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Abstract

It is proven that small-amplitude steady periodic water waves with infinite depth
are unstable with respect to long-wave perturbations. This modulational insta-
bility was first observed more than half a century ago by Benjamin and Feir. It
has been proven rigorously only in the case of finite depth. We provide a com-
pletely different and self-contained approach to prove the spectral modulational
instability for water waves in both the finite and infinite depth cases.
© 2022 Courant Institute of Mathematics and Wiley Periodicals L L C .
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1 Introduction

We consider classical water waves in two dimensions that are irrotational, in-
viscid, and horizontally periodic. The water is below a free surface S and has
infinite depth. Such waves have been studied for over two centuries, notably by
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1036 H. Q. NGUYEN AND W. A. STRAUSS

Stokes [29]. A  Stokes wave is a steady wave traveling at a fixed speed c. It has
been known for a century that a curve of small-amplitude Stokes waves ex-ists
[23, 24, 30]. In 1967 Benjamin and Feir [6] discovered that a small long-wave
perturbation of a small Stokes wave will lead to exponential instability. This is
called the modulational (or Benjamin-Feir or sideband) instability, a phenomenon
whereby deviations from a periodic wave are reinforced by the nonlinearity, lead-
ing to the eventual breakup of the wave into a train of pulses. Here we provide a
complete proof of this instability for deep water waves.

To be a bit more specific, let x be the horizontal variable and y the vertical
one. Consider the curve of steady waves of a given period, say 2without loss of

generality, to be parametrized by a small parameter " which represents the wave
amplitude. Such a steady wave can be described in the moving plane (where x  ct

is replaced by x) by its free surface S D  f y D  .xI "/g and its velocity potential
.xI "/ restricted to S . We use a conformal mapping of the fluid domain to the

lower half-plane, thereby converting the whole problem to a problem with a fixed
flat surface. Let the perturbation have a small wavenumber ; that is, we have

introduced a long wave. Linearization around the steady wave leads to a linear
operator L ; " .  What we prove is the spectral instability, which means that the

perturbed water wave grows in time like et for some complex number with
positive real part. A  way to state this formally is as follows.

L E M M A 1.1. There exists "0 > 0 such that for all 0 < j"j < "0 , there exists
0 D  0."/ > 0 such that for all 0 < jj < 0 ,  the operator L;" has an

eigenvalue with positive real part. Moreover, has the asymptotic expansion

(1.1) D  
p g

i C  
2

p
2

j"j C  O .2 / C O."2/; where

g > 0 is the acceleration due to gravity.

The concept of modulational instability arose in multiple contexts in the 1960s,
both in the theory of fluids including water waves and in electromagnetic theory
including laser beams and plasma waves. MathSciNet lists more than 500 pa-
pers mentioning “modulational instability” or “Benjamin-Feir instability”. Major
players in its early history included Lighthill (1965), Whitham (1967), Benjamin
(1967), and Zakharov (1968), as described historically in [34]. It was a surpris-ing
development when Benjamin and Feir [5,6] discovered the phenomenon in the
context of the full theory of water waves, as they did both theoretically and ex-
perimentally (see also [31, 32]). They identified the most dominant plane waves
that can arise from small disturbances of the steady wave. However, to make a
completely rigorous proof of the instability is another matter. This is our focus. It
took about three decades for such a proof to be found for the case of finite depth.
Bridges and Mielke [7] accomplished the feat by means of a spatial dynamical re-
duction to a four-dimensional center manifold. Nevertheless, their proof cannot be
generalized to the case of infinite depth due to the lack of compactness, which
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1037

invalidates the hypotheses of the center manifold theory. The infinite depth case
has remained unsolved since then. After the completion [25] of the current paper,
we learned of another proof [18] of the spectral instability which also does not
generalize to infinite depth. In the current paper we provide a completely different
approach to prove the modulational instability of small-amplitude Stokes waves.
Our proof is self-contained, does not rely on any abstract Hamiltonian theory, and
encompasses both the finite and infinite depth cases. In order to avoid tedious al-
gebra, we focus on the unsolved case of infinite depth and merely point out the
main modifications necessary for the finite depth case. As distinguished from [7],
throughout our proof the physical variables are retained. Our linearized system is
obtained from the Zakharov-Craig-Sulem formulation together with the use of Al-
inhac’s “good unknown” and with a Riemann mapping. Thus it is compatible with
the Sobolev energy estimates for the nonlinear system (see, e.g., [1–3,22,27]). Af-
ter the completion [25] of the current paper, we learned of the paper [10] by Chen
and Su, which uses an approximation to the focusing cubic nonlinear Schrödinger
equation (NLS) to indirectly deduce the nonlinear instability. On the other hand,
we expect that the framework developed in our paper should be useful to directly
prove the nonlinear instability without any reference to NLS.

There have been many studies of the modulational instability for a variety of
approximate water wave models, such as KdV, NLS, and the Whitham equation
by, for instance, Whitham [32], Segur, Henderson, Carter, and Hammack [28],
Gallay and Haragus [14], Haragus and Kapitula [15], Bronski and Johnson [8],
Johnson [20], Hur and Johnson [16], and Hur and Pandey [17]. These models are
surveyed in [9]. Beyond the linear modulational theory, a proof of the nonlinear
modulational instability for several of the models is given in [19]. That is, an
appropriate Sobolev norm of a long-wave perturbation to the nonlinear problem
grows in time. There have also been many numerical studies on this phenomenon.
We mention the paper by Deconinck and Oliveras [13], which provides a detailed
description of the unstable solutions including pictures of the unstable manifold of
solutions far from the bifurcation, a rigorous proof of which remains largely open.
On the other hand, the asymptotic expansion (1.1) does show that the unstable
eigenvalue, as a curve with parameter , has slope  j"j 1sign./ 2 near the origin in
the complex plane. This agrees well with the numerical calculation shown in the
following figure [12].

Now we outline the contents of this paper. In Section 2 we write the water wave
equations in the Zakharov-Craig-Sulem formulation. Thus the system is written in
terms of the pair of functions , which describes the free surface S and , which
is the velocity potential on S . This formulation involves the Dirichlet-Neumann
operator G./, which is nonlocal. The advantages of this formulation are that  and

depend on only the single variable x and that the system has Hamiltonian
form. Stokes’ steady wave .xI "/; .xI "/ is then expanded in powers of " up to
"3. Such an expansion basically goes back to Stokes himself, although the literature
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1038 H. Q. NGUYEN AND W. A. STRAUSS

can be confusing, so we include a proof in Appendix A. We note however that the
proof of our main result only requires expansions up to "2.

Section 3 is devoted to the linearization, using the shape-derivative formula
of [22] and Alinhac’s good unknown. Then we flatten the boundary by using the
conformal mapping between the fluid domain and the lower half-plane. This con-
verts the implicit nonlocal operator G./ to the explicit Fourier multiplier G.0/ D
jDj. A  direct proof is given in Appendix B. We look for solutions of the form
eix U.xI "/, where U. ; "/ has period 2and a small represents a long-wave
perturbation. The unknowns are U D  the pair .; good unknown/, appropriately
modified by the conformal mapping. This brings us to the linearized operator L ; " ,
which acts from .H 1 .T //2 to .L2 .T //2 . It is Hamiltonian. The instability prob-
lem is thereby reduced to finding an eigenvalue .; "/ of L;" with positive real part.

We put  D  0 in Section 4. It is shown that L0 ; "  has a two-dimensional
nullspace and a four-dimensional generalized nullspace U ."/. Then we construct
an explicit basis of U ."/, denoted by fU1."/; : : : ; U4."/g. This construction works
for both the finite and infinite depth cases and is the starting point of our proof. We
expand each U ."/ in powers of ". Then we compute the nullspace and range of
the operator …L0;" where … is the projection onto the orthogonal complement of
U ."/. This will be crucially used in searching for a bifurcation from U ."/ when  is
nonzero.

Now with ⁄  0 in Section 5 we expand the inner products .L;" U ; Uk / in
powers of both parameters and ". Our procedure of looking at the inner products
roughly follows the procedure of Johnson [20] and Hur and Johnson [16], who
carried it out in their stability analysis for KdV-type equations and the Whitham
equation, which followed several earlier works cited above.

Of course, for fixed " the perturbation due to ⁄  0 will change the vanishing
eigenvalue to . ; " / ⁄  0. The associated eigenfunction will have a small compo-nent
outside of U ."/; that is, it will have the form 4 .U ."/ C W .; "//. We call
W the sideband functions. Perturbation theory for linear operators merely as-serts
that each W .; "/ is small if is small enough (see [21]). In Section 6.1 we
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1039

treat these sideband functions by means of a rather subtle version of the Lyapunov-
Schmidt method that uses the inverse of the operator …L0;" obtained in Section 4.
In Section 6.2 we expand .L;" W ; Uk / in powers of .; "/ up to second order in ".

In Section 7 we combine the asymptotic expansions of Sections 5 and 6. The
key task is to identify the leading terms and to handle the numerous remainder
terms. Surprisingly, it turns out that one of the key leading terms comes from
.L;" W ; Uk /, namely the one that we denote by II10 in (7.8). That is, it is the
combination of the expansions of .L;"U ; Uk / and .L;"W ; Uk / that lead to the
required result. We remark that in the works cited above, the sideband functions
were always treated as negligible remainders; it is different for this full water wave
problem. Finally, we use the expansions to deduce that there is an eigenvalue of
the form (1.1), which obviously has a positive real part.

The explicit expansions require detailed calculations. We have carried them
out all the way to third order, which is more than necessary for our instability
proof, but has potential utility in future theoretical and numerical research. We
have summarized these expansions in Appendix D.

2 The Zakharov-Craig-Sulem Formulation and Stokes Waves

We consider the fluid domain

(2.1) •.t / D f.x; y/ W x 2  R; y < .x ; t /g

below the free surface S D  f.x; .x; t// W x 2  R g  to have infinite depth. Assuming
that the fluid is incompressible, inviscid, and irrotational, the velocity field admits a
harmonic potential .x; y; t/ W • !  R .  Then and satisfy the water wave system

(2.2)

8
• x ; y D  0
@tC 2 jrx ; y j2 D  g C  P  @tC
@x@xD @y

r x ; y !  0

in •;
on f y D  .x/g;
on f y D  .x/g;

as y !   1 ;

where P 2  R  denotes the Bernoulli constant and g > 0 is the constant acceleration
due to gravity. The second equation is Bernoulli’s, which follows from the pressure
being constant along the free surface; the third equation expresses the kinematic
boundary condition that particles on the surface remain there; the last condition
asserts that the water is quiescent at great depths.

In order to reduce the system to the free surface S , we introduce the Dirichlet-
Neumann operator G./ associated to •, namely,

(2.3) G . / f D  @y.x; .x// @x.x; .x//@x.x/;
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x ; y• D  0

(2.5)

(

t x@ D  c@ xj@ j C g C  P :

(2.6)

(

2 2
x

1Cj@x 2

1040 H. Q. NGUYEN AND W. A. STRAUSS

where .x; y/ solves the elliptic problem

(2.4)
jy D . x / D  f .x /;

in •;
r x ; y 2  L2 .•/:

Let denote the trace of the velocity potential on the free surface, .t ; x / D
.t ; x; .t ; x//. In the moving frame with speed c, the gravity water wave system
written in the Zakharov-Craig-Sulem formulation [11, 33] is

@tD c@xC G./ ;
1 2 1 .G ./  C@x      @x/2

2 2 1Cj@x j2

By a steady wave we mean that is a function of x   ct and a function of . x
ct; y/. By a Stokes wave we mean a periodic steady solution of (2.5); that is,

F1 .;  ;c/ WD c@x C G ./ D  0;

F2 .;  ; c; P / WD c@x   1j@x      j 2 C  1 .G ./  C@
j 

@x/2 
  g C  P D  0:

F I G U R E 2.1. Stokes wave.

The existence of a smooth local curve of smooth steady solutions satisfying (i)
and (ii) below has been known for a century, going back to Nekrasov [24] and
Levi-Civita [23].

L E M M A 2.1. For all P  2  R ,  there exists a curve of smooth steady solutions .;
; c; P / to (2.6) parametrized by the amplitude jaj  1 and the Bernoulli constant
P 2  R  such that

(i) and are 2-periodic.
(ii) is even and is odd.

Other than the trivial solutions (with  0), the curve is unique. These solutions are
called Stokes waves.

It is readily seen that system (2.6) respects the evenness of and the oddness of
. Expansions of Stokes waves with respect to the amplitude a are given in the

next proposition.
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1041

PROPOSIT ION 2.2. The following expansions hold for the solutions in Theorem
2.1.

D  
g

C  a cos x C 
2

a2 cos.2x/ C a3     

8
cos x C 

8
cos.3x/ C  O.a4/;

(2.7) D  a
p

g s in x C
g

a2 sin.2x/ C
g

a33 sin x cos.2x/ C sin x C  O.a4/;
p

c D g C  
2 

a 2 C  O.a3/:

PROOF. Proposition 2.2 essentially goes back to Stokes [29]. For the sake of
precision and completeness, we give a detailed derivation in Appendix A  for zero
Bernoulli constant, P D  0. Consider now the case P ⁄  0. Setting D  z C  P  and
using the facts that

G z  C  
g

D  G.z/ ;  g C  P D   gz;

we obtain
(
F 1 . ;  ; c / D c@xz C  G.z/ ;

F2 .; ; c ; P / D c@x   2j@x
2 1 .G .z/  C@x      @x z/2

2 1Cj@x zj2

thereby reducing us to the case P D  0. □

3 Linearization and Riemann Mapping

We begin with notation for L-periodic functions. Set

T L D  R = L Z ; T   T2:

Let f W R  !  R  be L-periodic. The L-Fourier coefficient of f i s

(3.1)
f L . k / D  

Z L
e  i 2  k x f .x /d x 8k 2 Z ;

0

f .k /  f 2.k/:

For mW R  !  R ,  the Fourier multiplier m.DL / is  defined by

(3.2)
m . DL / f . x / D  

1 X  
e i 2 k x mk

2
f L .k /; k 2 Z

m.D /f .x /  m.D2/f .x /:
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1042 H. Q. NGUYEN AND W. A. STRAUSS

3.1 Linearization
Fix .; ; c; P  D  0/ a solution of (2.6) as given in Theorem 2.1 with

a D ", j"j  1. The expansions in (2.7) give

 D  " cos x C 
2

"2 cos.2x/ C "3     

8
cos x C 

8
cos.3x/ C  O."4/;

(3.3)  D  "
p

g s in x C
g

"2 sin.2x/ C
g

"3f3 sin x cos.2x/ C sin xg C  O."4/;
p

c D g C  
2 

" 2 C  O."3/:

We investigate the modulational instability of .; ; c; P / subject to perturba-
tions in and but not in c and P . We shall consider L-periodic perturbations of
and , where L D  n02for some integer n0. In order to linearize (2.6) with
respect to the free surface S , we make use of the so-called “shape-derivative”. The
following statement and its proof are found in [22].

PROPOSIT ION 3.1. For L-periodic functions, the derivative of the map !  G./ is
given by

(3.4)

where

G./
.x/ D  G./.B x/ @x.V x/;

(3.5) B D  B . ;
G./C  @x      @x 1 C

j@xj2
V D V .; / D @x      B@x:

In fact, V D .@x /.x; .x// and B D  .@y/.x; /, where solves (2.4). Moreover, if is
even and is odd, then B is odd and V is even.

L E M M A 3.2. We have

(3.6)
F1 .; ; c /

.x; x / D @x
 
.c V /x

 
C  G./

 
x  B x;

(3.7)
F2 .;

;
; c ; P /

.x; x / D .c V /@x x  C  B G./. x  B x/

B@xV x gx

together with the identity

(3.8)
F2

.;
;

/
; P /

.x; x / B
. ; /

c/
.x; x /

D    g C  .V c/@x B x C .c V /@x. x  B x/;

where B D  B . ; / and V D V .; / are given by (3.5).



x.x; /

x
 

1 j@x

x x2@ x
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PROOF. We note that (3.6) is a direct consequence of (3.4). As for F2 we first
compute

 
G./ C  @x      @x

2

.; / 1 C  j@xj2

D  2
G./ 

C
C  @

j2
@x

h
G./ x  G./.B x/ @x.V x/

C  @x      @x x C @x x@x

 
G./ C  @x      @x

2

.1 C j@
@

j2/2

D  2B G./ x  G./.B x/ @x .V x/ C @x

Consequently,

@x x C @x x@x
 

2B2@x@xx:

F2 .; ; c; P / .;
/

D  c@x x  @x      @x x  C  B G./ x  B G./.B x/ B@xV x BV @xx

C  B@x      @x x C B@x x@x B2@x@xx gx
D  c@x x  @x x  @x      B@x / C B G./ x  B G./.B x/ B@xV x

C  B.@x      V /@xx B2@x@xx gx

D  c@x x  @x x V C B G./ x  B G./.B x/ B @x V x C B2@x@xx

B2@x@xx gx
D  .c V /@x x  C  B G./. x  B x/ B@xV x gx;

which proves (3.7). Finally, a combination of (3.6) and (3.7) gives (3.8). □

From (3.6) and (3.7) we obtain the linearized system for (2.5) about .; ;
c; P / with .c; P / being fixed:

(3.9)
F1 .;

t .;
; c /

.x; x / D @x
 
.c  V /x

 
C  G./. x  B x/;

F2 .; ; c; P /
(3.10)

t .; /
D  .c  V /@x x  C  B G./. x  B x/ B@xV x gx;

where B  and V  are given in terms of  and  as in (3.5), and x and x  are
L-periodic. By virtue of identity (3.8), the good unknowns (à la Alinhac [3, 4])

(3.11) v1 D x; v2 D x  B x;
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1044 H. Q. NGUYEN AND W. A. STRAUSS

F I G U R E 3.1. The Riemann mapping ·  D  · 1  C  i ·2 .

satisfy

(3.12)

(3.13)

@tv1 D @x
 
.c  V /v1

 
C  G./v2;

@tv2 D   g C  .V  c/@xB v1 C .c  V /@xv2:

The good unknowns (3.11) have been successfully used in well-posedness and sta-
bility results for the nonlinear water wave system in spaces of finite regularity.
See [1–3, 22, 27].

3.2 Conformal mapping
Due to the nontrivial surface , the Dirichlet-Neumann operator G./ appear-ing in

the linearized system (3.12)–(3.13) is not explicit. Analogously to [26], we use the
Riemann mapping in the following proposition to flatten the free surface S D
f.x; .x// W x 2  Rg.

PROPOSIT ION 3.3. There exists a holomorphic bijection · . x ; y / D  · . x ; y / C
i ·2 .x ; y / from R 2  D  f.x ; y / 2 R2 W y < 0g onto f.x ; y / 2 R2 W y < .x /g  with the
following properties.

(i) · 1 . x C  2; y / D 2 C  ·1 .x ; y / and · 2 . x C  2; y / D ·2 .x ; y / for all
.x ; y / 2 R  ; ·1 is odd in x and ·2 is  even in x ;

(ii) · maps f.x; 0/ W x 2  R g  onto f.x; .x// W x 2  Rg;
(iii) Defining the “Riemann stretch” as

(3.14) .x / D  ·1 .x ; 0/;

we have the Fourier expansion

(3.15) ·1 .x ; y / D x   
i  X  

e i k x sign.k/ejk jy   .k/ 8.x ; y / 2 R2 ;
k ⁄ 0

where Z
f . / D  e i x f .x /d x :

R

(iv) k r x ; y . · 1 x / k L 1 . R 2  / C  k r x ; y . · 2 y / k L 1 . R 2  /  C ".



]

 

y

ˆ

:̂

  

 
  

0.x /
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]
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1045

We postpone the proof of Proposition 3.3 to Appendix B. Compared to the
finite depth case in [26], the proof of Proposition 3.3 requires decay properties as
y !   1 .

In terms of the Riemann stretch , we can rewrite the Dirichlet-Neumann oper-
ator G./ as follows. Define two operators

(3.16) ] f D  f  ; f D  0 .f  /; so

that @x f D @x .]f / for f W R  !  R .

L E M M A 3.4. For f 2  H 1 .TL / we have

(3.17) G . / f D  @x 
 1 H L . ] f /

where H L u
L

. k / D   i sign.k/uyL./ is the Hilbert transform. The sign function

sign W R  !  f  1; 0; 1g is defined as
8
< 1 if x > 0;

(3.18) sign.x/ D 0 if x D  0;
 1 if x < 0:

The proof of Lemma 3.4 is also given in Appendix B.
By virtue of Lemma 3.4, for any functions f1 ; f2 2 H 1 . TL / a  direct calculation

yields the identities

 @x .c  V /f1     C  G./f2

D  @x p .x /f1     C  jDL j . ] f2 / ;
(3.19) ]        g C  .V  c/@xB f 1 C  .c  V /@xf2

D   
g C  q .x /

f 1 C  p.x/@x ]f2;

where

(3.20) p D 
c 

] V  
; q D  p@x.]B/:

Since B  and are odd and V  is even, it follows that p and q are even. We apply
 to (3.12) and  to (3.13), making use of (3.19). We rewrite the result as
(3.21) @tw1 D @x

 
p.x/w1

 
C  jDL jw2 ;

(3.22) @tw2 D  
g C  q .x /

w1 C p.x/@xw2;

where

(3.23) w1 D v1; w2 D ]v2;

are L-periodic. The Dirichlet-Neumann operator G./ in (3.12) has thus been
converted to the explicit Fourier multiplier jDL j .
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1046 H. Q. NGUYEN AND W. A. STRAUSS

3.3 Spectral modulational instability
Modulational instability is the instability induced by long-wave perturbations.

Therefore, we seek solutions of the linearized system (3.21)–(3.22) of the form
w .x ; t / D et e ix u .x/, where u .x/ are 2-periodic. We assume D  m0 is a
small rational number and choose L D  n02 2so that w . ; t / is L-periodic. The
following lemma avoids the Bloch transform.

L E M M A 3.5. For any f 2  L2 .T / we have

(3.24) e i x jDL j . e i x f . x / / D  j D L C  j f . x / D  j D C  jf .x /:

PROOF. The first equality follows easily from the fact that . e i x f
 
/

L
.k / D

f L . k   m0/. The second inequality follows from the general fact that if f  is 2-
periodic, then for any Fourier multiplier b we have

(3.25) b . DL / f . x / D  b .D /f .x /; L D  n02;

provided that they are well-defined as tempered distributions. To prove (3.25), let
F  denote the Fourier transform and F  1 the inverse Fourier transform, namely

F . f / . / D  
R  

e i x f .x /d x ; F  1 . f / .x / D 
2

F . f / .  x/:

For f 2  L 2 . T /  L 2 .TL / w e  have the inversion formula

f . x / D  
1 X  

e i 2 k x f L . k / in L 2 . T L /  S  0.R/;
k 2 Z

where S  0.R/ is the space of tempered distributions. It follows that

F . f / . / D  
2 X  

   
2
k f L . k / 2  S  0.R/;

k 2 Z

where denotes the Dirac distribution centered at the origin. Consequently, F

1 .b F . f // .x / D 
1 X  

e i 2 k x b 
2
kx f L . k / D  b .DL / f .x / :

k 2 Z

Since f  is also 2-periodic, the preceding formula also holds for L replaced by 2.
Since the left side is independent of L ,  (3.25) follows.                                       □

With the aid of (3.24), from (3.21)–(3.22) we arrive at the pseudodifferential
spectral problem

" #

(3.26) U D  L;"U WD     
p . i C  @x / C @xp     

p
j D C  j 

/ U; U D  .u1; u2/>;

where U is 2-periodic. The subscript " indicates that the variable coefficients
p.x/ and q.x/ depend upon " through the Stokes wave. We regard L;" as a



x

;"

0
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1047

continuous operator from .H 1 .T //2 to .L2 .T //2 . The complex inner product of
L2 .T / is  denoted by

Z
.f1 ; f2 / D  f1 .x /f2 .x /d x :

T

DE FI N I T I O N 3.6 (Spectral modulational instability). If there exists a small rational
number such that the operator L has an eigenvalue with positive real part, we say
that the Stokes wave .; ; c; P  D  0/ is subject to the spectral modula-
tional (or Benjamin-Feir) instability.

In what follows, we shall study (3.26) with being a small real number and prove
that L;" has an eigenvalue with positive real part for all sufficiently small real
numbers , including in particular small rational numbers. We note that L ; "  has the
Hamiltonian structure

(3.27)
where J D   1

(3.28)

L ; " D  J K ; "  
1

and
"

g C q  ip p@
#

;" i p C  p@x C @xp j D C  j

is a symmetric operator. In particular, the adjoint of L;" is given by

(3.29)

Moreover, since

(3.30)

L ; " D  J L;"J W . H 1 . T / / 2 !  .L2 .T //2 :

specL 2 . T / .L ; " / D specL 2 . T / .L  ;"/;

we lose no generality by considering L;" for 2  Œ0; 1 /. Furthermore, in system
(2.6), the change of variables

(3.31) .  ; c ; P / !  .  g ; gc; P =g/

shows that we lose no generality by setting the gravity acceleration g D 1. The
eigenvalues for the general case are obtained by multiplying the eigenvalues for the
g D 1 case by g.

We end this section with the expansions in " for the variable coefficients that
appear in L ; " .

L E M M A 3.7. We have the expansions

(3.32) .x / D  x C  " sin x C "2 sin.2x/ C O"."3/;

(3.33) p .x / D 1 2" cos x C "2      
2

2 cos.2x/ C  O"."3/;

(3.34)                        q .x / D  " cos x C "2.1 cos.2x// C O"."3/;

(3.35)
1 C  q .x /

D 1 2" cos x C 2"2.1 cos.2x// C O"."3/:



 1 i C  @ x

b
p

0 00

 C C

C

C C

0
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1048 H. Q. NGUYEN AND W. A. STRAUSS

The notation O" indicates that the bound depends only on ". The proof of
Lemma 3.7 makes use of the shape-derivative (3.4) together with the expansion
(3.15) for the Riemann stretch, and is given in Appendix C.

4 The Operator L 0 ; "

By virtue of Lemma 3.7, in case " D 0 the eigenvalue problem (3.26) reduces to

U D L ; 0 U D i C  @x j D C  j U:

On the Fourier side, U . k / ⁄  0 if and only if

D  i Œ . C  k/ j C  kj• DW i ! k ; :

Thus the spectrum is . L ; 0 / D fi !k;W k 2 Z g   i R .  Note that .L;0 / is separated
into the two parts . L ; 0 / [   .L;0/ where

0 .L;0 / D i !0 ; ; i !0 ; ; i !1 ; ; i !  1; ; 00.L;0/ D i !

1;; i !1;      [  i !k;W jkj  2 ;

and each eigenvalue in 0.L;0/ is simple. In case D  " D 0,

! 0 ; 0 D  ! 0 ; 0 D  !  1;0 D ! 1 ; 0 D  0;

so that the zero eigenvalue of L0;0 has algebraic multiplicity 4 and 00.L0;0/ is
separated from zero.

Now we study the case when " ⁄  0 is sufficiently small and D  0. By the semi-
continuity of the separated parts of a spectrum (see IV-• 3.4 in [21]) with respect
to ", once again we have the separation

(4.1) .L0 ; " / D 0 .L0 ; " / [  0 0.L0;"/;
where the spectral subspace associated to the finite part 0.L0;"/ has dimension 4. We
next prove that zero is the only eigenvalue in .L0;" / by constructing four explicit
independent eigenvectors in the generalized nullspace.

L E M M A 4.1. For any sufficiently small ", 0 is an eigenvalue of L0;" with algebraic
multiplicity 4 and geometric multiplicity 2. Moreover,

(4.2)
U1 D .0; 1/> and

U2 D .@x; ].@x      
 B@x //>

are eigenvectors in the kernel, and

(4.3)
U3 D 

 
@aj.a;P /D.";0/; ]

 
@a

U4 D @P j.a;P /D.";0/; ] @P

are generalized eigenvectors satisfying

B @a j.a;P /D.";0/
> ;

B @P j.a ;P /D.";0/
> ;

(4.4) L0; " U3 D  @acj.a;P /D.";0/U2; L0; " U4 D  @P cj.a;P /D.";0/U2 U1:



1
U

1 z
2

z z z
2 2

;

/
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1049

In (4.3) and (4.4), .; ; c/ is any Stokes wave given by (2.7). We also define the
normalized second eigenvector

(4.5) U2 WD 
"

z2 2"

Z

0

2
U .2/dxU1;

where we write components U2 D .U .1/; U .2//> . Then U2 is an eigenvector with
mean zero.

PROOF. We have defined

(4.6) L 0 ; " D  
p@x C @xp

0

jD j
#

p@x
g D 1:

First, it is clear that U1 WD .0; 1/> 2  ker.L0;"/. Second, we differentiate (2.6) with
respect to x and then evaluate at .a ; P / D ."; P D  0/ to obtain

F1 .; .;
; c/

.@
x;

@
x      / D  0;

F2 .; ; c; P /
.; / x x / D 0;

where .; ; c/ is given by (3.3). The identities (3.6), (3.7), and (3.8) with
x D  @ ; S  D  @  then give

@x
 
.c  V /@x

 
C  G./

 
@x      

 B@x
 
D  0;

.c  V/@2       B@Œ.c V /@x• B@xV @x
 g D  0;

so that
 

 
g C  .V  c/@xB@x

 C  .c  V /@x.@x      
 B@x / D 0:

Using (3.19) with f 1 D  @x
 and f 2 D  @x      

 B@x, we deduce that

U2 WD 
 
@x; ].@x      

 B@x /> 2  ker.L0;" /:

Third, we differentiate (2.6) with respect to a and then evaluate at .a; P / D ."; 0/
to obtain

F1 .; ; c/
.; / a       .a ;P /D.";0/ a

F2 .; ; c; P /
.; / a       .a ;P /D.";0/ a

j.a ;P /D.";0/ / D  @acj.a;P /D.";0/@x;

j.a ;P /D.";0/ / D  @acj.a;P /D.";0/@x      :

Using (3.6), (3.7), and (3.8) with . x; S/ D  .@a;@a      /j.a ;P /D.";0/ as well as
(3.19) with . f1 ; f2 / D .@a;@a      B  @a/, we find that

U3 WD 
 
@aj.a;P /D.";0/; ].@a      B @a /j.a;P /D.";0/

>

satisfies L0; " U3 D  @acj.a;P /D.";0/U2.
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1050 H. Q. NGUYEN AND W. A. STRAUSS

Fourth, differentiating (2.6) in P and then evaluating at .a; P / D ."; 0/ yields
F1 .; ; c/

.; / P .a ;P /D.";0/ P

D   @P cj.a;P /D.";0/@x;

j.a ;P /D.";0/ /

F2 .; ; c; P /
.; / P .a ;P /D.";0/ P

D   @P cj.a;P /D.";0/@x      
 1;

j.a ;P /D.";0/ /

and hence

U4 WD @P j.a;P /D.";0/; ] .@P
B @P /j.a ;P /D.";0/

>

satisfies L0;" U4 D  @P cj.a;P /D.";0/U2      U1 D  U1. For the case of finite depth
the term @P cj.a;P /D.";0/ would not vanish but for infinite depth it does. Since U1

and U2 are eigenvectors, U3 and U4 are generalized eigenvectors. Therefore we
have (4.4). Finally, note that U2 has mean zero because U .1/ is an odd function
due to the fact that both and @x are odd. □

Remark 4.2. The preceding proof works for both the finite and infinite depth cases.
For the infinite depth case, we have the identity G.B / D   @xV . See remark 2.13 in
[1]. It then follows directly from (3.6)–(3.7) that

F1 .;     ; c/     1                       F2 .;     ; c ; Q D 0/     1 .;     /
g                                      .;     /                   g

Consequently, U4 D .  
1 ; ] . 1 B //>  D  . 1 0;  1

] B / >  satisfies L0;" U4 D
 U1. This provides an alternative method to obtain U4.

For notational simplicity, we shall adopt the following abbreviations.

NOTAT I ON 4.3.

C D  cos x; S D  sin x; C k D  cos.kx/; S k D  sin.kx/ for k 2 f2; 3; 4; : : : g:

C O R O L L A R Y  4.4. The components of U defined in Theorem 4.1 have the follow-
ing parity and expansions:
(4.7) U2 D D C  " 2     C  O"."2/;

(4.8) U3 D even
 
D  C

 
C  " 2C2

 
C  O"."2/;

 
(4.9) U4 D odd D  0 C  "  S  C  O"."2/:

PROOF. From Theorem 2.1 and Proposition 3.3, it is clear that is even while both
and are odd. It follows that p and q, defined by (3.20), are even. Con-

sequently, the parity properties stated in (4.7), (4.8), and (4.9) follow. Next we



j

 

 

 

 

j

 

 

z
even C C 2

0
z

2

1 4

2 m

2

3
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1051

expand U in powers of ". From (3.32) and Taylor’s formula, for any function of
the form f D  f 0 C  "f 1 C  O"."2/, we have

(4.10) ] f . x / D  f 0 . x / C  " S @x f 0 .x / C f 1 .x /  C  O"."2/;

(4.11) f . x / D  f 0 . x / C  " Cf 0 .x / C  S @x f 0 .x / C f 1 .x /  C  O"."2/:

On the other hand, if f D  "f 1 C  "2 f 2 C  O"."3/, then

(4.12) ] f . x / D  "f 1 .x / C  "2 S @x f 1 .x/ C f 2 .x /  C  O"."3/;

(4.13) f . x / D  "f 1 . x / C  "2 Cf 1 .x / C S @x f 1 .x / C f 2 .x /  C  O"."3/:

Using (3.3) and (4.10)–(4.13), and B  D  " S C  O"."2/ (see (C.2)), we find the
expansion for U as follows:

@x
 D   "S 2"2 S2 C O"."3/;

].@x      
 B@x / D " C C  "2 C2 C O"."3/;

@a j.a;P /D.";0/ D C C  "2C2 C O"."2/;

] @a      B @a j.a;P /D.";0/ D S C  "S 2 C  O"."2/;

@P j.a;P /D.";0/ D 1 C  " C C  O"."2/;

] @P      B @P j.a ;P /D.";0/ D  " S C  O"."2/:

Note in particular that

(4.14) U2 D odd D  "  S  C  "2      2S2     C  O"."3/;

so that 
R 2U .2/dx D O"."3/ and the expansion for U2 follows from (4.5). □

Let U be the linear subspace of .L2.T //2 spanned by the .C 1 .T //2 vectors
U : : : ; U in Theorem 4.1. Denote by …the orthogonal projection from .L2 .T //2

onto the orthogonal complement U ?  of U in .L2 .T //2 . The remainder of this
section is devoted to the following theorem, in which the kernel and range of …L0;"
are explicitly determined. Recall that a linear operator is Fredholm if it is closed,
has closed range of finite codimension, and has a kernel of finite dimension.

L E M M A 4.5. For any sufficiently small ", …L0;" W . H 1 . T / / 2 !  .L2 .T //2 is a
Fredholm operator with kernel U and range U ? .

PROOF. Since …L0;" W . H 1 . T / / 2 !  .L2 .T //2 is bounded, it is closed. We
deduce from (4.4) that

(4.15) U D  Ker.L0 ; " / D Ker.L0;" / 8m  3:

Thus …L0;" V D  0 if and only if L0;" V 2  Ker.L0;" /, or equivalently V 2
Ker.L0 ; " / D U. In other words, Ker.L0 ; " / D U. It remains to prove that …L0;"

maps onto U ? .  This follows from the following two lemmas. □



0;"

0;" 0;"

(4.17) D  0:

j

…G D G
j j

j U
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1052 H. Q. NGUYEN AND W. A. STRAUSS

The first lemma is a weaker statement.

L E M M A 4.6. We have

(4.16) Ran.…L0;" / D U ? ;

where …L0;" W . H 1 . T / / 2 !  U ? .

PROOF. Since Ran.…/ D U ?  is a closed subspace, by duality the identity (4.16)
is equivalent to Ker.…/ D Ke r . L  …/, where Ker.…/ D U  . H 1 . T / / 2 .  It is trivial
that Ker.…/  Ke r . L  …/. Conversely, suppose V 2 Ke r . L  …/. Due to (3.29) we
have

…V 2 Ker.L0 ; " / D Ke r . J L 0 ; " J / D  Ke r .L 0 ; " J / D spanfJ U1; J U2g:

Thus …V D 1 J U1 C 2 J U2 for some 1; 2 2 C .  Since …V 2 U ? ,  1 J U 1 C 2J U2 is
orthogonal to U3 and U4, so that

.J U1; U3/     .J U2; U3/      1

.J U1; U4/     .J U2; U4/      2

Using the expansions for U in (5.3) we compute

.J U1 ; U3 / D O"."2/;

.J U2 ; U3 / D 2 C  O"."2/;

.J U1 ; U4 / D 2 C  O"."2/;

.J U2 ; U4 / D O"."2/:

Consequently, the determinant of the matrix in (4.17) equals  42 CO"."2/, which is
nonzero for all sufficiently small ". We conclude that 1 D  2 D 0, yielding …V D
0 and hence V 2 Ker.…/ as claimed. □

L E M M A 4.7. Ran.…L0;" / D U ? .

PROOF. By virtue of (4.16), we only have to prove that Ran.…L0;" / is closed
in .L2 .T //2 . It would be tempting to prove that …L0;" is coercive. However, this
is not the case as can be easily checked when " D 0. Instead we appeal to a
perturbative argument. According to theorem 5.17, IV-• 5.2 in [21], the Fredholm
property is stable under small perturbations. Therefore, it suffices to prove this
property for " D 0; that is, the range of …L0;0 equals U ? .  So now consider " D 0.
Given F D  . f 1 ; f 2 / >  2  U ?  we only have to prove that

(4.18) F D  …L0;0V for some V 2 .H 1 .T //2 :

Because " D 0, the U are precisely

(4.19) U1 D .0; 1/> ; U2 D .  S ; C /> ; U3 D .C ; S /> ; U4 D .1; 0/> :

The U are mutually orthogonal in .L2 .T //2 , which implies that

(4.20)
X  .G; U /

j D1
.U ; U / j 8G 2 .L2 .T //2 :



L V D x  1 2 :

Z

1
Z

 1
2

R
T

2

1v dx

1

1 2

R
T

2

2

2 b b

y
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Now for any V D .v1; v2/> 2  .H 1 .T //2 , we have
@ v C  jDjv

0;0  v1 C @xv2

We use (4.20) to compute …L0;0V .                          
Z

.L0;0V ; U1/ D .  v1 C @xv2/dx D  v1 dx;
T T

Z
.L0;0V ; U4/ D .@x v1 C jDjv2 /dx D 0;

T
Z

.L0;0V ; U2/ D f.@x v1 C jDjv2/. S / C  .  v1 C @xv2/C gdx
Z T

D f.v1 C v2 S / C .  v1 C C  v2 S /gdx D 0;
T

Z
.L0;0V ; U3/ D f.@x v1 C jD jv2 /C C .  v1 C @xv2/Sgdx

Z T

D  f .v1 S C  v2 C / C .  v1S v2 C /gdx D 0:
T

We obtain

…L0;0 V D L0 ; 0 V C
2 T  

v1dx U1 D  v1

C@x v1 C jD jv
C @xv2     

;

and hence (4.18) is equivalent to the system

(4.21)                                                   
Z 

@xv1 C jD jv2 D f1 ;

(4.22)                                v1 C  
2 T  

v1 d x C @xv2 D f2 :

where we write F  D  . f ; f / 2  U ? .  It suffices to prove the existence of a so-
lution .v1; v2/> 2  .H 1 .T //2 of this system. From the orthogonality condition
.F ; U1 / D 0 we have f 2 d x D 0, and hence both sides of (4.22) have mean
zero. Thus upon differentiating (4.22) we obtain the equivalent equation

(4.23)  @xv1 C @xv2 D @xf2:

Adding (4.21) to (4.23) yields an equation for v2 alone, namely

(4.24) @xv2 C jD jv2 D f 1 C  @xf2:

On the Fourier side this becomes

(4.25) .  k 2 C jkj/vb .k/ D f 1 .k / C  i k f2 .k/ 8k 2 Z :

Since  k 2 C jkj D  0 for k 2  f  1; 0; 1g, (4.25) is solvable if and only if the
following conditions hold:

(4.26) f1 .0/ D 0;



y y

y y

T
y

y y y y

y y y y

y y

2  k2 C  jkj

?

;" jL U ; U

j

j k.U ; U /

1

f .D / cos.k x / D

f .D / sin.k x / D
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1054 H. Q. NGUYEN AND W. A. STRAUSS

(4.27) f 1 .1 / C  i f2 .1/ D 0;

(4.28) f 1 .  1/ i f 2 .  1/ D 0:

Condition (4.26) is satisfied since 0 D .F ; U4 / D 
R 

f 2 d x D  f2 .0/. On the other
hand, the conditions .F ; U2 / D .F ; U3 / D 0 can be written as

 i Œf1 .1/      f 1 .  1/ • C Œf 2 .1/ C f 2 .  1/• D

0; Œf1 .1/ C f 1 .  1/ • C i Œf 2 .1/      f 2 .  1/• D

0:

Thus we obtain both (4.27) and (4.28). We conclude that the general periodic
solution v2 of (4.24) is

(4.29) v2 .x / D b0 C b 1e i x C b 1 e i x C  
1 X

e i k x f1 .k / C i kf2 .k/
:

k 2 Z n f  1;0;1g

Clearly v2 2 H 1 .T /.  Then, returning to (4.21) and using the fact that f1 has mean
zero, we obtain

(4.30) v1 .x / D a0 sign.D /v2 C 
Z x

f1.x0/dx0:
0

It is easy to deduce from (4.29) and (4.30) that V 2 .H 1 .T //2 if F 2  .L2 .T //2 . In
fact, projecting V onto U ?  fixes the constants a0; b0; b 1; and b1, thereby
yielding the unique solution …V of (4.18) in U . □

5 Expansions of A;, I " ,  and det.A;"  I " /

We define the matrices formed by U and L ; " ,  namely,

(5.1) A ; " D  
.

.Uk ; Uk /
k / 

j ;k D1;4
; I " D  

.Uk ; Uk / j ;k D1;4
:

Here and in what follows, we always consider 2  Œ0; 2 /.

5.1 Expansions of A ; "  and I "

In the following discussion, Fourier multipliers that act on 2-periodic functions
are computed using the identities

(
if .k/ sin.kx/ if f i s  odd;

(5.2) (
f .k / cos.k x / if f i s  even;
 if .k/ cos.kx/ if f i s  odd;
f .k/ sin.kx/ if f i s  even:



j

0
1

 S  2S
C C 2

C 2C
2

1 C

2
1

 1
Z

"
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We recall from Theorem 4.1 and Corollary 4.4 that the vectors U are expanded as

U1 D ; U2 D C  " 2     C  O"."2/;
(5.3)   

U3 D S C  " S
2     C  O"."2/; U4 D 0 C  "  S  C  O"."2/:

In view of the identity jk C j D  jkj C  sign.k/ for jkj  1 and 2  Œ0; 1 /, we have
j D C  ju D 

 
jD j C  sign.D/

 
u  bu.0/

 
C  

2
bu.0/

D  jD j C  sign.D / u C 
2 T  

u dx:

Consequently, L;" can be decomposed as
(5.4) L ; " D  L 0 ; " C  

 
L 1 C  L ] ;

where

(5.5)
L " D  ip

sign.D/
ip and L ] u1

 
D  2

R
T u2 dx

2

are bounded on any Sobolev space H s .T /.  In the case of finite depth, there would
also be a term with 2. Let us successively expand L ; " U using the decomposi-tion
(5.4) together with the expansion of p from Lemma 3.7.

(i) L;" U1 . We have L0; " U1 D 0, L ] U 1 D  1 and

 
(5.6) L1 U1 D i     C  i "  2C     C  O"."2/:

(ii) L;" U2 . We have L0; " U2 D 0, L ] U 2 D  0 (because U2 has mean zero),
and

1  i p S C  sign.D /C  2 ip S2 C sign.D/C2 2

(5.7)  
ip C

                                  
ip C2

D  i C      C  i "  1 C  O"."2/:

(iii) L;" U3 . Since @acj.a;P /D.";0/ D  ", combining (4.4), (4.5), and (4.14)
yields

(5.8) L0; " U3 D  "U2 D  "
 
"U2 C O"."3/U1

 
D   "2U2 C O"."4/U1:

Noticing that the second components of U3 and U4 are odd, we have

(5.9) L ] U 3 D  L ] U 4 D  0:



" ipS ipS2

0  1

z 0

" 0  ipS

1 0

" "
odd odd

even

1 1 1 1

1
j j

even " " odd
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1056 H. Q. NGUYEN AND W. A. STRAUSS

On the other hand,

L1 U3 D i p C C  s
i
gn

.
D/S

 
C  " 2 ip C2 C sign.D/S2

 
C  O"."2/ (5.10)

 
D  i  S  C  i " 0 C  O"."2/:

(iv) L;" U4 . The fact that @Pc  0 combined with (4.4) yields 
L0; " U4 D  @P cj.a;P /D.";0/U2 U1 D  1 :

Taking (3.33) into account, we compute

L1 U4 D ip
 
C  " i

p C s
i
gn

.
D/S

 
C  O"."2/

(5.11)  
D  i  0 C  i "  S  C  O"."2/:

Now consider the various inner products. Some of them vanish because of parity.
Since U1 and U2 are even     and p is even, we see that L1U1 and L1U2 are even .
But U3 and U4 are odd     ; so that we find

 
L" U1; U3

 
D  

 
L" U1; U4

 
D  

 
L" U2; U3

 
D  

 
L" U2; U4

 
D  0:

We also recall that L ] U 1 D  0 and L ] U 2 D  0. Therefore, denoting

(5.12) M k D  .L;" U ; Uk /

we have

(5.13) M23 D M24 D 0

and

M11 D i 2 C  O"."2/; M12 D i". 2/ C O"."2/;

(5.14) M13 D O"."2/;      M14 D 2 C  O"."2/;

M21 D i". 2/ C O"."2/; M22 D i C  O"."2/:
On the other hand, L0;"U3; L0;" U4 D  

 
odd 

 
and L1U3; L1 U4 D  even ,

yielding the fact that many more inner products vanish:

(5.15)
.L0;" U3; U3 / D .L0;" U3; U4 / D .L0;" U4; U3 / D .L0;" U4; U4 / D 0;

.L1 U3 ; U1 / D .L" U3 ; U2 / D .L" U4 ; U1 / D .L" U4 ; U2 / D 0:



0 2

(5.17)

j k
. U  ;U /

2

6
4

0     1 0 0

2

3

7
5

j
; ".M /j k

k

1

1 3

1

"
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We recall in addition that L ] U 3  D  L ] U 4  D  0, L0;" U4 D   U1, and L0;" U3 D
 "2U2 C O"."4/U1 (see (5.8)). Consequently,

M31 D .L0;" U3 ; U1 / D  "2.U2; U1/ C O" ."4/.U1; U1/ D O"."4/;
(5.16) M41 D .L0;" U4 ; U1 / D  .U1; U1/ D  2;

M42 D .L0;" U4 ; U2 / D  .U1; U2/ D 0;

due to .U1; U2/ D 
R 2U .2/dx D 0. Moreover,

M32 D O" ."2/; M33 D i C  O"."2/; M34 D i". 3/ C  O"."2/; M43 D

i". / C  O" ."2/; M44 D i 2 C  O"."2/:

This completes the expansion of the matrix M. For the case of finite depth, the
algebra is considerably more complicated. Now by virtue of Corollary 4.4 and the
fact that U2 has mean zero, we also have

.U1; U1/ D 2; .U1; U2/ D 0; .U1; U3/ D 0; .U1; U4/ D 0;

(5.18) . U2; U2/ D  2 C  O". "2/; . U2; U3/ D
0 ; . U2; U4/ D  0 ;

.U3; U3/ D 2 C  O"."2/; .U3; U4/ D O"."2/; .U4; U4/ D 2 C  O"."2/:

Therefore, I " D  
 .U

k

;U
k

/
j ;k D1;4 is very simply expanded as

1     0 0 0

(5.19) I "  D  
6

0      0 1 O" ."2 /
7

:

0     0     O" ." /           1

Combining this with (5.13)–(5.18), we also expand .A ; " / k D .U; U k /  as A

11 D i C  O" ."2/; A1 2 D  i " C  O" ."2/;

(5.20) A1 3 D O" ."2/; A1 4 D C  O" ."2/;

A2 1 D  i " C  O" ."2/; A2 2 D 
2

i C  O" ."2/; A2 3 D A2 4 D 0;

A 3 1 D  O"."4/; A 3 2 D  O"."2/;

(5.21) A 3 3 D  
2

i C  O"."2/; A 3 4 D   
2

i " C O"."2/;

A 4 1 D   1; A 4 2 D  0; A 4 3 D   
2

i " C O"."2/; A 4 4 D  i C  O"."2/: We

can be more specific about A32. Indeed, because

L ] U 3 D  0 and L1U3; U2     D  0;

we deduce from (5.8) that

(5.22)
.L0;"U3; U2/ .  "2U2 C O"."4/U1; U2/

32 .U2; U2/ .U2; U2/



j
z j j

z z z z z z z z z

(5.23)

z z

z

z z

z

z

z

z
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1058 H. Q. NGUYEN AND W. A. STRAUSS

We note that the exact coefficient of "2 in A32 will be needed to determine the
contribution of the main term II10 in (7.8) below. In (5.22), this is obtained by
using the structure of the basis fU W j D  1; 4g instead of expanding up to O"."3/.

Let us set A  k to be the the leading part of the preceding expansion of A  k , that
is, without the remainder terms. In particular,

A22 D A33; A11 D A44; and A13 D A23 D A24 D A31 D A42 D 0:

Combining this with (5.19)–(5.22), we can write the whole matrix A;" I" as

.A;"      I" /11 D A11      C  O"."2/; .A;"      I" /12 D A 1 2 C  O"."2/;

.A;"      I" /13 D O"."2/; .A;"      I" /14 D A 1 4 C  O"."2/;

.A;"      I" /21 D A 2 1 C  O"."2/; .A;"      I" /22 D A22      C  O"."2/; .A;"

I" /23 D .A;"      I" /34 D 0;

.A;"      I" /31 D O"."4/; .A;"      I" /32 D  "2;

.A;"      I" /33 D A33      C  O"."2/;

.A;"      I" /34 D A 3 4 C  O" ."2 / C O" ."2/ .A;"

I" /41 D  1; .A;"      I" /42 D 0;

.A;"      I" /43 D A 4 3 C  O" ."2 / C O"."2/; .A;"

I" /44 D A44      C  O"."2/:

5.2 Expansion of det.A;"  I " /
We write out the individual terms of the determinant of .A; "   I" /. We ob-serve

that in (5.23) the only entries without or are the .3; 1/, .3; 2/, and .4; 1/ entries. So
let us consider those terms. Only the .3; 2/ and .4; 1/ entries are multi-plied by each
other in the terms .3; 2/.4; 1/.j; k/.j 0; k0/ where j ; j 0  2  f1; 2g and k; k0 2  f3; 4g.
Because the .2; 3/ and .2; 4/ entries are identically zero, the terms
.3; 2/.4; 1/.j; k/.j 0; k0/ vanish. We deduce that each term in det A;"   I" is at
most O . 3 C  jj3/.
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Taking " into account, we shall treat O . 4 C jj4/ and O."3/ terms as remain-ders.
Evaluating det.A;"  I"/ with respect to the second row yields the expansion

det.A;"   I " /

D   Œ A2 1 C  O" ."2 / •ŒA 1 2 C O" ."2 / •ŒA 33   C  O" ."2 / •ŒA 44   C  O" ."2 / • C

Œ A2 1 C  O" ."2 / •ŒA 1 2 C O" ."2 / •ŒA 4 3 C O " ." 2 / C  O" ."2 / •

 Œ A3 4 C  O " ." 2 / C  O" ."2 / •

C  Œ A2 1 C  O" ."2/•ŒO " ."2/•Œ "2 •ŒA 44   C  O" ."2 / •

  Œ A2 1 C  O" ."2 / •ŒA 1 4 C O" ."2 /•Œ "2 •ŒA 4 3 C O " ."2 / C  O" ."2 / • C

ŒA22   C  O" ."2 / •ŒA 11   C  O" ."2 / •ŒA 33   C  O" ."2 / •

(5.24)  ŒA44   C  O" ."2 / •

  ŒA22   C  O" ."2 / •ŒA 11   C  O" ."2 / •ŒA 3 4 C O " ."2 / C  O" ."2 / •

Œ A4 3 C  O " ." 2 / C  O" ."2 / •

  ŒA22   C  O" ."2 / •ŒO " ."2 / •ŒO " ."4 /•ŒA 44   C  O" ."2 / •

C  ŒA22   C  O" ."2 /•ŒO " ."2 /•Œ 1 •ŒA 3 4 C O " ."2 / C  O" ."2 / •

C  ŒA22   C  O" ."2 / •ŒA 1 4 C O" ."2 / •ŒO " ."4 / •ŒA 43 C O " ." 2 / C  O" ."2 / •

  ŒA22   C  O" ."2 / •ŒA 1 4 C O" ."2 /•Œ 1•ŒA 33   C  O" ."2 / • D

T 1 C   C  T10 ;

respectively. In order to simplify the subsequent exposition, we introduce the fol-
lowing notation for polynomials of .; /:

(5.25)
…3.; / D a0

3 C a1
2 C a2

2;

…4.; / D a0
4 C a1

3 C a2
2 2 C a3

3 C a4
4;

where the a may depend on ". We emphasize that …3.; / does not have a 3 term.
Examining the explicit formulas for A  k , we find that

T1 D O"."2/…4.; /;

T4 D O"."4/…3.; /;

T2 D O"."4/…4.; /;

T5 D O".1/…4.; /;

T3 D O"."5/…3.; /;

T6 D O"."2/…4.; /;

T7 D O"."6/…3.; /; T8 D O"."3/…3.; /; T9 D O"."5/…3.; /;
2 2

T10 D  
2

i C   
2

i O" ."2 / C 2      
2

i  O"."2/

C  O"."4/…3.; /:

In other words, T10 is the only main term. Therefore we have proved:



1 1
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1

2
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1060 H. Q. NGUYEN AND W. A. STRAUSS

PROPOSIT ION 5.1.
det.A;" I" /

2 2

(5.26) D
2

i C   
2

i O"."2/

C  2      1 i  O" ."2 / C O"."3/…3.; / C O".1/…4.; /:

It will turn out that the precise coefficients of "2 in the O"."2/ terms in (5.26)
are not needed, thanks to the presence of the factor . 2 i /.

6 Perturbation of Eigenfunctions due to Sidebands

The small parameters involved in our proof are , and ", where we recall that 2
Œ0; 1 /. As above, the notation O."k / signifies smooth functions f .; ; "/ bounded
by C j"jk for small .; ; "/. In case f  depends only on ", we write O ."k / D
O ."k /.

Moreover, the notation O . m C jjm/ for m 2 f0; 1; : : : g signifies smooth
functions f .; ; "/ that satisfy both (i) f .; ; "/  C . m C  jjm/ for small .; ; "/ and (ii)
m f .; ; "/ D f . ; ; "/ for some smooth function f .

6.1 Lyapunov-Schmidt method
Our ultimate goal is to study the eigenvalue problem L ; " U D  U for fixed small

parameters " and  0. Recall from Section 4 that U, the linear subspace of
.L2.T //2 spanned by the vector U given in Theorem 4.1, is the generalized
eigenspace associated to the eigenvalue D  0 of L0;" .  Permitting > 0 we seek
generalized eigenvectors bifurcating from U . By [21] there exists a four-
dimensional nullspace of L;" for small . The Lyapunov-Schmidt method splits the
eigenvalue problem into finite- and infinite-dimensional parts. In our case, there are
at least two difficulties (i) the generalized kernel U of L0;" is strictly larger than its
kernel and (ii) L0;" is neither self-adjoint nor skew-adjoint. We resolve these
difficulties by using Theorem 4.5.

Recalling that …denotes the orthogonal projection from L2 .T /2 onto U ?  with
respect to the .L2 .T //2 inner product, we want to solve the system

(6.1)                                                  ….L; "      Id/U D 0;
(6.2)                                      .Id      …/.L;"      Id/U D 0:

If we seek solutions of the form U D 
P 4 U C W with W 2 H 1 . T / 2 \ U ? ,

(6.1) is equivalent to

(6.3) ….L; " Id/
 X  

U C  W
 
D  0: j D 1



j j D 1 j       j

j

j j

j " j " j

"

P
mD0

1

1

"

j

1

" " j
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By the linearity in , clearly W D  
P 4 W , where each sideband function W

solves

(6.4) ….L; " Id/.U C  W / D 0

for j D  1; 2; 3; 4. According to Theorem 4.5, Ker.…L0;" / D U, so
(6.5) T;;"W WD …L0 ; " C …

  
L 1 C L ]  Id W D   …

 
L 1 C L ]U :

By Theorem 4.5 the operator …L0;"  W .H 1 .T / / 2 \  U ?  !  U ?   .L2 .T //2 is an
isomorphism. So its inverse is also bounded by virtue of the open mapping
theorem. Let us denote

(6.6) „ " D .…L0;" / 1W U ?  !  .H 1 .T / / 2 \  U ?

and call it the inverse operator. Then
Id „ "T;;" D  „ "…

  
L 1 C  L ]  

Id :

Thus for each small ", if and are sufficiently small, then the Neumann series
1 .Id „"T;;"/m converges as an operator on .H 1 .T / / 2 \  U ? .  Therefore

„ "T;;" is invertible from .H 1 .T / / 2 \  U ?  onto H 1 . T / 2 \  U ? .  Its inverse is

.„ "T;;"/ 1 D  
 
Id .Id „ "T;;"/ 1

D  
X

. I d  „ "T;;"/m

mD0

D  
X

.  1/m„"…
  

L 1 C  L ]  
Id m:

mD0

Then applying „" followed by .„ "T;;"/ 1 to (6.5), we obtain

(6.7)
W D   

X
.  1/m„"…

  
L 1 C  L ]  

Id m„ "…
 
L 1 C  L ] U  mD0

2  .H 1 .T / / 2 \  U ? :

This is the solution of (6.4). In particular, it is clear that

(6.8) kW k.H 1 .T // 2  D  O.1/:

We note that U ⁄  0 if and only if Œ• 4 ⁄  0. Substituting W D  
P 4 W

into (6.2) gives

(6.9)  
X  

.Id …/.L;" Id/.U C  W / D 0:
j D 1



j j

j j
 

j

;"     j

k k. ; U /
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1062 H. Q. NGUYEN AND W. A. STRAUSS

Now for any V , .Id  …/V D 0 if and only if V 2 U ? .  Thus (6.9) has a nontrivial
solution Œ• 4D1 if and only if

(6.10) det . L ; " Id/.U C  W /; Uk j k D 0;

where .W ; Uk / D 0 for all j ; k D  1; : : : ; 4. For the sake of normalization, (6.10)
is equivalent to

(6.11) P.I ; "/ WD det.A;" I " C  B; " / D 0;

where the sideband matrix is

(6.12) B ; " D
. L  

U
W ; Uk / 

j ;k D1;4
:

Therefore we have proved:

PROPOSIT ION 6.1. The Stokes wave .; ; c; P  D  0/ is modulationally un-
stable if there exists a small rational number > 0 such that (6.11) has a suffi-
ciently small root with positive real part.

6.2 Analysis of the sideband matrix
It follows from (6.8) that B;"  D  O./. In this subsection, we derive more

precise estimates for B;" .

L E M M A 6.2.

(6.13)

(6.14)

(6.15)

(6.16)

In particular,

J L 0 ; " J U 1 D       0     C  "  2S C  O"."2/;

J L 0 ; " J U 2 D  " 3C2 C  O"."2/;

J L 0 ; " J U 3 D  " 3S2
 
C  O"."2/;

J L 0 ; " J U 4 D  " 2C     C  O"."2/:

(6.17) …J L0 ; " J U k D  O"."/ 8k:

PROOF. The operator J is  the skew-symmetric matrix in the Hamiltonian form
(3.27). The expansions (6.13)–(6.16) are obtained by straightforward calculations
using Lemma 3.7. As for (6.17) we note that .Um; Un/ D O"."2/ for m ⁄  n, so
that

(6.18) …V D V
mD1

.U
;
; U

/
/

Um C O."2/ 8V 2 L2 .T /2 :

We put V D  J L 0 ; " J U k .  Then (6.17) is obvious for k D 2; 3; 4. As for k D 1,
we use (6.18), (6.13), and (4.9) to find that the term independent of " vanishes. So
(6.17) follows. □



odd odd even even
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L E M M A 6.3. The following parity properties hold.
(a) The projection …preserves the parity. That is,

(6.19) …V D even if V D even and …V D odd if V D odd :

(b) The inverse operator „ " D .…L0;" / 1W U ?  !  .H 1 .T / / 2 \ U ?  switches
the parity.

That is,

(6.20)     „ " F D  even
 
if F D  even

and
„ " F D  even     if F D      odd :

PROOF.

(a) By Gram-Schmidt orthonormalization we obtain four mutually orthogonal

vectors U ] that span U such that each U ] has the same parity as U . Then

(6.19) follows at once from the formula …V D V  j D1 .V; U ] /U ] and

the parity of the U ].
(b) Let us prove the first assertion in (6.20), as the second one follows anal-

ogously. Assuming F  D  .odd; even/> 2  U ? ,  we will prove that V D
„ " F D  .even; odd/>, where V 2  U \  .H 1 .T //2 . To that end, for any
function f W T  !  C  we denote its even and odd parts by superscripts:

f e . x / D  
2

. f . x / C  f .  x//; f o . x / D  
2

. f .x / f .  x//:

Then we decompose V D .v1; v2/> as

V D V 0 C  V 00; V 0 D  .ve ; vo/>; V 00 D  .vo; ve />:

It remains to prove that V 00 D  0. Clearly L0;" switches the parity, and
hence so does …L0;" in view of (6.19). In particular,

…L0;"V 0 D  .odd; even/> and …L0;"V 00 D  .even; odd/>:

Since …L0;"V 0 C  …L0;"V 00
 D  …L0;" V D  F D  .odd; even/>, we must have

…L0;" V D  0. Thus V 2  Ker.…L0;" / D U by virtue of Theorem
4.5. In order to conclude that V 00 D  0, it remains to prove V 00 2  U ? .
Indeed, we recall that U1 and U2 are .odd; even/>, whereas U3 and U4
are .even; odd/ . In particular, V has opposite parity compared to U
and U4, so that .V 00; U3/ D .V 00; U4/ D 0. On the other hand, j D  1; 2,
writing the components as U D  .u.1/; u.2// where u.1/ is odd and u.2/ is



j
Z

1 1
2 2

  
j j

1 1  
j j

j

j

4

1

i

1

j

"j j j
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1064 H. Q. NGUYEN AND W. A. STRAUSS

even, the simple change of variables  x !  x implies that

.V 00; U /
Z

D v1.x/ v1. x / u.1/ .x /d x C v2 .x / C v2. x/ u.2/ .x/dx
Z T                                                                                  Z T

D  
2 T      

v1 .x / C v1 .x / u.1/ .x /dx C 
2 T      

v2 .x / C v2.x/ u.2/ .x/dx

D  .V; U / D 0

Thus V 00 2  U ? .  This completes the proof of (6.20). □

L E M M A 6.4. Let …2.; / denote any polynomial of the form a0
2 C a1. We have

(6.21) .B ; " / k D O .2 C jj2/ for j 2  f3; 4g; k 2 f1; 2g;

(6.22) .B;" /1k D O" ."2 / C O . 2 C jj2/ 8k;

(6.23) .B;" /21 D 
3i

" C O" ."2 / C O . 2 C  jj2/;

(6.24) .B;" /22 D O" ."2 / C O . 2 C jj2/;

(6.25) .B;" /23 D  
8

2 C "…2.; / C O . 3 C  jj3/; (6.26)

.B;" /24 D "…2 .; / C O . 3 C jj3/;

(6.27) .B;" /33 D O" ."2 / C O . 2 C jj2/;

(6.28) .B;" /34 D 
2

" C O" ."2 / C O . 2 C jj2/;

(6.29) .B;" /4 k D O" ."2 / C O . 2 C jj2/ for k 2 f3; 4g:

Remark 6.5. It is crucial to the proof of instability in Section 7 that the coefficient
of the leading term  8

2 in .B;"/23 is negative.

PROOF OF L E M M A 6.4. We recall the definition (6.12) of B;" . Because

.Uk ; Uk / D 2 C  O"."2/;

it suffices to prove the same bounds for .L;" W ; Uk /. In view of (5.4) we write

.L;" W ; Uk / D .L0;" W ; Uk / C  L 1 C  L] W ; Uk  :

By (6.8) we have . . L 1 C  L] /W ; U / D O.2/, so that it remains to consider
.L0;" W ; Uk /. From the Neumann series (6.7) we have

W D   „ " … L1 C  L ] U  C  O 2 C jj2 :
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Hence

(6.30)

.L;" W ; Uk / D  
 
L0;" „ " …L" U ; Uk

L0;" „ " …L] U ; Uk     C  O . 2 C  jj2/;

where L ] U  D  0 for j  2  f2; 3; 4g. We recall that U1 and U2 are .odd; even/>,
whereas U3 and U4 are .even; odd/>. By Lemma 6.3, … preserves the parity,

while „" switches the parity. On the other hand, it is easy to check that L  pre-
serves the parity, while L0;" switches the parity. Consequently, L0;"„ "…L1 pre-
serves the parity. We deduce that if U and Uk have opposite parity, then so do
L0;" „ " …L" U and Uk . This observation implies that

(6.31) L0;" „ " …L1 U ; Uk     D  0

both for j 2  f1; 2g, k 2 f3; 4g and for j 2  f3; 4g, k 2 f1; 2g. Thus the first term in
(6.30) also vanishes, so we obtain

(6.32) .L;" W ; Uk / D O . 2 C jj2/

both for j 2  f3; 4g; k 2 f1; 2g and for j D  2, k 2 f3; 4g. In particular, this proves
(6.21).

In order to prove the other estimates, we use L D  J L0; " J (see (3.29)) to
have

.L ; " W ; Uk / D  L 0 ; " „ " … . L1 C  L] /U ; Uk      C  O . 2 C  jj2/

D   „ " … . L1 C  L ] /U ; …J L0 ; " J U k      C  O . 2 C  jj2/:

According to (6.18) and (5.6),

…L] U 1 D …1
 
D  1

 
  

.L] U1 ; U4 /
U4 C O" ."2 / D O"."/;

 4 4

…L1 U1 D … i      C  O" ."/ D O"."/:

It follows from this, (6.33), and (6.17) that

.L;" W1 ; Uk / D O" ."2 / C O . 2 C  jj2/ 8k;

which finishes the proof of (6.22). The proof of (6.29) is similar to (6.22) since
L ] U 4 D  0 and

…L1 U4 D … 0 C  O" ."/ D O"."/

by (5.11). Next, it can be directly checked that

(6.34) …L1 U2 D  2 C  " i
2 C  O"."2/;

2              2

(6.35) „ " …L1 U2 D 
4 S C  

4
"  3S2

2     C  O"."2/;



. L W ; U / D

(
2 "

2 2S  S 2

i 3iS  2S

. L W ; U / D

(
"

(6.36)

1

" "
   

" "
 

" "

" "
1 "

S  4S2

"
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1066 H. Q. NGUYEN AND W. A. STRAUSS

where L1U2 is given by (5.7). We note that (6.35) can be checked by applying the
operator …L0;" to the right side of (6.35). Taking the inner product with (6.13) and
(6.14) gives

3 i " C O ."2 / C O . 2 C  jj2/; k D 1;
;"      2 k O" ."2 / C O . 2 C  jj2/; k D 2;

which yields (6.23) and (6.24). Similarly, we have

…L1 U3 D 
i  C      C  "

i 1 2C2     C  O"."2/;
„ " …L1 U3 D  

4 C      C  "
4 C2

2     C  O"."2/:

Consequently, we obtain in view of (6.33), (6.15), and (6.16) that

O ."2 / C O . 2 C  jj2/; k D 3;
;"      3 k i " C  O" ."2 / C O . 2 C jj2/; k D 4;

whence (6.27) and (6.28) follow.
Finally, let us prove (6.25) and (6.26), which are an improvement of (6.32) for

j D  2. Indeed, using (6.7) and (5.4) we obtain
.L;" W2 ; Uk / D  

 
L0;" „ " …L" U2 ; Uk

C  L 0 ; " „ " … L1 C  L ]      Id•„ "…L1U2; Uk

2      L 1 C  L] „ " …L1 U2 ; Uk     C  O . 3 C jj3/ DW

I C  I I C  I I I C  O .3 C jj3/;

where k 2 f3; 4g. We recall from (6.31) that I D  0. Next we write the second term
as

I I D  
 
„ "…

 
L 1 C  L ]  

Id„ " …L1 U2 ; …J L0;" J Uk

and recall (6.17) and (5.25) to have

(6.37) I I D  "…2.; /: As

for I I I ,  we compute

(6.38)  
L1 „ " …L1 U2 D  

4 
 2C       

4 
2 2C2     C  O"."2/;

L ] „…L1 U 2 D O"."2/;

using (6.35). Consequently, 
(

(6.39) I I I D  
 

2 " C 2O"."2/;
; k D 3;

k D 4;

which combined with (6.37) completes the proof of (6.25) and (6.26). □
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7 Proof of the Modulational Instability
By virtue of Proposition 6.1, the proof of modulational instability reduces to

proving the existence of a small root of (6.11) with positive real part.

7.1 Expansion of P . I ; " /
We determine the contribution of B;" in P .I ; "/ D det.A;" I " C  B;" / by

inspecting the individual terms of the determinant. The terms that involve B;"  are
estimated as follows.

PROPOSIT ION 7.1. The sideband terms in P  are

(7.1)

2 P .I ; "/
det.A;" I " / D   3 "2 C        i            O"."2/

C  2      
2

i  O"."2/

C  O"."3/…3.; / C O . 4 C  jj4/;

where we recall that …3.; / denotes any polynomial of the form a1
3 Ca2

2 C a3.

Remark 7.2. Analogously to (5.26), we observe that both of the O"."2/ terms in
(7.1) have the factor . 2 i /.

PROOF OF PROPOSIT ION 7.1. For notational simplicity, we write A;"  D  A,
B ; " D  B, and I " D  I. We shall treat any term that is either O"."3/…3.; / or O .4 C
jj4/ as a remainder. Let us break 4  4 matrices into four 2  2 blocks. We observe that
in A  I, given by (5.23), the only entries without or are the .3; 1/,
.3; 2/, and .4; 1/ entries, all of which are in the lower left block. In addition, B  D
O./. Thus, possibly except for terms containing entries from the lower left block,
each term in the Leibniz formula for det.A  I C B/ and for det.A  I/ is O .4 C jj4/.
We are left with two types of terms: terms containing exactly one entry, which we
call type I terms, and those containing two entries of the lower left block, which we
call type II  terms.

Among terms of type I, if the only entry of the lower left block comes from B,
then it is O . 4 C jj4/ thanks to (6.21). It thus suffices to consider type I  terms that
have exactly one entry of A    I  D  A  from the lower left block. Noting in
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2
1
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1068 H. Q. NGUYEN AND W. A. STRAUSS

addition that A31 D O."4/, we deduce that the contribution of type I is

I  D   A32.A11 C  B11 /B23 .A44 C B44/
C  A32.A11 C  B11/B24.A43 I 4 3 C  B43/ C
A32 .A21 C B21 /.A13 C B13/.A44 C  B44/

A32 .A21 C B21/.A43 I 4 3 C  B43 /.A14 C B14/
A41 .A12 C B12/B23.A34 I 3 4 C  B34/

(7.2) C  A41 .A12 C B12/.A33 C  B33/B24

C  A41.A22 C  B22 /.A13 C B13/.A34 I 3 4 C  B34/
A41 .A22 C  B22/.A33 C

B33 /.A14 C B14/ C  O."4/…3.; / C O . 4 C jj4/

D  
X  

I m C  O."4/…3.; / C O .4 C jj4/: mD1

By (6.25) and (6.26) we have B23; B24 D O . 2 C jj2/, so that

(7.3) I m D  O .4 C jj4/; m 2 f1; 2; 5; 6g:

Using Lemma 6.4 we find that

I3 D A32A21A13 .A44      / C  O"."5/…3.; / C O . 4 C  jj4/; (7.4) I4 D

A32 A21.A43      I43 /A14 C O"."4/…3.; / C O . 4 C  jj4/;

I7 D A41 .A22 /A13.A34 I34 / C O"."3/…3.; / C O . 4 C  jj4/:

Next we expand I8 as

I8 D  A41.A22 /.A33 /A14 A41B22.A33 /A14

A41 .A22 /B33A14 A41 .A22 /.A33 /B14 A41B22B33A14

A41 .A22 /B33B14 A41B22.A33 /B14 A41B22B33B14

D  I8 ;0 C I8;1 C  C  I8;7 :

By virtue of Lemma 6.4 we have

I8;m D 2
1

i O" ."2 / C O"."4/…3.; / C O . 4 C jj4/; m D 1; 2;
2

I8;3 D  
2

i O" ."2 / C O"."4/…3.; / C O . 4 C jj4/;

I8;m D O"."4/…3.; / C O . 4 C jj4/; m D 4; 5; 6; 7:
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1069

Gathering the preceding estimates yields
2

I8 D  A41.A22 /.A33 /A14 C i O"."2/
(7.5)

C  2      
2

i  O" ."2 / C O"."4/…3.; / C O . 4 C jj4/:

Combining (7.3), (7.4), and (7.5), we deduce that the total contribution of B  in
type I terms of det.A I  C  B/ is

2

(7.6) 
IB  D   

2
i O" ."2 / C 2      

2
i  O" ."2 / C O"."3/…3.; /

C  O .4 C jj4/:

The contribution of the type II  terms is

II  WD .A 3 1 C  B31 /B42 .A13 C B13/B24      .A 3 1 C B31 /B42 .A14 C B14/B23

(7.7)      .A 4 1 C  B41 /.A32 C B32 /.A13 C B13/B24

C  .A 4 1 C B41 /.A32 C B32 /.A14 C B14/B23;

where we have used the facts that A23 D A24 D A42 D 0 and I  D  0 in the lower
left and upper right blocks. Notice that each term in II  contains at least one entry of
B. In the process of expanding each product in (7.7), if there are at least three
entries of B, then at least one of the three comes from the lower left block of B. So
this one is O.2 Cjj2/ by virtue of (6.21), implying that the term is O.4 C jj4/.
Therefore we are left with

I I  D  A31B42A13B24   A31B42A14B23   B41A32A13B24   A41 B32A13B24

  A41A32B13B24   A41 A32 A13 B24 C B41 A32 A14 B23 C A41B32A14B23

(7.8) C  A41 A32 B14 B23 C A41 A32 A14 B23 C O . 4 C  jj4/ 10

DW I I m C  O . 4 C  jj4/:
mD1

Within IIm for m 2 f1; 2; 3; 4; 7; 8g, there is one entry from the lower left block of
B, one entry from the upper right block of B, and one entry from the upper right
block of A. So their product is O . 4 C jj4/ in view of (6.21) and the fact that A  D
O./ in the upper right block. On the other hand, from (6.22), (6.25), and (6.26), we
find that

I I5 D  "2O" ."2/ C O . 2 C jj2/"…2.; / C O . 3 C  jj3/

D  O"."5/…3.; / C O . 4 C  jj4/;
I I6 D  "2O"."2/"…2.; / C O . 3 C jj3/

D  O"."5/…3.; / C O . 4 C  jj4/;
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1070 H. Q. NGUYEN AND W. A. STRAUSS

I I9 D "2O"."2/ C O .2 C jj2/ 
8

2 C "…2.; / C O . 3 C jj3/

D  O"."4/…3.; / C O . 4 C  jj4/;

II10 D "2 C O"."2/
 

 
8

2 C "…2.; / C O . 3 C  jj3/ D   
1 3"2 C

O"."3/…3.; / C O . 4 C  jj4/:

Thus the total contribution of B  in type II  terms is

(7.9) IIB  D   
8

3"2 C O"."3/…3.; / C O . 4 C jj4/:

Finally, combining (7.6) and (7.9) leads to (7.1). □

Now combining Propositions 5.1 and 7.1 we obtain the expansion for P :

(7.10)

2

P .I ; "/ D        i

2  C
"2       

8
3 C r1 

2
i            C  r2

2      
2

i

C  O"."3/…3.; / C O . 4 C  jj4/

for some absolute constants r1; r2 2 C .  Still for small 2  .0; 2 /, we set

(7.11) D

so that, upon recalling (5.25), we have

(7.12) P .I ; "/ D 3P .I ; "/;

where
2 2

(7.13) 
P .I ; "/ D     

2
i             C  "2       

8
C  r1      2

i             C  r2      2
i

C  O" ."3 /1 ./ C 2.I ; "/

for some smooth function 2.I ; "/ and for some quadratic 1./. The principal part of
P  with the last term omitted is

2 2

(7.14)
Q.I "/ D     

2
i             C  "2       

8
C  r1      2

i             C  r2      2
i

C  O"."3/1./:

Clearly, Q is a quadratic polynomial in .
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1071

7.2 Roots of the characteristic function P . I ; " /
First we look for the roots of Q .  Of course, for " D 0, Q.I 0/ D . 1 i  /2 has the

imaginary double root 1 i . We will prove that for small " ⁄  0, the double root
1 i bifurcates off the imaginary axis, which will subsequently lead to an unstable
eigenvalue of L ; " .

L E M M A 7.3. There exists a small "0 > 0 such that for all " 2 .  "0; "0/ n f0g, the
quadratic polynomial Q.I "/ has two simple roots,

(7.15) ."/ D 
2

i C  "."/;

where  W .  "0 ; "0 / !  R  are smooth functions and .0/ D 
2

p
2

.

PROOF. We seek solutions of the form D  1 i C ". Then from (7.14) we have
 Q

2
i C  "I "     D  "2     2   

8     
C  "2.r1

2"2      r2"/ C O"."3/1      2
i C  " :

Recall that O"."3/ depends only on ". Dividing through by " 2 ⁄  0, we see that
Q . 1 i C  "I "/ has the same roots as Q].I "/ where

Q].I "/ WD " 2 Q       i C  "I "
(7.16)  D      2   

8
C  ".r1

2"      r2 / C O"."/1      2
i C  " :

Clearly, 0 D   p   are the roots of Q] . I 0/. Since @Q].I 0/ D p   ⁄  0, the implicit
function theorem implies that there exists a pair of smooth functions ."/ such that
.0/ D  0 and Q] .."/I "/ D  0 for small ". From the definition Q . 1 i C  "I "/
D  "2Q] .I "/, the roots of Q.I "/ for small " are
 ."/ D 1 i C  " ."/. Since

@Q
1

i C 0 "I "
 
D  "@Q] 0 I "

 
D   

"2
;

we have @Q.."/I "/ ⁄ 0 for small " ⁄  0, implying that ."/ are simple roots
for small " ⁄  0. □

Now we recall from (7.13) and (7.14) that

(7.17) P .I ; "/ D Q . I "/ C  2.I ; "/:

In particular, P .I 0; "/ D Q.I "/. If we fix a small " 2 .  "0; "0/ n f0g and vary ,
according to Lemma 7.3, the polynomial Q.I "/ has two simple roots of the form
."/ D 2 i C  "."/. In particular,

@P .I 0; "/jD."/ D @Q.I "/jD."/ ⁄ 0:
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1072 H. Q. NGUYEN AND W. A. STRAUSS

The implicit function theorem when applied to (7.17) implies that for each " 2
.  "0; "0/ n f0g there exists a small 0."/ > 0 such that for all 2  .0; 0."//,

P .I ; "/ has at least two simple roots .; "/. For each such ", both mappings
!  .; "/ are smooth and

(7.18) .0; "/ D 
2

i C  "."/; .0/ D 
2

p
2

:

Finally, recalling the scaling relations (7.11), (7.12), and (3.30) we obtain our main
conclusion, as follows.
L E M M A 7.4. For all " 2 .  "0; "0/ n f0g and 2  

 
0; 0."/, P .I ; "/ has at least two

simple roots of the form

(7.19) .; "/ D .; "/;

where !  .; "/ are smooth and satisfy (7.18). In particular, 
(7.20)

.; "/
D

 
1

i 
2

1
2

" C "2g1."/ C 
2
g2.; "/;

where g1./ and g2. ; "/ are smooth for each ". On the other hand, for  2  .
0."/; 0/ we have

(7.21) .; "/ D 
2

i 
2

p
2

" "2g1."/ C 2g2. ; "/:

Theorem 7.4 completes the proof of the modulational instability for Stokes
waves of small amplitude in deep water.

Appendix A  Stokes Wave Expansion
Here we derive from scratch the expansion of a Stokes wave of small amplitude

and zero Bernoulli constant, P D  0. Our motivation is that the expansions found in
the literature do not seem to be unique. In fact, the apparent nonuniqueness is
simply due to different choices of coordinates for the parameter a.

In the moving frame of speed c, the water wave system (2.2) becomes

(A.1) • x ; y D 0 in •;

(A.2)      c@xC g C  2 jrx ; y j2 D 0 on f y D  .x/g; (A.3)
@yC .c @x/@xD 0 on f y D  .x/g;
(A.4) r x ; y !  0 as y !   1 :

Using superscripts we Taylor-expand the unknowns,

D  " 1 C "2 2 C "3 3 C  ; D  " 1 C

"2 2 C "3 3 C  ; c D  c 0 C "c 1 C

"2c 2 C  ;



y

2

y x y y x  x x xn

x x x
1

y

y y y x  x x  x x x
o

xn
2 2x x x x y

2

y      y 2 x x x      x y      y

x x x x x x      x
o

y x x
1 1
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and reserve subscripts for derivatives. Each j is  harmonic in fy < 0g. Then we
Taylor-expand

.x ; .x // D .x ; 0/ C .x ; 0/ "1 .x / C "2 2 .x / C "3 3 .x / C
C  1

yy .x ; 0/"1 .x / C 2 C   ;
and similarly for .@x /.x; .x// and .@y /.x; .x//. In the following we will
suppress the arguments. In most places the arguments of ; x ; y , etc., will be .x; 0/.
Equation (A.3) gives

" 1 C c01     C  "2 2 C  1y
1 1 1 C c 0 2 C c11 

(A.5)

C  "3 3 C  1y
2 C  2y

1      12 21 1
y

11

C  c 0 3 C c 1 2 C c 2 1 C 2
1

yy
11     C  O."4/ D 0: On the

other hand, equation (A.2) gives
"  c 0 1 C g1

o

C  "2

n
 c02      c01

y
1      c 1 1 C g 2 C 1 Œ1 • 2 C 1 1

(A.6) C  "3  c03      c02
y

1      c01
y

2      c12      c 2 1 C g 3 C 11
y

1 C  11
y

1   c 0

1
yy

1 1      c 1 1
y

1 C 1 2 C 12

C  O .4 / D 0:

Now equating the coefficients of " yields

(A.7) 1 .x ; 0/ C c 0 1 .x / D 0;  c 0 1 .x ; 0/ C g1 .x / D 0; x x C y y D  0:
Clearly a solution is

(A.8) 1 .x / D cos x; 1 .x ; y / D c0ey sin x; c 0 D 
p

g :

In the coefficients of "2, we substitute (A.8) into (A.5) and (A.6) to obtain 2 C

g 2 C .  g sin x/.cos x/ .  g cos x/. sin x / C c1. sin x / D 0
and

     
p

g 2 C  g2 p
g.

p
g cos x /.cos x / c 1 .

p
g cos x/

C  2 .
p

g cos x /2 C 2 .
p

g sin x /2 D 0:
The preceding equations simplify to

2 C g 2 c 1 sin x C g sin.2x/ D 0;

 2 C  
p

g 2 c1 cos x   1 p
g cos.2x / D 0:

We eliminate 2 by combining these two equations as

(A.10) y .x ; 0/ C x x .x ; 0/ 2c1 sin x D 0:
We choose the trivial solution
(A.11) c 1 D 0; 2 D 0; 2 D 2 cos.2x/:



1
y y x  x x x x x y

2x x x x  x y  y x

2

y p x

2
p p

1

x
p p

2
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1074 H. Q. NGUYEN AND W. A. STRAUSS

As for equating the coefficients of "3, we may now put 2 D  0 and c 1 D 0 to
obtain from (A.5) and (A.6) the equations

3 C  1y
2 12 1

y
1 1 C c 0 3 C c 2 1 C 2

1
yy

1 1 D 0 and

 c03 c01
y

2 c 2 1 C g 3 C 1 1
y

1 C 11
y

1   c 0  1
y y

1 1 D 0: Now we plug in

c 0 D pg ,  1 D  pge y sin x , 1 D  cos x, and 2 D  1 cos.2x/ to obtain
3 C g3 c 2 sin x C 1 g cos.2x/ sin x C g sin.2x/ cos x

C  
p

g cos2 x sin x C 2
p

g sin x cos2 x D 0
and

3 C g3 c2 cos x  g cos.2x/ cos x C g cos3 x

C  
p

g sin2 x cos x   2
p

g cos3 x D 0:
They simplify to

(A.12)                y C  
p

g x      c 2 sin x C 8
p

g sin.3x / C 8
p

g sin x D 0;

(A.13)                3 C      g3      c 2 cos x C     g 3 cos x   3 cos.3x/ D  0:
Combining the last two equations, we find

(A.14) y .x ; 0/ C x x .x ; 0/ C .  2c 2 C 
p

g / sin x D 0;

which admits the (trivial) solution

(A.15) c 2 D 
2

p
g ; 3 D 0:

Then it follows from (A.13) that

(A.16) 3 D 
8

cos x C 
8

cos.3x/:

Thus we have proved the expansions for and c in (2.7). On the other hand, since
.x / D  .x ; .x // D      ge.x/ sin x, the expansion for       follows from Taylor’s

formula. We remark that by a simple change of the variable a, we could have
modified the coefficients of the 8 cos x and 4    

 sin x terms in (3.3) if we wished.

Appendix B  Riemann Mapping and Proofs of Proposition 3.3
and Lemma 3.4

B.1 Riemann mapping
Recall that the fluid domain at a fixed time is given by

• D f.x ; y / 2 R2 W y < .x /g
where is C 1 ,  even, 2-periodic, and .x / D  O"."/. We first prove the following
Riemann mapping theorem for the unbounded domain.



j

2

2
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PROPOSIT ION B.1. For any sufficiently small ", there exist mappings Z .x; y/ W
• !  R ,  j D  1; 2 such that

(i) Z 1 C  i Z2 is conformal in •;
(ii) .x ; y / 2 • !  .Z1 .x ; y /; Z2 .x ; y // is one-to-one and onto R  ; (iii)

Z 2 . x C  2; y / D Z2 .x ; y / for all .x ; y / 2 • and Z2 is even in x ; (iv)
Z2 .x ; .x // D 0 for all x 2  R;
(v) Z 1 . x C  2; y / D 2 C  Z1 .x ; y / for all .x ; y / 2 • and Z1 is odd in x ; (vi)

k r x ; y . Z 1 x / kL 1 . • / C  k r x ; y . Z 2 y / kL 1 . • /  C ".

PROOF. We consider the change of variables .x ; Y / 3 R 2  !  .x ; y / 2 • where
y D  .x ; Y / D e Y j D j .x / C Y is periodic in x . This change of variables is one-to-

one and onto since @Y D 1 C  e Y jD j jD j.x /  1 for sufficiently small ". Define
the inverse by

(B.1) .x ; y / D .x ; .x ; Y // if and only if Y D .x ; y /:

From the relation

we have

(B.2)

y Y   
1

y.0/ D 
X  

e jk jY e i x k y.k/
k ⁄ 0

y Y   
2

y.0/  C0 e Y kkH 1 ;

and hence
y Y   

2
y.0/  C "e y kkH 1 ; C D  C ./:

In other words,

(B.3) .x; Y / Y   
2

y.0/  C "eY ;
 .x ; y /

y C  
2

y.0/  C "e y

and analogously for derivatives. A  direct calculation shows that if f .x ; Y / D
f .x ; .x ; Y //, then

(B.4) divx ; Y .Ar x ; Y f / .x ; Y / D @Y .•x ;y f /.x ; .x ; Y //

with
"

(B.5) A  D   
@

x

 @x 
#

1Cj@x j2

@Y

Making use of (B.3), we find that

jr m divx ; Y .Arx ; Y Y /j   Cm"e Y 8.x ; y / 2 R2 ; 8m  0:



(B.6)

8

<̂

:̂

2
z

2

2 s
     y

2
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1076 H. Q. NGUYEN AND W. A. STRAUSS

Then by Lemma B.2 below, there exists a unique solution Z2 to

d iv x ; Y . A r x ; Y Z / D   divx ; Y .Arx ; Y Y /; .x ; y / 2 O D  T   R  ;
Z .x ; 0/ D 0; x 2  T ;  k r x ; Y Z kH s . O /

C 0"; 8s  0;
ke 2 @ x Z k L 1 . T I L 1 . R      //  C":

Define Z2 .x ; y / by Z2 .x ; .x ; Y // D Y C  Z2 .x ; Y /; that is,

(B.7) Z2 .x ; y / D .x ; y / C Z2 .x ; .x ; y //:

Then, in view of (B.4), Z2 satisfies

<• x ; y Z 2 .x ; y / D  0
(B.8) Z 2 . x C  2; y / D Z2 .x ; y /

Z2 .x ; .x // D 0:

8.x ; y / 2 •;
8.x ; y / 2 •;

Moreover, Z2 is  even in x because is even. We claim that

. x ; y / !
y      

@xZ2.x; y0/dy0

 1

is well-defined as a function in L 1 . • / .  Indeed, differentiating (B.7) in x gives

@x Z2 .x ; y / D @x .x; y/ C @x Z2 .x ; .x ; y // C @Y Z2 .x; .x; y//@x .x; y/:
Then using the change of variables .x ; Y / D .x; .x ; y// and the exponential
decay of @xZ (the last estimate in (B.6)), together with (B.3), we obtain the claim.
Now we can define

Z
(B.9) Z1 .x ; y / D x  @xZ2.x; y0/dy0;

 1

so that @y Z1 D  @xZ2. Since @Y Z 2  H 1 . O / ,  where O D  T   R  , we have
@Y Z2 .x ; Y / !  0 as Y !   1 .  Hence

y
l i m

1  
@y Z2 .x ; y / D 

y
l i m

1  
@y .x; y/ C @Y Z2 .x; .x; y//@y .x; y/ D  1

uniformly for x 2  R .  Together with the fact that Z2 is  harmonic, this yields

@x Z1 .x ; y / D 1  
y      

@2Z2.x; y0/dy0 D  1 C
y      

@2Z2.x; y0/dy0

 1  1
D  @y Z2.x; y/:

Thus Z1 and Z2 obey the Cauchy-Riemann equations

(B.10) @x Z1 D @yZ2; @y Z1 D  @xZ2 in •:

But k r x ; y . Z 2      y / kL 1 . • /  C " due to (B.6) and (B.3), so that

k r x ; y . Z 1 x / kL 1 . • /  C ";

proving (vi). Moreover, from (B.9) and the fact that Z2 is  even in x , it follows that
Z1 is odd in x and Z 1 . x C  2; y / D 2 C  Z1 .x ; y /.



2

p

(B.11)
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MODULATIONAL INSTABIL ITY  OF STOKES WAVES 1077

Finally, let us prove (ii). Owing to (vi), Z  D  Z 1 C  i Z2 is one-to-one for
sufficiently small ". By the maximum principle, Z .x ; y /  0 in • and hence
Z .•/  R2 . Then, since Z i s  continuous, it is onto provided that Z.f.x; .x// W x 2
Rg / D f.x; 0/ W x 2  Rg. This in turn will follow if

Z1.f.x; .x// W x 2  R g / D R :

Indeed, since Z1 is continuous and Z 1 . x ; . x / / !  1  as x !  1  in view of
(B.9), we conclude the proof.                                                                                          □

L E M M A B.2. Assume that F W O !  R  satisfies hy iF 2 L2 .O/ for some > 1,
where O D  T   R   and hyi D 1 C  y2. Recall the matrix A  given by (B.5).

(1) There exists a unique variational solution u to the linear problem

divx ; y .Arx ; y u/.x ; y / D F .x ; y /; .x ; y / 2 O;
u.x ; 0/ D 0; x 2  T ;

such that

(B.12) khyi ukL 2 . O /  C1 kr x ; y ukL 2 . O /  C2 khy iF kL 2 .O / :

(2) If F 2  C 1 .O/ satisfies jr x ; y F .x ; y /j   Cm"ey in O for all m  0, then

(B.13) krx ; y ukH s . O /  Cs " 8s  0; and

(B.14) ke 2 @ x ukL 1 . T I L 1 . R      //  C":2

PROOF. We only need to be careful with the behavior as y !   1 .  In order to
find the variational solution, we need a weighted Poincare inequality. Indeed, it is
easy to see that for any > 1, there exists C > 0 such that

(B.15)  hyi 2ju.x; y/j2 dy dx  C j@yu.x; y/j2 dy dx
O                                                                             O

for all u.x ; y / 2 C 1 .O / .  Define H1.O/ to be the completion of C 1 .O/ under
the norm

kukH1 D  khyi ukL 2 . O / C  krx ; y ukL 2 . O / :

Owing to (B.15), H0.O/ is a Hilbert space with respect to the inner product
.u; v/H1.O/ WD . r x ; y u ; r x ; y v /L 2 . O / :

The Lax-Milgram theorem implies that the elliptic problem (B.11) has a unique
solution u 2 H1.O/. More precisely, u satisfies

Z Z
(B.16)  A r x ; y u  r x ; y ’ dy d x D F ’ dy d x

O                                                                       O

for all ’ 2  H1.O/. Inserting ’ D  u yields the variational estimate (B.12).
Now we prove the decay estimates (2). Assume that F  2  C 1 .O/ satisfies

jrx ; y F .x ; y /j   Cm"ey in O for all m  0. Then F  2  H 1 .O / and by the



(B.17)

m 0

y

y
y

 jk jy
y

e
 1

jk jy 0 y 0 0
Z Z

 jk jy 0 y 0 0

Z
y

y ey

jkuy.k; y/j

h i
C C e e ;

 

     y

     y

L      . T I L . R  //

"
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1078 H. Q. NGUYEN AND W. A. STRAUSS

standard finite difference technique we obtain r x ; y u 2  H 1 .O/ together with
(B.13). It remains to prove the decay (B.14). Let us rewrite (B.11) as

(
•x ; y u.x ; y / D G WD F C  divx ;y

 
.Id A/r x ; y u ; .x ; y / 2 O;

u.x ; 0/ D 0; x 2  T :

where jrx ;y G.x ; y /j  Cm"ey for all m  0. Denoting by uy.k; y/ the Fourier
transform of u with respect to x , and analogously for G.k; y/, we have

 k2uy.k; y/ C @2uy.k; y/ D G.k; y/; uy.k; 0/ D 0 8k 2 Z :

The unique solution uy that guarantees r x ; y u 2  L2 .O/ is given by

uy.k; y / D  
e

2jkj 

Z y      
ej kj y0

G.k; y0/dy0

jk jy 0 0
C  

2jkj  1  
e G.k; y /dy   

y      
e G.k; y /dy

for all k ⁄  0 and

uy.0; y / D  
Z 0      y0 

G.0; y00/dy00 dy0:
y        1

Using jG.k; y/j  C 0" jk jC1 for all k 2 Z ,  we estimate
(  

C 0 " e y e j k j y      1

y j
k

j
y 2 . jk jC1/      j k j C 1           j k j C 1 jk j  1

jkj  2; C 0"4 ey y e y ; jkj D  1:

Integrating in y , we obtain
Z

je 2 kuy.k; y/jdy  C 00"jkj 2 8jkj  1:
R

Hence ke 2 @xuk 1                1                       C", thereby proving (B.14). In fact, the same
decay can be proved for all derivatives of u.                                                                □

B.2 Proof of Proposition 3.3
Applying Proposition B.1 with . x / D  .x / D  O ."/, we obtain a Riemann

mapping Z 1 .x ; y / C  i Z2 .x ; y / from f.x ; y / 2 R2 W y < .x /g  onto R2 . Let
· 1 C i · 2 b e  the inverse of Z 1 C i Z 2 .  The properties (iii), (v), and (vi) in Proposition
B.1 imply that

· 1 . x C  2; y / D 2 C  ·1 .x ; y /; · 2 . x C  2; y / D ·2 .x ; y / 8.x ; y / 2 R2 ;

·1 is  odd in x and ·2 is even in x , and

k r x ; y . · 1 x / k L 1 . O / C  k r x ; y . · 2 y / kL 1 . O /  C ":



(B.18)

8

<̂

:̂
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(

     

(

L
L L 1
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Another way to state the even-odd property is  · . x C  iy / D · .  . x C  iy//,
where · D  · 1 C  i ·2 .  Then .x / D  ·1 .x ; 0/ is odd and ·2 satisfies

• x ; y · 2 D  0 in R2 ;
· 2 . x C  2; y / D ·2 .x ; y / 8.x ; y / 2 R2 ;
·2 .x ; 0/ D   .x /;
r x ; y . · 2 . x ; y / y / 2 L 1 . O / :

It follows that

(B.19) ·2 .x ; y / D y C  
1 X  

e i k x e y jk j   .k/:
k 2 Z

Using the Cauchy-Riemann equations we find that

·1 .x ; y / D R C  x   
i  X  

e i k x sign.k/ey jk j   .k/
k ⁄ 0

for some constant R 2  R .  Finally, since ·1 is  odd, we have R D  0 and hence
(3.15) follows.

B.3 Proof of Lemma 3.4
For f 2  H 1 . TL / ,  we first recall from (2.3) and (2.4) that

(B.20) G . / f D  @y .x; .x// @x.x; .x//@x.x/ where
.x; y/ solves the elliptic problem

• x ; y D 0 in •;
jy D . x / D  f .x /; r x ; y 2  L2 .•/:

Let · . x ; y / D  · 1 C  i ·2 be the Riemann mapping given by Proposition 3.3. Set
‚.x ; y / D .·1 .x ; y /; ·2 .x ; y // for .x ; y / 2 R2 . Since · i s  holomorphic and

is harmonic in •, ‚ i s harmonic in R2 . Next we find the boundary conditions for
‚ . Recall that · maps f.x; 0/ W x  2  R g  onto f.x; .x/ W x  2  R/g. It

follows that ·1
.
x ; 0/ D .x/ and ·2

.
x ; 0/ D . .x // D .] /.x /. In addition,

k r x ; y . · 1   x / k L 1 . R 2  / C  k r x ; y . · 2   y / k L 1 . R 2  /  C " by (iv) in Proposition
3.3. Thus ‚ satisfies

•x ; y ‚ D 0 in R2 ;

‚.x ; 0/ D . ] f /
.
x /; r x ; y ‚ 2  L 2 . T L  R  /:

‚ i s given explicitly by

‚.x ; y / D 
1 X  

e i k 2  x e y jk 2  j . ] f /L .k /:
k 2 Z

In particular,

@y ‚.x ; 0/ D 
1 X  

e i k 2  x k
2

. ] f /
L

.k / D jDL j . ] f / .
x
/ :

k 2 Z



 

 

1 1
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1

] ] 
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On the other hand, by the chain rule and (B.18) and the Cauchy-Riemann equa-
tions, we obtain

@y ‚.x ; 0/ D 0.x/ y .x /; ..x / x  .x/; ..x/ @x ..x// D
0 .x /] G./f .x /:

Combining both expressions for @y‚.x ; 0/ yields

]
 
G ./f .x / D 0

.x /
jDL j . ] f / .x / D 0 .x /

@x HL .] f /.x /;

where H  denotes the Hilbert transform, H  uL .k / D  i sign.k/uyL./. Finally, in
view of the identity  1. 0 @xg/ D @x. 1g/ with g D H L . ] f / ,  we arrive at the
claimed identity G . / f D  @x ]

1 HL . ] f / .

Appendix C  Proof of Lemma 3.7

An application of the shape-derivative formula (3.4) yields

(C.1)
G./  D  G.0/  G.0/.B / @x .V / C O"."3/

D  jD j  jD j.B / @x .V / C O"."3/;
where in view of (3.3) and (3.5),

B  D  G./  C  O."2/ D jD j  C  O."2/ D " sin x C O"."2/; V  D

@x      
 C  O."2/ D " cos x C O"."2/:

The remainder in (C.1) is O."3/ because both and are O ."/. Next we find the
"2 terms in B  and V  from (3.5), (C.1), and (3.3), obtaining

B  D  G./  C  @x      @x
 C  O" ."3 /

D  j D j     jD j .B .0;      //   @x.V .0;     / / C  @x      @x
 C  O" ."3 /

D  j D j    j D j . . j D j  //   @x ..jDj // C  @x      @x
 C  O" ."3/ (C.2)

D  j D j

" si n x C  
2

"2 sin.2x/       j D j  ." sin x /." cos x/

  @x ." cos x/." cos x/   ." cos x/." sin x/ C O" ."3/
D  ." sin x C "2 sin.2x//   "2 sin.2x/   sin.2x / C 

2
sin.2x/ C  O" ."3 /

D  " sin x C 
2

"2 sin.2x/ C O" ."3/

and
V  D  @x      

 B@x

(C.3) D  " cos x C "2 cos.2x/ C ." sin x/." sin x/ C O"."3/

D  " cos x C 
2

"2 .1 C cos.2x// C O"."3/:



2
1

1

2
c

1 1

2
y

D
1 C

                      

0

1 2 2

"C  O ." /

1 1 3

3
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Formula (3.15) gives

.x / D  ·1 .x ; 0/ D x   
i  X  

ei kx sign.k/  .k/; k ⁄ 0

where D  x C  "1 C "2 2 C O"."3/,  D  " 1 C "2 2 C O"."3/, and

  . x / D  "1 .x / C "2f@x
1.x/1.x/ C 2.x/g C  O"."3/

D  " cos x C "2  1 .x / sin x C 
2

cos.2x/ C  O"."3/:

Matching the orders of " we find that

1 .x / D   
i  X  

e i kx sign.k/cos.k/ D  i sign.D/ cos.x / D sin x
k ⁄ 0

and, with f . x / D   1 .x / sin x C 2 cos.2x/ D  sin2 x C 2 cos.2x/,

2 .x / D   
i  X  

e i k x sign.k/f .k/ D  i s ign.D /f .x / D sin.2x/:
k ⁄ 0

Thus, we obtain . x / D  x C " sin x C "2 sin.2x / C O ."3 /, which finishes the proof
of (3.32).

Next Taylor-expanding ] V .x / D V ..x// using (3.32) and (C.3) gives

] V .x / D " cos x C "2 cos.2x/ C O"."3/:

Then combined with the expansion 0 .x/ D 1 C  " cos x C 2"2 cos.2x/ C O"."3/,
this implies

p .x / D 
c 

] V

2 "    " cos x    " cos.2x/ 3

 1 C  " cos x C 2"2 cos.2x/  D
1 " cos x C "2      

2
cos.2x/         1      " cos x C "2      

2
  

2
cos.2x/

C  O"."3/
D  1 2" cos x C "2      

2
2 cos.2x/ C  O"."3/:

Similarly, we have ] B . x / D  " sin x C "2 sin.2x/ C O"."3/ and

q .x / D  p.x/@x .] B /.x/ D  " cos x C "2.1 cos.2x// C O"."3/:



1 D 0

z
even C C 2

2 S
1

2C C  C 3
9
2 C 3

3
2

odd

odd S

1
 S

S 2

 S 2

1

3
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1082 H. Q. NGUYEN AND W. A. STRAUSS

Finally, we expand
1 C  q.x/ 1 0 C  q

0

D   2" cos x C "2 
1 3 cos.2x/1 " cos x

 
C  O"."3/

D   2" cos x C 2"2.1 cos.2x// C O"."3/

which completes the proof.

Appendix D Higher-Order Expansions
At a certain point in our investigation we expected that higher-order expansions

would be necessary. We share these expansions with the reader in the expectation
that they might well be useful in future computational and theoretical work.

(D.1) U2 D odd D  "  S  C  "2      2S2     C  "3 S   9

3
3 C  O."4/;

(D.2) U3 D even
 
D  C

 
C  " 2C2

 
C  "2

 
2 S C

2

S3

 
C  O."3/;

(D.3) U4 D even D  0 C  " C C  "2     2C2      C  O."3/:

(D.4)

A11 D i C  
2

i"2 C O"."3/; A12 D  i " C  O"."3/; A13 D

O"."3/; A14 D "2 C O"."3/;

A21 D  i " C  O"."3/; A22 D 
2

i  
4

i "2 C O"."3/;

A23 D A24 D 0;

A31 D O"."5/; A32 D  "2;

A33 D 
2

i  
4

i "2 C O"."3/; A34 D  
2

i " C O"."3/;

A41 D  1; A42 D 0;

A43 D  
2

i " C O"."3/; A44 D i C  O"."3/:
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