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Abstract

We consider the Dirichlet-to-Neumann operator in strip-like and half-space domains with
Lipschitz boundary. It is shown that the quadratic form generated by the Dirichlet-to-
Neumann operator controls some sharp homogeneous fractional Sobolev norms. As an
application, we prove that the global Lipschitz solutions constructed in Dong et al. (2021)
for the one-phase Muskat problem decays exponentially in time in any Holder norm C%,
a e (0,1).
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1 Introduction

The Dirichlet-to-Neumann operator arises naturally in free boundary problems in fluid
mechanics as a result of dimension reduction. To name a few, the water wave, the Muskat
and the Hele-Shaw problem [1-3, 8].

Let M be either the real line R or the circle T. We consider either the strip-like domain

2 ={(x,y) € M xR : b(x) <y < f(x)} (1.1)
or the half-space
2 ={(x,y) € M xR : y < f(x)} (1.2)
The boundary functions f and b are Lipschitz continuous and satisfy
inf f(x)—b(x)>h>0. (1.3)
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52 H.Q. Nguyen

We also refer to (1.1) as the finite depth case and to (1.2) as the infinite depth case.
Given a function g : M' d 5 R, d > 1, we consider the boundary value problem

Acyp=0 ing,
¢ (x, f(x) = g(x), (1.4)
v (x,b(x)) =0,

1

VIV

b(x)}. In the infinite depth case, the Neumann condition in (1.4) is replaced by the decay
condition

where v = (Vyb, —1) is the outward unit normal to the bottom boundary {y =

lim V, ¢ =0.

(x,y)—>00

The Dirichlet-Neumann operator G associated to §2 is defined by

G(g) = (ay¢ - fo ' Vx¢) |y=f(x) = (_fo’ 1) . vx,y¢|y=f(x)-

In other words, G(g) is the normal derivative of the harmonic function ¢ on the top
boundary {y = f(x)}.

For the perfect half-space, i.e., f = 0, we have G(g) = |D|g, where | D| is the Fourier
multiplier |£|. In other words, | D] is the square root of the Laplacian —A,. The quadratic
form generated by | D] is coercive

1
Dlg = [ID|Zgl? = |lgl? : 1.5
[, 1Dl = 1DIE el s, = eI, 15)

M)

On the other hand, for straight strip domains, i.e., f = 0 and b(x) = —a witha > 0, we
have G(g) = |D|tanh(a|D|), whence

1
/ , 8Dl tanh(a|Dl)g = ITID| tanh(al D12 glI3,4, (1.6)
M

where the right hand-side is equivalent to the seminorm H 2 (T?) when M? = T and to the
seminorm
el :=f min{& ], |§1*}[2(5)°d& (1.7)
H2 RY) M
when M? = R?. The Sobolev type space HS is studied in detail in [7]. We also refer to [2,
4, 5] for pointwise lower bounds for g|D|g and gG(g).

With applications to free boundary problems in mind, we are interested in generaliz-
ing (1.5) and (1.6) to non flat boundary, i.e., to domains of the form (1.1) and (1.2) with
nontrivial boundary functions f and g.

It is known that when g belongs to the fractional Sobolev space H 3 (M9, G (g) is well-
defined in H™> (M?). See Proposition 2.1 below. We shall prove the following coercive
inequalities that generalize (1.5) and (1.6) to the domain (1.2) and (1.1) respectively:

G > Mgl 1.8

(G@- ), by Z Mg (1.8)
where X is either A2 or H 3 depending on M and the depth of £2; the constant M depends
explicitly on the boundary of §2. See Propositions 2.2 and 2.3 below.

In Proposition 2.4 we establish the coercive inequality

G(g), @’ > M| (9)|>
(G2 @)1 e = MIP @I,
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where @ is any C? convex function such that @' (z) /z is continuous, and ¥ (z) = foz VD" (Z)d7 .

As a consequence, when M = T and g has zero mean, (G(g), ¢/(g)>H_%(Md),H%(Md)
controls the L? norm of g.

In Section 3, we apply (1.8) to obtain time decay of the global Lipschitz solutions con-
structed in [6] for the one-phase Muskat problem. It is shown that for any data fy €

W1:2°(T), the global solution f satisfies

£ e L2(0.00); HX(T), 8 f € L*(0, 00); H™2(T)).

If fo has zero mean, we prove that all the Holder norms C*(T), @ € (0, 1) of f decay
exponentially.

2 Coercive Inequalities for the Dirichlet-to-Neumann Operator

We denote
Lip(M¢) = {u ‘MY S R:AC >0, Ve, x' € MY, [u(x) —u(x)| < Clx —x’|}.

We first recall the following proposition on the boundedness of the Dirichlet-to-Neumann
operator.

Proposition 2.1 ([1, 8]) Letd > 1.
(1) (The finite depth case) Assume that b, f € Lip(M?) such that f — b € L®(M?)
and (1.3) holds. Let H 3 (RY) be the space of leoc (RY) functions whose Fourier transform
are locally L? in the complement of the origin such that the seminorm (1.7) is finite. For
notational convenience, we set H 3 (T9) = H 5 (T9).

Forany g € ﬁ% (M%), there exists a unique solution ¢ € HI(Q) to (1.4) and we have

G(g) € H_% (Md) together with the bound

1G4 e = € UV Flusqaai, + 19Dl gl 1 o

where C = C(h, d).

-1
(2) (The infinite depth cases) Let f € Lip(M?). For any g € H2 (M), there exists a unique
solution ¢ € H! (82) to (1.4) and we have G(g) € H_% (Md) together with the bound

1G@ -3 ey = € OVl Neh g @1

where C = C(d).

Coercive inequalities for (G(g), g) are established in Propositions 2.2

H*%(Md),H%(Md)
and 2.3 for the finite and infinite depth cases respectively.

Proposition 2.2 Let 2 be the strip-like domain (1.1), where b, f € Lip(Md) such that
f—be L® (M%) and (1.3) holds. There exists a constant C = C(d) > 0 such that for any

g€ H%(Md), we have
Ch

1 1 >
HZ2MDHIMD ™ 14 |V fll7eo + 1f = bl

(G(g), &)

Igl®, . 22)
HZ (M)

where h is given by (1.3).

con
S 9 /Vi
R
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Proof We flatten £2 using the Lipschitz diffeomorphism
3 (=1,0)3 (x,2) > S(x,2) = (x,0(x,2)) € 2,

where

o(x,2) =+ 1) f(x) — zb(x)
satisfies 9;0(x,z) = f(x) —b(x) > hand V, ;0 € L®(M? x (—1,0)). By the chain rule,
the function v = ¢ o S satisfies

divy, (AVy 0)(x, 2) = 3:0(Ax,y$)(S(x, 2)) =0, (2.3)

0z0laxd _Vx€?2
= 14|V, .
—(Veo)" Hpet

Here we regard the gradient as a column matrix. In terms of v we have

2
G(g)(x) = —Vyo(x,0)- Vyv(x,0) + Mazv(x, 0) = eq1 - (AVy v)(x, 0).
0z0(x, 0)
(2.4)

where

We recall the following Stokes formula
cu(-. 0 .0
(eqg+1 - u(-, 0), w(., ))H,%(Md)’H%(Md)

ednt (s —a). W — 25
(a1 -u(-, —a), w( a)>H,%(Md)’H%(Md) 2.5)
=(u, Vx,zw)Lz(de(—a.O)) + (diVX,Z u, w)LZ(de(fa,O))’ a > 0,

provided that u € L2(M? x (—1,0)%*!, div, ,u € L>(M¢ x (—1,0)) and w € H'(M? x
(—1,0).

We check that (2.5) is applicable with u = AV, ;v and w = v. Indeed, since V, y¢ €
L2(£2) (by Proposition 2.1) and V, ;0 € L®(M9 x (—1,0)), we have Vv € L2(M? x
(=1, 0)),and thus AV, ;v € LZ(M? x (-1, 0)). In addition, since v(-, 0) = g(-) € L>(M?)
and £2 has finite depth, it follows that v € L?>(M? x (—1, 0)). By the chain rule, we have

1+ Vol
a1 (AVi0)liet = Vi@ Vv + ———d0le

2@
=—Vi0 - Vi + 3y¢l:=—1 (2.6)
= —be . Vx¢ + ay¢|z=71

=/ 1+ 1V2b|28,¢ (x, b(x)) = 0.

Then applying (2.5) and invoking (2.3), (2.4) and (2.6), we deduce
(G(g), &) 1 1

H™2,HZ
/ / AV, v - Vi ;vdxdz
1 2.7
:/ / ZQ{W v)? — XQ - Vyvdv + Jlral Tf' Iazvlz}dxdz
Z
|9 v[*
= 0,01 |Vyv — v + dxdz.
/_I/Md ) : ' azg YR
In the remainder of this proof, we only treat the more difficult case M¢ = RY. Let

x : R — R be a smooth function that is identically 1 on (—1/3, co) and vanishes on

g ’ (zi m'a
@ Springer S AL
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(=00, —2/3). Then w(x, z) := x(2)v(x, z) satisfies w(x, 0) = g(x) and w vanishes near
z = —1. Consequently,

0
1261 =, 0) = mflazw@,zm@,z)dz

0
R / (X' (@0, 2) + x (2)0,D(. 2) | X (2)V(E, 2)dz,
-1
where ) is the Fourier transform of w with respect to x € R¥. It follows that

fRd min{[&]. 1€12)26)1?

IA

0
c [ [ 1erte. of + oo e, o lded:

IA

0
C/l/RdIva(S,Z)IZJr|3zﬁ(€,Z)IIva(S,Z)Id$dZ

IA

2
C”VXUHLZ(RdX(_]YO)) +C ||va||L2(Rd><(71,o)) ||3zU||L2(Rdx(71,0))

0
C/ / IVev|? + |0, v%dxdz.
—1 Rd

It follows from this and the triangle inequality

IA

v \Y%
[Viv] < |Vyv — anZv | XQ"aZ |
0; 20
that
/ min{|€|, [£}]|2(€)]?
|9,
< // “Coco| + (1.0 +1Vael)
R 3,0 9012
v 2 o | 1418012 + [Veol?
sC/ / 3,0 1| Viv — 29,0 |zv|2 R
1 JRrd 329 |32Q| aZQ
Using

h=d.0=fx)=bx) <|f—=>blre and [Viollze <[V flLe +IV(f =D)L,

we deduce

/ min{l€], [E[2)E) 12

L+ IVl +IIf = b”wloo
<C h / ‘/Rd ZQ[
2.8)

In view of (2.7) and (2.8) we conclude the proof of (2.2). O

Vo
9;0

d;v

2 2

|0, v|

+ — dxdz.
|azQ|2’

Proposition 2.3 Let §2 be the half-space domain (1.2) with f € Lip(M?). There exists a
constant C = C(d) > 0 such that for any g € H% (M%), we have
SR

_1 1 > ———|igll 2.9)
H™2(M4),H2 (M%) 14+ ||vf||LOC(Md) H2(M‘I)

(G(g), g)

S M @ Springer
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Proof We flatten 2 = {(x,y) e MY xR :y < f(x)} using the Lipschitz diffeomorphism
M4 x (—00,0) 5 (x,2) > S(x,2) = (x, 0(x,2)) € £2,

where o(x, z) = z + f(x). The formula (2.4) holds withv = ¢ o S. Let x : R — R be
a smooth function satisfying x(z) = 1 on (—1/3, c0) and x(z) = 0 on (—o0, —2/3). We
apply the Stokes formula (2.5) with u = AV, ;v, w = v(x, 2) x (£;) and @ = n to have

0 1 4
(G8):8), ) 1= /Md g .AVXVZU-VX,ZU—;(edH-AVX,ZU)X’ (—7) vdzdx. (2.10)
We shall prove that
1 0 Az
I := lim — (€d+1 -.AVX,ZU)X — Jvdzdx = 0. (2.11)
n—-oon Md —n —n

Since v(x, 0) = g(x), we have

0
1
lu(x, 2)| < lg(x)| + 2|2 / 19, v(x, 2)|%dZ’
Z

0
1
s|g<x)|+nf/ oG, 22| . zel—n 00,

—n
1 0
;/;ldd/ ’ed-H '»Avx,zv|
—n

1 0
+— eq+1 - AV v
\/’Tl/Md /7n| ! i |
=L+ I

whence

1

IA

X’ <i>‘ 19 (x)|dzdx
—n

2 0 INVE,
X (;) / |BZU(X,Z)| dZ

1

2
dzdx

By Holder’s inequality,

1 .
L = ;”Avx,zanz(de(—n,O)) “g)(/ (f,,)

C
= j||Avx,zv||L2(de(_n,0))||g||L2(Md) —>0 asn— o0
ni

L2(M4 x(—n,0))

and
h< - |Av,x (=
_ v _
2 = «/ﬁ x,zVX -

AV, vy’ (—7n>

Since x'(£,) — Oasn — oo and AV, ;v € L2(M? x (—00,0)), the dominated con-
vergence theorem implies that lim,_,», I = 0. Therefore, passing n — oo in (2.10) we
obtain

0 1
f dv(, 2)Pd7 |

—n

L2(M4 x (—n,0))

L2(M4 % (—n,0))

< 192011 L2 (a4 (—n,0)) -

L2(M4 x(—n,0))

0
G@.8), 1 1= /Md f_ AVeww- Veoudzds
(2.12)

0
:f/ Vv — V£o,0> + |9, dzdx,
M J—o00
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where we have used that Vo = V, f and 9,0 = 1.

We only consider the more difficult case M4 = R in the remainder of this proof. For
w(x,z) = X(_in)v(x, 7), we have w(x, 0) = v(x, 0) = g(x) and w vanishes near 7 = —n.
Consequently,

0 0
/ &l | (. ) = 9*/ / A W(E, 2)E|W(E, 2)dzdE
Rd —n Rd J—n

0 ——
_ m/ / XZ(L> 8.5, )| DIv(E. 2)dzdE
Rd J—n —n
1 0 Z , Z 0\ ~ —_—
—fmf / x(—)x <—)v(s,z>|D|v<s,z>dzds
n JrdJ_, —n —n
0
= 2/ / x2 (i) 0;v(x, 2)|D|v(x, 2)dzdx
Rd —n —n

2 0 z Az
—*/ / X (*) X <7) v(x, 2)|D|v(x, z)dzdx.
n Jrd J_n —n —n

Since d;v and | D|v belong to L2(RY x R_), arguing as in (2.11), we can pass to the limit
n — o0 and obtain

0
/|s||§(s>|2ds=2// 3v(x. ) Dlv(x, 2)dzdx
R4 Rd J—o00

/ HIFGQIKES
Rd

0
= 2/ / d;v(x, 2)R - Vyv(x, z)dzdx
R4 J—o0
0
= /d/ 20, vR - (Vxv — V fo,v) + 20, vR - (V fo,v)dzdx
R4 J—o0

0
- fRf 19202 + R - (Voo — V fa.0)* +20.0R - (V. f2.v)
-0
—[0,0 =R - (Vov — Vfo,v)] dzdx,

where R denotes the Riesz transform, @(5) = %fﬁ(& ). Using Holder’s inequality and

the boundedness of R in L2, we obtain

/Rd ENZE)PdE < Cla,vll21IVxv — V fdvll2 + C”Vf”LOO”azU”iz

o (2.13)

<Cca+ ||Vf||Loo)/d/ Voo — V30> + |9.v|>dzdx.
R4 J—o00

Finally, (2.9) follows from (2.12) and (2.13). O

Next, we generalize (2.2) and (2.9) to the pairing (G(g), ¢/(g)>H_%(M"),H%(M") for
convex functions @.

Proposition 2.4 Let @ : R — R be a C? convex function such that ®'(z)/z is continuous

on R. Set
Z
lI’(Z) — / /(p”(Z/)dZ,,
0

Letg € H> (M) N L=(M9),

S ATL° @ Springer
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58 H.Q. Nguyen

(1) (The finite depth case) If b, f € Lip(M?) such that f — b € L (M%) and (1.3) holds,
then there exists a constant C = C(d) > 0 such that

Ch

G(g), @’ > 2 )
(G Ny iy wh ooy = T v i+ 17 =5 O ird e

(2) (The infinite depth case) If f € Lip(Md), then there exists a constant C = C(d) > 0
such that

c
G(g),d’ > ——|¥ 2 .
G POt o b = T e Y O e

Proof We shall only consider the more difficult case M? = R?. Since &’(z)/z is continuous
and g € H>(RY)NL®(RY), it can be shown that @'(g) € H? (RY) ¢ H2 (RY) C H3 (RY).
Let v = ¢ o S as given in the proof of Propositions 2.2 and 2.3. By the maximum principle
for the harmonic function ¢, we have

oll oqarascsy = IBllzoei2) < lgll Lo agays (2.14)

where J = (—1,0) in the finite depth case and J = (—o0,0) in the infinite depth
case. From (2.14) and the assumption that @’(z)/z is continuous, we deduce that @’ (v) €
L2(M? x ).

(1) The finite depth case. Lemma 2.6 below implies that V, ,®'(v) = ®"(v)Vy v €
L>(M? x (—1,0)). Thus we can apply the Stokes formula (2.5) with u = AV, ,v and
w=®'(v) e H' (M x (—1,0)) to have

(G(8). @'(8)) _1

1
H 2,H2

0
=/ / AV, v -V, @ (v)dxdz
—1JMmd

0
2/ fdAVx,ZW(v)-VX,ZW(v)dxdz

[ 1|

We then conclude by following the proof of (2.8) with ¥ (g) in place of g and ¥ (v) in place
of v.

(2) The infinite depth case. The proof proceeds similarly to that of Proposition 2.3 and
the finite depth case (1) above. We only remark that in place of (2.11), we need to prove

lim 7/ / ed+1 AV, zU) <i> @' (v)dxdz = 0.
n—>oon Jyd J_, —hn

Since ®'(z)/z is continuous and v is bounded, we can replace ®’(v) by v in the preceding
limit and argue as in the proof of (2.11). O

V¥ (v) —

9. W (v)|?
MOl (v2)| dxdz.
[0;0|

Corollary 2.5 For any p > 2, there exist positive constants C = C(d) and C' = C'(p, d)
such that for any g € H% (T N L%(T9) satisfying de g =0, we have

G , p—2 >M p/2—1_,2 C’ )4 i
(G(®), plgl g)H_%(Td),H%(W)_ (Illgl gll}.ﬁm)ﬁL I8l »cra

@ Springer S
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where o
5 —— in the finite depth case,
M= 1+HV.fgLoo+Hf bl 100 (2.15)
SN A T — in the infinite depth case.
Jlpoopdy
Proof For p > 2, Proposition 2.4 is applicable with @(z) = |z|” and ¥ (z) =

2,/ prl |z|P/2~1z. We obtain

-1
(G(g). plgIP %) P

> M p/2—1_p2
b b 2 MR

\Y

1
M=1lelP/21 o2 ,
LG A

where M is given by (2.15). It then suffices to prove that for some C’ = C'(p, d) > 0,

2
Iglzoeray < C'llIgIP* el ”,  + C’/ g.
H?2(T9) T

For the sake of contradiction, assume that for all n € N, there exists g, 7% 0 such that

1 2
— > [l1gnl”* ' gull” / : 2.16
n llgn ||LP(Td) > I1gnl gn”I-'I%(Td) + T 8n ( )

By the homogeneity of (2.16) in g,, we can assume that [g, |l p(ray = 1 for all n. Set
gn = |gn|P*1g,. We have ||g, ;2 = llgn ||€{,2 = 1 and thus the sequence (g,) is bounded
in H2(T4). By the compact embedding H 3(T4) ¢ L2(T?), there exists a subsequence,
which we renumber (g,), that converges weakly to ¢ in H 3 (T?) and converges strongly

to ¢ in L>(T%). In particular, we have |¢||;2 = 1. On the other hand, (2.16) implies that
||qn||[_,1% < 1/n, whence ”q”H% = 0 and hence g = c is a constant. Since ||g|;2 = 1, ¢

must be nonzero. Assume without loss of generality that ¢ > 0. From (2.16) we deduce
0= lim | g,(x)dx = lim / Ign (X)1?/Psign(g, (x))dx.
n—0o0 Td n—oo ’]1‘([

Since g, — g = c in L?, there exists a subsequence, which we renumber g, such that
gn(x) — cae. T¢ and there exists Q € L2(T%) such that for all n, lgn(x)] < O(x) ace. T,
Then |g,|*/Psign(gn) — ¢*/7 and ||g,|*Psign(ga)| < |Q[*/? a.e. T¢. Since Q € L*(T?),
we have |Q|%/P e LP(T9) ¢ L'(T9) for all p > 1. Therefore, the dominated convergence
theorem yields

0= / P = 2P|,
Td

This contradicts the fact that ¢ > 0. O

Lemma 2.6 Let U C RY be an open set and let I' : R — R be a C' function. If u €
L®(U)and Vu € LL (U), then VI (1) = I'"(u)Vu.

loc loc

Proof Let V.€ W &€ U. Let p, be the standard mollifier at scale 1/n and set u, =
(ulw) * pn, where 1y is the indicator function of V. Since u € Li’ooc(U) and Vu € LIIOC(U),
we have that

Vu, — Vu in Wh(V),
AM > 0, Vn, |lugllpeo@ny + lullLew) < M.

S ATL° @ Springer



60 H.Q. Nguyen

It follows that
/ | (uy) — I'(w)| < max |1"’|/ lup —u| = 0 asn — oo
1% [—M.M] 14

and

f |T"" (up)Vup — I'' () Vul
\%4

IA

/V|r’(un>||wn—W|+/V|F’<un>—r’<u)||w|

IA

max |r/|/ |Vu,,—Vu|+f T (up) — I (w)]|Vul.
[—M.M] v v

A subsequence of (u,), which we renumber (u,), must converge a.e. to u in V. Hence
the last integral converges to O by the dominated convergence theorem. Consequently the
sequences (I' (u,)), (I'' (u,) Vu,) converge to I' (u), I'' (u) Vu respectively in LY(V). Since
VI (uy) = I'"(u,)Vu, and V is arbitrary, we conclude that VI"(u) = I’ (u)Vu. O

3 Time Decay for the One-Phase Muskat Problem

The one-phase Muskat problem concerns the dynamics of the free boundary of a fluid occu-
pying a region in a porous medium. The fluid motion is modeled by Darcy’s law with
gravity. When the fluid domain has the form (1.1) or (1.2), the free boundary f obeys the
equation

& f=-=Gr(f), (3.1)

where we write Gy to emphasize the dependence of G on the free boundary f. Some
physical constants have been normalized in (3.1). We refer to [8] for a derivation of (3.1).
We recall the following global well-posedness result.

Theorem 3.1 ([6, Theorem 1.2]) Let §2 be the domain (1.2) with M = T. For any initial
data fy € wLoo(T), (3.1) has a unique viscosity solution
f € C(T x [0,00)) N L¥([0, 00); WhX(T)), & f € L¥([0, 00); L*(T)).  (3.2)

In particular, (3.1) is satisfied in the L;’OL)% sense. Moreover, we have

IfOllz=cry = I1f O, /Tf(x,t)dx Z/Tf(x,o)dx, Vi >0 (3.3)

and
10x f @)l Leoery < N10x f(O)llLoomy a.e.t > 0. (3.4

The precise definition of viscosity solutions of (3.1) is given in [6, Definition 6.1]. In
what follows, we will only need the fact that (3.1) is satisfied in L LJZC.

We now apply the coercive estimates in the preceding section to prove the following
result on time decay of the solutions.

Proposition 3.2 For any fo € WH°(T), we have
£ e LX([0,00): HI(T)), 9 f € LX([0, 00); H™2(T)).

If in addition [3 fo = 0, then || f ()| g, || f®)llce and ||3; f (t)|| g decay exponentially
ast — oo forany a € (0, 1) and any ¢ > 0.
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Proof Thanks to the regularity (3.2), the following calculation is justified

1d
EE/sz“’”d" = @ f @), fO)2 12 =@ fO), D), 1 1

2.H2
= —(Gr(f), f)H,% e
Applying Proposition 2.3 and the maximum principle (3.4), we deduce
L O, < Lf @1
2dt LD = 14 (10, f (Ol ooy A2(T)
3.5
<- Lf @1
L+ 10x £ (O) ]l Lo (1) f A2(T)
for a.e. t > 0. It follows that
f € L*([0, 00); H3(T)). (3.6)

Combining (3.6) and (2.1) yields
b f = =G (f) € LX(10, 00); H™ 2 (T)).

Assume now that fj has zero mean, then (3.3) implies that f(z) has zero mean for all ¢ > 0.
Consequently, ||f(t)||H1 > || f(®)|l;2 and thus (3.5) yields

2

d
IOy = 1F O 2 ¥ > 0.

NI

Therefore, the L norm of f decays exponentially,

_ __Cr
IfOl2 < Il follpe /Ol v > 0. (3.7)

Combining (3.7) with the uniform bounds (3.3) and (3.4), we deduce that f decays expo-
nentially in any norms that interpolate between L?(T) and W' *°(T). In particular, all the
H%(T) and C*(T) norms, @ € [0, 1), of f decay exponentially. Next, we recall from [6]
that

2
Therefore, d; f = —G (f) decays exponentially in H~*(T) for any & > 0. O

1
1G 1 (Nl et < CA+ 135 flz=)2 1 fllor 0 € [ 1} .
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