
Fail-Safe: Securing Cyber-Physical
Systems against Hidden Sensor Attacks

Mengyu Liu
Syracuse University

mliu71@syr.edu

Lin Zhang
Syracuse University
lzhan120@syr.edu

Pengyuan Lu
University of Pennsylvania

pelu@seas.upenn.edu

Kaustubh Sridhar
University of Pennsylvania
ksridhar@seas.upenn.edu

Fanxin Kong
Syracuse University
fkong03@syr.edu

Oleg Sokolsky
University of Pennsylvania
sokolsky@seas.upenn.edu

Insup Lee
University of Pennsylvania

lee@seas.upenn.edu

Abstract—In Cyber-Physical Systems (CPS), integrating new
technologies that interact with and control physical systems raises
new security risks beyond the classical cyber security domain.
These risks motivated many attack detectors that focus on the
binary outcome. However, one pressing risk in CPS is hidden
sensor attacks that are well-designed by powerful attackers
who gained full knowledge of our systems and detector. The
hidden attacks inject such a small malicious signal into sensor
measurement that they can stay undetected but eventually lead
to a significant deviation. Thus, to secure the CPS, we propose
a detection framework to identify these sensor attacks that can
drive the system’s physical states to an unsafe state within a given
period, even if they are not detected. First, we solve optimization
problems to find the optimal hidden sensor attack that leads
to the minimal distance to a pre-defined unsafe state region
within an observation window for a given system and detector.
Then, based on this algorithm, we perform offline profiling to
search for a conditionally safe region, where the system states
are guaranteed to be safe within the observation window as long
as the detector does not raise any alerts. Finally, the framework
can online discover potential hidden sensor attacks that endanger
the system by checking if the current system state moves out
of the region and raising a yellow alert. The evaluation shows
that the optimal hidden sensor attack results in the minimum
distance to unsafe, within a given observation window among
existing hidden sensor attacks. We implemented our method on
four linear simulators to show the effectiveness of our method.
Additionally, we provided a discussion on the challenges of
applying the proposed method to non-linear systems.

Index Terms—hidden sensor attack, cyber-physical systems,
detection

I. INTRODUCTION

Cyber-physical Systems (CPS) hybridizes software compu-

tational processes and physical components in our daily life.

These systems convey life-critical functionalities such as smart

grids, manufacturing, and driverless vehicles [1]–[3]. There-

fore, unlike traditional software system malfunctions, there is a

significant problem that failures in CPS can potentially lead to

large financial loss, physical damages and can be life-critical.

Targeting this problem, researchers have striven for solutions

to secure CPS from faults and adversarial attacks [4]–[6].

CPS attacks target various components, including sensors,

controllers, actuators and communication channels. Among

these, sensor attacks maliciously modify sensory inputs and

put the entire system at risk. One major reason that researchers

focus on sensor attacks is that they can be injected without

much expertise, via both non-transduction and transduction,

i.e. with and without a computer, respectively [7], [8], methods

that the traditional software security domain overlooks [9]–

[11]. For instance, an attacker can manipulate the GPS signals

of a yacht to drive it off a planned path [12] or cheat the wheel

speed sensors to interrupt a vehicle’s antilock brakes [13].

Upon an adversarially overwritten sensory input, the CPS

controller can misbehave and cause catastrophic results [14],

and these attacks will continue to co-evolve with the rise of

CPS autonomy.

Such emerging threats have motivated novel proposals

on sensor attack detection. On one hand, some researchers

identify anomalies by leveraging the correlation of redundant

sensors that measure the same physical variables [14]–[17].

The detection mechanism is therefore based on this correlation,

which can be broken by sensor attacks. However, this type

of detection method fails to find anomalous sensors uncorre-

lated to others. On the other hand, many researchers utilize

prediction from machine learning, pre-known dynamics, or

other techniques. These frameworks detect sensor attacks by

comparing sensor measurements with predicted values [18]–

[20] and raise a red flag upon a large residual between these

two. The residual can be tested through stateless methods,

such as Chi-Square, or stateful ones, such as cumulative

sum (CUSUM) which leads to a smaller deviation from the

expected states [21].

Despite the promising detectors such as CUSUM, hidden
sensor attacks can still bypass them and stay undetected,

because they are generated deliberately by the adversaries

with full knowledge of the system and deployed detector.

Thus, such sensor attacks have gained much attention from re-

searchers, who study them against cumulative sum (CUSUM)

or Chi-Square-based attack detectors in [22]–[25]. Note that

there is a similar notion of sensor attack, called stealthy

attacks, which is a superset of hidden attacks. According

to the definition of stealthy attack from [26], during the

stealthy attack, the squares of differences between the sensor

measurements and their estimation are not significant.



Since the hidden sensor attacks are hidden from the detector,

traditional metrics to evaluate detectors, such as true positive

rate and F1-score, are invalid. Instead, one viable approach

is to evaluate the worst impact caused by undetected attacks

under a certain detector. An example impact metric [24] is

defined as how much can the attacker drive variables of

interest in the process towards its intended goal. To forge a

worst case that maximizes impact metrics, researchers assume

an omniscient adversary to which our system and detector

parameters are visible, and then it operates one of the three

widely used hidden attacks - surge, bias, and geometric [27].

These three attacks are not necessarily causing the worst

case scenario for the system, based on their mathematical

definitions. We are motivated by the existence of an optimal
hidden attack for the adversary, which drives the system state

closest to, or deepest into the unsafe region, regardless of its

method.
Although many researchers have analyzed the impact of

sensor attacks in CPS such as [28]–[31], a clear understanding

of the following questions has not been addressed: (i) What is

an optimal hidden sensor attack that causes the worst impact

on state deviation? (ii) How can we defend against the optimal

hidden attacks to secure a CPS, since they are hidden from the

existing attack detector? We believe that understanding these

questions is a crucial step to secure the CPS even if the sensor

attacks are not detected.
In this paper, we investigate the two questions above. First,

we check the performance of frequently used hidden attacks

in literature, and observe that none of them can result in

the minimal distance to a pre-defined unsafe region for all

different systems with various attack detectors. Thus, we try

to formulate the attack-detection process as an optimization

problem to find the optimal hidden sensor attack that injects

false sensory data and drives the system states closest to

unsafe within an user-given time horizon on general dynamics,

controls and detectors. Particularly, we demonstrate such an

optimization problem can be solved efficiently as a linear

programming or convex optimization problem, respectively for

linear and convex dynamics, controls and detectors, such as

CUSUM. Then, based on the optimal hidden sensor attack, we

can conservatively analyze in which state region the system

keeps safe within a given period. The above procedures are

completed offline. At run time, if current states move outside

of the region searched, our detector raises a ”yellow” alert,
which indicates a potential hidden attack that can drive the

system to an unsafe state within the given period of time.

This ”yellow” alert is auxiliary to the ”red” alert raised by

an ordinary attack detector (such as CUSUM), with the latter

indicating an already happened sensor attack but giving us less

time to respond. Finally, we build four simulators to evaluate

our approach. The results show the optimal hidden attacks

perform no worse than other baselines, and the hidden attack

detector can help identify potential hidden sensor attacks.
Our contributions are as follows.

• We present an optimization-based method to find the

optimal hidden sensor attack within a given period. We

show that this method is general to CPS, and can be

efficient for linear and non-linear convex systems.

• We design an efficient search algorithm to find the

conditionally safe region given the optimal hidden sensor

attack. The region is a subset of state space, in which the

system remains safe within the given period as long as

the ordinary detector does not raise any alerts.

• We build a hidden attack detector based on the con-

ditionally safe regions found and show its promising

performance in experiments.

The rest of this paper is organized as follows. Section II

presents the background and preliminaries. Section III de-

scribes the architecture overview of our attack detection

framework. Section IV formulates optimization problems to

find the optimal hidden sensor attack within a time period

given an initial state. Section V searches the conditionally

safe region for a system. Section VI validates the proposed

framework with four CPS simulators. Section VII discusses the

application of the proposed framework to non-linear systems.

II. BACKGROUND AND PRELIMINARIES

A. Notations

Notation Meaning
x The system’s ground-truth states
x̃ State measurement by sensors
x̂ State estimation by computation
u The control inputs
T Observation window size
τ Detector threshold
b Detector drift
r Residual between x̂ and x̃
s CUSUM detector score
U Unsafe set
OHA Optimal hidden sensor attack
CSR Conditionally safe region

TABLE I: Notation table for the following sections

Table I lists the notations used in this paper. The bold text

represents a multi-dimensional vector, such as system states

and control inputs, and non-bold text represent a scalar value.

Moreover, we use subscripts to denote timestamped variables,

such as xt means system’s ground-truth state at timestamp t.
We also use square brackets to denote a specific dimension,

such as OHA[i] means the optimal hidden attack on dimension

i. One remark is that, without loss of generality, we assume

the system state is fully observable, i.e. x̃ and x are in the

same state space.

B. System Model

The CPS model considered in this paper is a physical

process, also called a plant, controlled by a computer program

or controller. The controller operates at every constant time,

called a control step. At the beginning of each step t, the

controller reads sensor measurements and computes the state

estimate of the plant, represented by the values of a set of

real-valued variables x̃t = {x̃[1]t, . . . , x̃[n]t}, where n is the

number of states in the system. Then, it generates the control



inputs ut = {u[1]t, . . . , u[m]t} based on the control algorithm,

where m represents the number of actuators. Generally, the

control algorithms can be represented as a function. Then,

actuators carry out the control inputs to drive the system to a

reference or target state. For ease of presentation, we assume

that the plant is fully observable to the sensors, i.e., all state

estimates can be obtained from sensor measurements. Note

that there are three types of states in the paper: (1) actual

physical states, denoted as x, are real states of the system,

(2) measured states from sensors, denoted as x̃, which might

be attacked and do not have to follow dynamics f , and (3)

estimated states, denoted as x̂, are computed from previous

measurements through f . In short expressions, the actual state,

expected state, and state estimate at time tk are also expressed

as xk, x̂k, and x̃k, where k ∈ N0 means control step number.

C. Threat Model

We consider sensor attacks, which alter sensor measure-

ments sent to the controller. That is, an attacker can manipulate

the state estimates x̃ computed by the controller. Generally, the

attacker can affect all n state estimates, or part of them.

Moreover, to derive and analyze the optimal hidden sensor

attack, we consider a strong adversarial model, which makes

sure the sensor attacks can bypass or escape from detection,

i.e., hidden sensor attacks, and deviate the system states farther

from reference states. To be more specific, the attacker has full

knowledge of

• the control program or control logic. The attacker can

predict the control inputs u generated by the controller

given current state estimates.

• the system model used by the detector. The attacker can

compute the expected states x̂ predicted by the detector

given control inputs.

• the attack detection method and its parameter settings.

The attacker can forge malicious attack payload carefully

so that no alert is raised by the detector.

D. Ordinary Attack Detector

To distinguish the existing attack detector deployed on

CPSs with our hidden attack detector, we call them ordinary
attack detectors. Note that a powerful adversary with full

knowledge of ordinary detectors can build a hidden sensor

attacks. We divide these ordinary attack detectors into three

categories according to the size of the detection window: long-

memory, short-memory, and memory-less detectors. Long-

memory detectors take all historical data into account, such as

CUSUM statistic; short-memory detectors monitor data within

a certain detection window; Memory-less detectors check only

current system states or sensor measurements.
1) Long-Memory Detectors: The CUSUM (cumulative

sum) statistic is a long-memory attack detector, which com-

putes the CUSUM score s by comparing the state estimates

with expected states over time.

We use st ∈ R
n to denote the score at control step t. The

update policy for the score is described as:

st+1 = (st + |rt| − b)+, (1)

Fig. 1: The overview of system design

where a+ means max(0, a), bi > 0 is a parameter representing

the drift that can avoid the increasing of CUSUM score when

there is no attack. That is, b is a selected drift term to eliminate

the accumulated noise from raising false alarms [11], [24],

[32]. Further, rt represents the residual between state estimate

x̃t and expected state x̂t,

rt = x̂t − x̃t (2)

The prediction can be done by using the system dynamics.

Finally, under sensor attacks, an alarm will be raised whenever

the score in any dimension goes over the threshold, i.e., st >
τ , and the score will be reset to 0.

2) Short-Memory Detectors: Short-memory detectors mon-

itor residuals within a certain detection window with size w.

The sum of the residual within the window is denoted as

rsumt =
t∑

i=t−w

‖rt‖ (3)

Similarly, an alarm will be raised whenever the average

residual exceeds the threshold, i.e., rsumt > τ .

3) Memory-Less Detectors: Memory-less detectors only

check the current residual rt, and raise an alert when the

residual is larger than the threshold, i.e., rt > τ . In other

words, the memory-less detectors are a special group of short-

memory detectors where the window size is one.

III. OVERVIEW OF DETECTION FRAMEWORK

The detection system is divided into two parts, shown as

Figure 1. The ordinary attack detectors (Section II-D) identify

non-hidden attacks and raise a red alert, and this part has been

thoroughly studied by previous works [33], [34]. Thus, this

paper focuses on the second part (blue shaded box) to identify

potential hidden sensor attacks and raise a yellow alert by

checking the current system states. This part can find a safe

region of states for a system offline by the following steps.

First, it optimizes to find the minimum distance to unsafe at

a certain control step given a system and an observing time

window (Section IV). Then, it can find the optimal hidden

attack in this system within the observation time by solving

the optimization problems with all possible control steps when

the attack achieve the largest deviation (Section IV-C). If

the optimal hidden attack cannot drive the system to unsafe

state within the observation window, then the current system



state is conditionally safe. Finally, our framework heuristi-

cally searches for all conditionally safe states to obtain the

conditionally safe region (Section V). When the system runs

online, it checks the location of the current system states. The

hidden attack detector will raise the yellow alert to hint a

potential hidden sensor attack if the system states move out

of the conditionally safe region.

IV. THE OPTIMAL HIDDEN ATTACK AGAINST GENERAL

SCENARIOS

In this section, we show that optimal hidden attack (OHA)

is well-defined for general control systems and propose an

optimization-based method to find the OHA for a cyber-

physical system given the current state.

A. Assumptions and Problem

We have the following assumptions:

1) The sensor attack happens on a known control system

ẋ = f(x, u), which takes a finite change in every

dimension of state per unit of time, i.e. |ẋ| ≤ Δx where

the ≤ is dimension-wise.

2) The system is equipped with a state estimator to pre-

dict state x̂ by roll-forwarding from a (not necessarily

trustworthy) cached state on dynamics f .

3) The system is equipped with a detector g(x̃, x̂), with a

state estimation and a physical measurement as input.

An attack is detected at time t on g(x̃t, x̂t) ≥ 0.

4) Control signal u is bounded inside the interval [u, u].
5) An unsafe state space is given in form of a Cartesian

product of half spaces in every state dimension. That is,

for n-dimensional state space, the unsafe set U takes the

form of Equation (4).

U = U [1]× U [2]× · · · × U [n] where

U [i] = (−∞, xb[i]] or U [i] = [xb[i],∞) for i = 1, . . . , n
(4)

For arbitrary dimension i, we aim to find a conditional safe

region (CSR) that is a subset of the state space, such that no

matter what hidden sensor attack is applied, the system cannot

reach the unsafe set within a time period T . If the CSR of every

dimension can be computed offline, then during runtime, the

system is able to query whether the current state is within the

CSR - if not, we raise a yellow alarm. Our approach is to

search for the worst-case scenario of each dimension i, where

the hidden attack that drives the state closest to (or deepest

in) U [i] is computed. We denote this hidden attack as optimal

hidden attack (OHA), from which the corresponding CSR can

be found.

B. Optimal Hidden Attacks

To define an OHA, we start from a motivating example.

Here, a vehicle is turning on a road, with a one-dimensional

state x, representing its speed in meters per second, and a

one-dimensional control variable u, representing the voltage

difference between its two motors in volt. The system dy-

namics is given by ẋ = −25
3 x + 5u. The vehicle will be in

danger if its speed is too high, particularly with an unsafe set

U = {x | x > 1.26}. Aiming for unsafe, a malicious attack

is injected to the vehicle’s sensor at t = 8.00. As shown in

Figure 1, there is an attack (marked as optimal) that drives

the system state closer to the unsafe region than others within

time period [8.00, 10.00]. To secure a system from undetected

attacks, we must consider the worst-case scenario, where the

distance of state to unsafe is minimal. Therefore, we need to

define optimal hidden attacks from this idea.

Fig. 2: Motivating example

A prerequisite to define OHAs is to formalize the distance

metric from a state to an unsafe set U , which may span

across multiple dimensions. A state within the unsafe set

indicates something disastrous happens. For example, for an

unmanned aerial vehicle (UAV), negative height values are

unsafe, which means the UAV crashes into the ground; for a

nuclear fuel element, the temperatures exceeding its melting

point are unsafe, indicating a core meltdown accident.

Notice that in dynamics, each dimension can have very

different physical meanings, such as length and mass, with

different units, such as meters and kilograms. Therefore, it is

difficult to minimize a cross-dimensional distance metric, e.g.,

L2-norm. We hence use a per-dimensional approach, finding

OHAs with respect to each distinct dimension of a system as

follows.

Definition IV.1 (Distance from a State to Unsafe). For an n-
dimensional state x ∈ R

n and an unsafe set U ⊂ R
n, the i-th

dimension of x is x[i] ∈ R, while the i-th dimension of U an
interval U [i] = (−∞, xb[i] or [xb[i],∞). We then define the
distance from x to U in dimension i as

dist(i)(x, U) =

{
|x[i]− xb[i]| if x[i] /∈ U [i]

−|x[i]− xb[i]| otherwise
(5)

In other words, if the state is outside of the unsafe set, its
distance is how far away it is to the boundary. Otherwise, if
it is inside, the distance is the negation of depth.

From the per-dimensional definition of distance, we can then

define an OHA at a given dimension for a given period of time

T . Denote actual states as x, observed states (under attack) as

x̃ and control signals as u.



Definition IV.2 (Optimal Hidden Attack). Let ẋ = f(x, u) be
a control system of n dimensions, with state space X ⊆ R

n.
Assume we have the knowledge of an unsafe set U ⊂ X . An
optimal hidden attack OHA[i] of dimension i at time ta for
a period T is a sensor attack injected at ta that minimizes
dist(i)(x, U) during an observation period [ta, ta + T ]. The
attack is hidden, such that every sensor measurement during
the attack period bypasses a detector g. That is, g(x̃t, x̂t) < 0
for all t ∈ [ta, ta+T ]. In other words, no other attacks starting
at ta can drive the system state’s i-th dimension closer to
unsafe than this attack and still remain hidden.

Based on the definition, we can obtain the following theo-

rem that states the existential property of OHA.

Theorem IV.1 (Existence of OHA on General Systems). We
have a general control system ẋ = f(x, u), with a dimension-
wise upper-bounded as |ẋ| ≤ Δx. At any instance ta of its
runtime, if there exists a hidden attack on dimension i, then
there exists an OHA on that dimension with respect to an
unsafe set U [i] and an observation period T .

Proof. Without loss of generality, we let the time step be 1,

i.e., |xt+1 − xt| ≤ Δx. At time ta, given the upper bound in

dimension i, we have

|xa+1[i]− xa[i]| ≤ Δx[i].

This inequality also applies to any time step in [ta, ta+T−1],
and by summing both sides of all these inequalities together

throughout the period T , we obtain

ta+T−1∑
t=ta

|xt+1[i]− xt[i]| ≤ TΔx[i].

Then, with triangle rule of distance metrics,

|xa+T [i]− xa[i]| ≤ TΔx[i].

Therefore, no matter the system is under what sensor attack,

its dynamics only allow a finite distance away from xa[i] at

dimension i after T steps.

Based on this fact, the metric dist(i)(xa+T , U) must be

finite based on its definition, and therefore it must have a

minimum. Denote this lower bound as d. Consequently, given

hidden attacks exist, there is at least one hidden attack that

gives the smallest dist(i)(xa+T , U) ≥ d, and this is the

OHA.

We can assume this upper bound in change of state per

time step because most systems have inertia. For instance, the

motivating example in Section IV-B shows a linear relationship

between the acceleration ẋ and the speed x. Since the law

of physics upper bounds the speed, the acceleration is also

upper-bounded. In a more general sense, there exist dynamical

systems that do not abide by inertia, but these are not our

focus.

The metrics to evaluate attack detectors, such as accuracy

and recall rate, are not suitable for hidden attacks includ-

ing OHA, because they remain undetected. We can use the

maximal state deviation from reference (or target) states xr

within observing time T to evaluate the effectiveness of hidden

attacks. For example, a vehicle running the cruise control task

on road suffers from hidden sensor attacks. Although attacks

are undetected, for given T = 30 seconds, an attack that

caused more speed deviation from target speed in these 30

seconds is more powerful. Note that, the observing time T is

user-given, and provide a cushion time for system to handle

potential attacks.

C. Searching for Optimal Hidden Attacks

In order to understand what is the worst-case scenario of a

system during a period of time, we need to compute the OHA

efficiently. Therefore, we construct an algorithm to search

for OHAs. For simplicity, we first assume the largest state

deviation happens at a fixed time instance tc ∈ [ta, ta+T ], or

equivalently step c in the observation period. We formulate an

optimization problem to find the corresponding measurement

sequence x̃1, x̃2, · · · x̃c desired by an attacker. The initial time

is denoted as t0 = ta, and the observing period length is T .

Thus, the objective is to minimize dist(i)(xc, U) at tc, with

the actual state xc at time tc and given U and i, under the

following three constraints:

1) System dynamics. The state estimator takes in the mea-

surement at a time step and predicts the next state

based on system dynamics. Here, we use the equivalent

discrete dynamics as constraint, i.e.

x̂t = f(x̃t−1, ut−1). (6)

2) Hidden constraint. The detector g must output a value

smaller than 0 starting from ta. It makes sure the attack

can not trigger an alert from the attack detector.

g(x̃t, x̂t) < 0 (7)

3) Control limits. It is usually determined by the physical

properties of the actuator. For example, the maximum

inflow of a water pipe is 0.05 meter3/sec, so the inflow

is within the range [0, 0.05]. Formally,

u ≤ ut ≤ u (8)

We solve this optimization problem for an attacked mea-

surement sequence affected by sensor attack. The sequence

leads to the minimal dist(i) at time tc.

Next, we lift the assumption that minimal dist(i) happens

at a specific time tc. Now we do not know at which step in

[ta, ta+T ] the attack achieves the smallest distance to unsafe

set. Thus, we need to solve multiple optimization problems as

above, with tc varying in ta, ta + 1, · · · , ta + T . The entire

algorithm is shown in Algorithm 1. Note that at Line 3, we

formulate an optimization problem m as Equation (9).

minimize dist(i)(xc, U)

subject to

c∧
t=0

(
(6) ∧ (7) ∧ (8)

) (9)



with the corresponding three constraints (6), (7) and (8). Then,

at Line 5-7, we update the solution to the one with the smallest

objective dist(i). Based on this algorithm, if we obtain the

same minimal objective at multiple tc, we pick the earliest tc.

That is, the OHA needs to do its damage as early as possible.

Algorithm 1: OHA search for general system

Input: x0, U , i, f , g, u, u, T
/* x0: system state at time t0 = ta */
/* U: unsafe set */
/* i: dimension to optimize attack */
/* f: system dynamics */
/* g: detector statistics function,

g ≥ 0 means attack is detected */
/* u,u: control limits */
/* T: observation period length */
Output: opt seq, opt d
/* opt_seq: the optimal attacked

measurement sequence x̃1, x̃2, · · · x̃c */
/* opt_d: minimal dist(i)(xc, U) */

1 opt seq ← ∅, opt d ← ∞
2 for tc ← 1 to T do
3 Formulate problem m as Equation (9)

4 obj, seq ← m.solve()
5 if obj < opt d then
6 opt d ← obj ; // objective value
7 opt seq ← seq ; // opt. var.

D. OHAs on Linear and Convex Systems and Detector Statis-
tics

Algorithm 1 provides a scheme to search for OHAs, assum-

ing we have a fixed trustworthy initial state x0 = x̃0, and such

that we are able to obtain ground-truth xc by roll-forwarding

on f for arbitrary c ≥ 0. Nevertheless, each optimization

problem m can be hard to formulate and solve in general,

and the bottlenecks are the system dynamics constraint f and

the hidden constraint g. Fortunately, we can leverage linear

programming (LP) and convex optimization (CVXOPT) for

linear and nonlinear but convex control dynamics and detector

statistics. The relevant analysis is detailed in the proofs of

Theorem IV.1 and IV.2. We note that whether an efficient

search algorithm exists for other systems remains an open

question.

Lemma IV.1 (OHA Search on Linear Systems). Searching for
an OHA in a system with linear dynamics, control function and
detector statistics can be formulated as a linear programming
problem.

Proof. Consider a discrete linear time-invariant (LTI) system

as Equation (10).

f(xt, ut) := xt+1 = Axt +But + c (10)

where A and B are state and input matrix, representing how

next state evolves with the current state and control input, and

c is a drift of proper dimension. The system also has a linear

function to compute control input from estimated states as

ut = Dx̃t + e (11)

where D is a linear coefficient and e is an offset of proper

dimension. So the system dynamics becomes a linear function

of the actual and estimated states only, i.e.,

x̂t+1 = Ax̃t +B(Dx̃t + e) + c (12)

Next, a linear detector function g means that the detector

statistics constraint is in some linear form

g(x̃t, x̂t) := F x̃t +Gx̂t − τ < 0 (13)

where F and G are linear coefficients and τ is the detector

threshold of proper dimensions, usually a scalar. Combining

everything together, we have the following optimization prob-

lem m:

minimize dist(i)(xc, U)

subject to

c∧
t=0

(
(12) ∧ (13) ∧ (8)

) (14)

Notice that the objective function is linear because at any

dimension i, either dist(i) = x[i]c − xb[i] or dist(i) =
xb[i]−x[i]c, and all the constraints are linear. Therefore this is

a linear programming problem and there exist efficient solvers

such as GLPK, MOSEK and CONELP [35].

The vehicle turning example in Section IV-B lies in this

category. It has only one dimension, and the objective func-

tion for each problem is xb − xc, with xb = 2.7, based

on our definition of dist(i). Without loss of generality, we

can consider an infinite-horizon, discrete-time linear–quadratic

regulator (LQR) controller, i.e.

ut = e−K(x̃t − x∗). (15)

where e is a constant reference control signal, x∗ is a constant

reference state, and K is the cost coefficient. Next, we can

use CUSUM detector as in Section II-D1 with a threshold τ
and a drift d. The attacker subtracts some value from sensor

measurement to enlarge the actual system state. To inject more

attack, the drift is smaller than the residual, and St+ |rt|−b ≤
0. The opposite situation can be analyzed in a similar way.

Consequently, in the vehicle turning system, we can call

Algorithm 1 such that each optimization problem m is formu-

lated as follows.

minimize xb− xc

subject to

c∧
t=0

(
x̂t+1 = (A′ −B′K)x̃t +B′e+B′Kx∗)∧

c∧
t=0

( t∑
s=1

(x̂s − x̃s − d) ≤ τ
)∧

c∧
t=0

(
u ≤ e−K(x̃t − x∗) ≤ u

)



where the three constraints correspond to system dynamics,

hidden and control limit constraints.

We extend this conclusion for linear systems to convex

systems in Theorem IV.2.

Lemma IV.2 (OHA Search on Convex Systems). Searching
for an OHA in a system with convex dynamics, control
function and detector statistics can be formulated as a convex
optimization problem.

Proof. The proof is similar as for Theorem IV.1, except for

the system dynamics constraint and the hidden constraint are

convex instead of linear. Each optimization problem m can be

formulated as

minimize (9)

subject to

c∧
t=0

(
x̂t+1 = fcvx(x̃t, x̂t)

)∧
c∧

t=0

(
gcvx(x̃t, x̂t) < 0∧

c∧
t=0

(8)

(16)

where fcvx and gcvx are convex functions. Notice that this is a

convex optimization problem and there exists efficient solvers

such as ECOS [36] and OSQP [37].

One final remark is that all these optimization problems are

solved offline, before the system is running. Consequently, and

thus, their solving time and needed computational resources

can be considered not critical.

V. CONDITIONALLY SAFE REGION SEARCHING

In Section IV, we find the OHA of a dimension i given

the current state x0 for an observation period T . If this

OHA cannot drive the system state to unsafe state set at that

dimension within the period, we consider the current state

is conditionally safe, i.e., the system will be safe within the

observing time T if no alert is raised. This section presents our

main contribution on how we efficiently find the conditionally

safe region (CSR) with the knowledge of OHA only, regardless

of the system dynamics or detector.

A. Conditionally Safe Region

We first formally define a CSR of a control system f at a

dimension i within n-dimensional states.

Definition V.1 (Conditionally Safe Region (CSR)). Let ẋ =
f(x, u) be a control system of n-dimensional states. Its state
space is X ⊆ R

n and there is a pre-defined unsafe state
set U ⊂ X , the same way defined as in Equation (4). A
conditionally safe region of dimension i is a set of states
CSR[i] ⊆ X [i]−U [i], such that for all x0[i] ∈ CSR[i], there
exists no OHA[i] that can drive x[i] into U [i] in a period of
time T .

Fig. 3: Region demonstration for the ith state. xb[i] is the

boundary between safe and unsafe states, xs[i] is a known

conditionally safe state, and xc[i] is the boundary of condi-

tionally safe region to be searched.

Fig. 3 demonstrates the relationship between unsafe states,

safe states and CSR regions in the ith dimension of the state

space. Also, there is a clear boundary xb dividing states into

unsafe region and safe region, and xb[i] is the boundary for

the ith dimension of states. When we consider if the system

remains safe within an observing window T in the near future,

conditionally safe region comes in, and is marked as green. It

is a subset of safe region, and there is also a clear boundary

xc[i] of conditionally safe state within T for the ith dimension.

For example, a car runs below 40 miles/hour cannot exceed

a dangerous speed of 80 miles/hour within 2 seconds without

breaking thrust limit.

B. Searching for Conditionally Safe Region

The next task is to search for CSR, and we conclude the

following theorem.

Theorem V.1 (Efficient CSR Search). Given OHAs of each
dimension i, starting at every discrete runtime ta and lasting
for period T of a control system (with known detector, control
limits and unsafe set), we are able to efficiently compute CSR
of that system, regardless of the system dynamics.

Proof. We construct an algorithm that satisfies the require-

ments. The idea is to apply binary search on each state

dimension to find the boundary of conditionally safe state

region. The algorithm is shown as Algorithm 2.

In summary, this algorithm searches the boundary of con-

ditionally safe region xc[i] given the boundary of unsafe state

set xb[i] and a known state in conditionally safe region xs[i],
which can be the i-th dimension of the reference state of

a system. At Line 1, we initialize the xc using xs, so that

the initial pivot is in the conditionally safe region. Then, we

push the pivot towards the unsafe state region to find the

boundary. Specifically, at Lines 1-3, we initialize the lower

and upper bound of search range using xs[i] and xb[i]. Then,

at Lines 4-13, we search the boundary of conditionally safe

region in a binary search manner. At Line 7, the function

isConditionallySafe requests the cached knowledge of com-

puted from Algorithm 1 to check if the current pivot can be

driven to unsafe set given an OHA. If not, the pivot is in the

conditionally safe region and we continue to push the pivot

towards the unsafe region.



Algorithm 2: Conditionally safe region searching

Input: xb, xs ∈ R
n

/* n: number of state dimensions. */
/* i: dimension to find boundary. */
/* xb[i]: the boundary between safe and

unsafe states of dimension i. */
/* xs[i]: an existing state in

conditionally safe region of
dimension i. */

Output: xc[i] ∈ R

/* xc[i]: the boundary of the
conditionally safe region of
dimension i */

1 xc[i] ← xs[i] // init. xc[i] using xs[i]
2 lo ← xs[i], hi ← xb[i] // init. range
3 lcs ← xs[i] // last conditionally safe
4 do
5 r ← hi− lo // search range
6 xc[i] ← lo+ r/2 // pivot
7 if isConditionallySafe(xc[i]) then
8 lo ← xc[i] // towards unsafe
9 lcs ← lo // keep last con. safe

10 else
11 hi ← xc[i] // towards safe

12 xc[i] ← lcs // conditionally safe
13 while r > vmax // term. conditions
14

Algorithm 2 outputs the CSR of dimension i from the

boundary computed. For all dimensions, we call this algorithm

and the final CSR is the Cartesian product

CSR = CSR[1]× CSR[2]× · · · × CSR[n] (17)

C. Time Complexity

The proposed method has two phases: Algorithm 1&2

generates a CSR reference table offline, and the detector

queries the table online. The offline phase solves O(nT log1/ε)
times of LP, where n, T , and ε are the number of dimensions

of system state, user-given time horizon, and precision term

in Algorithm 2, respectively, which is pseudo-polynomial.

VI. EVALUATION

In this section, we validate the theoretical analysis results

above with four linear simulators of CPS and provide detailed

experimental result analysis.

A. Simulation Setting

1) Experimental Setting: The experiments were imple-

mented on a PC with 32GB memory and an Intel(R) Core(TM)

i7-10700KF 3.80GHz CPU. All the optimization results were

produced by the GLPK solver and CVXOPT library [38] in

python.

2) Simulators: The proposed analysis is performed on

vehicle turning, DC motor position, RLC circuit and quadrotor.

We can obtain the linear ordinary difference equation (ODE)

by system identification from a real system.

Vehicle Turning. The vehicle turning simulator models a vehi-

cle’s steering behaviour, which changes the voltage difference

of two motors u to adjust their speed difference x. The ODE of

this system can be found in [9]. RLC circuit. The RLC circuit

formed by a resistor, an inductor, and a capacitor connected

in series controlled by the voltage source u. x[1] represents

the voltage across the capacitor and x[2] denotes the current

in the circuit. The system dynamics can be found in [39]. DC
motor Position DC motor position simulator models a motor

shaft behaviour, which change the voltage of the motor u to

keep the rotation angle of the motor shaft x[1], we also have

another state x[2] which is the rotary angular velocity. The

details of system model for DC motor position can be found

in [40]. Quadrotor This simulator shows how the altitude is

affected by the thrust force. This benchmark has a total of 12

states: (x, y, z) and (φ, θ, ψ) denote the linear and the angular

positions, (u, v, w) and (p, q, r) are the linear and angular

velocities. The ODE can be found in [41].

3) Attacks and detector settings: Attack happened at 8

seconds for vehicle turning, RLC and quadrotor, and each time

step is 0.02 seconds, and for DC motor position it happens at

100 seconds and each time step is 0.2 seconds, the future

horizon is 100 steps. The CUSUM attack threshold was set

to 5, drift was set to 0. For geometric attack, the parameter

α was set to 0.75, and the β parameter was set to 0.85 for

vehicle turning. And the α and β was set to 0.7 and 0.8 for

DC, RLC and quadrotor. The upper bound and lower bound

of the control inputs for vehicle turning are [−1, 2.35], and

the upper bound of control inputs for RLC was set to 4.6, the

upper bound of control inputs for DC was set to 1.66, the upper

bound of the control inputs for quadrotor was set to 6.95. The

setting of the LQR controller Q and R matrix is trivial, both

of them are set to identity, for quadrotor benchmark, the gain

matrix is obtained by decouple methods adapted from [41].

4) Baseline Hidden Sensor Attacks: We consider frequently

used hidden attacks from [24], [27] as our baselines. The

observing window is T , the initial attack time is t1, and the

final attack time should be t1 + T .

Surge attack Surge attacks maximize the statistic score as

soon as possible, and then keep the statistic score at the

threshold level, i.e., s = τ , after the statistic score reaches

the threshold. A greedy surge attack is given in [24], and the

attack is given as follow:

x̃t =

{
xt ± (τ + b − st−1) if t = t1

xt ± b otherwise

The statistic score S reaches the threshold at the first step,

and then offset the predicted state by a drift b at the following

steps.

Bias attack A bias attack that try to falsify the system

measurements discretely by adding small perturbations over



a period of time. Without loss of generality, the perturbation

was unified for each step and can be formed as follow [27]:

x̃t = xt ± (τ/T + b)

where T is the observing window size.

Geometric attack A geometric attack will attack the system

smoothly at the beginning and surge the attack at the last

several steps [27]. To be noticed, there are 2 hyper parameters

α and β in the design of the geometric attack and we can

have infinite number of combinations of α and β. The design

of geometric attack is given as follow [27]:

x̃t = xt ± (βαT−t + b)

subject to
T∑

t=1

βαT−t − nb = τ (18)

Any combination of α and β satisfied equation 18 was a

feasible geometric attack.

B. Long-memory Detector Attack Effect

Fig. 4 showed the system states that have been attacked by

the optimal attacks generated by Algorithm 1. There are three

important observations to be noticed: First, the optimal attack

always caused minimum distance to unsafe set compared to the

three baseline hidden attacks on the four systems. It is obvious

the maximum of the orange curve is greater than that of other

curves. Secondly, the optimal hidden attack could have same

distance to unsafe set as other hidden attacks. In other words,

the optimal hidden attack generated by Algorithm 1 could be

identical to the three baseline hidden attacks on some settings.

We can see the optimal hidden attack has the same pattern as

surge attack on DC Motor system. Thirdly, the trend of the

attacked state by optimal hidden attack may not be monopoly.

For example, the vehicle turning example showed a two-step

trajectory before reaching the maximum, our optimization

problem has no constraints about the monotonous property.

Because the unsafe set for vehicle turning is a halfspace

(1.26,∞), therefore, since the OHA causes the maximum

deviation, it has the minimal distance to the unsafe region.

C. Short-Memory Detector Attack Effect

In this subsection, to evaluate Algorithm 1, we show the

optimal hidden attacks for detectors with various detection

window size. The observations are similar to that from long-

memory detectors. Cross each column in Fig. 5, we can see

the window size does not affect one fact: Our optimal hidden

attack always has the maximum deviation. Another observa-

tion is the trajectory of system under short-memory detector

protection attacked by hidden attack may have multiple peaks

as shown in the vehicle turning column. We only care about

the highest peak from all the peaks according to our problem

statement in section IV. Another observation to be noticed is

the window size does not affect the maximum deviation too

much. Compared the different size detection window results of

the four systems, we can see the maximum deviation of them

are not far from each other. Furthermore, there might be some

slight errors come from the solver and precision. For example,

on the DC motor column, we see the surge attack trajectory is

slightly over the optimal hidden attack trajectory of window

size 50 and 75. The state reaches the minimal distance at the

last step for the 4 systems with every listed window size.

D. Earliest Attack

In Algorithm 1, we compute the OHA in a loop of every

step in the future. In other words, at each step, the distance

from attacked state to the unsafe set is the objective of the

optimization problem. Therefore, we can guarantee our OHA

is the earliest one from the solutions found at each step in the

loop. Fig.7 showed the results of OHA and sub-optimal attacks

on the systems using long-memory detectors, there are two

observations to be noticed. The plot for Vehicle Turning clearly

demonstrates that the optimal attack reaches the maximum

devaition before suboptimal attacks. It is the fastest attack. In

the plot for RLC, the suboptimal attacks are on a tracjectory

to the maximum devaition but will only reach them after the

simulation time. Thus, here too, we see that the optimal attack

which reaches the maximum deviation just at the end of the

simulation is the fastest attack. In the DC motor and quadrotor,

the optimal and suboptimal attacks behave similarly. First,

there might be several sub-optimal attacks that can reach the

maximum deviation, but the OHA has the earliest time to reach

it compared to other sub-optimal attacks. We can see from the

vehicle turning results, the OHA reach maximum deviation at

the 22nd time step, and sub-optimal attacks reach it at 24th,

26th, and 28th time step. Secondly, it is possible that the OHA

will reach maximum deviation at the last step, then other sub-

optimal may not reach maximum deviation as showed in the

RLC, DC motor and quadrotor results.

E. Conditionally Safe Region

Fig. 6 showed the conditionally safe region searching pro-

cess. The dashed line showed the unsafe boundary for each

system, for vehicle turning, the unsafe set is x[1] ∈ (1.26,∞).
Similarly, the unsafe set of RLC circuit is x[1] ∈ (4.17,∞),
the unsafe set for DC motor is x[1] ∈ (4.56,∞), x[−1] ∈
(21.94,∞)the unsafe set for quadrotor is . And CSR for

vehicle turning is x[1] ∈ (−∞, 1], CSR for RLC circuit is

x[1] ∈ (−∞, 3], CSR for DC motor is x[1] ∈ (−∞, π2 ],
CSR for quadrotor is x[−1] ∈ (−∞, 1.5]. The colored regions

were the unsafe, safe and conditional safe region on the

corresponding dimension of the four systems. And the colors

are refer to that in Fig. 3. There are three observations to be

noticed: First, if the start state is out of CSR, there exists at

least one OHA which can drive the system to touch unsafe.

This could be seen from the red curves in Fig. 6. Secondly, if

the start state is in CSR, there is no attack that can drive the

system to unsafe in the given future without noticed by the

detector. Thirdly, OHA with different start states can reach the

maximum deviation at the same time step, but the trajectories

are not parallel due to the system dynamics. For example, all

the 3 OHAs in vehicle turning example reach the maximum



Fig. 4: Plot of attacked state against time for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right)

and Quadrotor(right) systems using long memory detectors.

Fig. 5: Plot of attacked state against time for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right)

and Quadrotor(right) systems using short memory detectors of window sizes 5 (first row), 20 (second row), 50 (third row),

and 75 (last row).

deviation at 22nd time step. And the OHAs for RLC, DC

motor and quadrotor reach it at the last time step. For example,

when the vehicle turning system is running in real-time, when

the speed difference is over 1, there will be a yellow alert

raised, if the attacker inject OHA to our system, after 22 time

steps, the system will be drive to unsafe. In other words, the

system is notified 22 time steps ahead.

F. Scalability Analysis

In this subsection, we examine the scalability of our method

in terms of three parameters: (1) the number of system states,

(2) the precision and (3) the time horizon. The number of states

of the 4 benchmarks are 1, 2, 3 and 12, the horizon range is

[20, 200] and the precision term (lower means higher precision)

range is [0.009, 0.5], with lower value means higher precision.

Long represents the long-memory detector, and the numbers

5, 20, 50, 75 represent the window size of the short-memory

detectors. It is possible to have a longer time horizon, but the

current range is sufficient to show a trend .

Since querying the table takes O(1) time which is trivial,

we focus on the offline computation time in this subsection.

We run the experiments on the 4 benchmarks on the same

settings. The results are shown in Table II which contains 2

parts: The upper part is the running time to find a single OHA,

and the bottom part shows the running time to find the CSR.

For consistency, we set the time horizon as 100, which is on

the same settings for the experiments in the section VI. There

are 4 main observations from Table II:

1) The offline running time of our method is acceptable for

large systems. The highest running time for each bench-

mark was highlighted. For example, for the quadrotor

benchmark which has 12 states with 100-step horizon

and 0.009 precision, the running time is around 80-

90 seconds to find the CSR for one dimension which

is reasonably short for offline computation. And the

running time is around 6-9 seconds to find an OHA with

the same setting.

2) The searching time for CSR increases with higher

precision, since there might be more iterations in the



Fig. 6: Plot of CSR searching process for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right) and

Quadrotor(right) systems using long memory detectors. The red region is the unsafe set on the shown dimension, the green

region is the CSR on the shown dimension, the blue region is the safe region of the shown dimension

Fig. 7: Plot of optimal attack (also fastest attack) alongside suboptimal (slower) attacks against time for Vehicle Turning (left),

RLC (second to the left), DC Motor (second to the right) and Quadrotor(right) systems using long memory detectors.

VT RLC DC QD
Horizon Long 5 20 50 75 Long 5 20 50 75 Long 5 20 50 75 Long 5 20 50 75

20 0.34 0.32 0.33 0.34 0.32 0.38 0.38 0.41 0.37 0.38 0.38 0.36 0.37 0.36 0.36 0.26 0.27 0.26 0.26 0.26
50 0.36 0.31 0.33 0.35 0.34 0.55 0.51 0.50 0.54 0.53 0.57 0.57 0.51 0.55 0.56 0.84 0.75 0.83 0.85 0.87
100 0.36 0.27 0.43 0.40 0.43 1.01 0.76 0.74 0.90 1.17 1.74 0.99 1.06 1.91 2.29 6.19 6.69 6.96 7.89 8.64
200 2.96 1.45 1.56 2.33 3.31 12.8 2.29 2.41 2.88 9.58 23.0 4.72 5.00 14.40 14.14 65.52 46.35 50.11 54.21 61.10

T=100 VT RLC DC QD
Precision Long 5 20 50 75 Long 5 20 50 75 Long 5 20 50 75 Long 5 20 50 75

0.5 0.34 0.20 0.25 0.41 0.37 0.79 0.34 0.38 0.45 0.58 4.59 1.62 1.80 4.26 2.87 6.58 6.82 6.02 6.89 6.01
0.1 0.34 0.20 0.24 0.44 0.36 2.01 1.01 1.07 1.45 2.06 10.70 1.61 1.81 4.22 2.89 6.65 6.96 6.37 6.95 6.34

0.09 0.34 0.20 0.23 0.39 0.36 2.06 0.92 0.99 1.32 1.92 10.53 4.03 4.40 10.48 22.08 6.59 6.87 6.74 6.82 6.42
0.05 0.34 0.21 0.25 0.41 0.37 2.08 1.03 1.04 1.35 2.14 10.58 3.59 3.99 9.89 22.05 33.26 24.59 26.88 29.61 30.45
0.02 0.34 0.21 0.25 0.41 0.38 2.09 1.02 1.12 1.45 2.17 13.49 4.69 5.12 13.32 22.10 58.97 48.98 58.85 56.74 59.93
0.009 0.34 0.21 0.25 0.41 0.38 2.17 1.09 1.20 1.53 2.19 19.63 4.76 5.13 12.33 22.08 85.08 77.39 79.21 71.98 86.48

TABLE II: Offline Running Time analysis results

main loop of Algorithm 2. However, a higher precision

does not necessarily mean a drop in time. For example,

the vehicle turning benchmark shows that no additional

iterations is required even with a change in precision,

because it achieves a small error in the first iteration.

3) Finding an OHA costs more time with a larger number

of system states. The time increment comes from the

solving time of the each optimization problem since

the problem size is increased. Comparing the single-

dimension vehicle turning benchmark and 12-dimension

quadrotor benchmark, the running time of finding an

OHA with a long-memory detector and 200-step hori-

zon, quadrotor benchmark’s running time is about 22

times to that of the vehicle turning benchmark.

4) When the horizon is getting longer, finding an OHA

costs more time. Referring to Algorithm 1, the time

increment mainly comes from 2 parts: the number of

optimization problems solved and solving time for each

optimization problem. Finding an OHA will need to

solve T number of optimization problems as Algorithm

1 line 2 shown. Also, each optimization problem takes

more time to solve since the number of variables in-

creases if the horizon is getting longer as Equation 9

shown. The size of the optimization problem does not

change no matter what kind of detectors are applied, but

the optimization solving time may vary.

The above observations from Table II point out that our

method is scalable, it is possible to be deployed on larger

system if there is a need. Furthermore, our method is capable

to find CSR with different levels of precision for users’ needs.

VII. DISCUSSION

In this section, we will discuss the challenges when applying

our method to non-linear systems. The discussion is from 3

perspectives: convexity, sparsity and the exponential explosion

of the objective. In the end, a possible solution to handle these

challenges will be discussed.

A. Sparsity

If the optimization problem is linear, the solver does not

suffer from the sparsity since we can use simplex method to

get the solutions efficiently [42]. Since we have three kinds of

constraints in our optimization problem, a system dynamics



constraint or a control limits constraint may only depend on

a few variables which make the optimization problem sparse.

Usually, interior-points are implemented in non-linear opti-

mization solvers to solve large, sparse optimization problems

[43]. However, there is a big problem: During the optimization,

implementing the interior-points method requires the Newton

’s method to find the solution. Since we have no guarantee for

the convexity of the problem, this method may not produce

an optimal attack.

B. Convexity

In section IV, we stated that the method is designed for

convex problems. Unfortunately, it is hard to find a convex

optimization problem for non-linear systems. For example,

if there are trigonometric functions in the system dynamics,

which is common if the system state is related to some angle

or angular velocity etc., then the problem is non-convex since

the second-order partial derivatives of the original function is

still trigonometric and cannot be non-negative. If the system

dynamics contains cubic or quadratic terms, the system is not

guaranteed to be convex, either. For example, consider a non-

linear system is as follows:

xn+1[1] = xn[2] + 0.1u

xn+1[2] = −xn[1] +
1

3
xn[1]

3 + xn[2] + 0.1u

There is a cubic term in the system model, so the system is

not guaranteed to be convex. If the optimization problem is

convex, the Hessian matrix should be positive semi-definite.

If the problem is non-convex, then there is no guarantee that

our method find the OHA since the solution might be a local

optimum instead of global. Then there is no guarantee that the

corresponding CSR is conditional safe.

C. Objective Explosion

The easiest non-linear optimization problem might be a

quadratic optimization problem. However, it is impossible

to have a quadratic optimization problem for a non-linear

system if the proposed framework was applied. By definition,

quadratic programming is trying to optimize the quadratic

objective function subject to linear constraints. If the system

is non-linear, the system dynamics constraints and hidden

constraints are no longer linear. Additionally, according to

Algorithm 1, the objective is searching for the minimum

distance to the unsafe region in the observation time T , and

the search space grows exponentially with number of time

steps. For example, considering a trivial non-linear system

that has a single state and single control input as follows.

xn+1 = x2
n + u

Therefore, when we are looking for the optimal solution at

the last several steps in the observation period, the exponents

of a few terms in the objective will become incredibly large

since we have a square in the system dynamics. It is studied

that deciding the non-negativity of a polynomial is NP-hard

if the highest order is greater than 3. This is because the

sum of squares property (SOS) is not satisfied, such that

there is no guarantee that the optimal solution can be find

in polynomial time [44]. Therefore, we are not able to find a

solution efficiently.

D. Possible Solution
Though we face the challenges discussed above, there

exist some possible solutions to apply our method to non-

linear systems. An intuitive method is linearizing a non-linear

system around its equilibrium points. Assuming a non-linear

system have three equilibrium points, then it is possible to

have three linearized the systems for the region around each

equilibrium points. For example, the trigonometric functions

in the system dynamics could be linearized when the system

states are closed to the equilibrium points. Then the non-linear

optimization problem was trivialized to three linear optimiza-

tion subproblems. Therefore, the above three challenges are

avoided. The approach seems promising, but raises several

interesting research questions. In particular, for some system

states between equilibrium points, different choices of the

subproblem to solve may lead to different OHA results. We

will explore this approach in our future works.
In summary, our proposed method is a general framework

to secure CPS from hidden sensor attacks. We also identified

several challenges that need to be solved before applying it to

non-linear CPS.

VIII. CONCLUSION

In this paper, we proposed a framework for hidden attacks.

Moreover, we proposed a definition of optimal hidden attacks

and an algorithm to find OHA. Furthermore, based on the

OHA, we proposed an algorithm to find CSR offline. We

evaluated our methods on four linear systems with various

window size for detectors. The experimental results show

that the OHA can achieve minimal distance to a pre-defined

unsafe set, and the CSR can notify the system in advance. We

also discussed the challenges of applying our method to non-

linear systems in terms of sparsity, convexity and objective

explosion. For future work, there are plenty of extension of

this paper. First, it is interesting to implement the linearization

solution for various non-linear systems. Secondly, it is possible

to solve more general problems if the method can be extended

to more complex unsafe sets such as strips or zonotopes.

Thirdly, another extension is to adapt our framework to

actuator attacks, which are also common in CPS.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and the

anonymous shepherd for constructive comments and being

with us along the revision process. This research was sup-

ported in part by NSF 2143256, NSF 2143274 and ONR

N00014-20-1-2744. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation (NSF), Office of Naval Research (ONR),

the Department of Defense, or the United States Government.



REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Design Automation Conference
(DAC). IEEE, 2010, pp. 731–736.

[2] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, 2011, pp. 163–168.

[4] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in The 28th International Conference
on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2008,
pp. 495–500.

[5] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9–20, 2017.

[6] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and
K. Venkatasubramanian, “Security of autonomous systems employing
embedded computing and sensors,” IEEE micro, 2013.

[7] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 41st IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2020.

[8] Y. Zhang and K. Rasmussen, “Detection of electromagnetic interference
attacks on sensor systems,” in IEEE Symposium on Security and Privacy
(S&P), 2020.

[9] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 22–31.

[10] F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical
Systems Security and Resilience (CPS-SR), 2019.

[11] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

[12] A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013, online; accessed May 2020.

[13] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer,
2013, pp. 55–72.

[14] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-
tion Conference. ACM, 2020.

[15] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2016, pp. 130–139.

[16] A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

[17] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security. IEEE, 2010, pp.
92–98.

[18] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1–29, 2014.

[19] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantar-
cioglu, “Security and privacy in cyber-physical systems: A survey of
surveys,” IEEE Design & Test, vol. 34, no. 4, pp. 7–17, 2017.

[20] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[21] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA), 2016, pp. 474–480.

[22] C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical
systems against stealthy deception attacks,” in 2013 American control
conference. IEEE, 2013, pp. 3344–3349.

[23] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA). IEEE, 2016, pp. 474–480.

[24] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1092–1105.

[25] R. Tunga, C. Murguia, and J. Ruths, “Tuning windowed chi-squared de-
tectors for sensor attacks,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 1752–1757.

[26] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

[27] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium
on information, computer and communications security, 2011, pp. 355–
366.

[28] Y. Mo and B. Sinopoli, “On the performance degradation of cyber-
physical systems under stealthy integrity attacks,” IEEE Transactions
on Automatic Control, vol. 61, no. 9, pp. 2618–2624, 2015.

[29] C. Murguia and J. Ruths, “On reachable sets of hidden cps sensor
attacks,” in 2018 Annual American Control Conference (ACC). IEEE,
2018, pp. 178–184.

[30] N. Hashemi, C. Murguia, and J. Ruths, “A comparison of stealthy
sensor attacks on control systems,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 973–979.

[31] N. Hashemi and J. Ruths, “Gain design via lmis to minimize the impact
of stealthy attacks,” in 2020 American Control Conference (ACC).
IEEE, 2020, pp. 1274–1279.

[32] A. A. Cárdenas, S. Radosavac, and J. S. Baras, “Evaluation of detec-
tion algorithms for mac layer misbehavior: Theory and experiments,”
IEEE/ACM Transactions on Networking, vol. 17, no. 2, pp. 605–617,
2008.

[33] C. Murguia and J. Ruths, “Characterization of a cusum model-based
sensor attack detector,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 1303–1309.

[34] P. Luo, T. A. DeVol, and J. L. Sharp, “Cusum analyses of time-interval
data for online radiation monitoring,” Health physics, vol. 102, no. 6,
pp. 637–645, 2012.

[35] B. Meindl and M. Templ, “Analysis of commercial and free and open
source solvers for the cell suppression problem.” Trans. Data Priv.,
vol. 6, no. 2, pp. 147–159, 2013.

[36] A. Domahidi, E. Chu, and S. Boyd, “Ecos: An socp solver for embedded
systems,” in 2013 European Control Conference (ECC). IEEE, 2013,
pp. 3071–3076.

[37] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[38] M. Andersen, J. Dahl, Z. Liu, L. Vandenberghe, S. Sra, S. Nowozin, and
S. Wright, “Interior-point methods for large-scale cone programming,”
Optimization for machine learning, vol. 5583, 2011.

[39] K. Astrom and R. Murray, “Feedback systems-an introduction for
scientists and engineers, version v 2.10 c,” 2010.

[40] K. Tan and Y. Li, “Performance-based control system design automation
via evolutionary computing,” Engineering Applications of Artificial
Intelligence, vol. 14, no. 4, pp. 473–486, 2001.

[41] F. Sabatino, “Quadrotor control: modeling, nonlinear control design, and
simulation,” Master’s thesis, KTH Royal Institute of Technology, 2015.

[42] R. H. Bartels and G. H. Golub, “The simplex method of linear program-
ming using lu decomposition,” Communications of the ACM, vol. 12,
no. 5, pp. 266–268, 1969.

[43] L. Lukšan, C. Matonoha, and J. Vlček, “Interior-point method for
non-linear non-convex optimization,” Numerical linear algebra with
applications, vol. 11, no. 5-6, pp. 431–453, 2004.

[44] D. Bertsimas and I. Popescu, “Optimal inequalities in probability the-
ory: A convex optimization approach,” SIAM Journal on Optimization,
vol. 15, no. 3, pp. 780–804, 2005.


