
https://doi.org/10.1007/s40306-022-00484-z

Coercivity of the Dirichlet-to-Neumann Operator
and Applications to the Muskat Problem

Huy Q. Nguyen1
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Abstract
We consider the Dirichlet-to-Neumann operator in strip-like and half-space domains with
Lipschitz boundary. It is shown that the quadratic form generated by the Dirichlet-to-
Neumann operator controls some sharp homogeneous fractional Sobolev norms. As an
application, we prove that the global Lipschitz solutions constructed in Dong et al. (2021)
for the one-phase Muskat problem decays exponentially in time in any Hölder norm Cα ,
α ∈ (0, 1).
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1 Introduction

The Dirichlet-to-Neumann operator arises naturally in free boundary problems in fluid
mechanics as a result of dimension reduction. To name a few, the water wave, the Muskat
and the Hele-Shaw problem [1–3, 8].

Let M be either the real line R or the circle T. We consider either the strip-like domain

Ω = {(x, y) ∈ Md × R : b(x) < y < f (x)} (1.1)

or the half-space
Ω = {(x, y) ∈ Md × R : y < f (x)}. (1.2)

The boundary functions f and b are Lipschitz continuous and satisfy

inf
x∈Md

f (x) − b(x) ≥ h > 0. (1.3)
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We also refer to (1.1) as the finite depth case and to (1.2) as the infinite depth case.
Given a function g : Md → R, d ≥ 1, we consider the boundary value problem

⎧
⎪⎨

⎪⎩

x,yφ = 0 in Ω,

φ(x, f (x)) = g(x),

∂νφ(x, b(x)) = 0,

(1.4)

where ν = 1√
|∇xb|2+1

(∇xb, −1) is the outward unit normal to the bottom boundary {y =
b(x)}. In the infinite depth case, the Neumann condition in (1.4) is replaced by the decay
condition

lim
(x,y)→∞ ∇x,yφ = 0.

The Dirichlet-Neumann operator G associated to Ω is defined by

G(g) = ∂yφ − ∇xf · ∇xφ |y=f (x) = (−∇xf, 1) · ∇x,yφ|y=f (x).

In other words, G(g) is the normal derivative of the harmonic function φ on the top
boundary {y = f (x)}.

For the perfect half-space, i.e., f = 0, we have G(g) = |D|g, where |D| is the Fourier
multiplier |ξ |. In other words, |D| is the square root of the Laplacian − x . The quadratic
form generated by |D| is coercive

Md

g|D|g D| 12 g 2
L2(Md)

g 2

Ḣ
1
2 (Md)

. (1.5)

On the other hand, for straight strip domains, i.e., f = 0 and b(x) ≡ −a with a > 0, we
have G(g) = |D| tanh(a|D|), whence

Md

g|D| tanh(a|D|)g D| tanh(a|D|)] 1
2 g 2

Md , (1.6)

where the right hand-side is equivalent to the seminorm Ḣ
1
2 (Td) when Md = T

d and to the
seminorm

g 2

H
1
2 (Rd )

:=
Md

min{|ξ |, |ξ |2}|g(ξ)|2dξ (1.7)

when Md = R
d . The Sobolev type space Hs is studied in detail in [7]. We also refer to [2,

4, 5] for pointwise lower bounds for g|D|g and gG(g).
With applications to free boundary problems in mind, we are interested in generaliz-

ing (1.5) and (1.6) to non flat boundary, i.e., to domains of the form (1.1) and (1.2) with
nontrivial boundary functions f and g.

It is known that when g belongs to the fractional Sobolev space H
1
2 (Md), G(g) is well-

defined in H− 1
2 (Md). See Proposition 2.1 below. We shall prove the following coercive

inequalities that generalize (1.5) and (1.6) to the domain (1.2) and (1.1) respectively:

G(g), g
H

− 1
2 (Md),H

1
2 (Md)

≥ M g 2
X, (1.8)

where X is either H
1
2 or Ḣ

1
2 depending on M and the depth of Ω; the constant M depends

explicitly on the boundary of Ω . See Propositions 2.2 and 2.3 below.
In Proposition 2.4 we establish the coercive inequality

G(g),Φ (g)
H

− 1
2 (Md),H

1
2 (Md)

≥ M Ψ (g) 2
X,
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whereΦ is anyC2 convex function such thatΦ (z)/z is continuous, andΨ(z)= z

0

√
Φ (z )dz .

As a consequence, when M = T and g has zero mean, G(g),Φ (g)
H

− 1
2 (Md),H

1
2 (Md)

controls the Lp norm of g.
In Section 3, we apply (1.8) to obtain time decay of the global Lipschitz solutions con-

structed in [6] for the one-phase Muskat problem. It is shown that for any data f0 ∈
W 1,∞(T), the global solution f satisfies

f ∈ L2((0,∞); Ḣ
1
2 (T)), ∂tf ∈ L2((0,∞); Ḣ− 1

2 (T)).

If f0 has zero mean, we prove that all the Hölder norms Cα(T), α ∈ (0, 1) of f decay
exponentially.

2 Coercive Inequalities for the Dirichlet-to-Neumann Operator

We denote

Lip(Md) = u : Md → R : ∃C > 0, ∀x, x ∈ Md, |u(x) − u(x )| ≤ C|x − x | .

We first recall the following proposition on the boundedness of the Dirichlet-to-Neumann
operator.

Proposition 2.1 ([1, 8]) Let d ≥ 1.
(1) (The finite depth case) Assume that b, f ∈ Lip(Md) such that f − b ∈ L∞(Md)

and (1.3) holds. Let H
1
2 (Rd) be the space of L2

loc(R
d) functions whose Fourier transform

are locally L2 in the complement of the origin such that the seminorm (1.7) is finite. For

notational convenience, we set H
1
2 (Td) = Ḣ

1
2 (Td).

For any g ∈ H
1
2 (Md), there exists a unique solution φ ∈ Ḣ 1(Ω) to (1.4) and we have

G(g) ∈ H− 1
2 (Md) together with the bound

G(g)
H

− 1
2 (Md)

≤ C f L∞(Md) b L∞(Md) g
H

1
2 (Md)

,

where C = C(h, d).

(2) (The infinite depth cases) Let f ∈ Lip(Md). For any g ∈ Ḣ
1
2 (Md), there exists a unique

solution φ ∈ Ḣ 1(Ω) to (1.4) and we have G(g) ∈ H− 1
2 (Md) together with the bound

G(g)
H

− 1
2 (Md)

≤ C f L∞(Md) g
Ḣ

1
2 (Md)

, (2.1)

where C = C(d).

Coercive inequalities for G(g), g
H

− 1
2 (Md),H

1
2 (Md)

are established in Propositions 2.2

and 2.3 for the finite and infinite depth cases respectively.

Proposition 2.2 Let Ω be the strip-like domain (1.1), where b, f ∈ Lip(Md) such that
f − b ∈ L∞(Md) and (1.3) holds. There exists a constant C = C(d) > 0 such that for any

g ∈ H
1
2 (Md), we have

G(g), g
H

− 1
2 (Md),H

1
2 (Md)

≥ Ch

1 f 2
L∞ f − b 2

W 1,∞
g 2

H
1
2 (Md)

, (2.2)

where h is given by (1.3).
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Proof We flatten Ω using the Lipschitz diffeomorphism

Md × (−1, 0) (x, z) → S(x, z) = ∈ Ω,

where
= (z + 1)f (x) − zb(x)

satisfies ∂z = f (x) − b(x) ≥ h and ∇x,z ∈ L∞(Md × (−1, 0)). By the chain rule,
the function v = φ ◦ S satisfies

divx,z(A∇x,zv)(x, z) = ∂z x,yφ)(S(x, z)) = 0, (2.3)

where

A = ∂z Id×d −∇x

−(∇x
T 1+|∇x |2

∂z

.

Here we regard the gradient as a column matrix. In terms of v we have

G(g)(x) = −∇x 0) · ∇xv(x, 0) + 1 + |∇x 0)|2
∂z 0)

∂zv(x, 0) = ed+1 · (A∇x,zv)(x, 0).

(2.4)
We recall the following Stokes formula

ed+1 · u(·, 0), w(·, 0)
H

− 1
2 (Md),H

1
2 (Md)

ed+1 · u(·,−a), w(·,−a)
H

− 1
2 (Md),H

1
2 (Md)

=(u,∇x,zw)L2(Md×(−a,0)) + (divx,z u,w)L2(Md×(−a,0)), a > 0,

(2.5)

provided that u ∈ L2(Md × (−1, 0))d+1, divx,z u ∈ L2(Md × (−1, 0)) and w ∈ H 1(Md ×
(−1, 0)).

We check that (2.5) is applicable with u = A∇x,zv and w = v. Indeed, since ∇x,yφ ∈
L2(Ω) (by Proposition 2.1) and ∇x,z ∈ L∞(Md × (−1, 0)), we have ∇x,zv ∈ L2(Md ×
(−1, 0)), and thusA∇x,zv ∈ L2(Md ×(−1, 0)). In addition, since v(·, 0) = g(·) ∈ L2(Md)

and Ω has finite depth, it follows that v ∈ L2(Md × (−1, 0)). By the chain rule, we have

ed+1 · (A∇x,zv)|z=−1 = −∇x · ∇xv + 1 + |∇x |2
∂z

∂zv|z=−1

= −∇x · ∇xφ + ∂yφ|z=−1

= −∇xb · ∇xφ + ∂yφ|z=−1

= − 1 + |∇xb|2∂νφ(x, b(x)) = 0.

(2.6)

Then applying (2.5) and invoking (2.3), (2.4) and (2.6), we deduce

G(g), g
H

− 1
2 ,H

1
2

=
0

−1 Md

A∇x,zv · ∇x,zvdxdz

=
0

−1 Md

∂z |∇xv|2 − 2
∇x

∂z

· ∇xv∂zv + 1 + |∇x |2
|∂z |2 |∂zv|2 dxdz

=
0

−1 Md

∂z ∇xv − ∇x

∂z

∂zv

2

+ |∂zv|2
|∂z |2 dxdz.

(2.7)

In the remainder of this proof, we only treat the more difficult case Md = R
d . Let

χ : R → R be a smooth function that is identically 1 on (−1/3, ∞) and vanishes on
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(−∞,−2/3). Then w(x, z) := χ(z)v(x, z) satisfies w(x, 0) = g(x) and w vanishes near
z = −1. Consequently,

|g(ξ)|2 = |w(ξ, 0)|2
0

−1
∂zw(ξ, z)w(ξ, z)dz

0

−1
χ (z)v(ξ, z) + χ(z)∂zv(ξ, z) χ(z)v(ξ, z)dz,

where w is the Fourier transform of w with respect to x ∈ R
d . It follows that

Rd

min{|ξ |, |ξ |2}|g(ξ)|2

≤ C
0

−1 Rd

|ξ |2|v(ξ, z)|2 + |∂zv(ξ, z)||ξ ||v(ξ, z)|dξdz

≤ C
0

−1 Rd

|∇xv(ξ, z)|2 + |∂zv(ξ, z)||∇xv(ξ, z)|dξdz

≤ C xv
2
L2(Rd×(−1,0)) + C xv L2(Rd×(−1,0)) ∂zv L2(Rd×(−1,0))

≤ C
0

−1 Rd

|∇xv|2 + |∂zv|2dxdz.

It follows from this and the triangle inequality

|∇xv| ≤ ∇xv − ∇x

∂z

∂zv + |∇x |
∂z

|∂zv|
that

Rd

min{|ξ |, |ξ |2}||g(ξ)|2

≤ C
0

−1 Rd

∇xv − ∇x

∂z

∂zv

2

+ |∂z |2 + |∇x |2 |∂zv|2
|∂z |2 dxdz

≤ C
0

−1 Rd

∂z ∇xv − ∇x

∂z

∂zv

2

+ |∂zv|2
|∂z |2

1 + |∂z |2 + |∇x |2
∂z

dxdz.

Using

h ≤ ∂z = f (x) − b(x) f − b L∞ and x L∞ f L∞ (f − b) L∞ ,

we deduce

Rd

min{|ξ |, |ξ |2}|g(ξ)|2

≤C
1 f 2

L∞ f − b 2
W 1,∞

h

0

−1 Rd

∂z ∇xv − ∇x

∂z

∂zv

2

+ |∂zv|2
|∂z |2 dxdz.

(2.8)
In view of (2.7) and (2.8) we conclude the proof of (2.2).

Proposition 2.3 Let Ω be the half-space domain (1.2) with f ∈ Lip(Md). There exists a

constant C = C(d) > 0 such that for any g ∈ H
1
2 (Md), we have

G(g), g
H

− 1
2 (Md),H

1
2 (Md)

≥ C

1 f L∞(Md)

g 2

Ḣ
1
2 (Md)

. (2.9)
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Proof We flatten Ω = {(x, y) ∈ Md × R : y < f (x)} using the Lipschitz diffeomorphism

Md × (−∞, 0) (x, z) → S(x, z) = ∈ Ω,

where = z + f (x). The formula (2.4) holds with v = φ ◦ S . Let χ : R → R be
a smooth function satisfying χ(z) = 1 on (−1/3, ∞) and χ(z) = 0 on (−∞,−2/3). We
apply the Stokes formula (2.5) with u = A∇x,zv, w = v(x, z)χ( z

−n
) and a = n to have

G(g), g
H

− 1
2 ,H

1
2

=
Md

0

−n

A∇x,zv·∇x,zv− 1

n
ed+1·A∇x,zv χ

z

−n
vdzdx. (2.10)

We shall prove that

I := lim
n→∞

1

n Md

0

−n

ed+1 · A∇x,zv χ
z

−n
vdzdx = 0. (2.11)

Since v(x, 0) = g(x), we have

|v(x, z)| ≤ |g(x)| + |z| 12
0

z

|∂zv(x, z )|2dz

1
2

≤ |g(x)| + n
1
2

0

−n

|∂zv(x, z )|2dz

1
2

, z ∈ [−n, 0],

whence

I ≤ 1

n Md

0

−n

ed+1 · A∇x,zv χ
z

−n
|g(x)|dzdx

+ 1√
n Md

0

−n

ed+1 · A∇x,zv χ
z

−n

0

−n

|∂zv(x, z )|2dz

1
2

dzdx

:= I1 + I2.

By Hölder’s inequality,

I1 ≤ 1

n
A∇x,zv L2(Md×(−n,0)) gχ ·

−n L2(Md×(−n,0))

≤ C

n
1
2

A∇x,zv L2(Md×(−n,0)) g L2(Md) → 0 as n → ∞

and

I2 ≤ 1√
n

A∇x,zvχ
·

−n L2(Md×(−n,0))

0

−n

∂zv(·, z )|2dz

1
2

L2(Md×(−n,0))

≤ A∇x,zvχ
·

−n L2(Md×(−n,0))
∂zv L2(Md×(−n,0)) .

Since χ ( z
−n

) → 0 as n → ∞ and A∇x,zv ∈ L2(Md × (−∞, 0)), the dominated con-
vergence theorem implies that limn→∞ I2 = 0. Therefore, passing n → ∞ in (2.10) we
obtain

G(g), g
H

− 1
2 ,H

1
2

=
Md

0

−∞
A∇x,zv · ∇x,zvdzdx

=
Md

0

−∞
|∇xv − ∇f ∂zv|2 + |∂zv|2dzdx,

(2.12)
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where we have used that ∇x = ∇xf and ∂z = 1.
We only consider the more difficult case Md = R

d in the remainder of this proof. For
w(x, z) = χ( z

−n
)v(x, z), we have w(x, 0) = v(x, 0) = g(x) and w vanishes near z = −n.

Consequently,

Rd

|ξ ||g(ξ)|2dξ =
Rd

|ξ |
0

−n

∂z|w(ξ, z)|2
Rd

0

−n

∂zw(ξ, z)|ξ |w(ξ, z)dzdξ

Rd

0

−n

χ2 z

−n
∂zv(ξ, z)|D|v(ξ, z)dzdξ

−1

n Rd

0

−n

χ
z

−n
χ

z

−n
v(ξ, z)|D|v(ξ, z)dzdξ

= 2
Rd

0

−n

χ2 z

−n
∂zv(x, z)|D|v(x, z)dzdx

−2

n Rd

0

−n

χ
z

−n
χ

z

−n
v(x, z)|D|v(x, z)dzdx.

Since ∂zv and |D|v belong to L2(Rd × R−), arguing as in (2.11), we can pass to the limit
n → ∞ and obtain

Rd

|ξ ||g(ξ)|2dξ = 2
Rd

0

−∞
∂zv(x, z)|D|v(x, z)dzdx

= 2
Rd

0

−∞
∂zv(x, z)R · ∇xv(x, z)dzdx

=
Rd

0

−∞
2∂zvR · (∇xv − ∇f ∂zv) + 2∂zvR · (∇f ∂zv)dzdx

=
Rd

0

−∞
|∂zv|2 + |R · (∇xv − ∇f ∂zv)|2 + 2∂zvR · (∇f ∂zv)

− ∂zv − R · (∇xv − ∇f ∂zv)
2
dzdx,

where R denotes the Riesz transform, Ru(ξ) = −iξ
|ξ | u(ξ). Using Hölder’s inequality and

the boundedness ofR in L2, we obtain

Rd

|ξ ||g(ξ)|2dξ ≤ C ∂zv L2 xv − ∇f ∂zv L2 + C f L∞ ∂zv
2
L2

≤ C(1 f L∞)
Rd

0

−∞
|∇xv − ∇f ∂zv|2 + |∂zv|2dzdx.

(2.13)

Finally, (2.9) follows from (2.12) and (2.13).

Next, we generalize (2.2) and (2.9) to the pairing G(g),Φ (g)
H

− 1
2 (Md),H

1
2 (Md)

for

convex functions Φ.

Proposition 2.4 Let Φ : R → R be a C2 convex function such that Φ (z)/z is continuous
on R. Set

Ψ (z) =
z

0
Φ (z )dz .

Let g ∈ H
1
2 (Md) ∩ L∞(Md).
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(1) (The finite depth case) If b, f ∈ Lip(Md) such that f − b ∈ L∞(Md) and (1.3) holds,
then there exists a constant C = C(d) > 0 such that

G(g),Φ (g)
H

− 1
2 (Md),H

1
2 (Md)

≥ Ch

1 f 2
L∞ f − b 2

W 1,∞
Ψ (g) 2

H
1
2 (Md)

.

(2) (The infinite depth case) If f ∈ Lip(Md), then there exists a constant C = C(d) > 0
such that

G(g),Φ (g)
H

− 1
2 (Md),H

1
2 (Md)

≥ C

1 f L∞
Ψ (g) 2

Ḣ
1
2 (Md)

.

Proof We shall only consider the more difficult caseMd = R
d . SinceΦ (z)/z is continuous

and g ∈ H
1
2 (Rd)∩L∞(Rd), it can be shown thatΦ (g) ∈ H

1
2 (Rd) ⊂ Ḣ

1
2 (Rd) ⊂ H

1
2 (Rd).

Let v = φ ◦ S as given in the proof of Propositions 2.2 and 2.3. By the maximum principle
for the harmonic function φ, we have

v L∞(Md×J ) φ L∞(Ω) g L∞(Md), (2.14)

where J = (−1, 0) in the finite depth case and J = (−∞, 0) in the infinite depth
case. From (2.14) and the assumption that Φ (z)/z is continuous, we deduce that Φ (v) ∈
L2(Md × J ).

(1) The finite depth case. Lemma 2.6 below implies that ∇x,zΦ (v) = Φ (v)∇x,zv ∈
L2(Md × (−1, 0)). Thus we can apply the Stokes formula (2.5) with u = A∇x,zv and
w = Φ (v) ∈ H 1(Md × (−1, 0)) to have

G(g),Φ (g)
H

− 1
2 ,H

1
2

=
0

−1 Md

A∇x,zv · ∇x,zvΦ (v)dxdz

=
0

−1 Md

A∇x,zΨ (v) · ∇x,zΨ (v)dxdz

=
0

−1 Md

∂z ∇xΨ (v) − ∇x

∂z

∂zΨ (v)

2

+ |∂zΨ (v)|2
|∂z |2 dxdz.

We then conclude by following the proof of (2.8) with Ψ (g) in place of g and Ψ (v) in place
of v.

(2) The infinite depth case. The proof proceeds similarly to that of Proposition 2.3 and
the finite depth case (1) above. We only remark that in place of (2.11), we need to prove

lim
n→∞

1

n Md

0

−n

ed+1 · A∇x,zv χ
z

−n
Φ (v)dxdz = 0.

Since Φ (z)/z is continuous and v is bounded, we can replace Φ (v) by v in the preceding
limit and argue as in the proof of (2.11).

Corollary 2.5 For any p ≥ 2, there exist positive constants C = C(d) and C = C (p, d)

such that for any g ∈ H
1
2 (Td) ∩ L∞(Td) satisfying

Td g = 0, we have

G(g), p|g|p−2g
H

− 1
2 (Td ),H

1
2 (Td )

≥ M g|p/2−1g 2

Ḣ
1
2 (Td )

+ C g
p

Lp(Td )
,
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where

M =
⎧
⎨

⎩

Ch

1 f 2
L∞ f −b 2

W1,∞
in the finite depth case,

C
1 f

L∞(Md )
in the infinite depth case.

(2.15)

Proof For p ≥ 2, Proposition 2.4 is applicable with Φ(z) = |z|p and Ψ (z) =
2 p−1

p
|z|p/2−1z. We obtain

G(g), p|g|p−2g
H

− 1
2 (Td ),H

1
2 (Td )

≥ M
p − 1

p
g|p/2−1g 2

Ḣ
1
2 (Td )

≥ M
1

2
g|p/2−1g 2

Ḣ
1
2 (Td )

,

where M is given by (2.15). It then suffices to prove that for some C = C (p, d) > 0,

g Lp(Td ) ≤ C g|p/2−1g
2
p

Ḣ
1
2 (Td )

+ C
Td

g.

For the sake of contradiction, assume that for all n ∈ N, there exists gn = 0 such that

1

n
gn Lp(Td ) gn|p/2−1gn

2
p

Ḣ
1
2 (Td )

+
Td

gn. (2.16)

By the homogeneity of (2.16) in gn, we can assume that gn Lp(Td ) = 1 for all n. Set

qn = |gn|p/2−1gn. We have qn L2 gn
p/2
Lp = 1 and thus the sequence (qn) is bounded

in H
1
2 (Td). By the compact embedding H

1
2 (Td) ⊂ L2(Td), there exists a subsequence,

which we renumber (qn), that converges weakly to q in H
1
2 (Td) and converges strongly

to q in L2(Td). In particular, we have q L2 = 1. On the other hand, (2.16) implies that
qn

Ḣ
1
2

≤ 1/n, whence q
Ḣ

1
2

= 0 and hence q = c is a constant. Since q L2 = 1, c

must be nonzero. Assume without loss of generality that c > 0. From (2.16) we deduce

0 = lim
n→∞

Td

gn(x)dx = lim
n→∞

Td

|qn(x)|2/psign(qn(x))dx.

Since qn → q = c in L2, there exists a subsequence, which we renumber qn, such that
qn(x) → c a.e. Td and there exists Q ∈ L2(Td) such that for all n, |qn(x)| ≤ Q(x) a.e. Td .
Then |qn|2/psign(qn) → c2/p and ||qn|2/psign(qn)| ≤ |Q|2/p a.e. Td . Since Q ∈ L2(Td),
we have |Q|2/p ∈ Lp(Td) ⊂ L1(Td) for all p ≥ 1. Therefore, the dominated convergence
theorem yields

0 =
Td

c2/p = c2/p|Td |.
This contradicts the fact that c > 0.

Lemma 2.6 Let U ⊂ R
N be an open set and let Γ : R → R be a C1 function. If u ∈

L∞
loc(U) and ∇u ∈ L1

loc(U), then ∇Γ (u) = Γ (u)∇u.

Proof Let V W U . Let ρn be the standard mollifier at scale 1/n and set un =
(u1W ) ∗ρn, where 1V is the indicator function of V . Since u ∈ L∞

loc(U) and ∇u ∈ L1
loc(U),

we have that

∇un → ∇u in W 1,1(V ),

∃M > 0, ∀n, un L∞(RN ) u L∞(U) ≤ M .
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It follows that

V

|Γ (un) − Γ (u)| ≤ max[−M,M] |Γ |
V

|un − u| → 0 as n → ∞
and

V

|Γ (un)∇un − Γ (u)∇u|

≤
V

|Γ (un)||∇un − ∇u| +
V

|Γ (un) − Γ (u)||∇u|

≤ max[−M,M] |Γ |
V

|∇un − ∇u| +
V

|Γ (un) − Γ (u)||∇u|.
A subsequence of (un), which we renumber (un), must converge a.e. to u in V . Hence
the last integral converges to 0 by the dominated convergence theorem. Consequently the
sequences (Γ (um)), (Γ (un)∇un) converge to Γ (u), Γ (u)∇u respectively inL1(V ). Since
∇Γ (un) = Γ (un)∇un and V is arbitrary, we conclude that ∇Γ (u) = Γ (u)∇u.

3 Time Decay for the One-Phase Muskat Problem

The one-phase Muskat problem concerns the dynamics of the free boundary of a fluid occu-
pying a region in a porous medium. The fluid motion is modeled by Darcy’s law with
gravity. When the fluid domain has the form (1.1) or (1.2), the free boundary f obeys the
equation

∂tf = −Gf (f ), (3.1)

where we write Gf to emphasize the dependence of G on the free boundary f . Some
physical constants have been normalized in (3.1). We refer to [8] for a derivation of (3.1).

We recall the following global well-posedness result.

Theorem 3.1 ([6, Theorem 1.2]) Let Ω be the domain (1.2) with M = T. For any initial
data f0 ∈ W 1,∞(T), (3.1) has a unique viscosity solution

f ∈ C(T × [0, ∞)) ∩ L∞([0, ∞);W 1,∞(T)), ∂tf ∈ L∞([0, ∞); L2(T)). (3.2)

In particular, (3.1) is satisfied in the L∞
t L2

x sense. Moreover, we have

f (t) L∞(T) f (0) L∞(T),
T

f (x, t)dx =
T

f (x, 0)dx, ∀t > 0 (3.3)

and
∂xf (t) L∞(T) ∂xf (0) L∞(T) a.e. t > 0. (3.4)

The precise definition of viscosity solutions of (3.1) is given in [6, Definition 6.1]. In
what follows, we will only need the fact that (3.1) is satisfied in L∞

t L2
x .

We now apply the coercive estimates in the preceding section to prove the following
result on time decay of the solutions.

Proposition 3.2 For any f0 ∈ W 1,∞(T), we have

f ∈ L2([0, ∞); Ḣ
1
2 (T)), ∂tf ∈ L2([0, ∞);H− 1

2 (T)).

If in addition
T

f0 = 0, then f (t) Hα , f (t) Cα and ∂tf (t) H−ε decay exponentially
as t → ∞ for any α ∈ (0, 1) and any ε > 0.
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Proof Thanks to the regularity (3.2), the following calculation is justified

1

2

d

dt T

f 2(x, t)dx = (∂tf (t), f (t))L2,L2 ∂tf (t), f (t)
H

− 1
2 ,H

1
2

Gf (f ), f
H

− 1
2 ,H

1
2
.

Applying Proposition 2.3 and the maximum principle (3.4), we deduce

1

2

d

dt
f (t) 2

L2(T)
≤ − C

1 ∂xf (t) L∞(T)

f (t) 2

Ḣ
1
2 (T)

≤ − C

1 ∂xf (0) L∞(T)

f (t) 2

Ḣ
1
2 (T)

(3.5)

for a.e. t > 0. It follows that

f ∈ L2([0, ∞); Ḣ
1
2 (T)). (3.6)

Combining (3.6) and (2.1) yields

∂tf = −Gf (f ) ∈ L2([0, ∞);H− 1
2 (T)).

Assume now that f0 has zero mean, then (3.3) implies that f (t) has zero mean for all t > 0.
Consequently, f (t)

Ḣ
1
2

f (t) L2 and thus (3.5) yields

d

dt
f (t) 2

L2(T)
≤ − C

1 ∂xf (0) L∞(T)

f (t) 2
L2(T)

, ∀t > 0.

Therefore, the L2 norm of f decays exponentially,

f (t) L2 f0 L2e
− Ct

1 ∂xf (0) L∞(T) , ∀t > 0. (3.7)

Combining (3.7) with the uniform bounds (3.3) and (3.4), we deduce that f decays expo-
nentially in any norms that interpolate between L2(T) and W 1,∞(T). In particular, all the
Hα(T) and Cα(T) norms, α ∈ [0, 1), of f decay exponentially. Next, we recall from [6]
that

Gf (f ) Hσ−1 ≤ C(1 ∂xf L∞)2 f Ḣσ , σ ∈ 1

2
, 1 .

Therefore, ∂tf = −Gf (f ) decays exponentially in H−ε(T) for any ε > 0.
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4. Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to partial
differential equations. Proc. Natl. Acad. Sci. USA 100(26), 15316–15317 (2003)
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