
Work-in-Progress: Optimal Checkpointing Strategy
for Real-time Systems with Both Logical and

Timing Correctness

Lin Zhang, Zifan Wang, Fanxin Kong
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY

lzhan120@syr.edu, zwang345@syr.edu, fkong03@syr.edu

Abstract—This paper proposes an optimal checkpoint scheme
for fault resilience in real-time systems, in which we consider both
logical consistency and timing correctness. First, we partition
message-passing processes into a directed acyclic graph (DAG)
considering their dependencies, where the logical consistency of
checkpoints is guaranteed. Then, we find the critical path of the
DAG, which is the longest path performed in sequence. Next, we
analyze the optimal checkpoint strategy on the critical path where
the overall execution time (including checkpointing overhead) is
minimized. When a fault is detected, the system rolls back to
the nearest valid checkpoint for recovery. The optimal number
of checkpoints and their intervals are derived by the algorithm.

Index Terms—Real-time systems, fault resilience, checkpoint-
ing, logical consistency, timing correctness

I. INTRODUCTION

As real-time systems such as automobiles become more

complex and open architectures, they are vulnerable to many

adversarial factors such as faults and attacks. With these

adversaries, the controller may make dangerous decisions and

cause serious consequences such as vehicle crashes and loss

of human lives [1], [2]. Resilience to these adversarial factors

is essential to the safety of such systems [3].

In this paper, we study the problem of tolerating transient

faults for a controller running on computational nodes. In gen-

eral, there are two popular research threads for fault resilience:

redundancy and checkpointing. One thread relies on redundant

components (e.g., standby processors [4] or task replica [5]),

where if some components are faulty, other components can

still process forward to finish the job. The other thread occa-

sionally checkpoints system states, and the system rolls back

to a consistent state (checkpointed in history) when detecting

faults [6]. This work aligns with the second thread and studies

checkpointing protocols for real-time parallel processes.

Existing checkpointing works can be divided into two

groups. One group focuses on checkpointing computing tasks

in general-purpose (non-real-time) systems. The goal is to

guarantee the logical consistency of checkpoints (value cor-

rectness), which represents the cause-effect relation defined

by messages sent and received among tasks [7]. The other

targets real-time systems and carries out checkpointing under

timing constraints (deadlines) [8]. There are three main pro-

tocols setting checkpoints: uncoordinated checkpointing, co-

ordinated checkpointing, and communication-induced check-

pointing(CIC). Uncoordinated checkpointing enables tasks to

set checkpoints when convenient for a better schedule [9].

detecting [10]. However, these works are incapable of tackling

checkpointing real-time parallel processes, where both logical

and timing correctness need to be guaranteed.

To fill this gap, we propose a new three-step checkpointing

protocol that considers both types of correctness. The first

step is processes partition, which transfers real-time parallel

processes into a directed acyclic graph (DAG) of tasks where

the edge represents the message communicated between tasks.

Compulsive checkpoints guaranteeing logical correctness are

then placed for each task. The second step is to identify a

critical path, which finds the longest execution path of the

DAG. The last step is to ensure timing correctness, which

minimizes overall execution time (task execution time plus

checkpointing overhead). We propose an effective and efficient

algorithm for each step.

The rest of this paper is organized as follows. Section II

describes the overview of the optimal checkpointing strat-

egy, the system model, and the threat model. Section III,

Section IV, and Section V present task partition, finding

the critical path, and placing optional checkpoints for timing

correctness, respectively. Section VI evaluates our method, and

Section VII concludes the paper and gives insights into our

future work.

II. PRELIMINARIES AND DESIGN OVERVIEW

In this section, we present the problem statement, our

strategy overview, system model, and fault model.

A. Problem Statement

Consider a real-time system whose processes perform repet-

itive tasks, where each process aims at one specific function,

for example, collecting sensor readings. Processes send mes-

sages to others during runtime, forming process dependencies.

A checkpointing system is capable of resisting faults in real-

time systems because of quick recoveries. When a fault is

detected, the system rolls back to the nearest valid checkpoint

that preserves the state of the process, avoiding redoing all

the work from the beginning. The objective is to determine

an optimal checkpointing strategy that achieves (i) logical

consistency of checkpoints considering process dependencies

and (ii) the shortest execution time considering checkpointing

overhead and recovery time.

515

2022 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/22/$31.00 ©2022 IEEE
DOI 10.1109/RTSS55097.2022.00055

20
22

 IE
EE

 R
ea

l-T
im

e
Sy

st
em

s S
ym

po
siu

m
 (R

TS
S)

 |
 9

78
-1

-6
65

4-
53

46
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
SS

55
09

7.
20

22
.0

00
55

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The Overview of Optimal Checkpointing Strategy

t00 t01 t02 t03

t10 t11 t12 t13

P0

P1

S30 S3i S3n3

Fig. 2: Relationship of Process, Task, And Segment

B. Overview of the Checkpointing Strategy

We derive the optimal checkpointing strategy by three

steps, as shown in Figure 1: (i) process partition, (ii) critical

path extraction, and (iii) optional checkpoint placement. The

following briefly describes these steps, and we will present

their detailed design in Section III, IV, and V.

• Process partition. Processes are executed with depen-

dencies, which are reflected by message passing. To

tolerate faults and recover successfully, we need to place

checkpoints considering these dependencies. This step is

to partition dependent processes into a DAG graph and

place compulsive checkpoints. These checkpoints meet

the requirement of logical dependency.

• Critical path extraction. In the DAG, most tasks can be

executed in parallel with the multiprocessor. However,

tasks in a dependent path must be executed in sequence.

This step is to identify a critical path, which is the

longest dependent path. This critical path determines the

performance the checkpointing and recovery. Note that

the tasks in noncritical paths can do the same following

step to set up checkpoints, but their execution time is less

than that in the critical path. Therefore, in the proposed

model, only the critical path should be considered.

• Optional checkpoint placement. Numerous works will be

discarded in the critical path after a fault if we place

too few checkpoints, and the checkpointing overhead will

dominate if we place too many checkpoints. This step is

to solve optimization problems to determine the optimal

number and intervals of checkpoints.

TABLE I: Symbols and Notations Used in This Paper

Symbol Description

Pi i-th process in the system
Ti i-th task in the critical path
Sij j-th segment in the Task i
s the recovery overhead from the initial state
tc the overhead of checkpointing
qi the invalid rate of an optional checkpoints in the Task i
pi the valid rate of an optional checkpoints in the Task i
ni the number of optional checkpoints in the Task i
λi the failure rate of the Task i
mi message i
wij the total execution time before Sij in the Task i
Wij the expectation of wij

dij the completion time of Sij before a fault
Dij the expectation of dij
Fij the probability that the fault occurs in Sij

Ii the fault-free computation time (excluding tc) of Task i
τij the fault-free execution time (including tc) of Segment Sij

C. System Model

Symbols and notations used in this paper are listed in

Table I. There are some PROCESSes (Pi is denoted as the i-th
process) in real-time systems, and the passing messages be-

tween them form the dependencies of processes. We partition

the processes into tasks (tij is denoted as the j-th task on the i-
th process) according to the dependencies. In this way, a DAG

is obtained through the partition, where tasks are nodes, and

dependencies are edges. We place compulsive checkpoints on

this DAG to guarantee logical consistency. Then, the critical

path of the DAG is identified, and the TASKs in this path

are renamed as Ti (i.e, the i-th task in critical path). Finally,

we place optional checkpoints according to the strategy to

achieve a shorter execution time. The optional checkpoints

split each task into some SEGMENTs (Sij is the j-th segment

in Ti). The relationship among PROCESSes, TASKs, and

SEGMENTs are shown in Figure 2. Two PROCESSes (P0

and P1) have four and three tasks separately. The critical path

marked in orange has four tasks (t10, t01, t02, and t12) that

are renamed to T0, T1, T2, and T3. The TASK T3 can be split

to n3 +1 SEGMENTs from S30 to S3n3
. We assume that the

system stores all compulsive checkpoints in the current critical

path but only stores the latest optimal checkpoint because of

limited resources.

D. Fault Model

Fault occurrence is usually regarded as random and indepen-

dent, even though our method is not confined to any specific

distribution, we assume, for brevity, that the arrival of faults is

a Poisson Process with a failure rate of λ. For generality, we

set a different failure rate for each task in the critical path, and

λi denotes the failure rate of the i-th task. Then, its probability

density function (PDF) is λie
−λit, t ≥ 0, λ ≥ 0.

When a fault arrives, there is a pi chance for task Ti

rollback to the latest checkpoint. However, there is also a

qi = 1 − pi chance for a task to roll back to the latest

compulsive checkpoint because of the optional checkpoint

availability.

516

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

III. PROCESS PARTITION WITH LOGICAL CONSISTENCY

Processes in real-time systems perform some recurrent

tasks, between which sending and receiving messages form

the dependencies. When a transient fault occurs, the system

needs to recover back to normal. We backup some checkpoints

so that the systems can re-execute from these states to tolerant

the fault.

Definition 1 (Logical Consistency): Logical consistency is

defined as a state, in which a sender process reflects sending

a message once the corresponding receiver process indicates

the message reception.

In this step, our checkpoints should meet the logical consis-

tency requirements (Definition 1) to ensure that the recovery

process goes smoothly.

We split processes into several tasks where they send or

receive messages and add edges between neighbouring tasks

within the same processes. Next, we add edges from a task

sending a message to another task receiving the message. In

this partition graph, the weight of vertices is the execution

time of the tasks, and the edges represent the dependencies

of these tasks. Then, we add a checkpoint overhead to the

weight of each vertex. When a process sends a message, the

process places a compulsive checkpoint following it, reflecting

the message sent to guarantee logical consistency. When a

process receives a message, the process places a compulsive

checkpoint backup all work before the message.

IV. CRITICAL PATH EXTRACTION

Definition 2 (Critical Path): In a DAG of tasks, the critical

path is a path in which the total sum of the weight of vertices

is no less than that of any other paths.

If there are several processors in a system, most of tasks can

be executed in parallel. However, tasks connected by edge in

the DAG must be performed in sequence. If we find a critical

path (Definition 2) in this DAG, we get a maximum length of

tasks that can only be executed in sequence. This critical path

determines the total execution time of these processes.

Definition 3 (Timing Correctness): Timing Correctness

means all tasks in each process catch up with the deadline

of this process in a real-time system.

First, we topologically sort the DAG and get an ordered

vertex set V with a complexity of O(|V |). Then, we use

dynamic programming to calculate the maximum total weight

tw(v) ending with vertex v. Finally, we select the maximum

value of tw(v) as the largest total weight and reconstruct the

critical path P using each optimal choice. We will expose the

algorithm details in our future work.

The critical path is the worst case for the following analysis

because other tasks can be executed in parallel. Figure 3a

shows a critical path partitioned from processes, in which

we already place some compulsive checkpoints (shown in

Figure 3b) for logical consistency.

V. CHECKPOINT PLACEMENT FOR TIMING CORRECTNESS

Placing checkpoints is non-trivial in the design due to the

timing correctness. On the one hand, if we do not place

(a) Extract critical path from DAG

(b) Compulsive checkpoints

Fig. 3: Examples of The Critical Path

optional checkpoints, the conservative long-rollbacks would

considerably waste previous work. On the other hand, placing

too many checkpoints causes negligible overhead. Thus, we

need to find a tradeoff to place an appropriate number of

checkpoints with proper intervals. In each task, the problem

is formulated into an optimization problem. We use an opti-

mization solver to optimize and we will provide an efficient

and robust optimization method in our future work.

For tasks after T0, the task rolls back to a compulsive or

optional checkpoint with the overhead r, if a fault is detected.

There is no restart overhead because there is a compulsive

checkpoint at the beginning of the task Ti. Therefore, the total

execution time for Sij is

wi(j+1) =

{
hi0 j = 0

wij + hij 1 ≤ j ≤ mi

(1)

where

hij =

⎧⎪⎨
⎪⎩
τij P = 1− Fij(τij)

dij + r + hij P = Fij(τij)pi

dij + r + wi(j+1) P = Fij(τij)qi

(2)

From Eq. (1), (2), and the fault model, we can derive the

expectation of wi(j+1):

Wi(j+1) =
1− piFij(τij)

1− Fij(τij)
Wij + τij +

Fij(τij)

1− Fij(τij)
(Dij + r)

= (qie
λτij + pi)Wij + (eλτij − 1)(

1

λi
+ r)

= vijWij + uijci
(3)

where v, u, and c are substitutions. We can derive the

expectation of the total execution time of the task Ti:

Wi = Wi(mi+1)

= ciui0

mi∏
j=1

vij + ciui1

mi∏
j=2

vij + ciui2

mi∏
j=3

vij + ...

+ ciui(mi−1)vimi + ciuimi

(4)

The optimization problem is expressed as:

argmin
mi,τij

Wi

s.t.

mi∑
j=0

τij = Ii + (mi + 1)tc
(5)

517

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

(a) Simulation processes (b) DAG of tasks

Fig. 4: Simulation Setting

Note that, the first task T0 in the critical path starts from

the initial state, while other tasks T1, . . . , Tn − 1 starts from

a compulsive checkpoint (as shown in Figure 3b). Thus, the

first task needs a special consideration, and we will illustrate

it in future work.

VI. EVALUATION

In this section, we evaluate our optional checkpointing

strategy on a randomly generated system with dependent

processes as a proof of concept. In the future, we will evaluate

the proposed method from more aspects.

The generated processes with dependencies are show in

Figure 4a. According to Section III, we partition these pro-

cesses into a DAG of tasks, shown in Figure 4b. The fault-free

execution times of each task are marked beside the vertices.

According to the Section IV, we extract the critical path of the

DAG, and mark it in orange. The critical path contains four

tasks with time-length 400, 300, 200, and 200. The deadline

to complete all tasks is 3300, which is equal to 3 times the

fault-free computation time of tasks on the critical path.

We compare our checkpoint placement strategy on the

critical path with four different strategies, same on the number

of checkpoints but differ on the checkpoint interval. They

are: (a) optimal placement strategy obtained from Section V;

(b) uniform distribution placement strategy: place checkpoints

based on uniform distribution; (c) Gauss distribution place-

ment strategy: place checkpoints based on Gauss distribution

with I/2 as mean and I/4 as the standard deviation ; (d)

narrowing placement strategy: gradually narrow the interval

between two checkpoints; (e) widening placement strategy:

gradually widen the interval between two checkpoints. The

placement strategy (d) is based on the algorithm: the i+ 1-th

checkpoint in a task is placed at the first third of the interval

between the i-th checkpoint and the end. The placement

strategy (e) is the reverse process of strategy (d). We simulate

the critical path process 100000 times and list the result in

Table II.

TABLE II: The Result of Simulation 2 - Performance Regard-

ing Different Checkpoint Interval. Strategies: (a) Optimal, (b)

Uniform, (c) Gauss, (d) Narrowing, (e) Widening.

Strategy Avg Exec Min Exec Max Exec %Deadline

Optimal 2616.12 1252.00 11995.20 81.88
Uniform 2744.79 1236.00 11732.31 77.80
Gauss 2732.77 1254.44 10993.74 78.19
Narrowing 2946.51 1250.99 14325.78 70.97
Widening 2941.82 1265.67 13142.09 71.02

The result shows that our model optimizes the interval

between checkpoints. We notice that our optimal strategy has

the shortest average execution time and the highest percentage

of finishing the process on time. Note, the maximum execution

time of strategy (c) being less than other strategies is due

to randomness. Our model cannot guarantee to perform the

best every time, but it promises a better average result when

running time accumulates.

VII. CONCLUSION AND FUTURE WORK

The main contribution of the paper is the consideration of

both logical consistency and timing correctness during the

checkpoint placement in real-time systems. We first partition

processes with complex dependencies into a DAG, during

which we place some compulsive checkpoints to guarantee

the logical consistency and avoid much useful work waste.

Then we extract the longest critical path to analyze timing

correctness. Finally, we build a model to illustrate how to

minimize each task’s execution time in the critical path to

achieve a minimum total execution time. Given that this work

is still on-going, we will improve the algorithms used in the

process partition and critical path extraction steps and optimize

the optional checkpoint placement step in our future work.

Furthermore, we will evaluate the proposed method from more

aspects by extensive simulations and case studies.

ACKNOWLEDGEMENT

This research was supported in part by NSF CNS-2143256.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation (NSF).

REFERENCES

[1] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, 2017.

[2] H. He and J. Yan, “Cyber-physical attacks and defences in the smart grid:
a survey,” IET Cyber-Physical Systems: Theory Applications, 2016.

[3] F. Flammini, “Resilience of cyber-physical systems,” Springer, 2019.
[4] Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing techniques

for energy-efficient fault tolerance in multiprocessor real-time systems,”
in 2013 IEEE 19th International Conference on Embedded and Real-
Time Computing Systems and Applications. IEEE, 2013, pp. 62–71.

[5] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
813–825, 2016.

[6] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale systems:
A look into the future of practical rollback-recovery,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 2, pp. 97–108, 2004.

[7] J. C. Ho, C.-L. Wang, and F. C. Lau, “Scalable group-based check-
point/restart for large-scale message-passing systems,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE,
2008, pp. 1–12.

[8] D. Zhu, “Reliability-aware dynamic energy management in dependable
embedded real-time systems,” in 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2006.

[9] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in 2011 IEEE International Parallel Distributed
Processing Symposium, 2011, pp. 989–1000.

[10] D. M. Yi Luo, “Theoretical and experimental evaluation of
communication-induced checkpointing protocols in fe and flazy-e fam-
ilies, performance evaluation,” Performance Evaluation, 2013.

518

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

