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Machine learning enables precise holographic
characterization of colloidal materials in real time

Lauren E. Altman and David G. Grier *

Holographic particle characterization uses in-line holographic video microscopy to track and

characterize individual colloidal particles dispersed in their native fluid media. Applications range from

fundamental research in statistical physics to product development in biopharmaceuticals and medical

diagnostic testing. The information encoded in a hologram can be extracted by fitting to a generative

model based on the Lorenz–Mie theory of light scattering. Treating hologram analysis as a high-

dimensional inverse problem has been exceptionally successful, with conventional optimization

algorithms yielding nanometer precision for a typical particle’s position and part-per-thousand precision

for its size and index of refraction. Machine learning previously has been used to automate holographic

particle characterization by detecting features of interest in multi-particle holograms and estimating the

particles’ positions and properties for subsequent refinement. This study presents an updated end-to-

end neural-network solution called CATCH (Characterizing and Tracking Colloids Holographically)

whose predictions are fast, precise, and accurate enough for many real-world high-throughput

applications and can reliably bootstrap conventional optimization algorithms for the most demanding

applications. The ability of CATCH to learn a representation of Lorenz–Mie theory that fits within a

diminutive 200 kB hints at the possibility of developing a greatly simplified formulation of light scattering

by small objects.

1 Introduction
Machine learning algorithms are revolutionizing measurement
science by decoupling quantitative analysis of experimental
data from the mathematical representation of the underlying
theory.1,2 The abstract representation of a measurement prin-
ciple that is encoded in a well-designed and well-trained
machine-learning system can rival the precision and accuracy
attained by fitting to an analytic theory and typically yields
results substantially faster. Gains in speed and robustness have
been particularly impressive for measurement techniques
based on video streams,3–6 which typically involve distilling
small quantities of valuable information from large volumes of
noisy data. Previous studies have demonstrated that machine-
learning algorithms dovetail well with holographic video
microscopy,7 identifying features of interest within experimen-
tally recorded holograms4,8,9 and extracting individual parti-
cles’ positions and characteristics from the information
encoded in those features.4,9,10

Using holography to count, track and characterize colloidal
particles provides unprecedented insights into the composition
and microscopic dynamics of colloidal dispersions,11–13 with

applications ranging from fundamental research in statistical
physics14,15 to formulation and manufacture of biophar-
maceuticals16–19 and medical testing.20,21 Hologram analysis
is a challenging inverse problem7,22 both because recorded
intensity patterns necessarily omit half of the information
about the light’s amplitude and phase profiles and also because
the underlying Lorenz–Mie theory of light scattering is notor-
iously complicated.23–25 Extracting quantitative information
from holograms is an unusual application for machine learning
in two respects: (1) it involves regression of continuously
varying properties from experimental data and (2) the
machine-learning system can be trained with synthetic data
generated from an exact theory.4,10,26 The trained system there-
fore embodies a simplified representation of the underlying
theory over a specified parameter domain that can be com-
puted rapidly enough to be useful for real-world applications.

Previous machine-learning implementations of holographic
particle characterization surpassed conventional algorithms27

for detecting features associated with particles in complicated
multi-particle holograms.4,8,9 They fared less well, however, at
reliably extracting information from those features,4,9,10 typi-
cally resolving particle radius and refractive index with 5%
accuracy,9 compared with the part-per-thousand resolution
obtained with iterative optimization.14 Even so, the precision
afforded by such machine-learning implementations is
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competitive with standard particle-resolved sizing techniques
such as electron microscopy and is good enough to bootstrap
iterative optimization for especially demanding applications.
Most importantly, machine-learning analysis can be applied to
novel systems without requiring a priori knowledge of their
composition.

Guided by an analysis of the information content encoded in
colloidal particles’ holograms, we designed and implemented a
deep neural network called CATCH that rapidly performs fully-
automated analyses of in-line holographic microscopy images
to detect, localize and characterize individual colloidal
particles.4 Here, we introduce enhancements to the CATCH
architecture that improve the precision and accuracy of para-
meter estimation substantially enough to rival iterative optimi-
zation algorithms across best-case parameter ranges. The
availability of a fast end-to-end solution for colloidal character-
ization creates opportunities for high-throughput applications
in areas such as medical diagnostics20,28,29 and industrial
process control.18 The ability of CATCH to encapsulate the com-
plexities of Lorenz–Mie theory in a small memory footprint
furthermore hints at the existence of a simplified representation
of light-scattering theory that would benefit areas as diverse as
astrophysics and industrial materials characterization.

1.1 Lorenz–Mie microscopy

Fig. 1(a) schematically represents an in-line holographic micro-
scope that is suitable for characterizing and tracking colloidal
particles.11,30 A sample containing colloidal particles is illumi-
nated by a collimated laser beam whose electric field may be
modeled as a plane wave of frequency o and vacuum wave-
length l propagating along the ẑ axis,

E0(r,t) = E0eikze!iotx̂. (1)

Here, E0 is the field’s amplitude and k = 2pnm/l is the
wavenumber of light in a medium of refractive index nm. The
beam is assumed to be linearly polarized along x̂. Our

implementation uses a fiber-coupled diode laser (Coherent,
Cube) operating at l = 447 nm. The 10 mW beam is collimated
at a diameter of 3 mm, which more than fills the input pupil of
the microscope’s objective lens (Nikon, Plan Apo 100", numer-
ical aperture 1.4, oil immersion). The objective lens relays
images through a 200 mm tube lens to a gray-scale camera
(FLIR, Flea3 USB 3.0) with a 1280 pixel " 1024 pixel sensor,
yielding a system magnification of 48 nm per pixel and a
dynamic range of 8 bits per pixel.

A colloidal particle located at rp scatters a small proportion
of the illumination to position r in the focal plane of the
microscope,

Es(r,t) = E0e!ikzpfs(k(r ! rp))e!iot. (2)

The scattered wave’s relative amplitude, phase and polarization
are described by the Lorenz–Mie scattering function, fs(kr),
which generally depends on the particle’s size, shape, orienta-
tion and composition.23–25 For simplicity, we model the particle
as an isotropic homogeneous sphere, so that fs(kr) depends
only on the particle’s radius, ap, and refractive index, np.

The incident and scattered waves interfere in the micro-
scope’s focal plane. The resulting interference pattern is mag-
nified by the microscope and is relayed to the camera,31 which
records its intensity. Each snapshot in the camera’s video
stream constitutes a hologram of the particles in the observa-
tion volume. The image in Fig. 1(b) is a typical experimentally
recorded hologram of colloidal silica and polystyrene spheres.

The distinguishing feature of Lorenz–Mie microscopy is the
method used to extract information from recorded holograms.
Rather than attempting to reconstruct the three-dimensional
light field that created the hologram, Lorenz–Mie microscopy
instead treats the analysis as an inverse problem, modeling the
intensity pattern recorded in the plane z = 0 as11

I(r) = E0
2|x̂ + e!ikzpfs(k(r ! rp))|2 + I0, (3)

Fig. 1 Schematic representation of Lorenz–Mie microscopy using CATCH machine-learning analysis. (a) Collimated laser light illuminates a colloidal
sample. Light scattered by a particle interferes with the rest of the illumination in the focal plane of a microscope, which magnifies and relays the
interference pattern to a video camera. (b) A typical recorded hologram of micrometer-diameter silica and polystyrene colloidal spheres. Superimposed
boxes denote features corresponding to individual particles. (c) The CATCH machine-learning pipeline consists of two modules. The Localizer,
implemented with YOLOv5, finds in-plane coordinates, xp and yp, for detected features and generates bounding boxes such as the examples in (b).
Feeding these features into the Estimator yields predictions for rp, ap and np.
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where I0 is the calibrated dark count of the camera. Fitting
eqn (3) to a measured hologram yields estimates for the three-
dimensional position, rp, radius, ap, and refractive index, np, for
each particle in the field of view.

2 Algorithms for hologram analysis
2.1 Feature detection and localization

Analyzing a hologram such as the example in Fig. 1(b) begins
with detecting features of interest in the recorded image. This
is a challenging image analysis problem because the number of
features typically is not known a priori, each feature can cover a
large area with alternating bright and dark fringes, and neigh-
boring particles’ fringes can interfere with each other. Circular
Hough transforms,27,32,33 voting algorithms32 and symmetry-
based transforms27,34 leverage a feature’s radial symmetry to
coalesce its concentric rings into a simple peak that can be
detected with standard particle-tracking algorithms.35 Image
noise and interference artifacts can violate the assumptions
underlying these algorithms, leading to poor localization and
an undesirable rate of false-positive and false-negative
detections.4

2.2 Pixel selection

Having detected and localized a feature, the analytical pipeline
selects pixels for further analysis. Limiting the selection to too
small a range discards information from the diffraction pat-
tern’s outer fringes. Selecting too large a range reduces the
sample’s signal-to-noise ratio and, worse, can introduce inter-
ference from neighboring spheres. A suitable range can be
estimated by counting diffraction fringes.27 Additional effi-
ciency can be gained by sampling a subset of the pixels within
that range.36

2.3 Parameter estimation

Information is extracted from the selected pixels by fitting their
intensity values with the generative model in eqn (3). Such fits
typically involve iterative nonlinear refinement of the adjusta-
ble parameters whose convergence to an optimal solution is
never certain.37 Successful optimization relies on good starting
estimates for the adjustable parameters and typically yields
values with part-per-thousand precision.14

Pioneering implementations of holographic particle charac-
terization relied on manual annotation of features in holo-
grams and a priori knowledge of particle properties to initialize
fits to generative models.11 Automated initialization might use
wavefront curvature to estimate axial position11,38,39 and fringe
spacings to estimate particle size.11,38,40,41 These methods
typically work well over a limited range of parameters. Monte
Carlo methods can cover a wider range by initializing fits from
multiple starting points and selecting the best solution
overall.42 This approach achieves robust convergence, but at a
considerably higher computational cost.

2.4 Effective parameter ranges

The Lorenz–Mie theory for light scattering by homogeneous
spheres is the simplest and most effective model for analyzing
holograms of colloidal particles. Real-time implementations
return tracking and characterization data as fast as the camera
records holograms. Applying this analysis to holograms of
aspherical and inhomogeneous particles yields values for par-
ticle position, size and refractive index that reflect the proper-
ties of an effective sphere enclosing the particle.43 Effective-
sphere properties can be related to an inhomogeneous parti-
cles’ true properties through effective-medium theory.16,43–47

When applied to colloidal dimers, for example, effective-sphere
analysis can yield the asymmetric particle’s three-dimensional
orientation in addition to its three dimensional position.29

Practical implementations of Lorenz–Mie analysis, however,
are limited by instrumental and computational constraints.

2.4.1 Axial position. The scale and nature of a recorded
holographic feature depends on how far the scattered light
propagates before it reaches the imaging plane and the phase
of the reference beam at that plane. As the particle approaches
the imaging plane, the separation between diffraction fringes
becomes smaller than the camera’s pixel size, and information
about the particle’s properties are lost. The spatial resolution of
our reference instrument sets the lower bound for axial track-
ing at roughly zp Z 5 mm. Conversely, as the particle moves
away from the focal plane, its scattering pattern spreads over
increasingly many pixels to the detriment of the signal-to-noise
ratio. This sets an upper limit on axial tracking in our micro-
scope to zp r 50 mm.31

2.4.2 Particle size. Both commercial and academic imple-
mentations of holographic particle characterization work with
particles ranging in diameter from 500 nm to 10 mm.11 The
lower limit is set by the low signal-to-noise ratio for in-line
holograms created by weak scatterers. Switching to off-axis or
dark-field holography improves the signal-to-noise ratio for
weak scatterers and extends the lower size limit down to
50 nm.48 The upper limit is set by the tendency of large
particles to scatter light strongly enough to saturate the camera.
Mitigating this effect by moving to lower magnification, includ-
ing lensless implementations, provides tracking and sizing
information for particles as large as 50 mm using simplified
generative models.49

2.4.3 Refractive index. Hologram fitting has been demon-
strated for dielectric spheres with refractive indexes ranging
from bubbles with np = 1.018 up to titanium dioxide with
np = 2.8.11 The particles can have refractive indexes either
higher or lower than that of the surrounding medium.47

Successful tracking and characterization require only that the
refractive index of the particle differ from that of the medium
by Dn = np ! nm = #0.002.18

2.4.4 Morphology. The choice of scattering function,
fs(k(r ! rp)), in eqn (3) establishes what kinds of particles can
be analyzed. The present study focuses on the Lorenz–Mie
scattering function for homogeneous spheres. Other choices
include scattering functions for core–shell particles and layered
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spheres, for ellipsoids, and for spherocylinders.50–52 Elemen-
tary scattering functions can be combined to treat more highly
structured particles such as dimers and clusters of spheres.53,54

Increasing the complexity of the model increases the demands
on the analytical pipeline to find optimal solutions for each of
the model’s adjustable parameters.

3 CATCH
Fig. 1(c) presents the CATCH machine-learning system that
performs all of the analytical operations identified in Section 2
with an integrated pipeline.4 Machine-learning algorithms have
been adopted for holographic particle characterization to
expand the effective range, improve robustness against false
positive and false negative detections, and reduce processing
time compared with conventional image-analysis techni-
ques.4,8,10,55 The original implementations used distinct types
of trainable algorithms for feature detection,4,8 pixel selection,
and parameter regression.4,10 CATCH, by contrast, uses the
widely-adopted YOLO family of object-detection networks56–59

to detect and localize features4,55 and then feeds the selected
pixels directly into a custom Estimator network that extracts
optimal values for the adjustable parameters.

The original implementation of CATCH4 uses YOLOv3,
which is based on the open-source darknet library.58 The
complementary Estimator network is written in TensorFlow.60

Having both darknet and TensorFlow as separate requirements
complicates installation, maintenance and customization. The
two systems, furthermore, require distinct training protocols.

The version of CATCH developed for this study (CATCHv2)
uses YOLOv5, which is built with the PyTorch61 machine-
learning framework. The updated Estimator also is defined in
PyTorch, thereby fully integrating the two stages, simplifying
installation and maintenance, and facilitating training.

3.1 Continuous scaling

CATCHv2 features a set of critical innovations that dramatically
improve its performance. The most important of these involves
how features identified by the Localizer are transferred into the
Estimator. Features vary in size depending on the nature and
position of the particle. As shown in Fig. 2, each feature must
be scaled from its true dimensions, w " w, to a standard size of
201 pixels " 201 pixels before it can be processed by the
Estimator. The original implementation of CATCH either
cropped a given feature to this size or else scaled it by an
integer factor before cropping, depending on the ideal size
determined by the Localizer. CATCHv2 instead continuously
scales the block of pixels to the required size with bilinear
interpolation.

Continuous scaling allows features to be precisely cropped
for analysis, which improves the signal-to-noise ratio. It also
increases the system’s reliance on the Localizer to estimate
feature extents accurately. CATCHv2 achieves this by adopting
the ‘‘small’’ variant of YOLOv5, which estimates feature extent
with single-pixel precision. The original CATCH implementa-
tion, by contrast, achieved ten-pixel precision using the ‘‘tiny’’
variant of YOLOv3.4 Improving the estimate for feature extent
also encodes more information about the particle’s size and
axial position in the scale factor. CATCHv2 leverages this to
improve the precision of its overall parameter estimation.

3.2 Architecture of the estimator

CATCH’s Estimator uses four convolutional layers to distill the
40 401 8-bit values that constitute a scaled feature into a set of
400 single-precision floating-point values. This set together
with the scale factor is then processed by a fully-connected
neural-network layer into a 20-element vector that optimally
represents the particle’s properties in an abstract vector space
that is parameterized by zp, ap and np. The vector of values
computed from the feature is parsed by three specialized fully-
connected layers into each of these parameters.

Fig. 2 Schematic overview of the Estimator network. A cropped hologram with dimensions w " w is scaled to a standard size of 201 pixels " 201 pixels
before being fed in to a cascade of convolutional layers that distill it into a 400-wide vector. These values together with the scale factor are analyzed by a
fully-connected layer to produce a 20-wide vector that serves as an optimal representation of the information in the original hologram. This
representation is then parsed by separate fully-connected layers into estimates for the particle’s axial position, zp, radius, ap, and refractive index, np.
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The Estimator’s convolutional layers distill information
from a feature using sets of 3 pixels " 3 pixel masks. Inter-
mediate results are combined with three stages of two-fold
max-pooling and one stage of four-fold max-pooling. The fully-
connected layers use rectified linear unit (ReLU) activation,
which has been shown to facilitate rapid training in regression
networks.62 Final results are scaled into physical units by a
linear fully-connected layer.

The vector space of optimal representations may be viewed
as an idealized model of the Lorenz–Mie scattering theory in
the relevant range of parameter values. If the network can be
appropriately trained, the 20 values that span the space could
encode 1096 distinct values of zp, ap and np, which would be
more than enough to estimate parameters with the part-per-
thousand precision provided by conventional optimization
algorithms. The entire Estimator has 34 983 trainable para-
meters that can be stored in 200 kB. Whether such a small
network can achieve the potential suggested by the naive
interpretation of the optimal representation depends on the
success of the training protocol.

3.3 Training

Like its predecessors,4,8,10 CATCHv2 streamlines training by
using a generative model such as eqn (3) to produce synthetic
data with established ground-truth parameters, rather than
relying on manually annotated experimental data. Synthetic
training data not only eliminates annotation errors but also can
cover the parameter space more comprehensively than would
be feasible with experimentally-derived data.

3.3.1 Training data. The training set consists of 105 syn-
thetic holograms for training and an additional 104 for valida-
tion. Within the same field of view as the reference microscope,
each hologram is computed as the superposition of up to
6 particles’ fields. This number corresponds to experimental
concentrations up to 106 particles per mL. The simulated
particles’ properties are drawn at random from the range
ap A [200 nm, 5 mm] and np A [1.38, 2.50]. Particles are placed
at random in the field of view and are located in the range zp A
[2.5 mm, 29 mm] with the caveat that collisions between particles
are not allowed. To further mimic experimental data, each
calculated hologram is scaled to a mean intensity value of
100 and cast to 8 bits per pixel. These images are degraded
with 5% additive Gaussian noise, which is consistent with the
median-absolute-deviation noise estimate for holograms
recorded by the reference holographic microscope, including
the example in Fig. 1(b). Incorporating noise into the training
holograms and allowing for overlapping features helps to
prevent overtraining and improves the network’s performance
with experimental holograms.

3.3.2 Training protocol. Both the Localizer and the Esti-
mator are trained by backpropagation. The Localizer uses
stochastic gradient descent (SGD) for its optimizer, and the
Estimator is trained using root-mean-square propagation
(RMSprop).63 The original implementation of CATCH mini-
mized the L2 loss for both the Localizer and the Estimator,
which is equivalent to minimizing squared errors in the

estimates for the features’ centroids and extents, and also for
the particles’ properties and axial positions. While effective for
training YOLO, L2 loss overemphasizes outliers due to particu-
larly problematic holograms. Such bad outcomes are inherent
in the optimization problem because the Lorenz–Mie theory
admits near-degeneracies in which distinct sets of parameters
produce nearly identical holograms.37 CATCHv2 deemphasizes
degeneracies by minimizing the smooth-L1 loss, which inter-
polates between the mean-square error for small errors and the
mean-absolute error for large errors.64

The training protocol for CATCHv2 achieves convergence for
all of its outputs without overtraining any of them by incorpor-
ating early-stopping callbacks that monitor the loss metric of
each output for validation data. Once the network converges on
a solution for one of its outputs, the callback freezes the values
of all of the network parameters that contribute to that output,
thereby preventing overfitting. Training continues for the
remaining network parameters until the second output con-
verges, and then the third. This training protocol requires no
user input and accounts naturally for differences in learning
speed for each of the three output parameters of our
Estimator model.

Using this protocol, the Estimator was trained for 7882
epochs with a batch size of 64. The Localizer was trained using
a batch size of 32 for 3163 epochs. Training was performed on a
desktop workstation outfitted with an NVIDIA Titan RTX gra-
phical processing unit (GPU) for hardware acceleration. The
two modules were trained sequentially using an average of 80%
of the GPU’s processors for a total of seven days.

The trained networks can be adapted through transfer
learning65 to work with microscopes with different wavelength
and magnification and media with different refractive indexes.
Typically, this only requires retraining the fully-connected
layers in the final stage of the Estimator, which can be
completed in two hours once a suitable set of training data
has been computed.

4 Performance
4.1 Validation with synthetic data

We first evaluate the performance of CATCH on a set of
synthetic images similar to those used in training. The Locali-
zer is evaluated on a set of 25 000 full-frame images of size
1280 pixels " 1024 pixels, each containing exactly one holo-
graphic feature with randomized properties. The images are
degraded with 5% Gaussian noise. This test establishes the
system’s performance under ideal conditions without the
added complication of overlapping features.

4.1.1 Detection accuracy. Detection accuracy is assessed
with two metrics: the rates of false positive detections and false
negative detections. Of these two kinds of errors, false negatives
pose a greater challenge because they correspond to a loss of
information. False positives generally can be identified and
eliminated at later stages of analysis. The false positive detec-
tions from both Localizer versions are plotted in Fig. 3.
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CATCHv1 (orange) boasted an impressive false-negative rate of
0.02%, missing only 6 out of 25 000 holographic features. By
comparison, CATCHv2 (teal) performs with a false negative rate
of 0.3% on the same data set, missing a total of 86 holographic
features. Neither CATCHv1 nor CATCHv2 has false-positive
detections for these test images. In both cases, losses are
limited to either the most weakly scattering particles or the
largest and most strongly scattering particles. The overall
detection efficiency of 99.7% achieved by CATCHv2 greatly
improves upon the 60% rate previously reported for conven-
tional algorithms over the same range of parameters4 and
matches that of CATCHv1 over most of the parameter range.
The slight loss of detection efficiency is compensated by a very
substantial gain in localization accuracy, which is critical for
accurate parameter estimation.

4.1.2 Localization accuracy. We evaluate localization accu-
racy using the true positive detections from the previous
analysis. Of those 24 914 detections, 14 997 were situated such
that their bounding box was not cut off by the edge of the field
of view. We compute the radial distance, Dr, of those features’
predicted centroids from the ground truth. The original imple-
mentation of CATCH has a mean in-plane localization error of
Dr = 2.7 pixels = 130 nm for this data set. The updated Localizer
achieves a mean localization error of hDri = 0.63 pixel = 30 nm.
Its performance across the range of parameters is summarized
in Fig. 4 and Table 1.

Localization errors contribute to errors in parameter estima-
tion if the Estimator is trained to expect perfectly centered
features. This source of error can be mitigated by training the
Estimator with synthetic holograms that are randomly offset to
reflect the Localizer’s performance. Improving the Localizer
reduces these offsets and therefore reduces the complexity of

the data-analysis problem that the Estimator is required to
solve. This, in turn, improves the Estimator’s performance.

Alternative deep-learning particle trackers such as
DeepTrack66 and LodeSTAR67 offer substantially better in-
plane localization accuracy than YOLOv5. YOLO, however,
provides the reproducibly accurate bounding boxes that
the CATCHv2 Estimator requires for successful particle
characterization.59

4.1.3 Parameter estimation. We evaluate the Estimator
using a separate data set consisting of e4 cropped holograms
of spheres with randomly selected properties in the range zp A
[2.5 mm, 29 mm], ap A [0.2 mm, 5.0 mm], and np A [1.38, 2.50].
Consistent with training conditions, a feature’s ideal extent is
set to twice the radius of the twentieth interference node. We
introduce 5% Gaussian random offsets into the feature’s extent
to simulate errors by the Localizer, and then add 5% Gaussian
noise to the feature’s calculated intensity.

Fig. 5 and Table 1 illustrate the extent to which the modified
architecture improves the network’s performance. Errors in
parameter estimation are presented in Fig. 5 as the mean
absolute differences between CATCH estimates and the ground
truth averaged over axial positions, zp. These deviations are
dominated by systematic errors that vary across the parameter

Fig. 3 False negative detections from the CATCHv1 and CATCHv2 Loca-
lizers as a function of ap and np. Green points represent the 25 000 sets of
properties tested. The 6 features not detected by CATCHv1 (orange) are all
small and weakly scattering. The 86 particles missed by CATCHv2 (teal) are
either weakly scattering because they are nearly index matched to the
medium, or else scatter light especially strongly because they are large and
have high refractive indexes.

Fig. 4 In-plane localization error, Dr, for CATCHv2 averaged over axial
position, zp. The maximum error is smaller than 2 pixel over the entire
parameter space, with the largest errors occurring for the largest, most
weakly-refracting particles.

Table 1 Median and maximum errors in r = (xp,yp), zp, ap and np predicted
by CATCHv1 and CATCHv2

CATCHv1 CATCHv2

Dr [pixel] Median 2.7 0.63
Max 59 7

Dzp [pixel] Median 15.0 7.2
Max 659 167

Dap [mm] Median 0.09 0.04
Max 2.62 1.01

Dnp [ppt] Median 45.5 26.6
Max 781 886
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domain and thus reflect the accuracy of the Estimator.
Accuracy in axial localization improves by better than a factor
of two across the entire range of parameters, with a median
error of Dzp = 0.35 mm. Accuracy in particle sizing also
improves by a factor of two, with a median error of just
Dap = 40 nm. Errors in refractive index are reduced to a
median value of Dnp = 0.027, which is more than sufficient to
differentiate particles by their composition.11,68 The updated
network also resolves property-dependent variations in the
error that are most evident when comparing Fig. 5(b) with
Fig. 5(e). Relative errors, plotted in Fig. 5(g)–(i), are smaller
than 10% over the entire parameter domain and are smaller
than 3% for all but the smallest and most weakly scattering
particles.

Most of the improvements in CATCHv2’s accuracy relative to
CATCHv1 can be ascribed to incorporating continuous scaling
into the network’s optimal representation for a particle’s prop-
erties. This innovation’s effectiveness hinges on coordinated
improvements in localization and feature-extent estimation
afforded by adopting a larger and more capable Localizer
network. Training with the robust smooth-L1 loss metric
speeds convergence and also contributes secondarily to
improvements in accuracy.

4.2 Experimental validation

Training and validation with synthetic data does not guarantee
a network’s performance with experimental data. Confounding
factors such as correlated noise, artifacts from normalization,

Fig. 5 Performance of the Estimator module on synthetic data for (a–c) CATCHv1 and (d–i) CATCHv2. Results are presented as a function of particle
radius, ap, and refractive index, np and are averaged over axial position, zp. (a) and (d) Absolute error in axial position, Dzp. (b) and (e) Absolute error in
particle radius, ap. (c) and (f) Absolute error in refractive index, np. (g)–(i) recast the CATCHv2 errors from (d)–(f), respectively, as percentages of the
ground-truth values. Color bars have consistent scales to aid with comparison.
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and instrumental imperfections may cause experimental data
to differ enough from ideal synthetic data that the trained
model cannot make accurate predictions.

We illustrate the performance of CATCH on experimental
data by measuring the sedimentation of a colloidal sphere
between parallel walls.4,69 A 3 mm diameter silica bead (Bangs
Laboratories, catalog number SS05N) is dispersed in a 30 mL
aliquot of water that is confined between a glass #1.5 cover slip
and a glass microscope slide. Silica being twice as dense as
water, the bead tends to settle to the bottom of the chamber.
Using a holographic optical trap,70 we lift the bead to the top of
the chamber, release it and record its subsequent trajectory.71

Examples of experimentally recorded holograms of this particle
are presented in Fig. 6(a) when the particle is at the top of the
chamber, and Fig. 6(b) when the particle is at the bottom of the
chamber. We analyze the resulting holographic video with
CATCHv1, CATCHv2, and by fitting to the generative model
in eqn (3) using a conventional least-squares fitter. These
analyses also yield estimates for the particle’s radius and
refractive index.

Fig. 6(c) and (e) compare results obtained with the original
implementation of CATCH with results obtained by conven-
tional fitting. Fig. 6(d) and (f) present complementary results
for CATCHv2. In both cases, we treat the nonlinear least-
squares fit as the ground truth for the comparison. The

sedimenting particle’s axial position, plotted as (red) points
in Fig. 6(c) and (d), follows the sigmoidal trajectory expected for
confined sedimentation in a horizontal slit pore.72 Predictions
for zp(t) by CATCHv1 generally follow this trend, but with
substantial random and systematic errors. CATCHv2, by con-
trast, tracks the particle’s motion in excellent quantitative
agreement with the ground truth. The updated machine-
learning system improves mean errors in axial tracking by
nearly a factor of ten, from Dzp = 4.2 mm to Dzp = 0.46 mm,
which is consistent with expectations based on the numerical
validation data in Fig. 5.

The particle’s radius and refractive index, plotted in Fig. 6(e) and
(f), form a tight cluster when reported by the conventional fitter
(red). All of these values represent properties of a single particle that
should not change as the particle moves through the sample cell.
Results from CATCHv1 in Fig. 6(e) generally cluster in the correct
region of parameter space, albeit with a systematic error of Dap = 1
mm and a standard deviation of 500 nm. CATCHv2, by contrast,
accurately estimates the radius and refractive index of the particle.
The Dap = 12 nm precision and accuracy for particle size is
consistent with expectations from the numerical study in Fig. 5,
and would suffice for the differential measurements required for
holographic molecular binding assays.20,21,28,73,74 CATCHv2 there-
fore could provide a computationally cost-effective basis for label-
free bead-based medical diagnostic testing.

Fig. 6 (a) Experimentally recorded hologram of a colloidal silica sphere at the upper wall of a rectangular channel that is filled with water. (b) Hologram
of the same sphere after it sediments to the lower wall of the channel. Both holograms are cropped to include 20 diffraction fringes. This sphere’s
trajectory is used to assess the performance of CATCHv1 and CATCHv2 for tracking (c and d) and characterization (e and f). Machine-learning estimates
are compared with ground truth values obtained from fitting to the generative model (red). Values for the axial position, zp, obtained from the holograms
in (a) and (b) are plotted with large (red) symbols in (c) and (d). (c) Axial trajectory, zp(t), compared with predictions of CATCHv1 (orange) and (d) CATCHv2
(blue). (e) Values for the particle radius, ap, and refractive index, np, estimated at each time step in the trajectory by CATCHv1 (orange) and (f) CATCHv2
(blue). Ground truth values for ap and np are estimated by conventional optimization.
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Whereas the single-particle study in Fig. 6 is useful for
illustrating the performance of CATCHv2 for an individual
colloidal sphere moving in three dimensions, Fig. 7 illustrates
its performance for heterogeneous dispersions of colloidal
particles. The sample for this demonstration is composed of
equal concentrations of silica spheres (Thermo Fisher, catalog
no. 8150) and polystyrene spheres (Bangs Laboratories, catalog
no. NT16N), each with a nominal radius of ap = 0.75 mm,
dispersed in water. The hologram in Fig. 7(a) captures four of
those particles as they move through the 61 mm" 49 mm field of
view in a pressure-driven flow. Superimposed bounding boxes
are identified automatically by the Localizer stage of CATCHv2.
The scatter plot in Fig. 7(b) presents characterization results
from the Estimator stage for 1133 particles that flowed through
the observation volume in 5 min, together with refined esti-
mates for those particles’ characteristics that were obtained by
fitting to Lorenz–Mie theory. Each data point represents the
radius and refractive index of one particle. Machine-learning
estimates are colored by the relative density of observations,
r(ap,np). The two populations of particles are clearly differen-
tiated by refractive index, even though their size distributions
overlap.

Table 2 reports the average radii and refractive indexes
estimated by CATCHv2 for the two types of particles in the
sample. These population-average values are compared with
the averages obtained by fitting the same holographic features
to the Lorenz–Mie model. The ranges of values are computed as
standard deviations of the single-particle results and therefore
combine estimation errors with intrinsic particle-to-particle
variations in the two populations. We interpret differences
between machine-learning estimates and refined values as
errors in the machine-learning estimates, Dap and Dnp.
Table 2 compares these discrepancies with expectations for
the performance of CATCHv2 based on the numerical

validation results presented in Fig. 5. In this case, the range
of expected errors is computed as the mean absolute deviation
of the validation results averaged over axial position, zp. This is
a reasonable treatment for a flow experiment in which particles
pass through the imaging volume at different heights.

Systematic discrepancies between machine-learning esti-
mates for the particle radii and refined values are not surpris-
ing because errors in machine-learning estimates generally are
not normally distributed. Such discrepancies are likely to be
exacerbated by defects such as aberrations in experimentally
recorded holograms31,50 that are not accounted for in the
generative model used to synthesize training data. Even so,
errors in the polystyrene spheres’ radii fall within the expected
range of Dap = #60 nm, as do the sizing errors for the 1.5 mm-
radius silica sphere reported in Fig. 6. By contrast, the 170 nm
systematic offset for the more weakly scattering 0.8 mm-radius
silica spheres in Fig. 7 is nearly three times larger than
expected. In assessing these performance, it should be noted

Fig. 7 Detection and characterization of particles in a heterogeneous sample. (a) Typical hologram of colloidal spheres flowing through the
microscope’s field of view overlaid with bounding boxes automatically detected by CATCHv2. (b) Characterization estimates provided by CATCHv2
(circles) for 1133 particles together with refined fits (hexagons) that were initialized with those estimates. CATCH results are colored by the relative density
of observations, r(ap,np).

Table 2 Particle-characterization performance of CATCHv2 for the two-
component dispersion presented in Fig. 7. Population-averaged values for
the radius and refractive index for the two types of particles are compared
with refined estimates obtained by fitting the same set of holograms to
eqn (3). Differences between estimates and refined values are compared
with the expected performance from Fig. 5

CATCHv2 Lorenz–Mie Error Expected

ap [mm] ap [mm] Dap [nm] Dap [nm]

PS 0.770(53) 0.729(8) 42(54) 57(74)
SiO2 0.953(70) 0.779(35) 173(79) 65(78)

CATCHv2 Lorenz–Mie Error Expected

np np Dnp [ppt] Dnp [ppt]

PS 1.631(40) 1.598(6) 33(40) 42(44)
SiO2 1.455(8) 1.449(6) 6(11) 26(40)

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
9 

M
ar

ch
 2

02
3.

 D
ow

nl
oa

de
d 

by
 N

ew
 Y

or
k 

U
ni

ve
rs

ity
 o

n 
6/

1/
20

23
 5

:1
0:

50
 P

M
. 

View Article Online

https://doi.org/10.1039/d2sm01283a


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 3002–3014 |  3011

that the only particle-resolved sizing technique that consis-
tently surpasses the precision and accuracy of CATCHv2 in this
range is the full Lorenz–Mie implementation.

Machine-learning estimates for the two populations’ refrac-
tive indexes agree well with the refined values. Results for the
refractive index, in particular, are sufficiently precise to distin-
guish the two types of particles by composition,10 which
represents a very substantial improvement over CATCHv1.

Because CATCHv2 performs independent estimates for size
and refractive index, errors in these estimates tend not to be
correlated.4 This contrasts with conventional optimization
techniques whose results more directly reflect the structure of
the error surface for the theory. Correlations are less promi-
nent, for example, in the machine-learning estimates plotted in
Fig. 7(b) than in the iteratively optimized results.

Predictions by CATCHv2 are sufficiently accurate and pre-
cise that refinement may not be necessary for many applica-
tions, including classifying impurity particles for quality
control in biopharmaceuticals,17,18 semiconductor process-
ing75 and environmental monitoring.76 Reliable detection of
particles across a wide range of parameters ensures accurate
measurement of particle concentrations,19,76 which is valuable
across many industries. Combining this with accurate sizing
and differentiation by material composition affords a particu-
larly detailed view into the composition of heterogeneous
dispersions. All such applications will benefit from the proces-
sing speed afforded by an end-to-end machine-learning
implementation.

4.3 Speed

Both CATCHv1 and CATCHv2 make efficient use of hardware
acceleration on CUDA-capable graphics cards. CATCHv1 pro-
cesses a single 1280 pixel " 1024 pixel hologram in 21 ms on an
NVIDIA Titan Xp GPU, with 20 ms required for the Localizer
and 0.9 ms for the Estimator.4 These times are reduced by 5%
when the same code is run on an NVIDIA Titan RTX GPU.

Moving from the C-language implementation of CATCHv1 to
the pure python implementation of CATCHv2 incurs a perfor-
mance penalty, all the more so because of the increased size
and complexity of the Localizer module. Running on the Titan
RTX platform, the updated Localizer requires 24 ms to process
one frame, and the Estimator requires an additional 1.3 ms to
analyze each feature. This is still fast enough to process frames
in real time at 30 frames per s.

The dramatic improvement in prediction accuracy gained
with CATCHv2 translates into particularly substantial perfor-
mance gains for those applications that no longer require
optimization by conventional algorithms. Even when further
refinement is required, the improved initial estimates provided
by CATCHv2 increase the likelihood of successful convergence
and reduce the time to convergence.

Performance differences between C-based and python-based
implementations should decrease as development efforts con-
tinue to improve the processing speed of python programs.
CATCHv2 also would benefit from optimizations such as para-
meter pruning and quantization, neither of which

have been applied to the demonstration implementation
presented here.

5 Discussion
The implementation of the CATCH machine-learning system
presented in this study solves a central problem in soft-matter
science: characterizing and tracking individual colloidal parti-
cles in their native media in real time. When analyzing data
from the reference holographic microscopy instrument,
CATCH provides three-dimensional tracking data with
Dr = 50 nm accuracy in-plane and Dzp = 350 nm along the axial
direction in a 100 mm " 100 mm " 30 mm observation volume.
CATCH simultaneously measures a micrometer-scale particle’s
radius with a median accuracy of Dap = 40 nm for particles
ranging in radius from ap = 200 nm to ap = 5 mm. In large
regions of parameter space, CATCH achieves precision and
accuracy which rivals that of the conventional algorithms.

Holographic characterization offers the substantial advan-
tage relative to other particle-characterization technologies of
measuring a recorded particle’s refractive index, thereby pro-
viding information about its composition. CATCH estimates
the refractive index with an accuracy of Dnp = 0.026 over the
range from near-index-matching, np = 1.38, to very strong
scattering, np = 2.5.

These estimates for the system’s accuracy are consistent
with the illustrative example of a colloidal sphere sedimenting
through water. The training protocol therefore appropriately
accounts for instrumental imperfections that might otherwise
degrade prediction accuracy.

The ability of CATCH to estimate particles’ positions and
characteristics with an accuracy of one or two percent is
sufficient for many of the applications that already have been
identified for holographic particle characterization, including
particle characterization in biopharmaceuticals,18,19 agglomer-
ate detection in semiconductor polishing slurries75 and process
control for materials synthesis.73 In more specialized applica-
tions where part-per-thousand accuracy is desirable, predic-
tions from CATCH can be used to initialize parameter
refinement using the generative model from eqn (3). Both the
speed and reliability of iterative optimization are improved by
the high quality of the starting estimates provided by CATCH.37

CATCH can be readily adapted to work with new instru-
ments and can be trained automatically to cover different
parameter ranges. For example, CATCH can be trained to
accommodate particles with refractive indexes smaller than
that of the medium. Training over a smaller parameter range
can improve the accuracy of CATCH’s predictions to the point
that machine-learning estimates rival the precision and accu-
racy of state-of-the-art optimization while retaining their sub-
stantial speed advantage.

Having demonstrated that a machine-learning system can
provide precise end-to-end holographic analysis of colloidal
spheres in real time, we can speculate on possible general-
izations of our implementation. CATCH currently treats the
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refractive index of the medium as a fixed parameter, for
example. More generally, nm can be allowed to vary at the cost
of increased training complexity, and indeed could be obtained
as an output of the Estimator. Such a generalized model would
be useful for analyzing most dispersions of micrometer-scale
colloids without any a priori knowledge about their composi-
tion and without requiring any retraining. The Localizer can be
trained to differentiate holograms into categories such as
‘‘spherical’’, ‘‘rod-like’’ and ‘‘irregular’’, ‘‘large’’ and ‘‘small’’,
‘‘high-index’’ and ‘‘low-index’’. Such classifications could be
used to dispatch holograms to specialized variants of the
Estimator for detailed analysis. The value of such elaborations
hinges on the rapidly increasing variety of applications for
holographic particle characterization.

As the simplest and presumably smallest machine-learning
implementation of holographic particle characterization, the
present implementation CATCH can be incorporated readily
into commercial instrumentation. CATCH is small enough, for
example, to be realized on a field-programmable gate array
(FPGA) suitable for board-level integration.

The diminutive 200 kB memory footprint of the CATCH
model also hints at opportunities for recasting Lorenz–Mie
theory itself. The standard formulation of light scattering by
small particles is technically challenging to compute. It is
possible that the condensed representation learned by CATCH
can guide the development of a greatly simplified analytic
formulation,77 which would be broadly useful. CATCH there-
fore can play a role in the emerging paradigm shift toward
machine-driven discovery of fundamental principles.

Data availability
The full open-source implementation of CATCHv2 is available
at https://github.com/laltman2/CATCH/. The open-source
pylorenzmie package for Lorenz–Mie analysis is available at
https://github.com/davidgrier/pylorenzmie/.
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Phys., 2019, 91, 045002.

3 A. W. Long, J. Zhang, S. Granick and A. L. Ferguson, Soft
Matter, 2015, 11, 8141–8153.

4 L. E. Altman and D. G. Grier, J. Phys. Chem. B, 2020, 124,
1602–1610.

5 E. N. Minor, S. D. Howard, A. A. S. Green, M. A. Glaser,
C. S. Park and N. A. Clark, Soft Matter, 2020, 16, 1751–1759.

6 W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Ferguson
and A. Z. Panagiotopoulos, Soft Matter, 2017, 13, 4733–4745.

7 C. Martin, L. E. Altman, S. Rawat, A. Wang, D. G. Grier and
V. N. Manoharan, Nat. Rev. Methods Primers, 2022, 2, 1–17.

8 M. D. Hannel, A. Abdulali, M. O’Brien and D. G. Grier,
Opt. Express, 2018, 26, 15221–15231.
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