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Abstract—Calculating the capacity (with or without feedback)
of channels with memory and continuous alphabets is a challeng-
ing task. It requires optimizing the directed information (DI) rate
over all channel input distributions. The objective is a multi-
letter expression, whose analytic solution is only known for a
few specific cases. When no analytic solution is present or the
channel model is unknown, there is no unified framework for
calculating or even approximating capacity. This work proposes
a novel capacity estimation algorithm that treats the channel
as a ‘black-box’, both when feedback is or is not present. The
algorithm has two main ingredients: (i) a neural distribution
transformer (NDT) model that shapes a noise variable into the
channel input distribution, which we are able to sample, and (ii)
the DI neural estimator (DINE) that estimates the communication
rate of the current NDT model. These models are trained by an
alternating maximization procedure to both estimate the channel
capacity and obtain an NDT for the optimal input distribution.
The method is demonstrated on the moving average additive
Gaussian noise channel, where it is shown that both the capacity
and feedback capacity are estimated without knowledge of the
channel transition kernel. The proposed estimation framework
opens the door to a myriad of capacity approximation results for
continuous alphabet channels that were inaccessible until now.

I. INTRODUCTION

Many discrete-time continuous-alphabet communication
channels involve correlated noise or inter-symbol interference
(ISI). Two predominant communication scenarios over such
channels are when feedback from the receiver back to the
transmitter is or is not present. The fundamental rates of
reliable communication over such channels are, respectively,
the feedback (FB) and feedforward (FF) capacity. Starting
from the latter, the FF capacity of an n-fold point-to-point
channel Pyn|x», denoted Ck, is given by [1]

1
Crr = lim sup —I(X™Y™). (1)

n—oo Pxn n

In the presence of feedback, the FB capacity Cgg is [17]

1
Ceg= lim sup —I(X"—>Y") (2)
n—oo PX"||Y"*1 n
where, N
(X" = Y™ = I(X, YY) (3)

i=1
is the directed information (DI) from the input sequence X" to
the output Y” [8], and PXnHY'n.fl = H?:l PX’i‘Xi—lyi—l is
the distribution of X™ causally-conditioned on Y~ (see [21],
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[24] for further details). Built on (3), for stationary processes,
the DI rate is defined as

1
lim —I(X" = Y"). 4)

(X —=Y):=

n—oo 1N
As shown in [8], when feedback is not present, the optimiza-
tion problem (2) (which amounts to optimizing over Pxn
rather than Pxny =) coincides with (1). Thus, DI provides a

unified framework for representing both FF and FB capacities.

Computing Cpg and Cgg requires solving a multi-letter
optimization problem. Closed form solutions to this chal-
lenging task are known only in several special cases. A
common example for Cgg is the Gaussian channel with
memory [14] and the ISI Gaussian channel [15]. There are
no known extensions of these solutions to the non-Gaussian
case. For Cgg, a solution for the 1st order moving average
additive Gaussian noise (MA(1)-AGN) channel was found
[12]. Another closed form characterization is available for
auto-regressive moving-average (ARMA) AGN channels [11].
To the best of our knowledge, these are the only two non-
trivial examples of continuous channels with memory whose
FB capacity is known in closed form. Furthermore, when the
channel model is unknown, there is no numerically tractable
method for approximating capacity based on samples.

Recent progress related to capacity computation via deep
learning (DL) was made in [9], where the mutual information
neural estimator (MINE) [2] was used to learn modulations
for memoryless channels. Later, [19] proposed an estimator
based on a reinforcement learning algorithm that iteratively
estimates and maximizes the DI rate was proposed, but only
for discrete alphabet channels with a known channel model.

Inspired by the above, we develop the framework for
estimating FF and FB capacity of arbitrary continuous-
alphabet channels, possible with memory, without knowing
the channel model. Our method does not need to know
the channel transition kernel. We only assume a stationary
channel model and that channel outputs can be sampled by
feeding it with inputs. Central to our method are a new DI
neural estimator (DINE), used to evaluate the communication
rate, and a neural distribution transformer (NDT), used to
simulate input distributions. Together, DINE and NDT lay
the groundwork for our capacity estimation algorithm. In the
remainder of this section, we describe DINE, NDT, and their
integration into the capacity estimator.
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A. Directed Information Neural Estimation

The estimation of mutual information (MI) from samples
using neural networks (NNs) is a recently proposed approach
[2], [3]. It is especially effective when the involved random
variables (RVs) are continuous. The concept originated from
[2], where MINE was proposed. The core idea is to represent
MI using the Donsker-Varadhan (DV) variational formula

I(X;Y)= sup

T:XxY—=R

where (X,Y) ~ Pxy and (X,Y) ~ Px®Py. The supremum
is over all measurable functions T for which both expecta-
tions are finite. Parameterizing T by an NN and replacing
expectations with empirical averages, enables gradient ascent
optimization to estimate I(X;Y"). A variant of MINE that goes
through estimating the underlying entropy terms was proposed
in [3]. The new estimators were shown empirically to perform
extremely well, especially for continuous alphabets.

Herein, we propose a new estimator for the DI rate (X —
V). The DI is factorized as

I(X™ = Y™) =h(Y™) — h(Y"||X"), ©

E[T(X,Y)] ~logE [T V)|, (5)

where h(Y™) is the differential entropy of Y™ and
R(Y™|X™) := " h(Y;|Y""1, X*). Applying the approach
of [3] to the entropy terms, we expand each as a Kullback-
Leibler (KL) divergence plus a cross-entropy (CE) residual
and invoke the DV representation. To account for memory,
we derive a formula valid for causally dependent data, which
involves RNNs as function approximators (rather than the FF
network used in the independently and identically distributed
(i.i.d.) case). Thus, DINE is an RNN-based estimator for the
DI rate from X™ to Y" based on their samples.

Estimation of DI between discrete-valued processes was
studied in [25]-[27]. An estimator of the transfer entropy,
which upper bounds DI for jointly Markov process with finite
memory, was proposed [16]. DINE, on the other hand, does not
assume Markovity nor discrete alphabets, and can be applied to
continuous-valued stationary and ergodic processes. A detailed
description of the DINE algorithm is given in subsection II-A.

B. Neural Distribution Transformer and Capacity Estimation

DINE accounts for one of the two tasks involved in es-
timating capacity, it estimates the objective of (2). It then
remains to optimize this objective over input distributions. To
that end, we design a deep generative model, termed the NDT,
to approximate the channel input distributions. This is similar
in flavor to generators used in generative adversarial networks
[23].The designed NDT maps i.i.d. noise into samples of
the channel input distribution. For estimating FB capacity, in
addition to the i.i.d. noise, the NDT also receives channel FB
as inputs. Together, NDT and DINE form the overall system
that estimates the capacity as shown in Fig 1.

The capacity estimation algorithm trains DINE and NDT
models together via an alternating optimization procedure

(i.e., fixing the parameters of one model while training the
other). DINE estimates the communication rate of a fixed
NDT input distribution, and the NDT is trained to increase
its rate with respect to fixed DINE model. Proceeding until
convergence, this results in the capacity estimate, as well as
an NDT generative model for the achieving input distribution.
We demonstrate our method on the MA(1)-AGN channel. Both
Crr and Cpp are estimated using the same algorithm, using
the channel as a black-box to solely generate samples. The
estimation results are compared with the analytic solution to
show the effectiveness of the proposed approach.

Yia ~ Feedback
NDT X Channel | |

Noise——] (RNN) Prixiyin
N
Gradient
Y;
Output «——7p, (X — V)l (IIDQIIII\II\%

Fig. 1. The overall capacity estimator: NDT generates samples that are fed
into the channel. DINE uses these samples to improve its estimation of the
communication rate. DINE then supplies gradient for the optimization of NDT.

II. METHODOLOGY

We give a high-level description of the algorithm and its
building blocks. Due to space limitations, full details are
reserved to the extended version of this paper. The imple-
mentation is available on GitHub."

A. Directed Information Estimation Method

We propose a new estimator of the DI rate between two
correlated stationary processes, termed DINE. Building on [3],
we factorize each term in (6) as:

h(Y™) = heg(Pyn, Pya-1 @ Py)
— Dk (Pyn|[Pyn—1 @ Py)
h(Y"™|X™) = hce (Pynxn, Pyn-1)xn-1 @ Py|Pxn)
= Dict (Pynxen | Py @ P?!PX"27)

where hce(Px,Qx) and Dk (Px||Qx) are, respectively, the
CE and KL divergence between Px and @ x, with

hee(Pyx, Qy|x|Px) = /hCE(PY\X:mQY|X:x)dPX(x)
X

Dk (Pyx ||Qy x| Px) = /XDKL(PY\X:zHQY\X:z)dPX(36)
3

Thttps://github.com/zivaharoni/capacity-estimator-via-dine
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denoting their conditional versions; and P? is uniform ref-
erence measure over the support of the dataset. To simplify
notation, we use the shorthands

DM := Dy (Pyn|Pyn-1 ® Py)
DY)\ == Dt (Pynjxn||Pyn-tjxn—t @ Pp). ()

Subtracting both elements in (7) and observing that the differ-
ence of CE terms equals the DI at the former time step, we

have
I(X" Y™ =1(X""1—

D(")

Yl 4 YHXng/"). (10)

Note that the difference of KL divergences equals
I(X™;Y,|Y"!). For stationary data processes we take
the limit and obtain

D\ = lim I(X™Y,|y" 1) =

n—oo

(n)
Jim Dy —

Ix —=Y).
(11)
Each Dy is expanded by its DV representation [4] as:

D§,n) = sup E[T(Y™)] —logE |:€T(Yn717?)i|
T:Q—=R
DYl = sup E[T(Y"||X")] ~ logE [0 11X 0]
T:Q—R

12)

To maximize (12), each DV potential is parametrized by
a modified LSTM and expected values are estimated by
empirical averages over the dataset D,, := {(x;, y;)}7;. Thus,
the optimization objectives are:

ZTGYHX (yila'y"™")
T (Gilz'y' ™)
—1 _ Oy || x
1 ¢ i—1
)= Toy (wily'™)
i=1
1 —in1
—1 - Toy (Tily* ™) 13

i.id. .
N Py and Ty, Ty, , are the parametrized

DYHX(HYHXv

Dy (0y,D

where 3"
potentials.

The estimator is given by:

Ip,(X =Y):= sup Dyjx— sup Dy (14)

Oy x €Oy x 0y €Oy
By universal approximation of RNNs [6] and Breiman’s theo-
rem [7], the maximizer of (14) approaches I(X — ) as the
number of samples grows, provided the neural networks are
sufficiently expressive.

To capture the time dependencies in D,, we introduce a
modified LSTM network model for functional approximation.
LSTM [5] is an RNN that receives a time series {y;}7; as
input and for each ¢, performs a recursive non-linear transform
to calculate its hidden state s;. We denote the LSTM function

Algorithm 1 Directed Information Rate Estimation
input: Samples of the process D,,.
output: Ip_ (X — V), estimated directed information rate.

Initialize networks parameters Oy, 0y x.
Step 1, Optimization:
repeat
Draw a batch Dp = {(z{;_, )7, Y(_1y7) i
Feed the network with the examples and compute
loss Dy x(0y|x,Pg), Dy (0y,Dp).
Update networks parameters:
Oy x < Oyx + V Dy x(8y|x:Dp)
Oy < Oy + VDy(Hy,'DB)
until convergence
Step 2, Perfrom a Monte Carlo estimation over D,
and subtract loss evaluations to obtain estimation
Ip, (X = ¥) = Dy x(0y|x,Dn) — Dy (0y,Dy)

by F : (yi,8i—1) — s;. The full characterization of F is
provided in [5].

We modify the structure of the LSTM to perform the
calculations:

S; = F(yi; Sifl) =
S = F(yi,si-1) =

A similar modification is introduced for ﬁyH x by substitution
of y; with (y;,z;) and ¥y; with (y;, x;), we have:

s(yily'™)

N (15)
s(ily'™h)

- F(yzu‘rzu Si— 1) - S(yz|y1 17551)

5= F(gi,zisio1) = sy, 2").

A visualization of a modified LSTM cell (unrolled) is shown in

Fig. 2. The LSTM cell’s output is the sequence {(s;,$;)}" 1,

which is fed into a fully-connected layer to obtain Ty, and

Toy x- As demonstrated by Algorithm 1 and Fig. 3, in each

iteration we draw Dp, a subset on D,,, of size B. We feed

the NN with Dp to acquire Ty, , TgYHX. Those enter the NN

loss function (13), and gradients are calculated to update the
NN parameters Oy, Oy x.

(16)

AN
o
I

‘o

oy —»f@‘l_.

f

YT YT

Fig. 2. The modified LSTM cell unrolled in the DINE architecture of By.
Recursively, at each time ¢, (y;, s;—1) and (¥;, s;—1) are mapped to s; and
S;, respectively.
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Input Y; S;
: Dense [, vy
Modified —~
LSTM DV DY (HY ) Dn)
~ Layer ~
Y; S;
Gen Dense To, (f/] ‘YLA )

Fig. 3. End-to-end architecture for estimating Dy (8y, Dy, ). For each batch
of time sequences, a batch of the same size is sampled from the reference
measure. Together, these samples are fed into the NN to compute T, and
TgYH <> from which the estimate is assumbled.

B. Neural Distribution Transformer

The DINE model is an effective approach to estimate the
argument of (2). However, finding the capacity comprises
maximization of the DI with respect to the input distribution.
For this purpose we present the NDT model that represents
a general input distribution of the channel. At each iteration
i = 1,...,n the NDT maps an ii.d noise vector N’ to a
channel 1nput variable X;. When feedback is present the NDT
maps (N®,Y*"!) — X;. Thus, NDT is represented by an
RNN with parameters y as shown in Fig. 4. The NDT model is
used to generate the channel input X", and the DINE estimates
the DI between X™ and Y™.

Y
Power Xi
LSTM Dense Dense T
N; Constraint
—>|

Fig. 4. The NDT. The noise and past channel output (if feedback is applied)
are fed into an NN. The last layer performs normalization to obey the power
constraint, if needed.

C. Complete Architecture Layout

Combining DINE and NDT models into a complete system
enables capacity estimation. As shown in Fig. 1, the NDT
model is fed with i.i.d. noise and its output is the samples X".
These samples are fed into the channel to generate outputs.
Then, DINE uses (X", Y™) to produce the estimate Ip, (X —
V). To estimate capacity, DINE and NDT models are trained
together. The training scheme, as shown in Algorithm 2, is a
variant of alternated maximization procedure. This procedure
iterates between updating the DINE parameters 6 and the NDT
parameters p, each time keeping one of the models fixed. At
the end of training a long Monte-Carlo evaluation of ~ 106
samples is done in order to estimate the expectations in (13).

Applying this algorithm to channels with memory estimates
their capacity without any specific knowledge of the channel
underlying distribution. Next, we demonstrate the effectiveness
of this algorithm on continuous alphabet channels.

Algorithm 2 Capacity Estimation

input: C9\ntinu0us channel, feedback indicator
output: Ip (X — Y, u), estimated capacity.

Initialize DINE parameters, 0y, 0y x
Initialize NDT parameters p
if feedback indicator then
Add feedback to NDT
repeat
Step 1: Train DINE model
Generate B sequences of length T of i.i.d random noise
Compute Dp = {(z],y])}/Z, with NDT and channel
Compute DY||X(9Y\|XaDB) Dy (6y,Dp)
Update DINE parameters:
Oy x < Oy)x + VDyx(0y|x,Dp)
Oy < 0y + VDy(ey,'DB)
Step 2: Train NDT
Generate B sequences of length T of i.i.d random noise
Compute Dp = {(x7,y>)}2 | with NDT and channel
compute the objective:
Ip, (X = Y, 1) = Dy x(0yx,DB) —
Update NDT parameters:
M<—N+V IDB(X—>J) M)
until convergence
Monte Carlo evaluation of ID (X =Y, u)
return Ip (X — Y, )

Dy (8y,Dp)

III. NUMERICAL RESULTS

We demonstrate the performance of Algorithm 2 on the
AWGN channel and the first order MA-AGN channel. The
numerical results are then compared with the analytic solution
to verify the effectiveness of the proposed method.

A. AWGN channel

The power constrained AWGN channel is considered. This
is an instance of a memoryless, continuous-alphabet channel
for which analytic solution is known. The channel model is

a7)

where Z; ~ N (0,02) are i.i.d RVs, and X; is the channel
input sequence bound to the power constraint E [X?] < P.
The capacity of this channel is given by C = 1log (1 + £;).
In our implementation we chose 0?2 = 1 and estimated
capacity for a range of P values. The numerical results are
compared to the analytic solution in Fig. 5, where a clear

correspondence is seen.

Yi=Xi+Z;, i €N,

B. Gaussian MA(1) channel
We consider both the FB (Ckg) and the FF (Cgg) capacity
of the MA(1) Gaussian channel. The model here is:
Zi=alUi—1 +U;

Yi=Xi+ Z; (18)
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Capacity of AWGN
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04}
o2l —— Analytic
o Estimation
0—20 -15 -10 -‘5 l; 5‘ 1‘0 15
P/z72 (dB)

Fig. 5. Estimation of AWGN channel capacity for various SNR values

where, U; ~ N(0,1) are ii.d., X; is the channel input
sequence bound to the power constraint E [X?] < P, and
Y, is the channel output.

1) Feedforward capacity: The FF capacity of the MA(1)
Gaussian channel with input power constraint can be obtained
via the water-filing algorithm [14]. This is the benchmark
against which we compare the quality of the Cgr estimate
produced by Algorithm 2. Results are shown in Fig. 6.

FF Capacity of MA(1) Gaussian Channel

1.8 T T T

121

Crr

0.8 |-

06

04

02l —— Analytic
o Estimation

0
-20 -15 -10 0 5 10 15

P/o?, (dB)

Fig. 6. Performance of Cgg estimation in the MA(1)-AGN channel.

2) Feedback capacity: Computing the FB capacity of the
ARMA(k) Gaussian channel can be formulated as a dynamic
programming, which is then solved via an iterative algorithm
[11]. For the particular case of (18), Cgg is given by — log(x),
where z¢ is a solution to a 4th order polynomial equation. The
estimates for Crg produced by Algorithm 2 are compared to
the analytic solutions in Fig. 7. The optimization dynamics for
our algorithm are shown in Fig. 8.

FB Capacity of MA(1) Gaussian Channel

—— Analytic
o Estimation

0 5 10 15

P/o?, (dB)

Fig. 7. Preformance of Cgg estimation in the MA(1)-AGN channel.

Training progress of Capacity Estimation
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=
= o2t
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—— Analytic
—e=— DI optimization
o s s s s s i i i i
0 100 200 300 400 500 600 700 800 900 1000
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Fig. 8. Optimization progress of DI rate of Algorithm 2 for the FB setting with
P = 1. The information rates were estimated by a Monte-Carlo evaluation
of (14) with 105 samples.

IV. CONCLUSION AND FUTURE WORK

We presented a methodology for estimating FF and FB
capacities that uses the channel as a black-box, i.e., without
assuming the channel model is known and only relying its
output samples. The main building block were a novel DI
estimator (DINE) and the NDT model, both implemented
based on RNNs. The performance of the estimator was tested
on AWGN and MA(1)-AGN channels, showing estimates that
agree well with analytic solution.

Despite the empirical effectiveness of DINE, we stress that
it is neither a lower nor a upper bound on the true DI (see (6)-
(7)). A main goal going forward is to revise DINE so that is
provably lower bounds the true value. This will imply that the
induced capacity estimator lower bounds the theoretical fun-
damental limit. Extension of our method to multiuser channels
is also of interest, as capacity results in multiuser information
theory are quite scarce. Another objective is coupling DINE
with theoretical performance guarantees.
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