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Abstract—Calculating the capacity (with or without feedback)
of channels with memory and continuous alphabets is a challeng-
ing task. It requires optimizing the directed information (DI) rate
over all channel input distributions. The objective is a multi-
letter expression, whose analytic solution is only known for a
few specific cases. When no analytic solution is present or the
channel model is unknown, there is no unified framework for
calculating or even approximating capacity. This work proposes
a novel capacity estimation algorithm that treats the channel
as a ‘black-box’, both when feedback is or is not present. The
algorithm has two main ingredients: (i) a neural distribution
transformer (NDT) model that shapes a noise variable into the
channel input distribution, which we are able to sample, and (ii)
the DI neural estimator (DINE) that estimates the communication
rate of the current NDT model. These models are trained by an
alternating maximization procedure to both estimate the channel
capacity and obtain an NDT for the optimal input distribution.
The method is demonstrated on the moving average additive
Gaussian noise channel, where it is shown that both the capacity
and feedback capacity are estimated without knowledge of the
channel transition kernel. The proposed estimation framework
opens the door to a myriad of capacity approximation results for
continuous alphabet channels that were inaccessible until now.

I. INTRODUCTION

Many discrete-time continuous-alphabet communication

channels involve correlated noise or inter-symbol interference

(ISI). Two predominant communication scenarios over such

channels are when feedback from the receiver back to the

transmitter is or is not present. The fundamental rates of

reliable communication over such channels are, respectively,

the feedback (FB) and feedforward (FF) capacity. Starting

from the latter, the FF capacity of an n-fold point-to-point

channel PY n|Xn , denoted CFF, is given by [1]

CFF = lim
n→∞

sup
PXn

1

n
I(Xn;Y n). (1)

In the presence of feedback, the FB capacity CFB is [17]

CFB = lim
n→∞

sup
P

Xn‖Y n−1

1

n
I(Xn → Y n) (2)

where,

I(Xn → Y n) :=

n∑

i=1

I(Xi;Yi|Y
i−1) (3)

is the directed information (DI) from the input sequence Xn to

the output Y n [8], and PXn‖Y n−1 :=
∏n

i=1 PXi|Xi−1Y i−1 is

the distribution of Xn causally-conditioned on Y n−1 (see [21],

[24] for further details). Built on (3), for stationary processes,

the DI rate is defined as

I(X → Y) := lim
n→∞

1

n
I(Xn → Y n). (4)

As shown in [8], when feedback is not present, the optimiza-

tion problem (2) (which amounts to optimizing over PXn

rather than PXn‖Y n ) coincides with (1). Thus, DI provides a

unified framework for representing both FF and FB capacities.

Computing CFF and CFB requires solving a multi-letter

optimization problem. Closed form solutions to this chal-

lenging task are known only in several special cases. A

common example for CFF is the Gaussian channel with

memory [14] and the ISI Gaussian channel [15]. There are

no known extensions of these solutions to the non-Gaussian

case. For CFB, a solution for the 1st order moving average

additive Gaussian noise (MA(1)-AGN) channel was found

[12]. Another closed form characterization is available for

auto-regressive moving-average (ARMA) AGN channels [11].

To the best of our knowledge, these are the only two non-

trivial examples of continuous channels with memory whose

FB capacity is known in closed form. Furthermore, when the

channel model is unknown, there is no numerically tractable

method for approximating capacity based on samples.

Recent progress related to capacity computation via deep

learning (DL) was made in [9], where the mutual information

neural estimator (MINE) [2] was used to learn modulations

for memoryless channels. Later, [19] proposed an estimator

based on a reinforcement learning algorithm that iteratively

estimates and maximizes the DI rate was proposed, but only

for discrete alphabet channels with a known channel model.

Inspired by the above, we develop the framework for

estimating FF and FB capacity of arbitrary continuous-

alphabet channels, possible with memory, without knowing

the channel model. Our method does not need to know

the channel transition kernel. We only assume a stationary

channel model and that channel outputs can be sampled by

feeding it with inputs. Central to our method are a new DI

neural estimator (DINE), used to evaluate the communication

rate, and a neural distribution transformer (NDT), used to

simulate input distributions. Together, DINE and NDT lay

the groundwork for our capacity estimation algorithm. In the

remainder of this section, we describe DINE, NDT, and their

integration into the capacity estimator.
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A. Directed Information Neural Estimation

The estimation of mutual information (MI) from samples

using neural networks (NNs) is a recently proposed approach

[2], [3]. It is especially effective when the involved random

variables (RVs) are continuous. The concept originated from

[2], where MINE was proposed. The core idea is to represent

MI using the Donsker-Varadhan (DV) variational formula

I(X;Y ) = sup
T:X×Y→R

E [T(X,Y )]− logE
[
eT(X̃,Ỹ )

]
, (5)

where (X,Y ) ∼ PXY and (X̃, Ỹ ) ∼ PX⊗PY . The supremum

is over all measurable functions T for which both expecta-

tions are finite. Parameterizing T by an NN and replacing

expectations with empirical averages, enables gradient ascent

optimization to estimate I(X;Y ). A variant of MINE that goes

through estimating the underlying entropy terms was proposed

in [3]. The new estimators were shown empirically to perform

extremely well, especially for continuous alphabets.

Herein, we propose a new estimator for the DI rate I(X →
Y). The DI is factorized as

I(Xn → Y n) = h(Y n)− h(Y n‖Xn), (6)

where h(Y n) is the differential entropy of Y n and

h(Y n‖Xn) :=
∑n

i=1 h(Yi|Y
i−1, Xi). Applying the approach

of [3] to the entropy terms, we expand each as a Kullback-

Leibler (KL) divergence plus a cross-entropy (CE) residual

and invoke the DV representation. To account for memory,

we derive a formula valid for causally dependent data, which

involves RNNs as function approximators (rather than the FF

network used in the independently and identically distributed

(i.i.d.) case). Thus, DINE is an RNN-based estimator for the

DI rate from Xn to Y n based on their samples.

Estimation of DI between discrete-valued processes was

studied in [25]–[27]. An estimator of the transfer entropy,

which upper bounds DI for jointly Markov process with finite

memory, was proposed [16]. DINE, on the other hand, does not

assume Markovity nor discrete alphabets, and can be applied to

continuous-valued stationary and ergodic processes. A detailed

description of the DINE algorithm is given in subsection II-A.

B. Neural Distribution Transformer and Capacity Estimation

DINE accounts for one of the two tasks involved in es-

timating capacity, it estimates the objective of (2). It then

remains to optimize this objective over input distributions. To

that end, we design a deep generative model, termed the NDT,

to approximate the channel input distributions. This is similar

in flavor to generators used in generative adversarial networks

[23].The designed NDT maps i.i.d. noise into samples of

the channel input distribution. For estimating FB capacity, in

addition to the i.i.d. noise, the NDT also receives channel FB

as inputs. Together, NDT and DINE form the overall system

that estimates the capacity as shown in Fig 1.

The capacity estimation algorithm trains DINE and NDT

models together via an alternating optimization procedure

(i.e., fixing the parameters of one model while training the

other). DINE estimates the communication rate of a fixed

NDT input distribution, and the NDT is trained to increase

its rate with respect to fixed DINE model. Proceeding until

convergence, this results in the capacity estimate, as well as

an NDT generative model for the achieving input distribution.

We demonstrate our method on the MA(1)-AGN channel. Both

CFF and CFB are estimated using the same algorithm, using

the channel as a black-box to solely generate samples. The

estimation results are compared with the analytic solution to

show the effectiveness of the proposed approach.

Ni

NDT Channel

DINE

Xi

Yi

(RNN)

Feedback

PYi|XiY i−1

Noise

∆

Output ÎDn
(X → Y)

Gradient

Yi−1

(RNN)

Fig. 1. The overall capacity estimator: NDT generates samples that are fed
into the channel. DINE uses these samples to improve its estimation of the
communication rate. DINE then supplies gradient for the optimization of NDT.

II. METHODOLOGY

We give a high-level description of the algorithm and its

building blocks. Due to space limitations, full details are

reserved to the extended version of this paper. The imple-

mentation is available on GitHub.†

A. Directed Information Estimation Method

We propose a new estimator of the DI rate between two

correlated stationary processes, termed DINE. Building on [3],

we factorize each term in (6) as:

h(Y n) = hCE(PY n , PY n−1 ⊗ P
Ỹ
)

−DKL(PY n‖PY n−1 ⊗ P
Ỹ
)

h(Y n‖Xn) = hCE

(
PY n‖Xn , PY n−1‖Xn−1 ⊗ P

Ỹ

∣∣PXn

)

−DKL

(
PY n‖Xn

∥∥PY n−1‖Xn−1 ⊗ P
Ỹ

∣∣PXn

)

(7)

where hCE(PX , QX) and DKL(PX‖QX) are, respectively, the

CE and KL divergence between PX and QX , with

hCE(PY |X , QY |X |PX) :=

∫

X

hCE(PY |X=x, QY |X=x)dPX(x)

DKL(PY |X‖QY |X |PX) :=

∫

X

DKL(PY |X=x‖QY |X=x)dPX(x)

(8)

†https://github.com/zivaharoni/capacity-estimator-via-dine
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denoting their conditional versions; and P
Ỹ

is uniform ref-

erence measure over the support of the dataset. To simplify

notation, we use the shorthands

D
(n)
Y := DKL(PY n‖PY n−1 ⊗ P

Ỹ
)

D
(n)
Y ‖X := DKL(PY n‖Xn‖PY n−1‖Xn−1 ⊗ P

Ỹ
). (9)

Subtracting both elements in (7) and observing that the differ-

ence of CE terms equals the DI at the former time step, we

have

I(Xn → Y n) = I(Xn−1 → Y n−1) +D
(n)
Y ‖X −D

(n)
Y . (10)

Note that the difference of KL divergences equals

I(Xn;Yn|Y n−1). For stationary data processes we take

the limit and obtain

lim
n→∞

D
(n)
Y ‖X −D

(n)
Y = lim

n→∞
I(Xn;Yn|Y

n−1) = I(X → Y).

(11)

Each DKL is expanded by its DV representation [4] as:

D
(n)
Y = sup

T:Ω→R

E [T(Y n)]− logE
[
eT(Y

n−1,Ỹ )
]

D
(n)
Y ‖X = sup

T:Ω→R

E [T(Y n‖Xn)]− logE
[
eT(Y

n−1‖Xn−1,Ỹ )
]
.

(12)

To maximize (12), each DV potential is parametrized by

a modified LSTM and expected values are estimated by

empirical averages over the dataset Dn := {(xi, yi)}
n
i=1. Thus,

the optimization objectives are:

D̂Y ‖X(θY ‖X ,Dn) :=
1

n

n∑

i=1

TθY ‖X
(yi|x

iyi−1)

− log

(
1

n

n∑

i=1

e
Tθ

Y ‖X
(ỹi|x

iyi−1)

)

D̂Y (θY ,Dn) :=
1

n

n∑

i=1

TθY (yi|y
i−1)

− log

(
1

n

n∑

i=1

eTθY
(ỹi|y

i−1)

)
(13)

where ỹn
i.i.d.
∼ P

Ỹ
and TθY , TθY ‖X

are the parametrized

potentials.

The estimator is given by:

ÎDn
(X → Y) := sup

θY ‖X∈ΘY ‖X

D̂Y ‖X − sup
θY ∈ΘY

D̂Y (14)

By universal approximation of RNNs [6] and Breiman’s theo-

rem [7], the maximizer of (14) approaches I(X → Y) as the

number of samples grows, provided the neural networks are

sufficiently expressive.

To capture the time dependencies in Dn we introduce a

modified LSTM network model for functional approximation.

LSTM [5] is an RNN that receives a time series {yi}Ti=1 as

input and for each i, performs a recursive non-linear transform

to calculate its hidden state si. We denote the LSTM function

Algorithm 1 Directed Information Rate Estimation

input: Samples of the process Dn.

output: ÎDn
(X → Y), estimated directed information rate.

Initialize networks parameters θY , θY ‖X .

Step 1, Optimization:

repeat

Draw a batch DB = {(xiT
(i−1)T , y

iT
(i−1)T )}

B
i=1

Feed the network with the examples and compute

loss D̂Y ‖X(θY ‖X ,DB), D̂Y (θY ,DB).
Update networks parameters:

θY ‖X ← θY ‖X +∇D̂Y ‖X(θY ‖X ,DB)

θY ← θY +∇D̂Y (θY ,DB)
until convergence

Step 2, Perfrom a Monte Carlo estimation over Dn

and subtract loss evaluations to obtain estimation :

ÎDn
(X → Y) = D̂Y ‖X(θY ‖X ,Dn)− D̂Y (θY ,Dn)

by F : (yi, si−1) 7−→ si. The full characterization of F is

provided in [5].

We modify the structure of the LSTM to perform the

calculations:

si = F (yi, si−1) = s(yi|y
i−1)

s̃i = F (ỹi, si−1) = s(ỹi|y
i−1)

(15)

A similar modification is introduced for D̂Y ‖X by substitution

of yi with (yi, xi) and ỹi with (ỹi, xi), we have:

si = F (yi, xi, si−1) = s(yi|y
i−1, xi)

s̃i = F (ỹi, xisi−1) = s(ỹi|y
i−1, xi).

(16)

A visualization of a modified LSTM cell (unrolled) is shown in

Fig. 2. The LSTM cell’s output is the sequence {(si, s̃i)}
n
i=1,

which is fed into a fully-connected layer to obtain TθY and

TθY ‖X
. As demonstrated by Algorithm 1 and Fig. 3, in each

iteration we draw DB , a subset on Dn, of size B. We feed

the NN with DB to acquire TθY , TθY ‖X
. Those enter the NN

loss function (13), and gradients are calculated to update the

NN parameters θY , θY ‖X .

...

S̃1 S1

0

Ỹ1 Y1

F F

S̃T ST

ST−1

ỸT
YT

F F

Fig. 2. The modified LSTM cell unrolled in the DINE architecture of D̂Y .
Recursively, at each time i, (yi, si−1) and (ỹi, si−1) are mapped to si and
s̃i, respectively.
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Yi

Reference Gen.

Ỹi

Modified

Si

S̃i

Dense

Dense TθY (Ỹi|Y
i−1)

TθY (Yi|Y
i−1)

DVLSTM

Layer

Input

D̂Y (θY ,Dn)

Fig. 3. End-to-end architecture for estimating D̂Y (θY ,Dn). For each batch
of time sequences, a batch of the same size is sampled from the reference
measure. Together, these samples are fed into the NN to compute TθY

and
TθY ‖X

, from which the estimate is assumbled.

B. Neural Distribution Transformer

The DINE model is an effective approach to estimate the

argument of (2). However, finding the capacity comprises

maximization of the DI with respect to the input distribution.

For this purpose we present the NDT model that represents

a general input distribution of the channel. At each iteration

i = 1, . . . , n the NDT maps an i.i.d noise vector N i to a

channel input variable Xi. When feedback is present the NDT

maps (N i, Y i−1) 7−→ Xi. Thus, NDT is represented by an

RNN with parameters µ as shown in Fig. 4. The NDT model is

used to generate the channel input Xn, and the DINE estimates

the DI between Xn and Y n.

LSTM Dense Dense
Power Xi

Yi−1

Ni
Constraint

Fig. 4. The NDT. The noise and past channel output (if feedback is applied)
are fed into an NN. The last layer performs normalization to obey the power
constraint, if needed.

C. Complete Architecture Layout

Combining DINE and NDT models into a complete system

enables capacity estimation. As shown in Fig. 1, the NDT

model is fed with i.i.d. noise and its output is the samples Xn.

These samples are fed into the channel to generate outputs.

Then, DINE uses (Xn, Y n) to produce the estimate ÎDn
(X →

Y). To estimate capacity, DINE and NDT models are trained

together. The training scheme, as shown in Algorithm 2, is a

variant of alternated maximization procedure. This procedure

iterates between updating the DINE parameters θ and the NDT

parameters µ, each time keeping one of the models fixed. At

the end of training a long Monte-Carlo evaluation of ∼ 106

samples is done in order to estimate the expectations in (13).

Applying this algorithm to channels with memory estimates

their capacity without any specific knowledge of the channel

underlying distribution. Next, we demonstrate the effectiveness

of this algorithm on continuous alphabet channels.

Algorithm 2 Capacity Estimation

input: Continuous channel, feedback indicator

output: ÎDn
(X → Y, µ), estimated capacity.

Initialize DINE parameters, θY , θY ‖X

Initialize NDT parameters µ

if feedback indicator then

Add feedback to NDT

repeat

Step 1: Train DINE model

Generate B sequences of length T of i.i.d random noise

Compute DB = {(xT
i , y

T
i )}

B
i=1 with NDT and channel

Compute D̂Y ‖X(θY ‖X ,DB), D̂Y (θY ,DB)
Update DINE parameters:

θY ‖X ← θY ‖X +∇D̂Y ‖X(θY ‖X ,DB)

θY ← θY +∇D̂Y (θY ,DB)
Step 2: Train NDT

Generate B sequences of length T of i.i.d random noise

Compute DB = {(xT
i , y

T
i )}

B
i=1 with NDT and channel

compute the objective:

ÎDB
(X → Y, µ) = D̂Y ‖X(θY ‖X ,DB)− D̂Y (θY ,DB)

Update NDT parameters:

µ ← µ+∇µÎDB
(X → Y, µ)

until convergence

Monte Carlo evaluation of ÎDn
(X → Y, µ)

return ÎDn
(X → Y, µ)

III. NUMERICAL RESULTS

We demonstrate the performance of Algorithm 2 on the

AWGN channel and the first order MA-AGN channel. The

numerical results are then compared with the analytic solution

to verify the effectiveness of the proposed method.

A. AWGN channel

The power constrained AWGN channel is considered. This

is an instance of a memoryless, continuous-alphabet channel

for which analytic solution is known. The channel model is

Yi = Xi + Zi, i ∈ N, (17)

where Zi ∼ N
(
0, σ2

)
are i.i.d RVs, and Xi is the channel

input sequence bound to the power constraint E
[
X2

i

]
≤ P .

The capacity of this channel is given by C = 1
2 log

(
1 + P

σ2

)
.

In our implementation we chose σ2 = 1 and estimated

capacity for a range of P values. The numerical results are

compared to the analytic solution in Fig. 5, where a clear

correspondence is seen.

B. Gaussian MA(1) channel

We consider both the FB (CFB) and the FF (CFB) capacity

of the MA(1) Gaussian channel. The model here is:

Zi = αUi−1 + Ui

Yi = Xi + Zi (18)
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Fig. 5. Estimation of AWGN channel capacity for various SNR values

where, Ui ∼ N (0, 1) are i.i.d., Xi is the channel input

sequence bound to the power constraint E
[
X2

i

]
≤ P , and

Yi is the channel output.

1) Feedforward capacity: The FF capacity of the MA(1)

Gaussian channel with input power constraint can be obtained

via the water-filing algorithm [14]. This is the benchmark

against which we compare the quality of the CFF estimate

produced by Algorithm 2. Results are shown in Fig. 6.

-20 -15 -10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 6. Performance of CFF estimation in the MA(1)-AGN channel.

2) Feedback capacity: Computing the FB capacity of the

ARMA(k) Gaussian channel can be formulated as a dynamic

programming, which is then solved via an iterative algorithm

[11]. For the particular case of (18), CFB is given by − log(x0),
where x0 is a solution to a 4th order polynomial equation. The

estimates for CFB produced by Algorithm 2 are compared to

the analytic solutions in Fig. 7. The optimization dynamics for

our algorithm are shown in Fig. 8.

-20 -15 -10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 7. Preformance of CFB estimation in the MA(1)-AGN channel.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 8. Optimization progress of DI rate of Algorithm 2 for the FB setting with
P = 1. The information rates were estimated by a Monte-Carlo evaluation
of (14) with 105 samples.

IV. CONCLUSION AND FUTURE WORK

We presented a methodology for estimating FF and FB

capacities that uses the channel as a black-box, i.e., without

assuming the channel model is known and only relying its

output samples. The main building block were a novel DI

estimator (DINE) and the NDT model, both implemented

based on RNNs. The performance of the estimator was tested

on AWGN and MA(1)-AGN channels, showing estimates that

agree well with analytic solution.

Despite the empirical effectiveness of DINE, we stress that

it is neither a lower nor a upper bound on the true DI (see (6)-

(7)). A main goal going forward is to revise DINE so that is

provably lower bounds the true value. This will imply that the

induced capacity estimator lower bounds the theoretical fun-

damental limit. Extension of our method to multiuser channels

is also of interest, as capacity results in multiuser information

theory are quite scarce. Another objective is coupling DINE

with theoretical performance guarantees.
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