2022 IEEE Real-Time Systems Symposium (RTSS) | 978-1-6654-5346-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/RTSS55097.2022.00029

2022 |IEEE Real-Time Systems Symposium (RTSS)

Fail-Safe: Securing Cyber-Physical
Systems against Hidden Sensor Attacks

Mengyu Liu Lin Zhang Pengyuan Lu Kaustubh Sridhar
Syracuse University Syracuse University University of Pennsylvania University of Pennsylvania
mliu71@syr.edu Izhan120@syr.edu pelu@seas.upenn.edu ksridhar@seas.upenn.edu

Fanxin Kong

Syracuse University
fkong03 @syr.edu

Abstract—In Cyber-Physical Systems (CPS), integrating new
technologies that interact with and control physical systems raises
new security risks beyond the classical cyber security domain.
These risks motivated many attack detectors that focus on the
binary outcome. However, one pressing risk in CPS is hidden
sensor attacks that are well-designed by powerful attackers
who gained full knowledge of our systems and detector. The
hidden attacks inject such a small malicious signal into sensor
measurement that they can stay undetected but eventually lead
to a significant deviation. Thus, to secure the CPS, we propose
a detection framework to identify these sensor attacks that can
drive the system’s physical states to an unsafe state within a given
period, even if they are not detected. First, we solve optimization
problems to find the optimal hidden sensor attack that leads
to the minimal distance to a pre-defined unsafe state region
within an observation window for a given system and detector.
Then, based on this algorithm, we perform offline profiling to
search for a conditionally safe region, where the system states
are guaranteed to be safe within the observation window as long
as the detector does not raise any alerts. Finally, the framework
can online discover potential hidden sensor attacks that endanger
the system by checking if the current system state moves out
of the region and raising a yellow alert. The evaluation shows
that the optimal hidden sensor attack results in the minimum
distance to unsafe, within a given observation window among
existing hidden sensor attacks. We implemented our method on
four linear simulators to show the effectiveness of our method.
Additionally, we provided a discussion on the challenges of
applying the proposed method to non-linear systems.

Index Terms—hidden sensor attack, cyber-physical systems,
detection

[. INTRODUCTION

Cyber-physical Systems (CPS) hybridizes software compu-
tational processes and physical components in our daily life.
These systems convey life-critical functionalities such as smart
grids, manufacturing, and driverless vehicles [1]-[3]. There-
fore, unlike traditional software system malfunctions, there is a
significant problem that failures in CPS can potentially lead to
large financial loss, physical damages and can be life-critical.
Targeting this problem, researchers have striven for solutions
to secure CPS from faults and adversarial attacks [4]-[6].

CPS attacks target various components, including sensors,
controllers, actuators and communication channels. Among
these, sensor attacks maliciously modify sensory inputs and

Oleg Sokolsky
University of Pennsylvania
sokolsky @seas.upenn.edu

Insup Lee
University of Pennsylvania
lee@seas.upenn.edu

put the entire system at risk. One major reason that researchers
focus on sensor attacks is that they can be injected without
much expertise, via both non-transduction and transduction,
i.e. with and without a computer, respectively [7], [8], methods
that the traditional software security domain overlooks [9]-
[11]. For instance, an attacker can manipulate the GPS signals
of a yacht to drive it off a planned path [12] or cheat the wheel
speed sensors to interrupt a vehicle’s antilock brakes [13].
Upon an adversarially overwritten sensory input, the CPS
controller can misbehave and cause catastrophic results [14],
and these attacks will continue to co-evolve with the rise of
CPS autonomy.

Such emerging threats have motivated novel proposals
on sensor attack detection. On one hand, some researchers
identify anomalies by leveraging the correlation of redundant
sensors that measure the same physical variables [14]-[17].
The detection mechanism is therefore based on this correlation,
which can be broken by sensor attacks. However, this type
of detection method fails to find anomalous sensors uncorre-
lated to others. On the other hand, many researchers utilize
prediction from machine learning, pre-known dynamics, or
other techniques. These frameworks detect sensor attacks by
comparing sensor measurements with predicted values [18]—
[20] and raise a red flag upon a large residual between these
two. The residual can be tested through stateless methods,
such as Chi-Square, or stateful ones, such as cumulative
sum (CUSUM) which leads to a smaller deviation from the
expected states [21].

Despite the promising detectors such as CUSUM, hidden
sensor attacks can still bypass them and stay undetected,
because they are generated deliberately by the adversaries
with full knowledge of the system and deployed detector.
Thus, such sensor attacks have gained much attention from re-
searchers, who study them against cumulative sum (CUSUM)
or Chi-Square-based attack detectors in [22]-[25]. Note that
there is a similar notion of sensor attack, called stealthy
attacks, which is a superset of hidden attacks. According
to the definition of stealthy attack from [26], during the
stealthy attack, the squares of differences between the sensor
measurements and their estimation are not significant.

2576-3172/22/$31.00 ©2022 |IEEE 240
DOI 10.1109/RTSS55097.2022.00029
Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

Since the hidden sensor attacks are hidden from the detector,
traditional metrics to evaluate detectors, such as true positive
rate and Fl-score, are invalid. Instead, one viable approach
is to evaluate the worst impact caused by undetected attacks
under a certain detector. An example impact metric [24] is
defined as how much can the attacker drive variables of
interest in the process towards its intended goal. To forge a
worst case that maximizes impact metrics, researchers assume
an omniscient adversary to which our system and detector
parameters are visible, and then it operates one of the three
widely used hidden attacks - surge, bias, and geometric [27].
These three attacks are not necessarily causing the worst
case scenario for the system, based on their mathematical
definitions. We are motivated by the existence of an optimal
hidden attack for the adversary, which drives the system state
closest to, or deepest into the unsafe region, regardless of its
method.

Although many researchers have analyzed the impact of
sensor attacks in CPS such as [28]-[31], a clear understanding
of the following questions has not been addressed: (i) What is
an optimal hidden sensor attack that causes the worst impact
on state deviation? (ii) How can we defend against the optimal
hidden attacks to secure a CPS, since they are hidden from the
existing attack detector? We believe that understanding these
questions is a crucial step to secure the CPS even if the sensor
attacks are not detected.

In this paper, we investigate the two questions above. First,
we check the performance of frequently used hidden attacks
in literature, and observe that none of them can result in
the minimal distance to a pre-defined unsafe region for all
different systems with various attack detectors. Thus, we try
to formulate the attack-detection process as an optimization
problem to find the optimal hidden sensor attack that injects
false sensory data and drives the system states closest to
unsafe within an user-given time horizon on general dynamics,
controls and detectors. Particularly, we demonstrate such an
optimization problem can be solved efficiently as a linear
programming or convex optimization problem, respectively for
linear and convex dynamics, controls and detectors, such as
CUSUM. Then, based on the optimal hidden sensor attack, we
can conservatively analyze in which state region the system
keeps safe within a given period. The above procedures are
completed offline. At run time, if current states move outside
of the region searched, our detector raises a yellow” alert,
which indicates a potential hidden attack that can drive the
system to an unsafe state within the given period of time.
This “yellow” alert is auxiliary to the “red” alert raised by
an ordinary attack detector (such as CUSUM), with the latter
indicating an already happened sensor attack but giving us less
time to respond. Finally, we build four simulators to evaluate
our approach. The results show the optimal hidden attacks
perform no worse than other baselines, and the hidden attack
detector can help identify potential hidden sensor attacks.

Our contributions are as follows.

o« We present an optimization-based method to find the

optimal hidden sensor attack within a given period. We

241

show that this method is general to CPS, and can be
efficient for linear and non-linear convex systems.

We design an efficient search algorithm to find the
conditionally safe region given the optimal hidden sensor
attack. The region is a subset of state space, in which the
system remains safe within the given period as long as
the ordinary detector does not raise any alerts.

We build a hidden attack detector based on the con-
ditionally safe regions found and show its promising
performance in experiments.

The rest of this paper is organized as follows. Section II
presents the background and preliminaries. Section III de-
scribes the architecture overview of our attack detection
framework. Section IV formulates optimization problems to
find the optimal hidden sensor attack within a time period
given an initial state. Section V searches the conditionally
safe region for a system. Section VI validates the proposed
framework with four CPS simulators. Section VII discusses the
application of the proposed framework to non-linear systems.

II. BACKGROUND AND PRELIMINARIES
A. Notations

Notation Meaning

The system’s ground-truth states
State measurement by sensors
State estimation by computation
The control inputs

Observation window size
Detector threshold

Detector drift

Residual between X and X
CUSUM detector score

Unsafe set

Optimal hidden sensor attack
Conditionally safe region

(SR

Q
T
N

CSR

TABLE I: Notation table for the following sections

Table I lists the notations used in this paper. The bold text
represents a multi-dimensional vector, such as system states
and control inputs, and non-bold text represent a scalar value.
Moreover, we use subscripts to denote timestamped variables,
such as x; means system’s ground-truth state at timestamp {.
We also use square brackets to denote a specific dimension,
such as O H A[i] means the optimal hidden attack on dimension
i. One remark is that, without loss of generality, we assume
the system state is fully observable, i.e. ¥ and x are in the
same state space.

B. System Model

The CPS model considered in this paper is a physical
process, also called a plant, controlled by a computer program
or controller. The controller operates at every constant time,
called a control step. At the beginning of each step t, the
controller reads sensor measurements and computes the state
estimate of the plant, represented by the values of a set of
real-valued variables ¥, = {Z[1l]¢,...,Z[n]:}, where n is the
number of states in the system. Then, it generates the control

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

inputs u; = {u[l];,...,u[m];} based on the control algorithm,
where m represents the number of actuators. Generally, the
control algorithms can be represented as a function. Then,
actuators carry out the control inputs to drive the system to a
reference or target state. For ease of presentation, we assume
that the plant is fully observable to the sensors, i.e., all state
estimates can be obtained from sensor measurements. Note
that there are three types of states in the paper: (1) actual
physical states, denoted as x, are real states of the system,
(2) measured states from sensors, denoted as X, which might
be attacked and do not have to follow dynamics f, and (3)
estimated states, denoted as X, are computed from previous
measurements through f. In short expressions, the actual state,
expected state, and state estimate at time ¢, are also expressed
as Xy, Xj, and X, where k € Ny means control step number.

C. Threat Model

We consider sensor attacks, which alter sensor measure-
ments sent to the controller. That is, an attacker can manipulate
the state estimates X computed by the controller. Generally, the
attacker can affect all n state estimates, or part of them.

Moreover, to derive and analyze the optimal hidden sensor
attack, we consider a strong adversarial model, which makes
sure the sensor attacks can bypass or escape from detection,
i.e., hidden sensor attacks, and deviate the system states farther
from reference states. To be more specific, the attacker has full
knowledge of

o the control program or control logic. The attacker can
predict the control inputs u generated by the controller
given current state estimates.

o the system model used by the detector. The attacker can
compute the expected states x predicted by the detector
given control inputs.

o the attack detection method and its parameter settings.
The attacker can forge malicious attack payload carefully
so that no alert is raised by the detector.

D. Ordinary Attack Detector

To distinguish the existing attack detector deployed on
CPSs with our hidden attack detector, we call them ordinary
attack detectors. Note that a powerful adversary with full
knowledge of ordinary detectors can build a hidden sensor
attacks. We divide these ordinary attack detectors into three
categories according to the size of the detection window: long-
memory, short-memory, and memory-less detectors. Long-
memory detectors take all historical data into account, such as
CUSUM statistic; short-memory detectors monitor data within
a certain detection window; Memory-less detectors check only
current system states or sensor measurements.

1) Long-Memory Detectors: The CUSUM (cumulative
sum) statistic is a long-memory attack detector, which com-
putes the CUSUM score s by comparing the state estimates
with expected states over time.

We use s; € R™ to denote the score at control step ¢. The
update policy for the score is described as:

sey1 = (s¢+ [rdl = b)7,

()

242

Yellow
Alert

T
L&y
State Predictor
&y = f(Ze-1, 1
X

Offline Safe Region Analysis |—3afe Region
Hidden Attack
L] Detector
]
IEX

| Online State Region Locator Current Region
@1 | Residual Generator
) =& — &y

Nt
‘ Ut—1
Physical Plant ‘

T Ut
$ Sensor }—’[Controller ‘\ } Actuator } }
i I

Fig. 1: The overview of system design

Red
Alert

Ordinary Attack
Detector

where at means maz (0, a), b; > 0 is a parameter representing
the drift that can avoid the increasing of CUSUM score when
there is no attack. That is, b is a selected drift term to eliminate
the accumulated noise from raising false alarms [11], [24],
[32]. Further, r; represents the residual between state estimate
Xx; and expected state X,

=% —X;

2

The prediction can be done by using the system dynamics.
Finally, under sensor attacks, an alarm will be raised whenever
the score in any dimension goes over the threshold, i.e., s; >
7, and the score will be reset to 0.

2) Short-Memory Detectors: Short-memory detectors mon-
itor residuals within a certain detection window with size w.
The sum of the residual within the window is denoted as

t

= > lrl

i=t—w

rpem 3)
Similarly, an alarm will be raised whenever the average
residual exceeds the threshold, i.e., r{“™ > 7.

3) Memory-Less Detectors: Memory-less detectors only
check the current residual r;, and raise an alert when the
residual is larger than the threshold, i.e., r, > 7. In other
words, the memory-less detectors are a special group of short-
memory detectors where the window size is one.

III. OVERVIEW OF DETECTION FRAMEWORK

The detection system is divided into two parts, shown as
Figure 1. The ordinary attack detectors (Section II-D) identify
non-hidden attacks and raise a red alert, and this part has been
thoroughly studied by previous works [33], [34]. Thus, this
paper focuses on the second part (blue shaded box) to identify
potential hidden sensor attacks and raise a yellow alert by
checking the current system states. This part can find a safe
region of states for a system offline by the following steps.
First, it optimizes to find the minimum distance to unsafe at
a certain control step given a system and an observing time
window (Section IV). Then, it can find the optimal hidden
attack in this system within the observation time by solving
the optimization problems with all possible control steps when
the attack achieve the largest deviation (Section IV-C). If
the optimal hidden attack cannot drive the system to unsafe
state within the observation window, then the current system

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

state is conditionally safe. Finally, our framework heuristi-
cally searches for all conditionally safe states to obtain the
conditionally safe region (Section V). When the system runs
online, it checks the location of the current system states. The
hidden attack detector will raise the yellow alert to hint a
potential hidden sensor attack if the system states move out
of the conditionally safe region.

IV. THE OPTIMAL HIDDEN ATTACK AGAINST GENERAL
SCENARIOS

In this section, we show that optimal hidden attack (OHA)
is well-defined for general control systems and propose an
optimization-based method to find the OHA for a cyber-
physical system given the current state.

A. Assumptions and Problem
We have the following assumptions:

1) The sensor attack happens on a known control system
X = f(x,u), which takes a finite change in every
dimension of state per unit of time, i.e. [¥| < A¥ where
the < is dimension-wise.
The system is equipped with a state estimator to pre-
dict state x by roll-forwarding from a (not necessarily
trustworthy) cached state on dynamics f.
The system is equipped with a detector g(%,x), with a
state estimation and a physical measurement as input.
An attack is detected at time ¢ on g(¥;,%;) > 0.
Control signal u is bounded inside the interval [u,#].
An unsafe state space is given in form of a Cartesian
product of half spaces in every state dimension. That is,
for n-dimensional state space, the unsafe set U takes the
form of Equation (4).
U=U[1l] xU[2] x --- x Uln] where
Uli] = (—o0, zb[i]] or U[i] = [zb[i],00) for i =1,...,n
“)

For arbitrary dimension 4, we aim to find a conditional safe
region (CSR) that is a subset of the state space, such that no
matter what hidden sensor attack is applied, the system cannot
reach the unsafe set within a time period 7. If the CSR of every
dimension can be computed offline, then during runtime, the
system is able to query whether the current state is within the
CSR - if not, we raise a yellow alarm. Our approach is to
search for the worst-case scenario of each dimension ¢, where
the hidden attack that drives the state closest to (or deepest
in) U] is computed. We denote this hidden attack as optimal
hidden attack (OHA), from which the corresponding CSR can
be found.

2)
3)

4)
5)

B. Optimal Hidden Attacks

To define an OHA, we start from a motivating example.
Here, a vehicle is turning on a road, with a one-dimensional
state x, representing its speed in meters per second, and a
one-dimensional control variable u, representing the voltage
difference between its two motors in volt. The system dy-
namics is given by & = —%:r + 5u. The vehicle will be in

243

danger if its speed is too high, particularly with an unsafe set
U = {z | > 1.26}. Aiming for unsafe, a malicious attack
is injected to the vehicle’s sensor at ¢ = 8.00. As shown in
Figure 1, there is an attack (marked as optimal) that drives
the system state closer to the unsafe region than others within
time period [8.00,10.00]. To secure a system from undetected
attacks, we must consider the worst-case scenario, where the
distance of state to unsafe is minimal. Therefore, we need to
define optimal hidden attacks from this idea.

B 1.3 —v— geometric
g ' —e— surge
Y15l —— bias
S optimal
g 111 ---- reference
a
©
()
()
o
(7]

0.9 T T : .

8.0 8.5 9.0 9.5 10.0
time (s)

Fig. 2: Motivating example

A prerequisite to define OHAs is to formalize the distance
metric from a state to an unsafe set U, which may span
across multiple dimensions. A state within the unsafe set
indicates something disastrous happens. For example, for an
unmanned aerial vehicle (UAV), negative height values are
unsafe, which means the UAV crashes into the ground; for a
nuclear fuel element, the temperatures exceeding its melting
point are unsafe, indicating a core meltdown accident.

Notice that in dynamics, each dimension can have very
different physical meanings, such as length and mass, with
different units, such as meters and kilograms. Therefore, it is
difficult to minimize a cross-dimensional distance metric, e.g.,
L2-norm. We hence use a per-dimensional approach, finding
OHAs with respect to each distinct dimension of a system as
follows.

Definition IV.1 (Distance from a State to Unsafe). For an n-
dimensional state x € R™ and an unsafe set U C R", the i-th
dimension of x is x[i] € R, while the i-th dimension of U an
interval Uli] = (—o0, zb[i] or [zb[i],00). We then define the
distance from x to U in dimension i as

{um — abli]] if x[i] ¢ UL

—|x[i] — xb[i]| otherwise
In other words, if the state is outside of the unsafe set, its
distance is how far away it is to the boundary. Otherwise, if
it is inside, the distance is the negation of depth.

distD (x,U) = (5)

From the per-dimensional definition of distance, we can then
define an OHA at a given dimension for a given period of time
T'. Denote actual states as x, observed states (under attack) as
X and control signals as u.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

Definition IV.2 (Optimal Hidden Attack). Let x = f(x,u) be
a control system of n dimensions, with state space X C R™.
Assume we have the knowledge of an unsafe set U C X. An
optimal hidden attack OH Al[i] of dimension i at time t, for
a period T is a sensor attack injected at t, that minimizes
dist®) (x,U) during an observation period [t,,t, + T)]. The
attack is hidden, such that every sensor measurement during
the attack period bypasses a detector g. That is, g(¥,%;) <0
forallt € [tq,t,+T]. In other words, no other attacks starting
at t, can drive the system state’s i-th dimension closer to
unsafe than this attack and still remain hidden.

Based on the definition, we can obtain the following theo-
rem that states the existential property of OHA.

Theorem IV.1 (Existence of OHA on General Systems). We
have a general control system x = f(x,u), with a dimension-
wise upper-bounded as |x| < AX. At any instance t, of its
runtime, if there exists a hidden attack on dimension 1, then
there exists an OHA on that dimension with respect to an
unsafe set Uli] and an observation period T.

Proof. Without loss of generality, we let the time step be 1,
ie., |xip1 — x| < AX. At time ¢, given the upper bound in
dimension 7, we have

a1 [i] — wali]| < AZ].

This inequality also applies to any time step in [t,, t,+7 —1],
and by summing both sides of all these inequalities together
throughout the period 7, we obtain

to+T—1
t=t,

Then, with triangle rule of distance metrics,
[@arrlil — walil] < TAZ]).

Therefore, no matter the system is under what sensor attack,
its dynamics only allow a finite distance away from z,[i] at
dimension ¢ after " steps.

Based on this fact, the metric dist™(x, 7, U) must be
finite based on its definition, and therefore it must have a
minimum. Denote this lower bound as d. Consequently, given
hidden attacks exist, there is at least one hidden attack that
gives the smallest dist(i)(xa+T,U) > d, and this is the
OHA. O

We can assume this upper bound in change of state per
time step because most systems have inertia. For instance, the
motivating example in Section IV-B shows a linear relationship
between the acceleration & and the speed z. Since the law
of physics upper bounds the speed, the acceleration is also
upper-bounded. In a more general sense, there exist dynamical
systems that do not abide by inertia, but these are not our
focus.

The metrics to evaluate attack detectors, such as accuracy
and recall rate, are not suitable for hidden attacks includ-
ing OHA, because they remain undetected. We can use the

244

maximal state deviation from reference (or target) states x,
within observing time 7 to evaluate the effectiveness of hidden
attacks. For example, a vehicle running the cruise control task
on road suffers from hidden sensor attacks. Although attacks
are undetected, for given 7' = 30 seconds, an attack that
caused more speed deviation from target speed in these 30
seconds is more powerful. Note that, the observing time T is
user-given, and provide a cushion time for system to handle
potential attacks.

C. Searching for Optimal Hidden Attacks

In order to understand what is the worst-case scenario of a
system during a period of time, we need to compute the OHA
efficiently. Therefore, we construct an algorithm to search
for OHAs. For simplicity, we first assume the largest state
deviation happens at a fixed time instance t. € [to,t, + 1], or
equivalently step ¢ in the observation period. We formulate an
optimization problem to find the corresponding measurement
sequence X1,X2, - - - X. desired by an attacker. The initial time
is denoted as ty = t,, and the observing period length is 7.
Thus, the objective is to minimize dist(?) (xe,U) at t., with
the actual state x. at time ¢, and given U and ¢, under the
following three constraints:

1) System dynamics. The state estimator takes in the mea-
surement at a time step and predicts the next state
based on system dynamics. Here, we use the equivalent
discrete dynamics as constraint, i.e.

(©6)

Hidden constraint. The detector g must output a value
smaller than O starting from ¢,. It makes sure the attack
can not trigger an alert from the attack detector.

X = f(ft—17ut—1)-

2)

g(%e, %) <0 (7)

Control limits. It is usually determined by the physical
properties of the actuator. For example, the maximum
inflow of a water pipe is 0.05 meter®/sec, so the inflow
is within the range [0, 0.05]. Formally,

3)

u<u <u

®)

We solve this optimization problem for an attacked mea-
surement sequence affected by sensor attack. The sequence
leads to the minimal dist(® at time ¢..

Next, we lift the assumption that minimal dist(Y happens
at a specific time ¢.. Now we do not know at which step in
[ta,ta + T the attack achieves the smallest distance to unsafe
set. Thus, we need to solve multiple optimization problems as
above, with ¢, varying in t,,t, + 1,--- ,t, + T. The entire
algorithm is shown in Algorithm 1. Note that at Line 3, we
formulate an optimization problem m as Equation (9).

minimize dist” (x.,U)

subject to /\ ((6) A (7) A (8)) ©

t=0

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

with the corresponding three constraints (6), (7) and (8). Then,
at Line 5-7, we update the solution to the one with the smallest
objective dist(Y). Based on this algorithm, if we obtain the
same minimal objective at multiple ¢., we pick the earliest ¢..
That is, the OHA needs to do its damage as early as possible.

Algorithm 1: OHA search for general system
Imput: xo, U, i, f, g, u, u, T

/* Xg: system state at time tg=1, */
/+* U: unsafe set */
/+ 1: dimension to optimize attack =/
/* f: system dynamics */
/* g: detector statistics function,

g >0 means attack is detected */
/* u,u: control limits x/
/+ T: observation period length */

Output: opt_seq, opt_d
/* opl_seq: the optimal attacked
measurement sequence Xi,Xs, - -X. */
/% opt_d: minimal dist®(x.,U) */
1 opt_seq + 0, opt_d + oo
2 fort. <+ 1to T do
3 Formulate problem m as Equation (9)
obj, seq < m.solve()
if obj < opt_d then
L opt_d < obj ;

opt_seq < seq ;
D. OHAs on Linear and Convex Systems and Detector Statis-
tics

// objective value
// opt. var.

B I N

Algorithm 1 provides a scheme to search for OHAs, assum-
ing we have a fixed trustworthy initial state x, = X, and such
that we are able to obtain ground-truth x. by roll-forwarding
on f for arbitrary ¢ > 0. Nevertheless, each optimization
problem m can be hard to formulate and solve in general,
and the bottlenecks are the system dynamics constraint f and
the hidden constraint g. Fortunately, we can leverage linear
programming (LP) and convex optimization (CVXOPT) for
linear and nonlinear but convex control dynamics and detector
statistics. The relevant analysis is detailed in the proofs of
Theorem IV.1 and IV.2. We note that whether an efficient
search algorithm exists for other systems remains an open
question.

Lemma IV.1 (OHA Search on Linear Systems). Searching for
an OHA in a system with linear dynamics, control function and
detector statistics can be formulated as a linear programming
problem.

Proof. Consider a discrete linear time-invariant (LTI) system

as Equation (10).
f(xhut) =X = Axt + But +c (10)

where A and B are state and input matrix, representing how
next state evolves with the current state and control input, and

c is a drift of proper dimension. The system also has a linear
function to compute control input from estimated states as

(In

where D is a linear coefficient and e is an offset of proper
dimension. So the system dynamics becomes a linear function
of the actual and estimated states only, i.e.,

ut:cht+e

.i't_t,_l :A.i't+B(Di't+e)+c (12)

Next, a linear detector function g means that the detector

statistics constraint is in some linear form

g(itw%t) = F.ift + G.%t —7<0 (13)

where F' and G are linear coefficients and 7 is the detector

threshold of proper dimensions, usually a scalar. Combining
everything together, we have the following optimization prob-

lem m:
minimize dist® (x., U)
\ 14
subject to A\ ((12) A (13) A (8)) (9
t=0
Notice that the objective function is linear because at any
dimension i, either dist') = xz[i], — xb[i] or dist®) =

ab[i] — x[i]., and all the constraints are linear. Therefore this is
a linear programming problem and there exist efficient solvers
such as GLPK, MOSEK and CONELP [35].

The vehicle turning example in Section IV-B lies in this
category. It has only one dimension, and the objective func-
tion for each problem is xb — xz., with b = 2.7, based
on our definition of dist(). Without loss of generality, we
can consider an infinite-horizon, discrete-time linear—quadratic

regulator (LQR) controller, i.e.
ug = e — K(Ty — ™).

(15)

where e is a constant reference control signal, x* is a constant

reference state, and K is the cost coefficient. Next, we can
use CUSUM detector as in Section II-D1 with a threshold 7
and a drift d. The attacker subtracts some value from sensor

measurement to enlarge the actual system state. To inject more
attack, the drift is smaller than the residual, and S;+|r:| —b <
0. The opposite situation can be analyzed in a similar way.

Consequently, in the vehicle turning system, we can call
Algorithm 1 such that each optimization problem m is formu-
lated as follows.

minimize xb — x.

C
subject to /\ (#441 = (A’ = B'K)iy + B'e + B'Ka") A

/\(Z(is—is—d)<T)A
t=0 s=1
/\(y<e—K(mt—m) <)
t=0

245

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

where the three constraints correspond to system dynamics,
hidden and control limit constraints.

We extend this conclusion for linear systems to convex
systems in Theorem IV.2.

Lemma IV.2 (OHA Search on Convex Systems). Searching
for an OHA in a system with convex dynamics, control
Sfunction and detector statistics can be formulated as a convex
optimization problem.

Proof. The proof is similar as for Theorem IV.1, except for
the system dynamics constraint and the hidden constraint are
convex instead of linear. Each optimization problem m can be
formulated as

minimize (9)
subject 10 A\ (®r41 = fova(Fr,2¢)) A

t=0
c

/\ (gcmc(-it,i‘t) < O0A

t=0
A ®
t=0

where f.,. and g.,, are convex functions. Notice that this is a
convex optimization problem and there exists efficient solvers
such as ECOS [36] and OSQP [37]. O

(16)

One final remark is that all these optimization problems are
solved offline, before the system is running. Consequently, and
thus, their solving time and needed computational resources
can be considered not critical.

V. CONDITIONALLY SAFE REGION SEARCHING

In Section IV, we find the OHA of a dimension ¢ given
the current state xo for an observation period 7. If this
OHA cannot drive the system state to unsafe state set at that
dimension within the period, we consider the current state
is conditionally safe, i.e., the system will be safe within the
observing time 7 if no alert is raised. This section presents our
main contribution on how we efficiently find the conditionally
safe region (CSR) with the knowledge of OHA only, regardless
of the system dynamics or detector.

A. Conditionally Safe Region

We first formally define a CSR of a control system f at a
dimension ¢ within n-dimensional states.

Definition V.1 (Conditionally Safe Region (CSR)). Let x =
f(x,u) be a control system of n-dimensional states. Its state
space is X C R" and there is a pre-defined unsafe state
set U C X, the same way defined as in Equation (4). A
conditionally safe region of dimension i is a set of states
CSRIi] C X[i] — Uli], such that for all x¢[i] € CSR][i], there
exists no OH Ali] that can drive x[i] into Ui in a period of
time T.

246

A
xb[i]

A
xc[i]

A
xs[i]

Fig. 3: Region demonstration for the i state. xbli] is the

boundary between safe and unsafe states, xs[i] is a known
conditionally safe state, and xc[i] is the boundary of condi-
tionally safe region to be searched.

Fig. 3 demonstrates the relationship between unsafe states,
safe states and CSR regions in the i*" dimension of the state
space. Also, there is a clear boundary xb dividing states into
unsafe region and safe region, and xb[i] is the boundary for
the 7t dimension of states. When we consider if the system
remains safe within an observing window 7 in the near future,
conditionally safe region comes in, and is marked as green. It
is a subset of safe region, and there is also a clear boundary
xcli] of conditionally safe state within 7" for the i*" dimension.
For example, a car runs below 40 miles/hour cannot exceed
a dangerous speed of 80 miles/hour within 2 seconds without
breaking thrust limit.

B. Searching for Conditionally Safe Region

The next task is to search for CSR, and we conclude the
following theorem.

Theorem V.1 (Efficient CSR Search). Given OHAs of each
dimension 1, starting at every discrete runtime t, and lasting
for period T of a control system (with known detector, control
limits and unsafe set), we are able to efficiently compute CSR
of that system, regardless of the system dynamics.

Proof. We construct an algorithm that satisfies the require-
ments. The idea is to apply binary search on each state
dimension to find the boundary of conditionally safe state
region. The algorithm is shown as Algorithm 2. |

In summary, this algorithm searches the boundary of con-
ditionally safe region xc[i] given the boundary of unsafe state
set xb[i] and a known state in conditionally safe region xsli],
which can be the ¢-th dimension of the reference state of
a system. At Line 1, we initialize the zc using xs, so that
the initial pivot is in the conditionally safe region. Then, we
push the pivot towards the unsafe state region to find the
boundary. Specifically, at Lines 1-3, we initialize the lower
and upper bound of search range using xs[i] and xb[i]. Then,
at Lines 4-13, we search the boundary of conditionally safe
region in a binary search manner. At Line 7, the function
isConditionallySa fe requests the cached knowledge of com-
puted from Algorithm 1 to check if the current pivot can be
driven to unsafe set given an OHA. If not, the pivot is in the
conditionally safe region and we continue to push the pivot
towards the unsafe region.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Conditionally safe region searching
Input: xb,xs € R"”

/* mn: number of state dimensions. */
/% 1: dimension to find boundary. %/
/* xbli]: the boundary between safe and
unsafe states of dimension %. */
/* xs[i]: an existing state in
conditionally safe region of
dimension 7. */
Output: xci] € R
/* xc[i]: the boundary of the
conditionally safe region of
dimension 1 */
1 zcli] < xsi] // init. axc[i] using xs[i]
2 lo + xsli], hi < xb|i] // init. range

3 les < wsli] // last conditionally safe

4 do

5 r < hi—lo // search range
6 | xcfi]+lo+r/2 // pivot
7 if isConditionallySafe(xc[i]) then

8 lo + zcli] // towards unsafe
9 L les <+ lo // keep last con. safe
10 else

1 L hi + wcli] // towards safe

12

xclfi] « les
while 7 > v,,04

// conditionally safe
// term. conditions
14

Algorithm 2 outputs the CSR of dimension ¢ from the
boundary computed. For all dimensions, we call this algorithm
and the final CSR is the Cartesian product

CSR = CSR[1] x CSR[2] x --- x CSR[n] (17)

C. Time Complexity

The proposed method has two phases: Algorithm 1&2
generates a CSR reference table offline, and the detector
queries the table online. The offline phase solves O(nTlog1/e)
times of LP, where n, T', and € are the number of dimensions
of system state, user-given time horizon, and precision term
in Algorithm 2, respectively, which is pseudo-polynomial.

VI. EVALUATION

In this section, we validate the theoretical analysis results
above with four linear simulators of CPS and provide detailed
experimental result analysis.

A. Simulation Setting

1) Experimental Setting: The experiments were imple-
mented on a PC with 32GB memory and an Intel(R) Core(TM)
i7-10700KF 3.80GHz CPU. All the optimization results were
produced by the GLPK solver and CVXOPT library [38] in
python.

247

2) Simulators: The proposed analysis is performed on

vehicle turning, DC motor position, RLC circuit and quadrotor.
We can obtain the linear ordinary difference equation (ODE)
by system identification from a real system.
Vehicle Turning. The vehicle turning simulator models a vehi-
cle’s steering behaviour, which changes the voltage difference
of two motors u to adjust their speed difference x. The ODE of
this system can be found in [9]. RLC circuit. The RLC circuit
formed by a resistor, an inductor, and a capacitor connected
in series controlled by the voltage source wu. z[1] represents
the voltage across the capacitor and z[2] denotes the current
in the circuit. The system dynamics can be found in [39]. DC
motor Position DC motor position simulator models a motor
shaft behaviour, which change the voltage of the motor u to
keep the rotation angle of the motor shaft x[1], we also have
another state x[2] which is the rotary angular velocity. The
details of system model for DC motor position can be found
in [40]. Quadrotor This simulator shows how the altitude is
affected by the thrust force. This benchmark has a total of 12
states: (z,vy, z) and (¢, 6,1)) denote the linear and the angular
positions, (u,v,w) and (p,q,r) are the linear and angular
velocities. The ODE can be found in [41].

3) Attacks and detector settings: Attack happened at 8
seconds for vehicle turning, RLC and quadrotor, and each time
step is 0.02 seconds, and for DC motor position it happens at
100 seconds and each time step is 0.2 seconds, the future
horizon is 100 steps. The CUSUM attack threshold was set
to 5, drift was set to 0. For geometric attack, the parameter
« was set to 0.75, and the / parameter was set to 0.85 for
vehicle turning. And the o and /5 was set to 0.7 and 0.8 for
DC, RLC and quadrotor. The upper bound and lower bound
of the control inputs for vehicle turning are [—1,2.35], and
the upper bound of control inputs for RLC was set to 4.6, the
upper bound of control inputs for DC was set to 1.66, the upper
bound of the control inputs for quadrotor was set to 6.95. The
setting of the LQR controller () and R matrix is trivial, both
of them are set to identity, for quadrotor benchmark, the gain
matrix is obtained by decouple methods adapted from [41].

4) Baseline Hidden Sensor Attacks: We consider frequently

used hidden attacks from [24], [27] as our baselines. The
observing window is 7', the initial attack time is ¢;, and the
final attack time should be ¢; + 7.
Surge attack Surge attacks maximize the statistic score as
soon as possible, and then keep the statistic score at the
threshold level, i.e., s = 7, after the statistic score reaches
the threshold. A greedy surge attack is given in [24], and the
attack is given as follow:

ift =1

otherwise

N x; £ (T+b—51-1)
Xt =
xt:I:b

The statistic score S reaches the threshold at the first step,
and then offset the predicted state by a drift b at the following
steps.

Bias attack A bias attack that try to falsify the system
measurements discretely by adding small perturbations over

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

a period of time. Without loss of generality, the perturbation
was unified for each step and can be formed as follow [27]:

.i‘t :xti(‘r/T—l—b)

where T is the observing window size.

Geometric attack A geometric attack will attack the system
smoothly at the beginning and surge the attack at the last
several steps [27]. To be noticed, there are 2 hyper parameters
« and S in the design of the geometric attack and we can
have infinite number of combinations of « and 3. The design
of geometric attack is given as follow [27]:

jff, =x; £ (ﬁOzTﬁt +b)
subject to

T
Y Bt —nb=7 (18)
t=1

Any combination of o and [satisfied equation 18 was a
feasible geometric attack.

B. Long-memory Detector Attack Effect

Fig. 4 showed the system states that have been attacked by
the optimal attacks generated by Algorithm 1. There are three
important observations to be noticed: First, the optimal attack
always caused minimum distance to unsafe set compared to the
three baseline hidden attacks on the four systems. It is obvious
the maximum of the orange curve is greater than that of other
curves. Secondly, the optimal hidden attack could have same
distance to unsafe set as other hidden attacks. In other words,
the optimal hidden attack generated by Algorithm 1 could be
identical to the three baseline hidden attacks on some settings.
We can see the optimal hidden attack has the same pattern as
surge attack on DC Motor system. Thirdly, the trend of the
attacked state by optimal hidden attack may not be monopoly.
For example, the vehicle turning example showed a two-step
trajectory before reaching the maximum, our optimization
problem has no constraints about the monotonous property.
Because the unsafe set for vehicle turning is a halfspace
(1.26,00), therefore, since the OHA causes the maximum
deviation, it has the minimal distance to the unsafe region.

C. Short-Memory Detector Attack Effect

In this subsection, to evaluate Algorithm 1, we show the
optimal hidden attacks for detectors with various detection
window size. The observations are similar to that from long-
memory detectors. Cross each column in Fig. 5, we can see
the window size does not affect one fact: Our optimal hidden
attack always has the maximum deviation. Another observa-
tion is the trajectory of system under short-memory detector
protection attacked by hidden attack may have multiple peaks
as shown in the vehicle turning column. We only care about
the highest peak from all the peaks according to our problem
statement in section IV. Another observation to be noticed is
the window size does not affect the maximum deviation too
much. Compared the different size detection window results of
the four systems, we can see the maximum deviation of them

248

are not far from each other. Furthermore, there might be some
slight errors come from the solver and precision. For example,
on the DC motor column, we see the surge attack trajectory is
slightly over the optimal hidden attack trajectory of window
size 50 and 75. The state reaches the minimal distance at the
last step for the 4 systems with every listed window size.

D. Earliest Attack

In Algorithm 1, we compute the OHA in a loop of every
step in the future. In other words, at each step, the distance
from attacked state to the unsafe set is the objective of the
optimization problem. Therefore, we can guarantee our OHA
is the earliest one from the solutions found at each step in the
loop. Fig.7 showed the results of OHA and sub-optimal attacks
on the systems using long-memory detectors, there are two
observations to be noticed. The plot for Vehicle Turning clearly
demonstrates that the optimal attack reaches the maximum
devaition before suboptimal attacks. It is the fastest attack. In
the plot for RLC, the suboptimal attacks are on a tracjectory
to the maximum devaition but will only reach them after the
simulation time. Thus, here too, we see that the optimal attack
which reaches the maximum deviation just at the end of the
simulation is the fastest attack. In the DC motor and quadrotor,
the optimal and suboptimal attacks behave similarly. First,
there might be several sub-optimal attacks that can reach the
maximum deviation, but the OHA has the earliest time to reach
it compared to other sub-optimal attacks. We can see from the
vehicle turning results, the OHA reach maximum deviation at
the 22nd time step, and sub-optimal attacks reach it at 24th,
26th, and 28th time step. Secondly, it is possible that the OHA
will reach maximum deviation at the last step, then other sub-
optimal may not reach maximum deviation as showed in the
RLC, DC motor and quadrotor results.

E. Conditionally Safe Region

Fig. 6 showed the conditionally safe region searching pro-
cess. The dashed line showed the unsafe boundary for each
system, for vehicle turning, the unsafe set is z[1] € (1.26, 00).
Similarly, the unsafe set of RLC circuit is z[1] € (4.17, 00),
the unsafe set for DC motor is z[1] € (4.56,00), z[—1] €
(21.94, co)the unsafe set for quadrotor is . And CSR for
vehicle turning is z[1] € (—oo, 1], CSR for RLC circuit is
z[1] € (—00,3], CSR for DC motor is z[l] € (—oo, 7],
CSR for quadrotor is z[—1] € (—o0, 1.5]. The colored regions
were the unsafe, safe and conditional safe region on the
corresponding dimension of the four systems. And the colors
are refer to that in Fig. 3. There are three observations to be
noticed: First, if the start state is out of CSR, there exists at
least one OHA which can drive the system to touch unsafe.
This could be seen from the red curves in Fig. 6. Secondly, if
the start state is in CSR, there is no attack that can drive the
system to unsafe in the given future without noticed by the
detector. Thirdly, OHA with different start states can reach the
maximum deviation at the same time step, but the trajectories
are not parallel due to the system dynamics. For example, all
the 3 OHAs in vehicle turning example reach the maximum

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

Vehicle Turning

ANN

8.0

RLC Circuit

>
o

I
=
n

Voltage (V)

=

=

Speed Diff. (m/s)

o
o

9.5 10.0 8.0 8.5 10.0

©
°

9.5

9.0
time (s) time (s)

=v— geometric —#— surge =—h—

DC Motor Quadrotor

[

o _ 4 =

e E

t5, N

Al =} 5

© £ £ 10 .

572 < B ———

-4 e ————

100 105 1io 115 120 8.0 85 2.0 95 10.0

time (s) time (s)

bias optimal --- reference

Fig. 4: Plot of attacked state against time for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right)

and Quadrotor(right) systems using long memory detectors.

_ Vehicle Turning RLC Circuit DC Motor Quadrotor
2 N ————— 4.0 xo) 307
£ e > o _, €
Bt) / = <2 =
£ ; Y =5 PES
4 g3 £3° 2
o = s S10]
] LR =
910 S 52 <
& 3. [
8.0 85 9.0 95 10.0 8.0 85 9.0 955 10.0 100 105 110 115 120 8.0 85 9.0 95 10.0
time (s) time (s) time (s) time (s)
_ Vehicle Turning RLC Circuit ° DC Motor 207 Quadrotor
@
= 40 = =
if 12 - s . % . g & EA %zu-
£ e]
a / ga3s 53 3
° = s 5104
S = =
210 S B 2 <
& 3.0 o
8.0 85 9.0 95 10.0 80 855 9.0 955 10.0 100 105 110 115 120 8.0 85 9.0 95 10.0
time (s) time (s) time (s) time (s)
_ Vehicle Turning RLC Circuit DC Motor Quadrotor
2 4.0 2 P
£ s 254 E
12 = <2 =220
N = c
E g c s g
S ; ~ £ 23’ E
o 1 3 s 5101
g 1o B 872 =
& 3.0 L4
80 855 9.0 955 10.0 100 105 110 115 120 8.0 855 9.0 9’5 10.0
time (s) time (s) time (s)
Vehicle Turning DC Motor 304 Quadrotor
Q) 40 2 2=
£ > Eignd £
512 = <Z 201
E 2 c® 3
o N 835 S53 3 ;
o DI — A 5 ®L 5 10]
210 S B 2 < m
o 3.0 4] T e —— e
8.0 85 9.0 955 10.0 80 855 9.0 100 105 110 115 120 8.0 85 9.0 95 10.0
time (s) time (s) time (s) time (s)
—v— geometric == surge =—#— bias optimal =--- reference

Fig. 5: Plot of attacked state against time for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right)
and Quadrotor(right) systems using short memory detectors of window sizes 5 (first row), 20 (second row), 50 (third row),

and 75 (last row).

deviation at 22nd time step. And the OHAs for RLC, DC
motor and quadrotor reach it at the last time step. For example,
when the vehicle turning system is running in real-time, when
the speed difference is over 1, there will be a yellow alert
raised, if the attacker inject OHA to our system, after 22 time
steps, the system will be drive to unsafe. In other words, the
system is notified 22 time steps ahead.

FE. Scalability Analysis

In this subsection, we examine the scalability of our method
in terms of three parameters: (1) the number of system states,
(2) the precision and (3) the time horizon. The number of states
of the 4 benchmarks are 1,2,3 and 12, the horizon range is
[20, 200] and the precision term (lower means higher precision)
range is [0.009, 0.5], with lower value means higher precision.
Long represents the long-memory detector, and the numbers
5,20,50,75 represent the window size of the short-memory
detectors. It is possible to have a longer time horizon, but the
current range is sufficient to show a trend .

249

Since querying the table takes O(1) time which is trivial,
we focus on the offline computation time in this subsection.
We run the experiments on the 4 benchmarks on the same
settings. The results are shown in Table II which contains 2
parts: The upper part is the running time to find a single OHA,
and the bottom part shows the running time to find the CSR.
For consistency, we set the time horizon as 100, which is on
the same settings for the experiments in the section VI. There
are 4 main observations from Table II:

1) The offline running time of our method is acceptable for
large systems. The highest running time for each bench-
mark was highlighted. For example, for the quadrotor
benchmark which has 12 states with 100-step horizon
and 0.009 precision, the running time is around 80-
90 seconds to find the CSR for one dimension which
is reasonably short for offline computation. And the
running time is around 6-9 seconds to find an OHA with
the same setting.

The searching time for CSR increases with higher
precision, since there might be more iterations in the

2)

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

Vehicle Turning

8.5 9.0

time (s)

10.0

Voltage (V)

8.0

8.5

—»— C5R border

RLC Circuit

9.0
time (s)

as

—— In C5R

"
2
°

—— Qut of CSR

DC Motor

> »

(radians))
N w

a2
o
c
<
=
k=
=1
©
S
o
-4

100 105 110

time (s)

120

Altitude (m)

=== UUnsafe Boundary

8.5

Quadrotor

9.0
time (s)

Fig. 6: Plot of CSR searching process for Vehicle Turning (left), RLC (second to the left), DC Motor (second to the right) and
Quadrotor(right) systems using long memory detectors. The red region is the unsafe set on the shown dimension, the green
region is the CSR on the shown dimension, the blue region is the safe region of the shown dimension

Speed Diff. (m/s)

Vehicle Turning

RLC Circuit

DC Motor

Quadrotor

W

Voltage (V)
N

-

»

Rotation Angle
(radians)
N

n
S

Altitude (m)
5

9.0
time (s)

9.5

10.0

= Optimal

8.0

8.5

9.0
time (s)

9.5

10.0

100 105 110

time (s)

115

120

)

8.0

e e == SUbOptiMal === max deviation === max deviation time

8.5

9.0 95
time (s)

Fig. 7: Plot of optimal attack (also fastest attack) alongside suboptimal (slower) attacks against time for Vehicle Turning (left),
RLC (second to the left), DC Motor (second to the right) and Quadrotor(right) systems using long memory detectors.

3)

4)

main loop of Algorithm 2. However, a higher precision
does not necessarily mean a drop in time. For example,
the vehicle turning benchmark shows that no additional
iterations is required even with a change in precision,
because it achieves a small error in the first iteration.
Finding an OHA costs more time with a larger number
of system states. The time increment comes from the
solving time of the each optimization problem since
the problem size is increased. Comparing the single-
dimension vehicle turning benchmark and 12-dimension
quadrotor benchmark, the running time of finding an
OHA with a long-memory detector and 200-step hori-
zon, quadrotor benchmark’s running time is about 22
times to that of the vehicle turning benchmark.

When the horizon is getting longer, finding an OHA
costs more time. Referring to Algorithm 1, the time
increment mainly comes from 2 parts: the number of
optimization problems solved and solving time for each
optimization problem. Finding an OHA will need to
solve 1" number of optimization problems as Algorithm
1 line 2 shown. Also, each optimization problem takes

250

VT RLC DC QD
Horizon | Long | 5 20 | 50 | 75 |Long| 5 20 | 50 | 75 |Long | 5 20 50 75 | Long 5 20 50 75
20 0.34 10.32]0.33]0.34]0.32| 038 | 038]0.41]0.37]038] 038 [0.36]|0.37] 036 | 036 | 0.26 | 0.27 | 0.26 | 0.26 | 0.26
50 0.36 | 0.31 [0.33]0.35]0.34| 0.55 | 0.510.50]0.54|0.53 | 0.57 [0.57]|0.51] 0.55 | 0.56 | 0.84 | 0.75 | 0.83 | 0.85 | 0.87
100 0.36 | 0.27 [0.43 | 0.40 | 043 | 1.01 | 0.76 | 0.74] 0.90 | 1.17 | 1.74] 0.99 | 1.06 | 1.91 | 229 | 6.19 | 6.69 | 6.96 | 7.89 | 8.64
200 296 | 145156233331 | 12.8 | 229 | 2.41 [2.88 | 9.58 | 23.0 | 4.72 | 5.00 | 14.40 | 14.14 | 65.52 | 46.35 | 50.11 | 54.21 | 61.10
T=100 VT RLC DC QD
Precision | Long | 5 20 | 50 | 75 |Long| 5 20 | 50 | 75 |Long | 5 20 50 75 | Long 5 20 50 75
0.5 0.34 10.20 [0.25]0.41 [{0.37 | 0.79 | 0.34 | 0.38 | 0.45 | 0.58 | 459 [1.62 | 1.80 | 4.26 | 2.87 | 6.58 | 6.82 | 6.02 | 6.89 | 6.01
0.1 0.34 10.20 [0.24 | 0.44 | 0.36 | 2.01 | 1.01 | 1.07 | 1.45 | 2.06 | 10.70 | 1.61 | 1.81 | 4.22 | 2.89 | 6.65 | 6.96 | 6.37 | 6.95 | 6.34
0.09 0.34 10.20 [0.23]0.39 [0.36 | 2.06 | 0.92|0.99 | 1.32 | 1.92 | 10.53 | 4.03 | 440 | 10.48 | 22.08 | 6.59 | 6.87 | 6.74 | 6.82 | 6.42
0.05 0.34 {021 [0.25]0.41 [0.37 | 2.08 | 1.03 | 1.04 | 1.35 | 2.14 | 10.58 | 3.59 | 3.99 | 9.89 | 22.05 | 33.26 | 24.59 | 26.88 | 29.61 | 30.45
0.02 0.34 10.21 [0.25]0.41 038 | 2.09 | 1.02 | 1.12 | 1.45 | 2.17 | 13.49 | 4.69 | 5.12 | 13.32 | 22.10 | 58.97 | 48.98 | 58.85 | 56.74 | 59.93
0.009 | 0.34 021 |0.25]041 (038 | 2.17 | 1.09 | 1.20 | 1.53 | 2.19 | 19.63 | 4.76 | 5.13 | 12.33 | 22.08 | 85.08 | 77.39 | 79.21 | 71.98 | 86.48
TABLE II: Offline Running Time analysis results

more time to solve since the number of variables in-
creases if the horizon is getting longer as Equation 9
shown. The size of the optimization problem does not
change no matter what kind of detectors are applied, but
the optimization solving time may vary.
The above observations from Table II point out that our
method is scalable, it is possible to be deployed on larger
system if there is a need. Furthermore, our method is capable
to find CSR with different levels of precision for users’ needs.

VII. DISCUSSION

In this section, we will discuss the challenges when applying
our method to non-linear systems. The discussion is from 3
perspectives: convexity, sparsity and the exponential explosion
of the objective. In the end, a possible solution to handle these
challenges will be discussed.

A. Sparsity

If the optimization problem is linear, the solver does not
suffer from the sparsity since we can use simplex method to
get the solutions efficiently [42]. Since we have three kinds of
constraints in our optimization problem, a system dynamics

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

constraint or a control limits constraint may only depend on
a few variables which make the optimization problem sparse.
Usually, interior-points are implemented in non-linear opti-
mization solvers to solve large, sparse optimization problems
[43]. However, there is a big problem: During the optimization,
implementing the interior-points method requires the Newton
’s method to find the solution. Since we have no guarantee for
the convexity of the problem, this method may not produce
an optimal attack.

B. Convexity

In section IV, we stated that the method is designed for
convex problems. Unfortunately, it is hard to find a convex
optimization problem for non-linear systems. For example,
if there are trigonometric functions in the system dynamics,
which is common if the system state is related to some angle
or angular velocity etc., then the problem is non-convex since
the second-order partial derivatives of the original function is
still trigonometric and cannot be non-negative. If the system
dynamics contains cubic or quadratic terms, the system is not
guaranteed to be convex, either. For example, consider a non-
linear system is as follows:

Tpt1[l] = 2,[2] + 0.1u

1
Tpi1[2] = —zn[1] + ga:n[IP +2,[2] +0.1u

There is a cubic term in the system model, so the system is
not guaranteed to be convex. If the optimization problem is
convex, the Hessian matrix should be positive semi-definite.
If the problem is non-convex, then there is no guarantee that
our method find the OHA since the solution might be a local
optimum instead of global. Then there is no guarantee that the
corresponding CSR is conditional safe.

C. Objective Explosion

The easiest non-linear optimization problem might be a
quadratic optimization problem. However, it is impossible
to have a quadratic optimization problem for a non-linear
system if the proposed framework was applied. By definition,
quadratic programming is trying to optimize the quadratic
objective function subject to linear constraints. If the system
is non-linear, the system dynamics constraints and hidden
constraints are no longer linear. Additionally, according to
Algorithm 1, the objective is searching for the minimum
distance to the unsafe region in the observation time 7°, and
the search space grows exponentially with number of time
steps. For example, considering a trivial non-linear system
that has a single state and single control input as follows.

2
Tpyl =T, + U

Therefore, when we are looking for the optimal solution at
the last several steps in the observation period, the exponents
of a few terms in the objective will become incredibly large
since we have a square in the system dynamics. It is studied
that deciding the non-negativity of a polynomial is NP-hard

251

if the highest order is greater than 3. This is because the
sum of squares property (SOS) is not satisfied, such that
there is no guarantee that the optimal solution can be find
in polynomial time [44]. Therefore, we are not able to find a
solution efficiently.

D. Possible Solution

Though we face the challenges discussed above, there
exist some possible solutions to apply our method to non-
linear systems. An intuitive method is linearizing a non-linear
system around its equilibrium points. Assuming a non-linear
system have three equilibrium points, then it is possible to
have three linearized the systems for the region around each
equilibrium points. For example, the trigonometric functions
in the system dynamics could be linearized when the system
states are closed to the equilibrium points. Then the non-linear
optimization problem was trivialized to three linear optimiza-
tion subproblems. Therefore, the above three challenges are
avoided. The approach seems promising, but raises several
interesting research questions. In particular, for some system
states between equilibrium points, different choices of the
subproblem to solve may lead to different OHA results. We
will explore this approach in our future works.

In summary, our proposed method is a general framework
to secure CPS from hidden sensor attacks. We also identified
several challenges that need to be solved before applying it to
non-linear CPS.

VIII. CONCLUSION

In this paper, we proposed a framework for hidden attacks.
Moreover, we proposed a definition of optimal hidden attacks
and an algorithm to find OHA. Furthermore, based on the
OHA, we proposed an algorithm to find CSR offline. We
evaluated our methods on four linear systems with various
window size for detectors. The experimental results show
that the OHA can achieve minimal distance to a pre-defined
unsafe set, and the CSR can notify the system in advance. We
also discussed the challenges of applying our method to non-
linear systems in terms of sparsity, convexity and objective
explosion. For future work, there are plenty of extension of
this paper. First, it is interesting to implement the linearization
solution for various non-linear systems. Secondly, it is possible
to solve more general problems if the method can be extended
to more complex unsafe sets such as strips or zonotopes.
Thirdly, another extension is to adapt our framework to
actuator attacks, which are also common in CPS.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and the
anonymous shepherd for constructive comments and being
with us along the revision process. This research was sup-
ported in part by NSF 2143256, NSF 2143274 and ONR
N00014-20-1-2744. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation (NSF), Office of Naval Research (ONR),
the Department of Defense, or the United States Government.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

(1]

[2]

3

[t

[4]

[5

—

[6]

3
=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Design Automation Conference
(DAC). IEEE, 2010, pp. 731-736.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899-922, 2016.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-
sium (IV). 1EEE, 2011, pp. 163-168.

A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in The 28th International Conference
on Distributed Computing Systems Workshops (ICDCSW). 1EEE, 2008,
pp. 495-500.

M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp- 9-20, 2017.

A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and
K. Venkatasubramanian, “Security of autonomous systems employing
embedded computing and sensors,” IEEE micro, 2013.

L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 4/st IEEE
Real-Time Systems Symposium (RTSS). 1EEE, 2020.

Y. Zhang and K. Rasmussen, “Detection of electromagnetic interference
attacks on sensor systems,” in IEEE Symposium on Security and Privacy
(S&P), 2020.

F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). 1EEE, 2018,
pp. 22-31.

F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical
Systems Security and Resilience (CPS-SR), 2019.

R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013, online; accessed May 2020.

Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer,
2013, pp. 55-72.

T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-
tion Conference. ACM, 2020.

A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). 1EEE, 2016, pp. 130-139.

A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

M. Miiter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security. 1EEE, 2010, pp.
92-98.

R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1-29, 2014.

J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantar-
cioglu, “Security and privacy in cyber-physical systems: A survey of
surveys,” IEEE Design & Test, vol. 34, no. 4, pp. 7-17, 2017.

J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1-36, 2018.

C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA), 2016, pp. 474-480.

252

[26]

[27]

[36

(37

[43]

[44]

C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical
systems against stealthy deception attacks,” in 2013 American control
conference. 1EEE, 2013, pp. 3344-3349.

C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA). 1EEE, 2016, pp. 474-480.

D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1092-1105.

R. Tunga, C. Murguia, and J. Ruths, “Tuning windowed chi-squared de-
tectors for sensor attacks,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 1752-1757.

Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, pp. 1-33, 2011.

A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium
on information, computer and communications security, 2011, pp. 355—
366.

Y. Mo and B. Sinopoli, “On the performance degradation of cyber-
physical systems under stealthy integrity attacks,” IEEE Transactions
on Automatic Control, vol. 61, no. 9, pp. 2618-2624, 2015.

C. Murguia and J. Ruths, “On reachable sets of hidden cps sensor
attacks,” in 2018 Annual American Control Conference (ACC). IEEE,
2018, pp. 178-184.

N. Hashemi, C. Murguia, and J. Ruths, “A comparison of stealthy
sensor attacks on control systems,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 973-979.

N. Hashemi and J. Ruths, “Gain design via Imis to minimize the impact
of stealthy attacks,” in 2020 American Control Conference (ACC).
IEEE, 2020, pp. 1274-1279.

A. A. Cardenas, S. Radosavac, and J. S. Baras, “Evaluation of detec-
tion algorithms for mac layer misbehavior: Theory and experiments,”
IEEE/ACM Transactions on Networking, vol. 17, no. 2, pp. 605-617,
2008.

C. Murguia and J. Ruths, “Characterization of a cusum model-based
sensor attack detector,” in 2016 IEEE 55th Conference on Decision and
Control (CDC). IEEE, 2016, pp. 1303-1309.

P. Luo, T. A. DeVol, and J. L. Sharp, “Cusum analyses of time-interval
data for online radiation monitoring,” Health physics, vol. 102, no. 6,
pp. 637-645, 2012.

B. Meindl and M. Templ, “Analysis of commercial and free and open
source solvers for the cell suppression problem.” Trans. Data Priv.,
vol. 6, no. 2, pp. 147-159, 2013.

A. Domabhidi, E. Chu, and S. Boyd, “Ecos: An socp solver for embedded
systems,” in 2013 European Control Conference (ECC). 1EEE, 2013,
pp. 3071-3076.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637-672, 2020.

M. Andersen, J. Dahl, Z. Liu, L. Vandenberghe, S. Sra, S. Nowozin, and
S. Wright, “Interior-point methods for large-scale cone programming,”
Optimization for machine learning, vol. 5583, 2011.

K. Astrom and R. Murray, “Feedback systems-an introduction for
scientists and engineers, version v 2.10 ¢,” 2010.

K. Tan and Y. Li, “Performance-based control system design automation
via evolutionary computing,” Engineering Applications of Artificial
Intelligence, vol. 14, no. 4, pp. 473-486, 2001.

F. Sabatino, “Quadrotor control: modeling, nonlinear control design, and
simulation,” Master’s thesis, KTH Royal Institute of Technology, 2015.
R. H. Bartels and G. H. Golub, “The simplex method of linear program-
ming using lu decomposition,” Communications of the ACM, vol. 12,
no. 5, pp. 266-268, 1969.

L. LukSan, C. Matonoha, and J. Vicek, “Interior-point method for
non-linear non-convex optimization,” Numerical linear algebra with
applications, vol. 11, no. 5-6, pp. 431-453, 2004.

D. Bertsimas and I. Popescu, “Optimal inequalities in probability the-
ory: A convex optimization approach,” SIAM Journal on Optimization,
vol. 15, no. 3, pp. 780-804, 2005.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:54:22 UTC from IEEE Xplore. Restrictions apply.

