2022 IEEE Real-Time Systems Symposium (RTSS) | 978-1-6654-5346-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/RTSS55097.2022.00055

2022 |IEEE Real-Time Systems Symposium (RTSS)

Work-in-Progress: Optimal Checkpointing Strategy
for Real-time Systems with Both Logical and
Timing Correctness

Lin Zhang, Zifan Wang, Fanxin Kong
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY
Izhan120 @syr.edu, zwang345 @syr.edu, fkong03 @syr.edu

Abstract—This paper proposes an optimal checkpoint scheme
for fault resilience in real-time systems, in which we consider both
logical consistency and timing correctness. First, we partition
message-passing processes into a directed acyclic graph (DAG)
considering their dependencies, where the logical consistency of
checkpoints is guaranteed. Then, we find the critical path of the
DAG, which is the longest path performed in sequence. Next, we
analyze the optimal checkpoint strategy on the critical path where
the overall execution time (including checkpointing overhead) is
minimized. When a fault is detected, the system rolls back to
the nearest valid checkpoint for recovery. The optimal number
of checkpoints and their intervals are derived by the algorithm.

Index Terms—Real-time systems, fault resilience, checkpoint-
ing, logical consistency, timing correctness

[. INTRODUCTION

As real-time systems such as automobiles become more
complex and open architectures, they are vulnerable to many
adversarial factors such as faults and attacks. With these
adversaries, the controller may make dangerous decisions and
cause serious consequences such as vehicle crashes and loss
of human lives [1], [2]. Resilience to these adversarial factors
is essential to the safety of such systems [3].

In this paper, we study the problem of tolerating transient
faults for a controller running on computational nodes. In gen-
eral, there are two popular research threads for fault resilience:
redundancy and checkpointing. One thread relies on redundant
components (e.g., standby processors [4] or task replica [5]),
where if some components are faulty, other components can
still process forward to finish the job. The other thread occa-
sionally checkpoints system states, and the system rolls back
to a consistent state (checkpointed in history) when detecting
faults [6]. This work aligns with the second thread and studies
checkpointing protocols for real-time parallel processes.

Existing checkpointing works can be divided into two
groups. One group focuses on checkpointing computing tasks
in general-purpose (non-real-time) systems. The goal is to
guarantee the logical consistency of checkpoints (value cor-
rectness), which represents the cause-effect relation defined
by messages sent and received among tasks [7]. The other
targets real-time systems and carries out checkpointing under
timing constraints (deadlines) [8]. There are three main pro-
tocols setting checkpoints: uncoordinated checkpointing, co-
ordinated checkpointing, and communication-induced check-
pointing(CIC). Uncoordinated checkpointing enables tasks to

set checkpoints when convenient for a better schedule [9].
detecting [10]. However, these works are incapable of tackling
checkpointing real-time parallel processes, where both logical
and timing correctness need to be guaranteed.

To fill this gap, we propose a new three-step checkpointing
protocol that considers both types of correctness. The first
step is processes partition, which transfers real-time parallel
processes into a directed acyclic graph (DAG) of tasks where
the edge represents the message communicated between tasks.
Compulsive checkpoints guaranteeing logical correctness are
then placed for each task. The second step is to identify a
critical path, which finds the longest execution path of the
DAG. The last step is to ensure timing correctness, which
minimizes overall execution time (task execution time plus
checkpointing overhead). We propose an effective and efficient
algorithm for each step.

The rest of this paper is organized as follows. Section II
describes the overview of the optimal checkpointing strat-
egy, the system model, and the threat model. Section III,
Section IV, and Section V present task partition, finding
the critical path, and placing optional checkpoints for timing
correctness, respectively. Section VI evaluates our method, and
Section VII concludes the paper and gives insights into our
future work.

II. PRELIMINARIES AND DESIGN OVERVIEW

In this section, we present the problem statement, our
strategy overview, system model, and fault model.

A. Problem Statement

Consider a real-time system whose processes perform repet-
itive tasks, where each process aims at one specific function,
for example, collecting sensor readings. Processes send mes-
sages to others during runtime, forming process dependencies.
A checkpointing system is capable of resisting faults in real-
time systems because of quick recoveries. When a fault is
detected, the system rolls back to the nearest valid checkpoint
that preserves the state of the process, avoiding redoing all
the work from the beginning. The objective is to determine
an optimal checkpointing strategy that achieves (i) logical
consistency of checkpoints considering process dependencies
and (ii) the shortest execution time considering checkpointing
overhead and recovery time.

2576-3172/22/$31.00 ©2022 |IEEE 515
DOI 10.1109/RTSS55097.2022.00055
Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

Processes with Critical Path

Dependencies

Process Critical Optional
" Path Checkpoint
Partition .
Extraction Placement
Section III Section IV Section V

DAG of
Partitioned

Optimal
Optional
Tasks

Checkpoints

Fig. 1: The Overview of Optimal Checkpointing Strategy

Py (too {to1) { t02) to3

a AN

Pr (tio () @ GE
S30 S3i S3ms

Fig. 2: Relationship of Process, Task, And Segment

B. Overview of the Checkpointing Strategy

We derive the optimal checkpointing strategy by three
steps, as shown in Figure 1: (i) process partition, (ii) critical
path extraction, and (iii) optional checkpoint placement. The
following briefly describes these steps, and we will present
their detailed design in Section III, IV, and V.

e Process partition. Processes are executed with depen-
dencies, which are reflected by message passing. To
tolerate faults and recover successfully, we need to place
checkpoints considering these dependencies. This step is
to partition dependent processes into a DAG graph and
place compulsive checkpoints. These checkpoints meet
the requirement of logical dependency.

o Critical path extraction. In the DAG, most tasks can be
executed in parallel with the multiprocessor. However,
tasks in a dependent path must be executed in sequence.
This step is to identify a critical path, which is the
longest dependent path. This critical path determines the
performance the checkpointing and recovery. Note that
the tasks in noncritical paths can do the same following
step to set up checkpoints, but their execution time is less
than that in the critical path. Therefore, in the proposed
model, only the critical path should be considered.

o Optional checkpoint placement. Numerous works will be
discarded in the critical path after a fault if we place
too few checkpoints, and the checkpointing overhead will
dominate if we place too many checkpoints. This step is
to solve optimization problems to determine the optimal
number and intervals of checkpoints.

516

TABLE I: Symbols and Notations Used in This Paper

[Symbol [Description |

P; i-th process in the system

T; i-th task in the critical path

Sij 7-th segment in the Task ¢

s the recovery overhead from the initial state

te the overhead of checkpointing

qi the invalid rate of an optional checkpoints in the Task ¢

i the valid rate of an optional checkpoints in the Task ¢

n; the number of optional checkpoints in the Task ¢

i the failure rate of the Task 7

m; message %
Wi the total execution time before .S;; in the Task 4
Wi the expectation of w;;

dij the completion time of .S;; before a fault
Dyj the expectation of d;;

Fij the probability that the fault occurs in S;;

I; the fault-free computation time (excluding ¢.) of Task ¢
Tij the fault-free execution time (including ¢.) of Segment S;;

C. System Model

Symbols and notations used in this paper are listed in
Table I. There are some PROCESSes (P; is denoted as the i-th
process) in real-time systems, and the passing messages be-
tween them form the dependencies of processes. We partition
the processes into tasks (Z;; is denoted as the j-th task on the -
th process) according to the dependencies. In this way, a DAG
is obtained through the partition, where tasks are nodes, and
dependencies are edges. We place compulsive checkpoints on
this DAG to guarantee logical consistency. Then, the critical
path of the DAG is identified, and the TASKSs in this path
are renamed as 7; (i.e, the ¢-th task in critical path). Finally,
we place optional checkpoints according to the strategy to
achieve a shorter execution time. The optional checkpoints
split each task into some SEGMENTS (S, is the j-th segment
in 7;). The relationship among PROCESSes, TASKs, and
SEGMENTSs are shown in Figure 2. Two PROCESSes (F
and P;) have four and three tasks separately. The critical path
marked in orange has four tasks (¢19, to1, fo2, and t12) that
are renamed to Ty, 711, T5, and T3. The TASK T35 can be split
to nz + 1 SEGMENTS from S3g to Ss,,. We assume that the
system stores all compulsive checkpoints in the current critical
path but only stores the latest optimal checkpoint because of
limited resources.

D. Fault Model

Fault occurrence is usually regarded as random and indepen-
dent, even though our method is not confined to any specific
distribution, we assume, for brevity, that the arrival of faults is
a Poisson Process with a failure rate of A. For generality, we
set a different failure rate for each task in the critical path, and
A; denotes the failure rate of the i-th task. Then, its probability
density function (PDF) is A;e= Yt ¢ > 0, A > 0.

When a fault arrives, there is a p; chance for task 7;
rollback to the latest checkpoint. However, there is also a
q; 1 — p; chance for a task to roll back to the latest
compulsive checkpoint because of the optional checkpoint
availability.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

III. PROCESS PARTITION WITH LOGICAL CONSISTENCY

Processes in real-time systems perform some recurrent
tasks, between which sending and receiving messages form
the dependencies. When a transient fault occurs, the system
needs to recover back to normal. We backup some checkpoints
so that the systems can re-execute from these states to tolerant
the fault.

Definition 1 (Logical Consistency): Logical consistency is
defined as a state, in which a sender process reflects sending
a message once the corresponding receiver process indicates
the message reception.

In this step, our checkpoints should meet the logical consis-
tency requirements (Definition 1) to ensure that the recovery
process goes smoothly.

We split processes into several tasks where they send or
receive messages and add edges between neighbouring tasks
within the same processes. Next, we add edges from a task
sending a message to another task receiving the message. In
this partition graph, the weight of vertices is the execution
time of the tasks, and the edges represent the dependencies
of these tasks. Then, we add a checkpoint overhead to the
weight of each vertex. When a process sends a message, the
process places a compulsive checkpoint following it, reflecting
the message sent to guarantee logical consistency. When a
process receives a message, the process places a compulsive
checkpoint backup all work before the message.

IV. CRITICAL PATH EXTRACTION

Definition 2 (Critical Path): In a DAG of tasks, the critical
path is a path in which the total sum of the weight of vertices
is no less than that of any other paths.

If there are several processors in a system, most of tasks can
be executed in parallel. However, tasks connected by edge in
the DAG must be performed in sequence. If we find a critical
path (Definition 2) in this DAG, we get a maximum length of
tasks that can only be executed in sequence. This critical path
determines the total execution time of these processes.

Definition 3 (Timing Correctness): Timing Correctness
means all tasks in each process catch up with the deadline
of this process in a real-time system.

First, we topologically sort the DAG and get an ordered
vertex set V' with a complexity of O(|V]). Then, we use
dynamic programming to calculate the maximum total weight
tw(v) ending with vertex v. Finally, we select the maximum
value of tw(v) as the largest total weight and reconstruct the
critical path P using each optimal choice. We will expose the
algorithm details in our future work.

The critical path is the worst case for the following analysis
because other tasks can be executed in parallel. Figure 3a
shows a critical path partitioned from processes, in which
we already place some compulsive checkpoints (shown in
Figure 3b) for logical consistency.

V. CHECKPOINT PLACEMENT FOR TIMING CORRECTNESS

Placing checkpoints is non-trivial in the design due to the
timing correctness. On the one hand, if we do not place

517

(2 ft\‘ /t'\\ Q N ﬂc\
Y N 4 N N
(a) Extract critical path from DAG
th 1;ll t12 tlS tOZ
To T, T, Ts Ty

(b) Compulsive checkpoints

Fig. 3: Examples of The Critical Path

optional checkpoints, the conservative long-rollbacks would
considerably waste previous work. On the other hand, placing
too many checkpoints causes negligible overhead. Thus, we
need to find a tradeoff to place an appropriate number of
checkpoints with proper intervals. In each task, the problem
is formulated into an optimization problem. We use an opti-
mization solver to optimize and we will provide an efficient
and robust optimization method in our future work.

For tasks after 7p, the task rolls back to a compulsive or
optional checkpoint with the overhead r, if a fault is detected.
There is no restart overhead because there is a compulsive
checkpoint at the beginning of the task 7;. Therefore, the total
execution time for .S;; is

hio J=0
Wi(j+1) = {w” thy 1<) <m (1)
where
Tij P =1-F;(ri)
hij = § dij + 7+ hij P = F;j(7ij)pi)

dij +r +wigr1y) P = Fij(7i)a

From Eq. (1), (2), and the fault model, we can derive the
expectation of w;(j41):
1 —piFi;(7ij)
1 — Fij(7i5)
1
(@™ + p)Wij + (7 — (s

7

Fij(7i5)

Wij+mij+ ————
T 1= Fy(ry)

Wigi+1) = (Dij +1)

+r)
=i Wij + uije;
3)

where v, u, and c¢ are substitutions. We can derive the
expectation of the total execution time of the task 7;:

Wi = Witm,+1)
= Cilio H Vij + Cili1 H Vij + Cilli2 H Vij + ... (4)
j=1 j=2 j=3
+ Cilli(m;—1)Vim; T Cillim,
The optimization problem is expressed as:

argmin W;

My, Tij
i o)
s.t. ZTij = I,L + (ml + 1)tc
7=0

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

Py ! Py
~100 100

P, too tor boz l N ;
\ / 100(o1 /

P, t10 b w5]

\ / ///‘
P, b0 b1 b2 boa) 200@

(b) DAG of tasks

(a) Simulation processes

Fig. 4: Simulation Setting

Note that, the first task 7 in the critical path starts from
the initial state, while other tasks 77,...,7, — 1 starts from
a compulsive checkpoint (as shown in Figure 3b). Thus, the
first task needs a special consideration, and we will illustrate
it in future work.

VI. EVALUATION

In this section, we evaluate our optional checkpointing
strategy on a randomly generated system with dependent
processes as a proof of concept. In the future, we will evaluate
the proposed method from more aspects.

The generated processes with dependencies are show in
Figure 4a. According to Section III, we partition these pro-
cesses into a DAG of tasks, shown in Figure 4b. The fault-free
execution times of each task are marked beside the vertices.
According to the Section IV, we extract the critical path of the
DAG, and mark it in orange. The critical path contains four
tasks with time-length 400, 300, 200, and 200. The deadline
to complete all tasks is 3300, which is equal to 3 times the
fault-free computation time of tasks on the critical path.

We compare our checkpoint placement strategy on the
critical path with four different strategies, same on the number
of checkpoints but differ on the checkpoint interval. They
are: (a) optimal placement strategy obtained from Section V;
(b) uniform distribution placement strategy: place checkpoints
based on uniform distribution; (c) Gauss distribution place-
ment strategy: place checkpoints based on Gauss distribution
with 7/2 as mean and I/4 as the standard deviation ; (d)
narrowing placement strategy: gradually narrow the interval
between two checkpoints; (e) widening placement strategy:
gradually widen the interval between two checkpoints. The
placement strategy (d) is based on the algorithm: the ¢ + 1-th
checkpoint in a task is placed at the first third of the interval
between the i-th checkpoint and the end. The placement
strategy (e) is the reverse process of strategy (d). We simulate
the critical path process 100000 times and list the result in
Table II.

TABLE II: The Result of Simulation 2 - Performance Regard-
ing Different Checkpoint Interval. Strategies: (a) Optimal, (b)
Uniform, (c) Gauss, (d) Narrowing, (¢) Widening.

[Strategy [Avg Exec | Min Exec | Max Exec [%Deadline |
Optimal 2616.12 1252.00 11995.20 81.88
Uniform 2744.79 1236.00 11732.31 77.80
Gauss 2732.77 1254.44 10993.74 78.19
Narrowing 2946.51 1250.99 14325.78 70.97
Widening 2941.82 1265.67 13142.09 71.02

518

The result shows that our model optimizes the interval
between checkpoints. We notice that our optimal strategy has
the shortest average execution time and the highest percentage
of finishing the process on time. Note, the maximum execution
time of strategy (c) being less than other strategies is due
to randomness. Our model cannot guarantee to perform the
best every time, but it promises a better average result when
running time accumulates.

VII. CONCLUSION AND FUTURE WORK

The main contribution of the paper is the consideration of
both logical consistency and timing correctness during the
checkpoint placement in real-time systems. We first partition
processes with complex dependencies into a DAG, during
which we place some compulsive checkpoints to guarantee
the logical consistency and avoid much useful work waste.
Then we extract the longest critical path to analyze timing
correctness. Finally, we build a model to illustrate how to
minimize each task’s execution time in the critical path to
achieve a minimum total execution time. Given that this work
is still on-going, we will improve the algorithms used in the
process partition and critical path extraction steps and optimize
the optional checkpoint placement step in our future work.
Furthermore, we will evaluate the proposed method from more
aspects by extensive simulations and case studies.

ACKNOWLEDGEMENT

This research was supported in part by NSF CNS-2143256.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation (NSF).

REFERENCES

M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, 2017.

H. He and J. Yan, “Cyber-physical attacks and defences in the smart grid:
a survey,” IET Cyber-Physical Systems: Theory Applications, 2016.

F. Flammini, “Resilience of cyber-physical systems,” Springer, 2019.
Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing techniques
for energy-efficient fault tolerance in multiprocessor real-time systems,”
in 2013 IEEE 19th International Conference on Embedded and Real-
Time Computing Systems and Applications. 1EEE, 2013, pp. 62-71.
M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
813-825, 2016.

E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale systems:
A look into the future of practical rollback-recovery,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 2, pp. 97-108, 2004.
J. C. Ho, C.-L. Wang, and F. C. Lau, “Scalable group-based check-
point/restart for large-scale message-passing systems,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing. 1EEE,
2008, pp. 1-12.

D. Zhu, “Reliability-aware dynamic energy management in dependable
embedded real-time systems,” in 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2006.

A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in 2011 IEEE International Parallel Distributed
Processing Symposium, 2011, pp. 989-1000.

D. M. Yi Luo, “Theoretical and experimental evaluation of
communication-induced checkpointing protocols in fe and flazy-e fam-
ilies, performance evaluation,” Performance Evaluation, 2013.

[10]

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on June 01,2023 at 15:59:16 UTC from IEEE Xplore. Restrictions apply.

