every simple cycle is a combination of the images of surviving simple cycles.

Suppose to the contrary that there is a simple directed cycle z € supp(Pp) such that i(x)
is not in the span of the images of surviving simple directed cycles. Among all such cycles,
let  be one such that u(x) is minimal. Evidently z does not survive. Since x is simple
and not surviving, there is a y € supp(Pp) represented by a multi-cycle o with an even
number of components |o| such that i.(z) = i4(y). Hence, y can be written as a disjoint
union dy U ... U dj, of simple directed cycles in D with k& > 2. Then i,(x) = [ [i+(d;) and so
u(ix(dj)) < u(ix(x)) for each j (recalling that u(i.(d;)) > 0). But since x is u- mmlmal, we
see that each i,(d;) must be the span of surviving simple cycles. As i,(z) is a combination
of the i,(d;), we have a contradiction and the proof is complete. O

5.4. The vertex polynomial. For the folded mapping torus X', we define the vertez cycles
of XT to be the closed orbits of ¥ that pass through vertices of XT. The vertex cycles form
a finite collection of disjoint, embedded closed orbits.
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Let ¢1,...,¢m be the vertex cycles of X. The vertex polynomial p of XT is defined to be

the element .
H 1—¢)eZ[H],

where we have identified ¢; with its class in H.

The vertex polynomial can also be explicitly computed as a determinant similar to the
McMullen polynomial. For this, we recall the setup before Theorem 5.5: Fix a (compatlble)
cross section © of the semiflow 97 on XT. Let O « X' be the full preimage and let @0
be a designated connected component. Choose also a lift f@ 0 — @0 of fo to @0 As
before this lift determines a splitting H =~ Kg @ (zg) of the deck group H. Letting VO
denote the set of vertices of O, choosing base lifts of these to Qo again gives an identification
Co(0p) = Z[Ke]V® with respect to which fo’s action on vertices is given as an VO x VO
matrix Pg with entries in Z[Ke].

Lemma 5.13. With notation as above, p = det(zol — Po).

Proof. Let Xy, be the folded mapping torus of the return map fe and let go: X5y — X T
be flow preserving homotopy equivalence from (5.2). Since © is compatible, go induces a
bijection between the vertex cycles of the flows. Hence p = [/, (1—[V/]), where {V],...,V].}
is the (disjoint) collection of closed orbits of X, through vertices. From Lemma 4.2, we then
see that p = det(zI — P). Since go identifies the splitting H = K @ {z) (from §4.4) with the
splitting H = Ko @ (ze), this completes the proof. O

6. RELATING THE POLYNOMIALS AND APPLICATIONS

In this section we prove our main theorems relating the McMullen and Alexander poly-
nomials. This is done first in the positively orientable case in §6.1, then in the negatively
orientable case in §6.2, and finally in the general case in §6.3.

For the entirety of this section we fix a fully irreducible automorphism ¢: F — F repre-
sented by an irreducible train track f: G — G. Let XT be an associated folding mapping
torus with fundamental group T' = m;(XT), let m, Ar € Z[H] be its McMullen and Alexander
polynomials, and Cy, © H'(XT;R) its cone of sections.

Since Cyy, is a component of BNS(T") (Theorem 5.8), we know that every integral class u € Cy,
is dual to a splitting of I' as a generalized HNN extension B, over a finitely generated free
group B (see §1.2). In this case, we say that ¢ is a (not necessarily unique) monodromy
associated to u. Lemma 3.1 guarantees that the monodromy may be chosen to be injective
and that the stretch factors py, Ay and characteristic polynomial of ¢4 acting on Hy(B;Z)
(up to a monomial factor) depend only on the class v and not on the chosen monodromy:

Definition 6.1. Given a primitive integral class u: I' — Z in Cp, we define its homological
and geometric stretch factors, respectively denoted p(u) and A(u), to be the stretch factors
ps and Ay of any monodromy ¢ associated to u. We call u orientable if A(u) = p(u); such
classes are moreover either positively or negatively orientable, respectively, if A(u) or —A(u)
is a root of the characteristic polynomial of an associated monodromy ¢.

The next proposition justifies this terminology and demonstrates that the various ways a
cohomology class can be orientable all agree.

Proposition 6.2. The following are equivalent for primitive integral classes u € Cy:
(1) w is orientable, i.e. AN(u) = p(u),
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(2) any injective monodromy ¢, associated to u has an orientable graph map representa-
tive,

(3) for any compatible cross section ©,, dual to u, the associated first return map fy,: O, —
©, is orientable.

Moreover, positive (negative) orientability in one case implies the same in all cases.

Proof. It ¢ is atoroidal, then T' is hyperbolic and ¢,, is also fully irreducible by [DKL17a,
Theorem 1.2] or [Mut21, Theorem 4.5]. Otherwise, ¢ is toroidal and represented by a pseudo-
Anosov homeomorphism on a once-punctured surface [BH92, Theorem 4.1], in which case Cy,
is the cone over a fibered face of the Thurston norm ball and all associated monodromies,
including ¢,,, represent pseudo-Anosov homeomorphisms [Thu86] (see also [Mut21, Theorem
3.4]). In either case, Lemma 3.3 implies that ¢, admits a primitive train track representative
F,.

The first return map f,: 0, — ©, is an irreducible train track map with connected
Whitehead graphs. Hence, it is also primitive by [Mut20, Proposition 2.6]. By definition, the
homomorphism on 7; induced by f, is a monodromy associated to u, although it may not be
injective. Thus Lemma 3.1 implies Ay, = A(u) = Ap, and ps, = p(u) = pp,. The proposition
now follows immediately from Theorem A. O

Remark 6.3. Asindicated in the proof above, if ¢ is atoroidal, then any injective monodromy
oy, associated to a class u € Cy, is also a fully irreducible free group endomorphism. Hence
in this case Theorem B implies the conditions in Proposition 6.2 are also equivalent to the
monodromy ¢, itself being (pos/neg) orientable.

6.1. Positively orientable case. In this subsection, we relate the two polynomial invariants
of a positively orientable fully irreducible automorphism.

Theorem 6.4. Suppose the fully irreducible automorphism ¢ is positively orientable. If
rank(H; (")) = 2, then the McMullen and Alezander polynomials are related by

m = AF P,
Otherwise, the equation is m - (1 — z) = Ar - p, where z generates Hy(I")/torsion.

Proof. By Fact 2.2, for a positively orientable graph map the induced map on cellular 1-
chains and the transition matrix are equal. Lifting to a map f GO - Go, the matrices used
in the definition of m and in Theorem E are equal, i.e. A =M. This, together with the
characterizations of m in Theorem 5.5 and p in Lemma 5.13, completes the proof. ([l

Theorem 6.5. If some primitive integral class in Cy s positively orientable then so is every
primitive integral class in Cy.

Proof. Let u be a primitive integral class in C, represented by a cross section ©® = 0,
compatible with the induced semiflow (Theorem 5.8) and let fo: ® — © denote its first
return map. As in Equation (5.2), there is a flow preserving homotopy equivalence

go: Xpg — X T
sending vertex leaves to vertex leaves, which we use to identify H;(X,) and Hy(XT). Also,

let ﬁ@,]\?@,]g@ be the Z[H]-valued matrices appearing in the characterization of m from
Theorem 5.5 and the determinant formula for Ap (Theorem E), associated to feo.

Suppose that the class u is positively orientable so that by Proposition 6.2 the map fgo
is also positively orientable. This implies that A@ = M@ just as in Theorem 6.4 and using
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Theorem E and Lemma 5.13 we conclude that
m = AF - p.

Now let w be any other primitive integral class in Cy,. The above formula gives the equality
of specializations: m*(t) = AY¥(¢) - p*(t). Moreover, from the definition of p we see that all
the zeroes of p¥(t) are roots of unity. Hence, if A > 1 is equal to A(w), then A~! is the
smallest root of m*(¢) (5.7) and hence of AY(t). By Corollary 4.9, this gives that X is the
largest root of the characteristic polynomial of any monodromy associated to w. This implies
that w is positively orientable and completes the proof. O

6.2. Negatively orientable case. We now relate the polynomial invariants of a negatively
orientable fully irreducible outer automorphism. Given that C,, contains a negatively ori-
entable class, we first define an involution ¢: Z[H| — Z[H].

Let u € Cy, be a negatively orientable primitive integral class. If © = 0, is a cross section
dual to u, then its return map fg is negatively orientable by Proposition 6.2. In this case,
with notation as in the proof of Theorem 6.5, fT@ = —]\7@.

Define €,: H — {1,—1} to be the homomorphism given by setting €,(h) = 1 if u(h) is
even and €,(h) = —1 if u(h) is odd. In other words, €, is the reduction of u mod 2 (where
72 = {1,—1}) and we often write ¢, = (—1)*. Define a ring automorphism ¢,,: Z[H] — Z[H]
extending h — €, (h)h. Note that ¢, : Z|H] — Z[H] is an involution. We observe that

(6.6) Lu(m) = 1y (det(zol — Ag))
= det(—zol — Ag))
= det(zol — ]\7@)
= Ar-p

A priori, however, the class ¢, depends on u. The following lemma states that each
negatively orientable class in Cp determines the same class, which we call the orientation
class €: T' — {—1,1}. We define the associated ring involution ¢: Z[H] — Z[H] accordingly.

Proposition 6.7. If u and ¢ are negatively orientable classes in Cy, then €, = €c. Hence, if
Cm contains a single negatively orientable class, then t(m) = Ap - p.

Proof. By Equation (6.6), t,(m) = tc(m). We claim that if m’ is the normalization defined
in Proposition 5.11, then ¢,(m’) = 1-(m’) as elements of Z[H]. Indeed, we know that m’ =
(tu 0 t¢)(m’). But both sides of this equation satisfy the normalization in Proposition 5.11
(since ¢, and ¢¢ do not change the support) and so must be equal by uniqueness. This proves
the claim.

Finally, if m" = }]a4g, then equating coefficients gives that €,(g) = ec(g) for each g €
supp(m’). Since supp(m’) generates H by Proposition 5.12, we see that €, = €;. The second
statement now follows from Equation (6.6). O

Theorem 6.8. Suppose that Cy, contains a negatively orientable class w. Then for any other
primitive integral class ( € Cn, the following are equivalent:

(1) MC) = p(C),

(2) ( is negatively orientable,

(3) ¢ =u mod 2.

Note that if Cy, is a cone of cross sections that contains a class u such that \(u) = p(u),
then Cy, is covered by either Theorem 6.5 or Theorem 6.8.



ORIENTABLE MAPS AND POLYNOMIAL INVARIANTS OF FREE-BY-CYCLIC GROUPS 29

Proof. By Theorem 6.5, there are no positively orientable first return maps in the cone Cy,
so (1) and (2) are equivalent by definition.

Now suppose that ¢ = v mod 2. Then ¢ = (—1)¢. By Proposition 6.7, we know ¢(m) =
Ar - p, and so specializing to ¢ gives

L(m)(t) = AR(t) - pC(E),

where p¢(t) is a product of cyclotomic polynomials and A% (t) is, up to a factor of t*(t — 1),
the characteristic polynomial of any monodromy associated to ¢ (see Corollary 4.9).
We claim that ¢(m)¢(t) = m¢(—t). Indeed, if m = > ayg € Z[H], then

Lmﬂw=24ﬁw@>
= Z a tC 9)
- Z ag(—
= mg(—t).
Using equation (5.7) and Corollary 4.9, we conclude as in the proof of Theorem 6.5 that ¢

is negatively orientable and hence (3) implies (2). Since (2) = (3) follows from Proposi-
tion 6.7, this completes the proof. O

With these facts in hand, we can prove Theorem C from the introduction.

Proof of Theorem C. By Theorem 5.8, the component C of BNS(I") containing the dual class
of Fx, is equal to the cone of cross sections Cp. If some primitive integral u € C is positively
orientable, then so is every such class in C (Theorem 6.5) and so A\(u) = p(u) for the entire
cone. This is case (1) from the theorem statement.

If some primitive integral u € C is negatively orientable, then Theorem 6.8 gives that the
primitive integral ¢ € C with A({) = p(() are exactly those that equal u mod 2, thus giving
case (2). The final alternative is that no classes in C are orientable and this is exactly case
(3). O

6.3. An equation mod 2. Here we show that the conclusion of Theorem 6.4 holds in total
generality after reducing mod 2.

Theorem 6.9. Let ¢ be a fully irreducible automorphism, with associated free-by-cyclic group
I. If rank(H(T)) > 2, then

m = App (mod 2)
Otherwise, the equation holds after multiplying m by (z—1), where z generates H1 (") /torsion.

We begin by noting that the proof of Theorem E holds with coefficients in Z/2; that is,
using the group ring Z/2[H|. In short, if we denote the first Fitting invariant of Hq(X,T;7Z/2)
by As, then
; det(z] — M)

det(zI — Py)’
where | = 0 if rank(H;(X)) > 2 and | = 1 otherwise. Here M, and P, are the mod 2

reductions of M and ]3, respectively, from §4.4. More formally, if we denote by r: Z[H]| —
Z,/2[ H] the mod 2 reduction homomorphism and use the same notation for the corresponding

Agﬁ(z—l)

ring homomorphism between matrix rings, then My = r(M ) and P, = r(P).
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If we denote the adjacency matrix for jN’ (from §5.2) by A and similarly set Ay = r(A),
then Ay = My as matrices with coefficients in Z/2[H]. Then note that

r(m) = r(det(zI — A)) = det(zI — Ay) = det(zI — M),
and similarly 7(p) = det(zI — P;). We conclude that
(z = 1) r(m) = Az -7 (p).

It remains to prove that r(A) = Ag in Z/2[H], where A = Arp. First, note that by the
universal coefficients theorem and the fact that Hy(X,T) = 0,

Hi(X,T;2/2) = Hi(X,T) ®Z/2
= H\(X,T) ®gu) Z/2[H].
Then by the general theory of Fitting ideals (e.g. [Eis95, Corollary 20.5]),
Fit1(Hy(X,T) ®gpm Z/2[H]) = r(Fit1 (H1 (X, T))).

To conclude we need the following corollary to the proof of Theorem E. It is similar to
[McMO02, Theorem 5.1] in the 3-manifold setting.
Corollary 6.10. Let A c Z[H] be the augmentation ideal. Then the Alexander ideal equals

Fity (H1(X, T)) = (A) - A?,

where (A) is the ideal generated by A, and where p = 1 if rank(H1(X)) = 2 and p = 0 if
rank(H; (X)) = 1.

Proof. Using notation from Theorem E, we have Fity(Hy (X, T)) = (A1,..., A1) Fix
some index, say k, representing a vertical edge n, of E\T' so that € = 7. Then from the
proof of Theorem E we have

(2 = D'7PAy, = a(ik) Ar.
Now using Lemma 4.7 to relate A; and Ay, for every index i € {1,...,|E| + 1} we get
(Z — 1)1—PAi = Oé(gZ)AF
Since the image of « is the augmentation ideal, for rank(H;(X)) =2 and 1 —p = 0 we get
(A1, Algpya) = (Ar) - A.
For rank(H;(X)) = 1 and 1 — p = 1, we showed in the proof of Theorem E that the ged of
a(&;) is equal to (z — 1). Since Z[2*!] is a PID, we have A = ((z — 1)) and thus
(A1, A1) = (Ar). O
Hence, we see that
Fity (H1 (X, T3 Z/2)) = r(A) - r(AP),
and so Ay = r(A) - ged r(AP).
If p = 0, then clearly Ay = 7(A). Otherwise, p = 1 and r(A) is the ideal in Z/2[H]
generated by 1 — g;, where recall the elements g; from the proof of Theorem E. In this case,
however, there are g; and gj that generate a rank 2 subgroup of H and so (1 — g;) and

(1 — gx) are still relatively prime in Z/2[H]. We conclude that ged r(A) = 1. This shows
that Ay = r(A) and completes the proof that

(z= 1" r(m) = r(A) - 7(p).
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6.4. Newton polytopes and the cone of sections. We conclude with an observation,
which will be useful in §7 below, that in the orientable case the cone of sections can be
computed directly from the Alexander polynomial. Recall that the Newton polytope of an
element q € Z[H] is the convex hull N(q) € H;(X;R) of the elements h € H appearing with
nonzero coefficient in q (see [McMO00, Appendix]). The dual cone of a vertex v € N(q) is by
definition the set of cohomology classes u € H!(X;R) that achieve a maximum value on N (q)
precisely at the vertex v.

Letting inv: Z[H] — Z[H] be the homomorphism sending h to h™!, Theorem 5.8 says
that the cone of cross sections Cy, of the folded mapping torus X' (which is also a component
of BNS(T")) is the dual cone of a vertex of N(inv(m)). When cone of sections contains an
orientable class, the same holds for the Alexander polynomial:

Lemma 6.11. Suppose the cone Cyn contains an orientable primitive class, that is a class
with AM(u) = p(u). Then Cy is equal to the dual cone of a vertex of N(inv(Ar)) (namely the
unique vertex whose dual cone contains u).

Proof. Let v: Z[H| — Z[H] be the involution defined in §6.2 in case that u is negatively
orientable, and let ¢ denote the identity if w is positively orientable. By Theorem 6.4 and
Proposition 6.7, we thus have m = ¢(Ar) - ¢(p). By Theorem 6.5 and Theorem 6.8 we also
have A\({) = p(¢) for every primitive integral ( € Cy that agrees with u mod 2. Thus
Corollary 4.9 says A(¢) is the reciprocal of the smallest root of the specialization ¢(Ar)<(t)
or, equivalently, the largest root of the specialization of inv(:(Ar)) at ¢ (see Remark 5.6). By
[DKL17b], log(A(¢)) tends to infinity as ¢ tends to the boundary of C,. Now by using [McMO00,
Theorem A.1], we conclude that Cy, is equal to the dual cone of a vertex of N (inv(¢(Ar))) =
N (inv(Ar)). O

7. EXAMPLES

In this section we give several fully irreducible automorphisms ¢ that illustrate aspects
of the theory developed in the paper. These also serve to contrast the situation for surface
homeomorphisms and to highlight that the four stretch factors Ay, py, Ay-1, py-1 of an
automorphism and its inverse are in general unrelated to each other. To this end, we say ¢
has stretch factor symmetry it A, = A -1.

Recall that a fully irreducible automorphism ¢ of a free group is geometric if it may be
represented by a pseudo-Anosov homeomorphism on a (punctured) surface. In this case, the
pseudo-Anosov property automatically implies A, = A,-1, and one additionally has p, = p,-1
provided the surface itself is orientable. These basic equalities can be deduced from the
stronger facts that the Teichmiiller [McMO00] and Alexander [Bla57, Tur75] polynomials of
the fibered 3-manifold determined by ¢ are symmetric. In addition, if ¢ is orientable then
Ap = pp and A -1 = p-1.

The fully irreducible automorphism ¢ is known to be geometric if and only if both its
attracting and repelling trees are geometric [Gui05, HMO07]; see also [CH12]. The automor-
phism is parageometric when the attracting tree is geometric but the repelling tree is not,
and in this case Handel-Mosher have shown A, # A1 [HMO07].

The examples below show that orientable fully irreducible automorphisms need not exhibit
the stretch factor symmetry enjoyed by pseudo-Anosovs, and that orientability of ¢ and ¢ ~*
are in general independent. Throughout, we use Thierry Coulbois’s train track Sage package
[Cou| to check that the example graph maps represent fully irreducible automorphisms and
to compute their stretch factors. The package can also be used to find periodic Nielsen paths
in a stable train track representative of a fully irreducible automorphism ¢. We then use
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[BF94, Theorem 3.2] to determine if the attracting tree T;r is geometric or nongeometric: T;
is geometric if and only if a stable train track representative contains an indivisible orbit of
periodic Nielsen paths.

Example 7.1. Here we give an example of a parageometric fully irreducible automorphism
that is (positively) orientable but whose inverse is not orientable.
Let ¢ be the fully irreducible automorphism of F3 = {(a, b, ¢) given by

a5 abbe, b 5 beabbe, ¢ 5 CBcabbe,

where throughout we use capital letters to denote inverse elements or reversed edges. This
is represented by a train track graph map g: G — G, where G is the graph with two vertices
0,1 and four edges 0 = 0, 0 LA 1,150, and 1 4, 0, where the marking is a < a, b < bd,
¢ < Dc, and where the map ¢ is defined on edges by

g(a) = abdbc, g(b) = bcab, g(c) = cabdbe, g(d) = dbc.

This graph map is clearly positively orientable, and thus A\, = p, ~ 4.61 both equal the
largest root of the characteristic polynomial 1 — 3t + 7¢2 — 6t2 +t*. The inverse automorphism

¢~ ! is represented by a train track map ¢’ on a graph G’ with two vertices 0, 1 and four edges

051, 0> 1,150, 0 £ 1. Here the marking is a <> aF, b <> bF, ¢ < fc and the map ¢’
is given by

g'(a) =acf,  ¢'(b)=bFCFa,  ¢'(c)=AfcfA,  g¢'(f) =0

From this one easily calculates that A1 ~ 3.08 but that p,-1 ~ 2.15. According to Theo-

1

rem B, neither the graph map ¢’ nor automorphism ¢! is orientable.

Example 7.2. Our next example shows that even if a fully irreducible outer automorphism
and its inverse are both (negatively) orientable, they need not be geometric. In fact, here ¢!
is parageometric with A, ~ 2.17 and A -1 ~ 3.72. Note that squaring provides a positively
orientable pair ©?, ™2 that also fails to be geometric.

For F3 = {a,b,c), let ¢ be given by a — BA, b > CAA, ¢ —» B. This map is in fact a
negatively orientable train track map on the 3-petal rose labeled a, b, c. The automorphism
o~ is given by a — Ac, B — ¢, C — bAcAc, which is also a negatively orientable train track
representative. The characteristic polynomials of ¢ and ¢~! on homology are —1 + 3t +¢2 —¢3
and —1 4 3t + 3t2 — t3, respectively.

Example 7.3. Our final example provides fully irreducible outer automorphisms ¢ and ¢!

that are negatively orientable and satisfy stretch factor symmetry. That is, A, = A1 = p, =
ppo-1 ~ 3.73 and yet ¢ is not a geometric automorphism. Indeed, the attracting and repelling
trees associated to ¢ are nongeometric and the McMullen polynomial of the free-by-cyclic
group I associated to ¢ is not symmetric.

We also use this example to detail the computation of the Alexander and McMullen poly-
nomials using Theorem E and Proposition 6.7, and to illustrate how orientability varies in
the cone of sections in keeping with Theorem 6.8.

Let G be the graph in Figure 3 with two vertices v, w, and with four oriented edges a, ¢, d, f
from w to v and two oriented edges b, e from v to w. Let g: G — G be the, clearly negatively
orientable, graph map defined on edges as

a+— DEABF, b~ EDE, ¢+ ABF, d— CEDBA, e — BAB, fw— CED.
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v

Ficure 3. Graph G

Choosing f as the maximal subtree gives a basis aF, fb, cF,dF, fe of F5 = m (G, w); denoting
these as a, b, ¢, d, e for brevity, the corresponding automorphism is

a > DEABdec, b> CEDEDE, ¢+ ABdec, d > CEDBAdec, e > CEDBAB

Let X be the mapping torus of g and H its homology. Recall from §4.4 that K is the
image of m1(G) — 71 (X) — H. A direct computation using the standard group presentation
of I' = F5 X, Z gives [aF] = [bf] = [cF] # 0 and [dF] = [ef] = 0 in H and hence in
K. Denoting the non-trivial homology class by «, the free abelian cover C~¥0 — G with deck
group K is therefore as depicted in Figure 4. Fix base lifts 0, w, a, b, ... of the cells of G as
indicated in the figure, and let g: Go — Go to be the unique lift of g such that §(v) = w.
This determines a splitting H = (a) ® (z), as described in §4.4, where z maps to —1 and «
to 0 under the map m (X) — Z.

e
o
—
™
Q
—

FIGURE 4. The free abelian cover C:’o

We now compute the Z[K]-matrices P and M describing the action of § on C1(Gp). We
already know g(0) = w. To find g(w) we look at the image of the edge é with end points ©
and w. Since §(0) = @, §(é) starts at @, traverses the edges aB, A, B in that order and
ends at the vertex ad. Therefore, §(w) = ad. The images §(a),§(b),... of the other base
edges are found in the same manner. We thus compute:

-1 0 -1 -1 -1 0

—-a 0 —a —a —2a 0
~ 0 « ~ 0 0 o -1 0 -1
F= (1 0)’ and M=, 10 4 -1

0
-a -2 0 -1 0 -1
—a 0 —a 0 0
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FIGURE 5. Cones of cross sections C; and C_ for ¢ and ¢!

From this we can easily compute the polynomial invariants associated to . By the deter-
minant formula in Theorem E, the Alexander polynomial is

. det(z] — ]\7) 28 4225 + 24(1 — 8a) + 2%(8a? — a) — 2a%z — o?

B det(zI — P) 22—«
=24 4223 4+ 22(1 = 70) + 202 + o2

Ar

The McMullen polynomial satisfies i(m) = Ar - p, where e: H = {a) ®{z) — Z/2Z is the
map €(a) = 1 and €(z) = —1 and i: Z[H]| — Z[H] is the involution given by i(h) = e(h)h.
Thus by Proposition 6.7 we compute that

m = i(Ap - p) = 2% — 22° + 241 — 8a) + 22(8a% — a) + 2%z — .

1

One may check that the inverse ¢~ is represented by the train track map

a— DIFEHAB, b— EDIFE, c— AB, d— GBIA, e— BIABI,
f— CED, g—H, h—IFG, i—IF

on the graph with 4 vertices and 9 edges 4 > 1, 2 LA 4,051,2 LA 3,350,0 J, 1,45%0,
1n 3, 1 5 2. This map is clearly negatively orientable and may be used to confirm the
stretch factor symmetry A -1 = A,.

In cohomology H*(I') = {o*) @ (z*), the splittings Fy*, = I' = Fyx,-1 correspond to the
classes ugp = (0,—1) and —up = (0,1). According to Lemma 6.11 the two components of
BNS(I") containing +ug are both dual cones of vertices of the Newton polytope of inv(Ar),
which is the convex hull of the homology classes (0, —4), (0, —3), (0,—2), (—1,—2), (—1,—1),
(—=2,0). These cones C+ for ¢+ are thus as depicted in Figure 5. According to Theorem 6.8
every primitive class u in C4 or C_ is either negatively orientable or non-orientable depending
on whether u agrees with ug mod 2. Notice that while the pair +wug has stretch factor
symmetry, this need not hold for other classes in the cones. For example, the classes u' =
(2,—3) and —u’ = (-2, 3) are negatively orientable so, by Corollary 4.9, their stretch factors
are the reciprocals of the smallest roots of their respective specializations of Ar. Hence one
calculates that A(u') = p(u') ~ 1.43092 but that A\(—u') = p(—u') ~ 1.36225.
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