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Abstract

We consider the Weil–Petersson gradient vector field of renormalized volume on the
deformation space of convex cocompact hyperbolic structures on (relatively) acylindrical
manifolds. In this paper we prove the conjecture that the flow has a global attracting
fixed point at the unique structure Mgeod with minimum convex core volume.

1. Introduction

The deformation space of convex cocompact structures CC(N) on a hyperbolizable 3-manifold
N has a natural flow V , first studied in [BBB19]. This flow V has a classical description; at
a point M ∈ CC(N) it is the Weil–Petersson dual of the Schwarzian derivative of the maps
uniformizing the components of the conformal boundary ∂cM of M . Work of Storm proved that
the convex core volume is minimized if and only if N is acylindrical, with the minimum given
by the manifold Mgeod whose convex core boundary is totally geodesic (see [Sto07]). A natural
conjecture is that the flow V uniformizes N . Specifically, that for any flowline Mt of V we have
Mt → Mgeod. In this paper, we prove this conjecture and extend it to the class of relatively
acylindrical manifolds.

Although the flow has the above classical description in terms of the Schwarzian derivative,
it only arose recently in the study of renormalized volume. This perspective will not be needed
in this paper, but renormalized volume gives an analytic function VolR : CC(N) → R and the
flow V is equal to the Weil–Petersson gradient flow of −VolR. Renormalized volume was intro-
duced in work of Graham and Witten [GW99] in physics to give an alternative notion of volume
for conformally compact Einstein manifolds. In the hyperbolic setting, this was described and
developed in the papers [TT03, ZT87, KS08, KS12] of Takhtajan, Zograf, Teo, Krasnov, and
Schlenker. The renormalized volume VolR(M) of a hyperbolic manifold M connects many ana-
lytic concepts from the deformation theory with the geometry of M and is closely related to
classical objects such as the convex core volume VolC(M) and the Weil–Petersson geometry of
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Teichmüller space. For the description of these connections, we refer the reader to the earlier
papers [BBB19, BBB22] for this perspective.

1.1 Flow on a deformation space of relatively acylindrical manifold
For N a compact hyperbolizable 3-manifold, we denote by CC(N) the space of convex cocompact
hyperbolic structures on the interior of N . We consider triples (N ; S, X) where S is a union of
components of ∂N and X a conformal structure on ∂N − S. We then define CC(N ; S, X) ⊆
CC(N) to be the subset with conformal structure X on ∂N − S. The pair (N ; S) is relatively
acylindrical if there are no non-trivial annuli with boundary curves both in S. There are two
important examples. The first is when S = ∂N and N is a acylindrical. The second important
example is the pair (S × [0, 1], S × {0}) where S is a closed surface. Then CC(S × [0, 1]; S ×
{0}, X) is called the Bers slice and denoted by BX . While these may be the two main cases of
interest, our result will hold in the general setting of CC(N ; S, X) for any relatively acylindrical
(N ; S). By the classical deformation theory of Kleinian groups (see [Kra74]), CC(N ; S, X) is
parameterized by the Teichmüller space Teich(S) of conformal or hyperbolic structures on S.
Combined with Thurston’s hyperbolization theorem, this deformation theory also implies that
there is a unique Mgeod ∈ CC(N ; S, X) such that ∂cMgeod = X & Ygeod and the convex core of
Mgeod has totally geodesic boundary facing Ygeod.

Given Y ∈ Teich(S), we let MY ∈ CC(N ; S, X) be the convex cocompact hyperbolic
3-manifold whose conformal boundary restricted to S is Y . Let ΓY be a Kleinian group with
MY = H3/ΓY and let ΩY be the union of components of the domain of discontinuity of ΓY that
project to Y . The components of ΩY will be Jordan domains in Ĉ. Given a component Ω of
ΩY , let f : H2 → Ω be a uniformizing univalent map. The Schwarzian derivative S(f) defines
a holomorphic quadratic differential on Ω. If we repeat this construction for every component
of ΩY we get a ΓY -invariant holomorphic quadratic on Ω which will descend to a holomorphic
quadratic differential φY on Y .

Recalling that we have an isomorphism CC(N ; S, X) ∼= Teich(S) and that tangent vectors in
TY Teich(S) are given by Beltrami differentials on Y , we can define a vector field V = V(N ;S,X)

on Teich(S) by taking the harmonic Beltrami differential associated to φY . Namely, let

V (Y ) = −
[
φ̄Y

ρY

]
,

where ρY is the area form for the hyperbolic metric on Y . The expression inside the brackets
is a Beltrami differential, with the brackets indicating that we are taking the equivalence class
in the tangent space TY Teich(S). Thus, V is a vector field on Teich(S). Of course, the identifi-
cation CC(N ; S, X) ∼= Teich(S)) also allows us to consider V as a vector field on CC(N ; S, X).
Conceptually this may be preferable as the hyperbolic structures determine V . However, much
of the actual work (after the definition) will only involve Teichmüller space and we will move
freely between the two viewpoints. As we will discuss below, V is the Weil–Petersson gradient
of the negative of the renormalized volume function on CC(N ; S, X) ∼= Teich(S).

Our main result is the following theorem.

Theorem 1.1. Let (N ; S) be relatively acylindrical and Mt ∈ Teich(S) be a flowline for V =
V(N ;S,X). Then Mt converges to Mgeod.

For the case of N being acylindrical, the above states that the flow V uniformizes N in
that every convex cocompact structure flows to the unique structure Mgeod with totally geodesic
boundary. This is also the structure with minimal convex core volume (see [Sto07]).
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We note that the existence of the manifold Mgeod is a consequence of Thurston’s hyper-
bolization theorem along with the deformation theory of Kleinian groups mentioned above,
and in fact the manifold Mgeod only exists if (N ; S) is relatively acylindrical. More precisely,
the proof is (a special case of) the induction step in the proof of Thurston’s theorem which
is to find a fixed point of the skinning map on Teichmüller space. Thurston proved this by
showing that the skinning map has bounded image (see [Thu86]). McMullen gave an alter-
native proof by showing that this skinning map was a strict contraction (see [McM90]). Our
proof uses McMullen’s contraction of the skinning map at two key moments, although for one,
Thurston’s bounded image theorem would also work. So we are not giving a new proof of this
existence theorem. It would be very interesting to give a more direct proof of Theorem 1.1 that
did not depend on these two results, which would give an alternative proof of the existence of
Mgeod.

The deformation space CC(N ; S, X) is homeomorphic to an open ball and the vector field
V has a single, attracting zero (see [Mor17, Var19]) so it may not seem surprising that the flow
converges to this zero. However, the boundary of CC(N ; S, X) appears to exhibit fractal behavior
which the vector field must wind its way through to find the zero. For example, if CC(N ; S, X) is
the Bers slice BX then the Bers embedding identifies BX with a bounded open topological ball in
the finite-dimensional vector space Q(X) of holomorphic quadratic differentials on X. When BX

has complex dimension 1, Komori, Sugawa, Wada, and Yamashita (see [KSWY06]) and Dumas
(see [Dum1] for images and [Dum2] for software) have drawn pictures that reveal this fractal
behavior. More rigorously, also for dimension 1, Miyachi (see [Miy03]) has shown that ‘cusped’
manifolds on the boundary of BX correspond to cusps in the boundary of BX itself. By McMullen
[McM91] cusped manifolds are dense in the boundary of BX , so together this implies that the
boundary of BX has a dense set of cusps, a more concrete indication of the fractal nature of BX .
The flow V is a natural flow that gives a contraction of these complicated domains to the Fuchsian
basepoint.

The proof in the Bers slice case and the general case differ only in that the general case
requires additional analysis to show that the extra components (called leopard spots) in the
domain of discontinuity do not contribute to the limiting model flow detailed below. For clarity
of exposition, we have isolated this additional analysis to § 5.

We conclude this introduction with a informal discussion of the flow V when N is acylin-
drical (so S = ∂N). A construction of C. Epstein (see [Eps84]) describes a surface Y ′ in MY

associated to the hyperbolic metric on Y . This surface cuts off a compact core of MY which
is closely related to the convex core. When the L2-norm of the Schwarzian is small the cur-
vature is small. In particular, the integral of the mean curvature will be small. The difficulty
is that this does not imply that the curvature is small everywhere in Y ′ but only on the ε-
thick part of Y ′ for some small ε. When we start flowing along V in CC(N) the flow will try
to locally deform Y ′ to decrease its curvature. This puts the thick and thin parts in compe-
tition – to decrease the curvature in the thick part we need to increase it in the thin part
and vice versa. Our central conclusion is that the thin part eventually wins – the flow will
eventually decrease curvature in the thin part even at the cost of increasing it in the thick
part. As this happens, the short curves will become longer as the flow travels to a different
point in Teichmüller space. This process can repeat but in [BBB22] we saw that it can only
happen a finite number of times, and eventually the Epstein surface will converge to a totally
geodesic surface that bounds the convex core of the limiting manifold which therefore must be
Mgeod.
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Figure 1. Vector field v on D .

1.2 The limiting model flow
In order to prove our main theorem, we show that if a flowline does not converge to Mgeod

then we can extract a limiting model flow as the flowline tends a point in the Weil–Petersson
completion. We then use the properties of this model flow to obtain a contradiction. We now
describe the limiting model flow.

Identifying the hyperbolic plane with the upper half-plane in C, we consider the space of
univalent maps fc : H2 → Ĉ of the form fc(z) = zc whose image is a Jordan domain. This is
subspace of the space of all univalent maps on H2 and it corresponds to the open disk D =
{fc | |c − 1| < 1} (see Lemma 4.2). For each fc ∈ D define a Beltrami differential µc on Ĉ such

f∗
c µc = −S(fc)

ρH2

and µc is zero on the complement of the image of fc.
This family of Beltrami differentials defines a flow on D as follows. For any fc ∈ D there is a

family of quasiconformal homeomorphisms ψt : Ĉ → Ĉ whose infinitesimal Beltrami differential
at t = 0 is µc and there is a smooth path fct such that fct(H2) = ψt(fc(H2)). Furthermore, the
ψt are defined for t ∈ R and the flowline starting at fcs ∈ D is given by the formula ψt+s ◦ ψ−s.

The map fc )→ c is a homeomorphism from D to the disk |z − 1| < 1 in C and the flow on D
induces the flow ct on the disk (see Figure 1). In fact, we have the following formula for the flow:

v(c) = 1
4

(
|c|4 − 2c Re(c2) − c2 + 2c

)
.

Although these last two paragraphs could be made rigorous as they are not necessary to prove our
main result, we will not do so. This formula for v will follow from our derivation of the limiting
vector field in our proof. However, to informally see the connection between this flow and the
gradient flow V one should view the domains fc(H2) ⊂ Ĉ as approximations for a component of
the domain discontinuity of a Kleinian group where the imaginary axis is the axis of some short
curve in the conformal boundary and the constant c is the ratio of the complex length of the
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curve in the hyperbolic 3-manifold to its length on the boundary. There is an explicit formula
for the derivative of this length ratio (see § 2.1) and in Theorem 4.10 we calculate the limit of
this formula as both the length on the boundary and the norm of the Schwarzian approach zero.
The limiting formula we find is exactly the formula for the vector field v above.

We can also connect the discussion here to our discussion of the flow in the previous
subsection. In our model the situation when c is near 2 corresponds to an acylindrical mani-
fold where the surface Y ′ has small curvature outside of the ε-thin part. where the closer c is to
two the smaller we can choose ε. When c is near 1 it corresponds to Y ′ having small curvature
everywhere. While the flow v may initially appear to be converging to 2, it will eventually turn
around and head towards 1 which corresponds Y ′ being totally geodesic and the hyperbolic
manifold Mgeod.

While our discussion here is only informal we will see that the properties of this limiting
model flow play a crucial role in the proof of our main theorem.

2. Weil–Petersson geometry

Let S be a closed surface of genus g ≥ 2. Then the Teichmüller space Teich(S) is the space
of marked conformal structures on S. Given X ∈ Teich(S), the cotangent space T ∗

X(Teich(S))
is Q(X), the space of holomorphic quadratic differentials on X. We let B(X) be the space of
Beltrami differentials on X. Then there is a pairing between Q(X) and B(X) given by

(φ, µ) =
∫

X
φµ.

If we let N(X) ⊆ B(X) be the annihilator of Q(X) under this pairing, we obtain the identification
TX(Teich(S)) = B(X)/N(X).

Given φ ∈ Q(X) and z ∈ X, we define the pointwise norm by

‖φ(z)‖ =
|φ(z)|
ρX(z)

,

where ρX is the hyperbolic metric on X. We define the Lp norm of φ, denoted by ‖φ‖p, to be the
Lp norm of the function ‖φ(z)‖ with respect to the hyperbolic area form on X. These Lp norms
define Finsler cometrics on the cotangent bundle of Teich(S) and dual Finsler metrics on the
tangent bundle of Teich(S). When p = 2 this norm comes from an inner product and therefore
determines a Riemannian metric on Teich(S) called the Weil–Petersson metric. Classical results
are that the Weil–Petersson metric is incomplete (see [Chu76, Wol75]) and strictly negatively
curved (see [Tro86, Wol86]).

In order to describe the Weil–Petersson completion Teich(S), we first describe the augmented
Teichmüller space. For further details on the augmented Teichmüller space see [Abi77, Abi80,
Har77].

For S a compact surface we let C (S) be the complex of curves, the simplicial complex
organizing the isotopy classes of simple closed curves on S that do not represent boundary
components. To each isotopy class α we associate a vertex vα, and each k-simplex σ is the span
of k + 1 vertices whose associated isotopy classes can be realized disjointly on S.

A point in the augmented Teichmüller space is given by a choice of multicurve τ , a
(0-skeleton of a) simplex in C (S), and finite-area hyperbolic structures on the complementary
subsurfaces S \ τ . The elements of τ are the nodes and the point of the completion is a noded
Riemann surface. The augmented Teichmüller space is stratified by the simplices of C (S): the
collection of noded Riemann surfaces with nodes determined by a given simplex σ lies in a
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product of lower-dimensional Teichmüller spaces determined by varying the structures on S \ τ .
This stratum, Sτ , inherits a natural metric from the Weil–Petersson metric, which by Masur
(see [Mas76]) is isometric to the product of Weil–Petersson metrics on the Teichmüller spaces of
the complementary subsurfaces.

It follows by Masur also that the augmented Teichmüller space is the Weil–Petersson comple-
tion Teich(S). The completion naturally descends under the action of the mapping class group
to a finite-diameter metric on the Deligne–Mumford compactification of the moduli space of
Riemann surfaces. The strata of the completion can be described as follows:

Sτ = {X ∈ Teich(S) | )α(X) = 0 if and only if α ∈ τ},

where )α is the extended length function of α.

2.1 Length functions and Gardiner’s formula
For an essential closed curve α on S there are two natural length functions on the deformation
space CC(N ; S, X) ∼= Teich(S). The first is just the usual length function )α : Teich(S) → R+ on
Teichmüller space where )α(Y ) is the length of the geodesic representative of α on the hyperbolic
surface Y . We have used this function already.

The Gardiner formula is a formula for the differential d)α. To state it we identify the universal
cover of Y with the upper half-plane normalized so that the imaginary axis is an axis for α.
Then z )→ e#α(Y )z is an element of the deck group for Y . We let Aα be the quotient annulus for
the action of this element. The annulus Aα also covers Y , so if µ is a Beltrami differential on Y
(representing a tangent vector in TY Teich(S)) then µ lifts to a Beltrami differential µA on Aα.
The holomorphic quadratic differential dz2/z2 on H2 is invariant under the action of z )→ e#α(Y )z
so descends to a Beltrami differential on Aα. We will continue to refer to this quadratic differential
as dz2/z2 on Aα. If we let 〈, 〉Aα be the pairing between Beltrami differentials and quadratic
differentials on Aα we have the following result.

Theorem 2.1 (Gardiner [Gar75]). The derivative of )α on Teich(S) is given by the formula

d)α(µ) =
2
π

〈
µA,

dz2

z2

〉

Aα

.

If we consider α as a closed curve in the hyperbolic 3-manifold MY then α has a complex
length. The real part is just the length of the geodesic representative of α in MY while the
imaginary part measures the twisting along the geodesic. We need the imaginary part to be a
well defined real number (rather than just a number mod 2π). For this reason the definition is
somewhat involved.

Let ΓY be a Kleinian group uniformizing MY ∈ CC(N ; S, X) and let ΩY be the components
of the domain of discontinuity of ΓY that cover Y . The pre-image of α in ΩY will be a collection
of arcs. Fixing an orientation of α fixes an orientation of each of the arcs and we can assume
that the pre-image contains an oriented arc α̃ with initial endpoint 0 and terminal endpoint ∞.
Let Ω ⊂ ΩY be the component of the domain of discontinuity that contains α̃ and let log be a
branch of the logarithm defined on Ω. We then define

Lα : CC(N ; S, X) → C
by

Lα(MY ) = log α̃()α(Y )) − log α̃(0),

where we are assuming the that α̃ is parameterized by arc length. The complex length Lα(MY )
is independent of the choices we made in its definition.
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Figure 2. Leopard spots on Riemann sphere and quotient torus.

The complex length is a holomorphic function on CC(N : S, X) and we would also like a
formula for its derivative. Miyachi observed [Miy03, First proposition, § 8] that the proof of
Theorem 2.1 can also be applied to find the derivative of the complex length. As CC(N ; X, S) ∼=
Teich(S) if µ is a tangent vector in TY Teich(S), we can also consider it as a tangent vector
to CC(N ; X, S) at MY . Then µ will lift to a ΓY -invariant Beltrami differential µ̃ on ΩY . We
can extend µ̃ to be zero everywhere else. The Kleinian group ΓY will contain the element z )→
eLα(MY )z. The quotient of the C ! {0} under the action of this element will be a torus Tα and the
Beltrami differential µ̃ will descend to a Beltrami differential µT on Tα. The quadratic differential
dz2/z2 will also descend to a quadratic differential on Tα. If 〈, 〉Tα is the pairing on Tα we have
the following theorem.

Theorem 2.2 (Miyachi [Miy03]). The differential of Lα is given by the formula

dLα(µ) =
1
π

〈
µT ,

dz2

z2

〉

Tα

.

For what we will do below it will be useful to decompose this second Gardiner formula into
two distinct terms. To describe this decomposition we note that the image of Ω in Tα will be
an essential annulus, while every other component of ΩY will map homeomorphically into Tα
(see Figure 2). We then write

µT = µcen
T + µaux

T ,

where µcen
T has support on the image of Ω and the support of µaux

T is in the image of the other
components of ΩY . Then

1
π

〈
µcen

T ,
dz2

z2

〉

Tα

and
1
π

〈
µaux

T ,
dz2

z2

〉

Tα

are the central and auxiliary terms of the differential dLα(µ).
It will also be useful to write the central term as a pairing on the annulus Aα. For this let

g : H2 → Ω

be the uniformizing map, normalized so that g takes the imaginary axis to α̃. Then the pullbacks
g∗µ̃ and g∗(dz2/z2) are both invariant under the isometry z )→ e#α(Y )z and descend to objects on
Aα. In fact, the Beltrami differential will be the Beltrami differential µA that we defined above.
We can then write the central term as

1
π

〈
µcen

T ,
dz2

z2

〉

Tα

=
1
π

〈
µA, g∗

(
dz2

z2

)〉

Aα

.
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Note that both the central and auxiliary terms only depend on the Beltrami differential µ.
For later convenience we let Jα(µ) be the auxiliary term. Note that, for a Bers slice, Ω is the
only component of ΩY so the auxiliary term is always zero. The extra work in the relatively
acylindrical case is estimating Jα(µ) when µ is a harmonic Beltrami differential with small
L2-norm.

3. Limits of the flow

As mentioned in the introduction, the flow V is the negative of the Weil–Petersson gradient
of the renormalized volume function VolR on CC(N ; S, X). The definition of ‘renormalized’ is
somewhat involved and not necessary for our work here. Therefore, we will omit it and restrict
ourselves to discussing some of its important properties. The first of these is a variational formula.

Theorem 3.1 [ZT87, TT03, KS12]. For tangent vector µ ∈ TMY CC(N) ∼= TY Teich(S) we have

dVolR(µ) = Re
∫

Y
φY µ.

This formula implies that our flow V is the Weil–Petersson gradient of −VolR.
By the Nehari bound on the norm of the Schwarzian derivative of a univalent map (see

[Neh49]), V is bounded with respect to the Teichmüller metric on Teich(S). Therefore, as the
Teichmüller metric is complete, the flowlines exists for all time (see [BBB19] for further details).

Also by the gradient description of V it follows that along a flowline Mt,

VolR(M0) − VolR(MT ) =
∫ T

0
‖φYt‖2

2 dt.

As VolR ≥ 0 (see [BBB19]), it follows that
∫ ∞

0
‖φYt‖2

2 dt < ∞.

We now describe the further properties of the flow proved in [BBB22] that we will need in
our analysis.

Theorem 3.2 (Bridgeman–Brock–Bromberg [BBB22]). Let (N, S) be relatively acylindrical
and Mt = (X, Yt) be a flowline for V on CC(N ; S, X). Then the following assertions hold.

(i) Yt → Ŷ ∈ Teich(S) in the Weil–Petersson completion. Thus, Ŷ is a noded Riemann surface.
(ii) ‖φYt‖2 → 0 as t → ∞.

In order to prove our main theorem, we need to prove that the set of nodes of any limit Ŷ is
empty or alternately that Ŷ ∈ Teich(S). We will do this by assuming Ŷ is noded and consider
the limits of the projective structure as we zoom in on the nodes. This will produce our limiting
model flow which will allow us to obtain a contradiction.

4. Taking limits at a node

The length functions )α and Lα are smooth functions on CC(N ; S, X) ∼= Teich(S). If we pair
their differentials against the vector field V we get a function on Teich(S). We would like to
take the limit of these functions along the sequence Yn in Teich(S) where ‖V (Yn)‖2 → 0. To do
this we will map CC(N ; S, X) to a space of univalent functions. We then use normal families
theorems for holomorphic functions to evaluate the limit. We begin by setting up our space.

837

3�����  084�8:2 ������� �������	�����	�
��
 /�4�310�87�471�/"��.�/:4021��74!1:�4�"�
:1��

https://doi.org/10.1112/S0010437X2300708X


M. Bridgeman, K. Bromberg and F. Vargas Pallete

Let
U = {φ | φ = S(f) for some univalent f : H2 → C}

be the space of quadratic differentials that arise as Schwarzian derivatives of univalent functions
from H2 (realized as the upper half-plane) to C. We give U the compact-open topology and
recall some basic facts:

– U is compact.
– If φn → φ and fn → f (in the compact-open topology) with S(fn) = φn then either f is

constant or f is univalent and S(f) = φ.

The following result is essentially Montel’s theorem.

Theorem 4.1. Let z0, z1 and z2 be distinct points in H2
and w0, w1 and w2 distinct points in

Ĉ. Let F be a family of holomorphic maps on H2 that extend continuously to the zi if they are
on the boundary of H2, and assume that for all f ∈ F we have f(zi) = wi for i = 0, 1, 2 while if
z is not in {z0, z1, z2} then f(z) is not in {w0, w1, w2}. Then F is a normal family. If f is a limit
of a sequence in F then f(zi) = wi for zi ∈ H2 and if f is non-constant then f(zi) = wi for all
i = 0, 1, 2.

For s ∈ R we say that φ ∈ U is s-invariant if it is invariant under the isometry z )→ esz
(as a quadratic differential). Let UZ ⊂ U be the subspace of quadratic differentials that are
s-invariant for some s 0= 0. We can define a function

) : UZ → [0,∞)

by taking )(φ) to be the infimum over all positive s where φ is s-invariant. Note that if sn → s
and φn are sn-invariant then if φn → φ we have that φ is s-invariant. This implies that ) is
continuous on UZ. It is possible that )(φ) = 0 and we let U 0

Z = )−1(0). This space will be of
particular interest.

Lemma 4.2. If φ ∈ U 0
Z then

φ(z) =
(

1 − c2

2

)
dz2

z2

with |c − 1| ≤ 1. If c 0= 0 let gc(z) = zc/ic. If c = 0 let gc = log z. Then φ = S(gc).

Proof. If )(φ) = 0 then φ is sn-invariant for a sequence of sn > 0 with sn → 0. If φ is s-invariant
then φ is sk-invariant for all k ∈ Z. Together this implies that φ is s-invariant for a dense set
of s ∈ R so by continuity φ is s-invariant for all s ∈ R. From this invariance we see that if
φ(i) = −C dz2 for some C ∈ C then φ(it) = −(C/t2) dz2 for all t > 0. As φ is holomorphic this
implies that φ(z) = C/z2 dz2.

A direct computation gives that S(gc) = ((1 − c2)/2) · (dz2/z2). We will show that gc is
univalent exactly when |c − 1| ≤ 1. We can write gc(z) = ec log z/ic. Let S be the open horizontal
strip in C between the lines Im z = 0 and Im z = π and let Sc = {cz | z ∈ S }. Then the image
of H2 (as the upper half-plane) under the map z )→ c log z is Sc. The exponential map restricted
to Sc is injective exactly when vertical lines in C intersect Sc in a segment of length < 2π. The
intersection of a vertical line with Sc has length |c|π/ cos(θ) where θ = arg(c). Thus, we have
univalence if |c| ≤ 2 cos(θ) = 2 Re(c)/|c|, giving |c|2 − 2 Re(c) ≤ 0. Completing the square, we get
|c − 1|2 ≤ 1. !

The invariance of the quadratic differentials φ ∈ UZ implies invariance for any univalent map
f with S(f) = φ. The next lemma makes this precise.
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Lemma 4.3. If the quadratic differential φ ∈ UZ is s-invariant and f : H2 → C is univalent with
S(f) = φ then there exists a ψ ∈ PSL(2, C) with ψ ◦ f(z) = f(esz). Furthermore, ψ is either
loxodromic or parabolic and f extends continuously to 0 and ∞, with f(0) the repelling fixed
point of ψ and f(∞) the attracting fixed point if ψ is loxodromic and f(0) = f(∞) if ψ is
parabolic.

Proof. If φ is s-invariant and f is a univalent map with φ = S(f) then the map z )→ f(esz)
also has Schwarzian φ. As two maps with the same Schwarzian differ by post-composition of an
element of PSL(2, C) we have that there exists a ψ ∈ PSL(2, C) with ψ ◦ f(z) = f(esz). Iterating
this formula, for any positive integer k we have that ψk ◦ f(z) = f(eskz). This implies that f(H2)
is ψ-invariant and that the action of ψ on the simply connected space f(H2) does not have fixed
points so ψ must be loxodromic or parabolic. Furthermore, the equation ψk ◦ f(z) = f(eskz)
implies that f extends continuously to 0 and ∞ with f(0) the repelling fixed point of ψ and
f(∞) the attracting fixed point. !

The element ψ is the holonomy of φ. Let U +
Z ⊂ UZ be the subspace of quadratic differentials

φ where )(φ) > 0 and the holonomy is loxodromic. For φ ∈ U +
Z we define a complex length func-

tion L : U +
Z → C as follows. Let f : H2 → C be a univalent map with f(0) = 0, f(∞) = ∞ and

S(f) = φ. Choose a logarithm, logφ, on f(H2). We then define L (φ) = logφ(f(e#(φ)z)) −
logφ(f(z)). The expression on the right is independent of the choice of f , the choice of z ∈ H2,
and the choice of logarithm.

We also define a function c : U +
Z → C by

c(φ) =
L (φ)
)(φ)

.

Lemma 4.4. The function c extends continuously to U 0
Z , and for φ ∈ U 0

Z we have

φ(z) =
1 − c(φ)2

2
· dz2

z2
.

Proof. If f is univalent and S(f) = φ ∈ U +
Z then we have the Bers inequality (or McMullen’s

interpretation of the Bers inequality [McM90, Proposition 6.4]):

1
)(φ)

≤ 2 Re L (φ)
|L (φ)|2 . (4.1)

The statement is usually made in the context of quasifuchsian groups, but the proof goes through
without change in our setting. From this we see that

|c(φ)|2 =
|L (φ)|2

)(φ)2
≤ 2 Re

(
L (φ)
)(φ)

)
= 2 Re(c(φ)),

|c(φ)|2 − 2 Re(c(φ)) ≤ 0,

|c(φ) − 1|2 − 1 ≤ 0.

Thus, |c(φ) − 1| ≤ 1.
Now assume φ ∈ U 0

Z . Then by Lemma 4.3 we have φ = C(dz2/z2) for some C ∈ C. Take a
sequence φn in U +

Z with φn → φ and let )n = )(φn), Ln = L (φn), and cn = c(φn). Since ) is
continuous on UZ we have that )n → 0 and we can choose integers kn such that kn)n → 1. We
also fix univalent maps fn with S(fn) = φn and the normalization fn(∞) = ∞, fn(i) = 0, and
fn(ie) = 1. By Theorem 4.1 the fn will be a normal family. Let f be a limit of a subsequence of
the fn. Again by Theorem 4.1, f(i) = 0 and f(ie) = 1 so the limit will not be constant, which
in turn implies that f(∞) = ∞ and that f is univalent. It follows that S(fn) = φn → φ = S(f).
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As f is the only map with S(f) = φ plus the given normalization, any convergent subsequence
of the fn will converge to f . Therefore, fn converges to f (uniformly on compact sets) without
passing to a subsequence.

If ψn is the element of PSL(2, C) with fn(e#nz) = ψn ◦ fn(z) then the attracting fixed point
of ψn and all its powers is ∞. Therefore, ψkn

n (z) = eknLnz + An for some An ∈ C. As cn lies in a
compact set we can pass to a subsequence such that cn → b and therefore knLn = kn)ncn → b.
Taking the limit of the equation fn(ekn#nz) = eknLnfn(z) + An, we have

f(ez) = ebf(z) + lim
n→∞

An.

Substituting in i, for z we see that An → 1. It follows that eb is determined by f (and hence φ).
This determines b up to a multiple of 2πi. However, we also have |b − 1| ≤ 1, which implies that
−1 ≤ Im b ≤ 1, so the equation uniquely determines b. In particular, cn → b before passing to a
subsequence.

Let gc be the univalent map given by Lemma 4.2 with S(gc) = φ. Then gc = β ◦ f for some β ∈
PSL(2, C). Note that ψkn

n → ψ in PSL(2, C) with ψ(z) = ebz + 1. If b = 0 then f(0) = f(∞) = ∞
so we must have that gc(0) = gc(∞), and this only occurs when c = 0 and gc(z) = log z. If b 0= 0
then the repelling and attracting fixed points of β ◦ ψ ◦ β−1 are gc(0) = 0 and gc(∞) = ∞. This
implies that β ◦ ψ ◦ β−1(z) = ebz and gc(ez) = ebgc(z). It follows that b = c. In both cases we
can define c(φ) = limn→∞ cn and we have that c extends continuously to U 0

Z with

φ(z) =
1 − c(φ)2

2
· dz2

z2
. !

We now describe the map from CC(N ; S, X) to U +
Z ⊂ U . It will depend on a choice of

essential closed curve α on S. Given MY ∈ CC(N ; S, X), let Ω be a component of the domain
of discontinuity that projects to the component of Y that contains α. Let fY : H2 → Ω be a
uniformizing univalent map that takes the imaginary axis in H2 to an axis for α and let φY =
S(fY ). While we have made several choices, the quadratic differential φY is independent of our
choices. We can then define Ψα : CC(N ; S, X) → U by Ψα(MY ) = φY . This map is continuous
and )α = ) ◦ Ψα. Since )α is positive on CC(N ; S, X) we have that the image of Ψα lies in U +

Z .
Given φ ∈ U , we define

µφ = − φ̄

ρ2
H

.

Thus, µφ is the negative of the corresponding harmonic Beltrami differential. We also let As

be the quotient of H2 under the action z )→ esz and 〈, 〉s the pair of quadratic differentials and
Beltrami differentials on As. If φ is s-invariant as a quadratic differential then µφ is s-invariant
as a Beltrami differential and descends to a Beltrami differential on As. We define a function

F# : U +
Z → R

by

F#(φ) =
2

π)(φ)
Re

〈
µφ,

dz2

z2

〉

#(φ)

.

As an immediate consequence of Gardiner’s formula (Theorem 2.1) we have the following lemma.

Lemma 4.5.

d log )α(V (MY )) = F#(Ψα(MY )).

Therefore, to study the continuity of d)α(V ) we will study the continuity of F# on UZ.
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Lemma 4.6. The function F# extends continuously to U 0
Z with

F#(φ) =
Re(c(φ)2) − 1

2

for φ ∈ U 0
Z .

Proof. The key to the proof is that if µ and ψ are s-invariant then 〈µ,ψ〉sk = k〈µ,ψ〉s for all
positive integers k. Then if φn → φ for φ ∈ U 0

Z we can choose kn such that kn)(φn) → 1 so that

F#(φn) =
2

π)(φ)
Re

〈
µφn ,

dz2

z2

〉

#(φn)

=
2
π

Re
〈

1
kn)(φn)

µφn ,
dz2

z2

〉

kn#(φn)

−→ 2
π

Re
〈

µφ,
dz2

z2

〉

1

.

This shows that the F# extends continuously to U 0
Z .

For φ ∈ U 0
Z we have φ(z) = ((1 − c(φ)2)/2) · (dz2/z2). The pairing is easier to calculate in

the strip model for H2 (the region S between the horizontal lines Im z = 0 and Im z = π) with
area form ρ2

H = 1/ sin2 y. In this model the quadratic differential dz2/z2 becomes dz2 so µφ(z) =
sin2 y(c(φ)

2 − 1)/2 and
〈

µφ,
dz2

z2

〉

1

=
c(φ)2 − 1

2

∫ π

0

∫ 1

0
sin2 y dx dy

=
π
(
c(φ)2 − 1

)

4
.

Taking the real part and multiplying by 2/π gives the claimed formula for F#(φ). !

We would like to similarly define a function on U +
Z for the differential d log Lα. We will

not be able to do this exactly but instead give a formula for the central term. We will need to
evaluate the auxiliary term separately.

Given φ ∈ U +
Z , let gφ : H2 → C be the univalent map with S(gφ) = φ and gφ(0) = 0, gφ(∞) =

∞, and gφ(i) = i. By Theorem 4.1, this is a normal family. We observe that if φ is s-invariant
the quadratic differential (gφ)∗(dz2/z2) is s-invariant. We then define a function

FL : U +
Z → C

by

FL (φ) =
1

πL (φ)

〈
µφ, (gφ)∗

(
dz2

z2

)〉

#(φ)

.

From Theorem 2.2 and the discussion following it we have the following lemma.

Lemma 4.7.

d log Lα(V (MY )) = FL (Ψα(MY )) +
Jα(V (MY ))
Lα(MY )

.

We now establish the continuity of FL .
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Lemma 4.8. The function FL extends continuously to U 0
Z with

FL (φ) =
c(φ)

(
c(φ)

2 − 1
)

4
.

Proof. The proof is similar to Lemma 4.6. Assume that φn in U +
Z converges to φ ∈ U 0

Z and let
gn = gφn , )n = )(φn), etc. Choose integers kn with kn)n → 1. By Lemma 4.4 the function c is
continuous and therefore knLn = kn)ncn → c(φ).

In Lemma 4.9 below we will show that

1
c2
n
g∗n

(
dz2

z2

)
→ dz2

z2
.

We assume this for now and then as in Lemma 4.6 we have

FL (φn) =
1
π

〈
1

knLn
µn, (gn)∗

(
dz2

z2

)〉

kn#n

=
cn

π

〈
1

kn)n
µn,

1
c2
n
(gn)∗

(
dz2

z2

)〉

kn#n

−→ c(φ)
π

〈
µφ,

dz2

z2

〉

1

=
c(φ)

(
c(φ)2 − 1

)

4
. !

Lemma 4.9.

1
c2
n
g∗n

(
dz2

z2

)
→ dz2

z2
.

Proof. We first assume that c(φ) 0= 0. By our normalization gn(ekn#nz) = eknLngn(z), so (after
possibly passing to a subsequence) as n → ∞ we have g(ez) = ec(φ)g(z) where gn → g. Since
c(φ) 0= 0 we have that g is non-constant and it follows that g fixes 0, i, and ∞ and S(g) = φ.
This implies that g(z) = ec(φ)/ic(φ). It follows that

(gn)∗
(

dz2

z2

)
→ g∗

(
dz2

z2

)
= c(φ)2

dz2

z2

so the lemma holds if c(φ) 0= 0.
When c(φ) = 0 (and therefore, by Lemma 4.2, φ = 1/2 · dz2/z2) it will be necessary to choose

a different normalization for the gn so that they do not converge to a constant function. In
particular, similar to the proof of Lemma 4.4, we choose univalent functions fn with fn(∞) = ∞,
fn(i) = iπ, and fn(ie) = 1 + iπ and whose Schwarzian is φn. By Theorem 4.1, the fn form a
normal family. As any limiting function will be non-constant the Schwarzians φn will also converge
to the Schwarzian of the limit. As by assumption φn → φ, we have that any limiting function
has Schwarzian φ. The chosen normalizations of fn will also persist in the limit. Together these
conditions imply that the only possible limiting function is f(z) = log z, so fn converges to
f(z) = log z uniformly on compact sets.

Also, as in Lemma 4.4, we have the equation fn(ekn#nz) = eknLnfn(z) + An with An → 1.
If we choose βn ∈ PSL(2, C) with gn = βn ◦ fn then g∗n(dz2/z2) = f∗

n(β∗n(dz2/z2)). To calculate
β∗n(dz2/z2) we observe that βn takes the attracting and repelling fixed points of z )→ eknLnz + An

to the attracting and repelling fixed points of z )→ eknLnz. In particular, βn(An/(1 − eknLn)) = 0
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and βn(∞) = ∞. It follows that

β∗n

(
dz2

z2

)
=

dz2

(z − An/(1 − eknLn))2
.

As knLn = cnkn)n → c(φ) · 1 = 0 this quadratic differential will converge to zero. However, if we
multiply the denominator by (knLn)2 the denominator will converge to 1 (since An → 1) and
the quadratic differential will converge to dz2. We further have that knLn/cn → 1 and it follows
that if we divide by c2

n we have
1
c2
n
β∗n

(
dz2

z2

)
→ dz2,

and since fn → log z this gives

1
c2
n
g∗n

(
dz2

z2

)
= f∗

n

(
1
c2
n
β∗n

(
dz2

z2

))
→ dz2

z2
.

This proves the lemma when c(φ) = 0. !
We can now prove our limiting formulas for the derivatives of )α, Lα, and cα.

Theorem 4.10. Let (N ; S) be a relatively acylindrical pair and α an essential simple closed
curve in S. Let Yn be a sequence in Teich(S) with the volume of C(MYn) bounded, ‖V (Yn)‖2 → 0,
)α(Yn) → 0, and cα(MYn) → c for some c ∈ C. Then

(i) lim
n→∞

d(log )α)(V (Yn)) = 1
2

(
Re

(
c2

)
− 1

)
,

(ii) lim
n→∞

d(log Lα)(V (Yn)) = 1
4c

(
c̄2 − 1

)
,

(iii) lim
n→∞

dcα(V (Yn)) = 1
4

(
|c|4 − 2c Re

(
c2

)
− c2 + 2c

)
.

In particular, if Yt is a flowline for V , Yn = Ytn for a sequence tn → ∞, and )α(Yn) → 0 and
cα(MYn) → c, then (1)–(3) hold.

Proof. Combining Lemmas 4.5 and 4.6 gives (1), and (3) follows from (1) and (2).
Recalling that V (Yn) is a harmonic Beltrami differential, we will derive (2) from Lemmas 4.7

and 4.8 if we can show that |Jα(V (Yn))|/ Re Lα(MY ) → 0. This will be the proven in the next
section. In particular, as Re Lα(MYn) ≤ 2)α(Yn) and )α(Yn) → 0 we have that Re Lα(MYn) → 0.
By assumption VolC(MYn) is bounded and ‖V (Yn)‖2 → 0. It then follows from Theorem 5.1 that

|Jα(V (Yn))|/ Re Lα(MYn) → 0

and (2) follows.
For the last statement we only need to show that the volume of C(MYn) is bounded. As Yt is

a flowline for the gradient of −VolR, the negative of the renormalized volume, we have that the
renormalized volume is bounded. However, the difference between the renormalized volume and
convex core volume is bounded by a constant depending only on the topology of the boundary
and the length of the shortest compressible curve (see [BC17, Theorem 1.3]). This last constant
is determined by X and hence is uniform on MYt . This implies that the convex core volume is
bounded and the theorem follows. !

5. Bounding the norm of the auxiliary term

This section is devoted to proving the following theorem.
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Theorem 5.1. There exists δ0 > 0 such that, given η, K > 0, there exists a δ > 0 such that the
following assertion holds. Assume that Y ∈ Teich(S) with VolC(MY ) ≤ K. Let µ ∈ TY Teich(S)
be a harmonic Beltrami differential ‖µ‖∞ ≤ 3/2 and α an essential closed curve on S with
‖µ‖2 < δ and Re Lα(MY ) ≤ δ0. Then

|Jα(µ)| ≤ η · Re Lα(MY ).

Note that the bound of 3/2 on ‖µ‖∞ is essentially arbitrary. We have chosen it because
that is the bound that we get when µ is the harmonic Beltrami differential associated to the
Schwarzian quadratic differential φY .

Recall that Jα(µ) is the pairing of a Beltrami differential and a quadratic differential. The
absolute value of the quadratic differential is a Euclidean area form and one can bound the pairing
by bounding the norm of the quadratic differential and the area of the quadratic differential.
Typically, to show that a product of two terms is small, one finds a uniform bound on one
term and shows that the other term is small. To get the necessary bound here we will need to
decompose µ into two parts. In one the norm will be small, while in the other the support will
be small while the norm will only be bounded. In particular, write µ as

µ = µ<ε + µ≥ε,

where the support of µ<ε is the ε-thin part of Y and the support of µ≥ε is the ε-thick part of Y .
We will then bound Jα(µ<ε) and Jα(µ≥ε) separately.

Most of the work will be to bound Jα(µ<ε), so we begin with the easier bound on Jα(µ≥ε).

Lemma 5.2. Given ε, η > 0, there exists a δ > 0 such that if ‖µ‖2 ≤ δ then

|Jα(µ≥ε)| ≤ η · Re Lα(MY ).

Proof. In general, bounds on ‖µ‖2 do not give bounds on ‖µ‖∞. However, a mean value estimate
of Teo (see [Teo09]) gives bounds for points in the ε-thick part. In particular, there exists a
constant Cε > 0 such that if z ∈ Y ≥ε then ‖µ(z)‖ ≤ Cε‖µ‖2. This implies

∥∥(
µ≥ε)aux

T

∥∥
∞ ≤

∥∥µ≥ε∥∥
∞ ≤ Cε‖µ‖2.

The absolute value of the quadratic differential dz2/z2 is a Euclidean area form on Tα. If we
let areaα be this area we have

areaα(Tα) = 2π · Re Lα(MY )

and therefore
∣∣Jα

(
µ≥ε)∣∣ ≤

∥∥(
µ≥ε)aux

T

∥∥
∞ · 2π · Re Lα(MY ) ≤ 2πCε Re Lα(MY )‖µ‖2.

Letting δ = η/(2πCε), the lemma follows. !

To bound J(µ<ε) we need to bound the area of the support of (µ<ε)aux
T . The proof of the

following proposition will be most of the work of this section.

Proposition 5.3. There exists δ0 > 0 such that the following assertion holds. Given η, K > 0,
there exists an ε > 0 such that if Re Lα(MY ) ≤ δ0 and VolC(MY ) ≤ K then

areaα
(
supp

((
µ<ε

)aux
T

))
≤ η · Re Lα(MY ).

Assuming this for now, we can prove Theorem 5.1.
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Proof of Theorem 5.1. By Proposition 5.3 we can fix an ε > 0 such that if ReLα(MY ) ≤ δ0 and
VolC(MY ) ≤ K then

areaα
(
supp

((
µ<ε

)aux
T

))
≤ (η/3) · Re Lα(MY ).

Since ‖µ‖∞ ≤ 3/2 this implies that
∣∣Jα(µ<ε)

∣∣ ≤ (η/2) · Re Lα(MY ).

By Lemma 5.2 we can choose δ > 0 such that if ‖µ‖2 < δ then
∣∣Jα(µ≥ε)

∣∣ ≤ (η/2) · Re Lα(MY ).

Note that δ depends on ε (and η) but ε only depends on η and K. Therefore, δ only depends on
η and K and we can combine the two estimates to get the claimed bound on |Jα(µ)|. !

The remainder of this section is dedicated to the proof of Proposition 5.3.

5.1 Margulis tubes
Let M be a hyperbolic n-manifold and ε > 0. Then we define the thick–thin decomposition M =
M≤ε ∪ M>ε by

M≤ε = {p ∈ M | inj(p) ≤ ε}, M>ε = {p ∈ M | inj(p) > ε}.

By the Margulis lemma (see [Thu79]), there exists a constant εn such that for ε ≤ εn the connected
components of M≤ε are disjoint embedded tubular neighborhoods of cusps or simple geodesics
in M . These tubes are called Margulis tubes and for α a simple closed geodesic, we denote the
tube about α in M≤ε by Tε(α). We further denote the radius of Tε(α) by Rε(α).

For hyperbolic 3-manifolds, if ε < ε3 then by elementary hyperbolic geometry we have

area(∂Tε(α)) = π sinh(2Rε(α)) Re Lα(M).

As ∂Tε(α) has intrinsic Euclidean metric with injectivity radius > ε we have the inequality

πε2 ≤ π sinh(2Rε(α)) Re Lα(M).

In particular,

|Lα(M)| ≥ Re Lα(M) ≥ ε2

sinh(2Rε(α))
. (5.2)

We have the following fact due to Brooks and Matelski which gives uniform bounds on the
change in Rε(α) as ε varies.

Theorem 5.4 (Brooks–Matelski [BM82]). Given ε > 0, there exist continuous functions dl
ε, d

u
ε :

(0, ε) → R+ such that dl
ε(δ) → ∞ as δ → 0 and du

ε (δ) → 0 as δ → ε, and for α a geodesic in a
hyperbolic 3-manifold with )α(M) < δ we have

dl
ε(δ) ≤ Rε(α) − Rδ(α) ≤ du

ε (δ).

5.2 Orthogeodesics
Since Y is a closed surface the components of Y <ε will be collars of closed geodesics of length
< 2ε. We let β be one of these geodesics and Cε(β) the collar. Note that it is possible that β = α.
The pre-image of these collars in the domain of discontinuity ΩY will be a collection of strips.
Under the covering map from C ! {0} to Tα most of these strips will map homeomorphically
to strips. The only exception will be that there will be one component in the pre-image of the
collar of α that will map to an essential annulus in Tα. This exceptional strip will be contained
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Figure 3. Component S of Sαε (β).

in the central component Ω of ΩY . We only need to bound the area of the strips in Tα. We are
interested in bounding the area in Tα of those strips that come from auxiliary components. To
do this we will bound the area of all strips, even those coming from the central component. Our
first goal is to bound the area of a single strip. We begin with some preparation.

Associated to α is a solid torus cover Wα of MY . The surface Y is a component of the
conformal boundary of MY , so the ε-collar of β will lie in the conformal boundary of MY and
will lift to a collection of strips in the conformal boundary of Wα. We want to bound the area
of these strips in the Euclidean metric on the conformal boundary Tα = ∂Wα that comes from
taking the absolute value of the quadratic differential dz2/z2. Our bounds will depend on the
length of α and the constant ε. In the hyperbolic 3-manifold the closed geodesic β will lift to a
collection of bi-infinite geodesics in Wα and there is a natural correspondence between the strips
and these geodesics. We will see that the area of each strip decays exponentially in the distance
between α and the corresponding lift of β.

With this informal discussion in mind we now set up the notation that we will need. Let M̄Y

be the union of MY and its conformal boundary. Then the cover Wα extends to a cover W̄α of
M̄Y . Let

πα : W̄α → M̄Y

be the covering map. We also have the nearest point projection

r : MY → C(MY )

to the convex core. This map extends continuously to M̄Y and lifts to a map

rα : W̄α → C(Wα),

where C(Wα) = π−1
α (C(MY )). In particular, we have r ◦ πα = πα ◦ rα.

Now let Sαε (β) be the collection of strips in ∂W̄α that map to Cε(β). If β 0= α then this is
just the union of components of π−1

α (Cε(β)). If β = α then there is one annular component in
π−1
α (Cε(α)) that is not included in Sαε (α). By [EMM04] the retraction r is a 2-Lipschitz map from

the hyperbolic metric on Y to the induced path metric on ∂C(MY ). Therefore, r(Cε(β)) ⊂ T2ε(β)
and if S is a component of Sαε (β) there is a unique component T of π−1

α (T2ε(β)) with rα(S) ⊂ T
(see Figure 3).

There is a unique shortest geodesic u in Wα from Tε3(α) to T. This geodesic u will be
orthogonal to the boundary of the two tubes, so we call u an orthogeodesic. We will see that
the area of S decays exponentially in the length of u. We note that while it may seem more
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natural to take the orthogeodesic from the geodesic α to the geodesic in the core of T, for our
purposes our choice of orthogeodesic is more convenient. We also emphasize that one endpoint of
our orthogeodesic will always lie on the boundary of the ε3-Margulis tube Tε3(α) while the other
end will lie on a lift of the 2ε-Margulis tube T2ε(β), so while our notation does not emphasize
this, the orthogeodesic u depends on ε and as ε decreases the orthogeodesic will become longer.

If H is an embedded half-space in Wα then its closure in the conformal boundary is a round
disk D. We begin by bounding the area of D in terms of the distance between the core geodesic
of Wα and H.

Lemma 5.5. Let H be an isometrically immersed half-space in Wα that is disjoint from the core
geodesic α with boundary disk D. Then

areaα(D) ≤ π

sinh2(d(α, H))
.

Proof. We can lift the picture to H3 and assume that α has endpoints ±1 and D is the disk of
radius r centered at 0 with d(α, H) = e−r. Note that while the disk D is embedded in C it may
be immersed in ∂Wα. However, this will only decrease its area. The map f(z) = (z − 1)/(z + 1)
sends the geodesic α to the geodesic with endpoints 0 and ∞. Thus, pulling back the metric
|dz|2/|z|2, we have

dareaα =
|f ′(z)|2

|f(z)|2 |dz|2 =
4

|z − 1|2|z + 1|2 |dz|2 =
4

|z2 − 1|2 |dz|2.

Therefore, on D we have

dareaα ≤ 4
|r2 − 1|2 |dz|2

and it follows that

areaα(D) ≤ 4πr2

(1 − r2)2
=

π

sinh2(d(α, H))
. !

In the next lemma we show that each component of Sαε (β) lies in a round disk in Tα = ∂Wα

which bounds a half-space in Wα whose distance from the core Margulis tube Tε3(α) is given in
terms of the length of the associated orthogeodesic.

Lemma 5.6. There exists a δ0 > 0 such that if Re Lα(MY ) < δ0 and ε < ε3/2 then the following
assertion holds. Let )β(Y ) < 2ε and S be a component of Sαε (β). Let T be the component of
π−1
α (T2ε(β)) with rα(S) ⊂ T and let u be the orthogeodesic between Tε3(α) and T. Then there

is a half-space H in Wα whose boundary disk D contains S with

d(α, H) = Rε3(α) + )(u) − log
(
1 +

√
2
)
≥ log

√
2.

Proof. By inequality (5.2) for the radius of the Margulis tube we can choose δ0 > 0 such that if
Re Lα(MY ) < δ0 then

Rε3(α) ≥ log(1 +
√

2) +
√

2

(choosing δ0 = ε3/50 will suffice). We also note that the inequality in the statement of the lemma
follows from the lower bound on Rε3(α).

As we assume )β(Y ) < 2ε, it follows that Sαε (β) is non-empty so we can consider a com-
ponent S. We again lift the picture to H3. Let T̃ be a lift of T to H3 and let ũ be a lift of
u that is orthogonal to ∂T̃. Further, we extend u to the perpendicular v from ∂T to α with
lift ṽ containing ũ. We can assume that ũ is the vertical geodesic segment {0}× [1, e#(u)] in the
upper-half-space model H3 = C × R+ and that T̃ is orthogonal to ũ at (0, 1). Therefore, ṽ is the
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Figure 4. Tubes, half-spaces, and horoballs.

geodesic {0}× [1, e#(v)] where )(v) = Rε3(α) + )(u). Let H ′ be the half-space in H3 that contains
T̃ and whose boundary plane is orthogonal to ũ at (0, 1) ∈ H3.

The retraction rα lifts to a retraction

r̃ : H̄3 → C(Λ),

where Λ is the limit set of the Kleinian group uniformizing MY . Let S̃ be the lift of S with
r̃(S̃) ⊂ T̃. Let D̃ ⊂ C be the Euclidean disk of radius 1 +

√
2 centered at 0 ∈ C and H̃ the half-

space in H3 with boundary D̃. We will show that S̃ ⊂ D̃, so that if D is the image of D̃ in ∂Wα

then S ⊂ D. The immersed half-space H ⊂ Wα bounded by D is the image of H̃ so we have that
d(α, H) is equal to )(v) minus the distance from the boundary plane of H̃ to H ′. As this latter
distance is log(1 +

√
2) this will give

d(α, H) = Rε3(α) + )(u) − log
(
1 +

√
2
)
.

If we can show the inclusion S̃ ⊂ D̃ we are done.
We now prove this inclusion. For z ∈ Ĉ ! Λ there is a unique horosphere Hz that intersects

C(Λ) in a single point. This point of intersection is r̃(z). If r̃(z) ∈ T̃ then Hz will intersect H ′.
The perpendicular ṽ from α̃ to T̃ is contained in C(Λ) and therefore must not intersect the
interior of Hz. As ṽ is the vertical geodesic {0}× [1, e#(v)] a simple calculation shows that when
)(v) ≥ log(1 +

√
2) the interior of Hz will intersect ṽ if |z| > 1 +

√
2 (see Figure 4). By our choice

of δ0, we have )(v) = Rε3(α) + )(u) ≥ log(1 +
√

2). Therefore, if z ∈ S̃ we have that z ∈ D̃ and
S̃ ⊂ D̃, completing the proof. !

Let Oα
ε (β) be the set orthogeodesics from Tε3(α) to the components of π−1

α (Tε(β)). With δ0
as in Lemma 5.6, we have the following corollary.

Corollary 5.7. Given δ, η > 0, there exists ε > 0 such that if Re Lα(MY ) < δ0 and
Re Lβ(MY ) < 2δ then

areaα(Sαε (β)) ≤ η · Re Lα(MY )
∑

u∈Oα
δ (β)

e−2#(u).
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Proof. We first show that, for ε < ε3/2 and )β(Y ) ≤ 2ε,

areaα(Sαε (β)) ≤ A · Re Lα(MY )
∑

u∈Oα
2ε(β)

e−2#(u),

where A is a universal constant.
As )β(Y ) ≤ 2ε, we have that Sαε (β) is non-empty. Given a component S of Sαε (β), let T be

the component of π−1
α (T2ε(β)) with rα(S) ⊂ T and let u be the orthogeodesic between Tε3(α)

and T. Then as Re Lα(MY ) < δ0, by Lemma 5.6, there is an immersed half-space H in Wα

whose boundary disk D contains S with

d(α, H) = Rε3(α) + )(u) − log
(
1 +

√
2
)
.

If t ≥ log
√

2 then sinh(t) ≥ et/4. Since the disk D contains S and by Lemma 5.6 we have
d(α, H) ≥

√
2, we can combine this estimate on sinh with Lemma 5.5 to get

areaα(S) ≤ 16πe−2d(α,H) ≤ 16πe−2
(
Rε3 (α)+#(u)−log

(
1+

√
2
))

.

By (5.2) we have

Re Lα(MY ) ≥ ε23
sinh(2Rε3(α))

≥ 2ε23e
−2Rε3 (α).

Together the two estimates give

areaα(S) ≤
(
8π/ε23

)
·
(
3 + 2

√
2
)
· Re Lα(MY )e−2#(u).

Summing over the set of all orthogeodesics in Oα
2ε(β) gives our first estimate.

Now let 2ε < δ. We let T′ be the component of π−1
α

(
Tδ(β)

)
that contains T and let u′ be the

orthogeodesic between Tε3(α) and T′. Note that the map u )→ u′ defines an bijection between
Oα

2ε(β) and Oα
δ (β). Then u′ is a subsegment of u and

)(u) − )(u′) = Rδ(β) − R2ε(β) ≥ dl
δ(2ε),

where the function on the right comes from Theorem 5.4. Thus, for )β(Y ) ≤ 2ε,

areaα(Sαε (β)) ≤ Ae−2dl
δ(2ε) · Re Lα(MY )

∑

u∈Oα
δ (β)

e−2#(u).

For )β(Y ) > 2ε the inequality also holds trivially as Sαε (β) = ∅ and as Re Lβ(MY ) < 2δ, the
right-hand side is positive. Thus, as dl

δ(2ε) → ∞ as ε→ 0 the theorem follows. !

5.3 Uniform bounds on the Poincaré series
Except for the last lemma, in this subsection M = H3/Γ can be any complete hyperbolic
3-manifold uniformized by a Kleinian group Γ.

For x ∈ H3 we define the Poincaré series

Pα(x) =
∑

γ∈Γ

e−2d(x,γx),

where d is the hyperbolic distance. Poincaré series play an important role in dynamics, but here
we will only be interested in obtaining uniform bounds on Pα(x) which we will then use to bound
the similar exponential sum of lengths of orthogeodesics that appears in Corollary 5.7.

We have the following elementary bound.
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Lemma 5.8.

– Let C be a closed convex set in H3 and C̄ be closure in H̄3 = H3 ∪ Ĉ. Let

r : H̄3 → C̄

be the nearest point projection. If x ∈ ∂C and Bx(ε) is the ε ball centered at x then r−1(Bx(ε))
contains a round disk D ⊂ Ĉ that bounds a half-space H ⊂ H3 with

ed(x,H) ≤ 2 coth(ε).

– Given x ∈ H3 and a half-space H ⊂ H3 with boundary disk D ⊂ Ĉ, we have

areax(D) ≥ πe−2d(x,H),

where areax is the visual measure on Ĉ determined by x.

Proof. Let P be a support plane for C at x. Then P bounds a half-space whose interior is
disjoint from the interior of C , and we let D be the round disk in the conformal boundary of
this half-space that projects orthogonally to P with image in P ∩ Bx(ε). Let y be the point on
H closest to x, z a point in ∂D, and w the orthogonal projection of z to P . Then wxyz forms a
planar quadrilateral with one ideal vertex at z and right angles at all other vertices. Standard
formulas give sinh d(x, y) sinh d(x, w) = 1, which can be rewritten in a less symmetric form as
cosh d(x, y) = coth d(x, w). Noting that d(x, y) = d(x, H), d(x, w) = ε, and et ≤ 2 cosh t, we have
ed(x,H) ≤ 2 coth(ε), so we will be done if we can show that r(D) ⊂ Bx(ε).

For z ∈ D let γ be the geodesic in H̄3 from z to r(z) and let p = P ∩ γ. Note that r(z) = r(p),
and since r is a contraction (and r(x) = x) we have that d(x, r(z)) ≤ d(x, p). Let B′ be the ball
of radius d(x, p) centered at x and let Hp be the closed half-space whose boundary is tangent
to B′ at p and whose interior is disjoint from x (see Figure 5). If r(z) 0= p then r(z) is in the
interior of B′ and is hence disjoint from Hp. As γ intersects the boundary plane of Hp we
have that z, the other endpoint of γ, will be contained in Hp. As the boundary plane of Hp is
orthogonal to P , the orthogonal projection of every point in Hp to P will have distance from x
that is at least d(x, p), so we have d(x, p) < ε. Combining inequalities gives d(x, r(z)) ≤ ε when
r(z) 0= p. If r(z) = p then the interior of γ will be disjoint from B′ as for every q ∈ γ we have
r(q) = r(z) = p and d(q, x) ≥ d(p, x) by the contraction of r. However, if γ is not contained in
Hp it must intersect the interior of B′. Therefore, γ, and in particular z, lie in Hp. As above,
this implies that r(z) ∈ Bx(ε), completing the proof that r(D) ⊂ Bx(ε).

For the second part of the lemma, as above let y be the point on H closest to x and let
z be a point in ∂D. These three points from a right triangle with one ideal angle at z and
angle θ at x. Therefore, D is a spherical disk of radius θ in the visual metric based at x. For
such right triangles we have sech d(x, y) = sin θ. The area of a spherical triangle is 2π(1 − cos θ),
so sin2 θ = 1 − cos2 θ ≤ areax(D)/π. Since e−2d(x,y) ≤ sech d(x, y) and d(x, y) = d(x, H), we can
combine expressions to get

πe−2d(x,H) ≤ areax(D). !
Using these estimates, we can obtain our uniform bound on the Poincaré series.

Lemma 5.9. If M = H3/Γ is a hyperbolic 3-manifold and x a point on the boundary of the
convex core C(M) with injectivity radius ≥ ε, then for x̃ a lift of x to H3 we have

Pα(x̃) ≤ 8 coth2(ε).

Proof. Let Λ be the limit set of Γ and r : H̄3 → C(Λ) be the retract map to the convex hull of
the limit set. Let Bε(x̃) be the ball of radius ε about x̃. As the injectivity radius of x is ≥ ε we
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Figure 5. View in the Klein model.

have Bε ∩ γ(Bε) = ∅ for all γ ∈ Γ ! {id}. We define U = r−1(Bε) ∩ Ĉ. Since r is Γ-invariant we
have U ∩ γ(U) = r−1(Bε ∩ γ(Bε)) = ∅ if γ ∈ Γ ! {id}. By Lemma 5.8 we have that U contains
a disk D that bounds a half-space H with ed(x̃,H) ≤ 2 coth(ε). By the triangle inequality for
all γ ∈ Γ we have that d(x̃, γ(H)) ≤ d(x̃, γ(x̃)) + d(γ(x̃), γ(H)). As d(γ(x̃), γ(H)) = d(x̃, H) this
gives d(x̃, γ(x̃)) ≥ d(x̃, γ(H)) − d(x̃, H) which in turn implies

∑

γ∈Γ

e−2d(x̃,γ(x̃)) ≤ e2d(x̃,H)
∑

γ

e−2d(x̃,γ(H))

≤ 2π−1 coth2(ε)
∑

γ∈Γ

areax̃(γ(D))

≤ 8 coth2(ε),

where the last sum is bounded by areax̃(Ĉ) = 4π since the disks γ(D) are all disjoint. !
We can now obtain a uniform bound on the exponential sum of orthogeodesic lengths.

Lemma 5.10. Fix δ < ε3 and assume that α and β are closed geodesics in MY ∈ CC(N, S; X)
with length ≤ 2δ. Then the sum ∑

u∈Oα
δ (β)

e−2#(u)

is bounded by a constant that only depends on δ and the diameter of C(MY )>δ.

Proof. Choose x ∈ ∂C(MY ) ∩ C(MY )≥ε3 and let x̃ ∈ H3 be in the pre-image of x under the cover-
ing map H3 → MY . We will define a map ψ from Oα

δ (β) to Γ such that )(u) ≥ d(x̃,ψ(u)(x̃)) − 2D,
where D is the diameter of C(MY )>δ and ψ is at most N -to-one. Once we have defined such a
ψ we have that

∑

u∈Oα
δ (β)

e−2#(u) ≤
∑

u∈Oα
δ (β)

e−2d(x̃,ψ(u)(x̃))+2D ≤ Ne2D
∑

γ∈Γ

e−2d(x̃,γ(x̃)).
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We claim that there exists an integer N0 such that at most N0 components of the pre-image
of Tε3(α) and Tε3(β) in H3 intersect any ball of radius D. To see this we note that as β has
length less than 2δ, Tδ(β) is non-empty. Thus, each point in Tε3(β) is contained in a ball of
radius r = dl

ε3(δ) which lies inside Tε3(β). Therefore, there are N0 disjoint balls of radius r in
the ball of radius D + 2r. Thus, N0 vol(Br) ≤ vol(BD+2r) bounding N0. Let N = N2

0 .
For each u ∈ Oα

δ (β) we will carefully choose a lift ũ to H3. More precisely, we will carefully
choose where the initial endpoint ũ− lies and then the terminal endpoint ũ+ will determine ψ(u).
Note that the endpoints ũ− and ũ+ will lie in the pre-image of C(M)>δ, so we can choose ũ− such
that d(x̃, ũ−) ≤ D. Then there will be a γ ∈ Γ with d(γ(x̃), ũ+) ≤ D and we define ψ(u) = γ. It
follows that

)(u) ≥ d(x̃,ψ(u)(x̃)) − 2D.

The orthogeodesic u is determined by the components in the pre-image of Tε3(α) and Tε3(β)
that ũ− and ũ+ lie in. As there are at most N0 in a D-neighborhood of x̃ and N0 in a
D-neighborhood of γ(x̃), there are at most N = N2

0 orthogeodesics u with ψ(u) = N , so ψ is
at most N -to-one. !

For the previous lemma to be useful need to able to control the diameter of C(MY )>ε. The
following argument is well known.

Lemma 5.11. Let ε > 0 and V > 0. Let M be a geometrically finite hyperbolic manifold and
convex core volume less than V . Then the diameter of every connected component of C(M)>ε,
the ε-thick part of the convex core, is bounded by a constant that is a function of ε, V , χ(∂M),
and the length of the shortest compressible curve in ∂C(M).

Proof. Given x, y in the connected component of C(M)>ε, let γ : [0, 1] → C(M)>ε be a path
joining x, y. Then f(t) = d(x, γ(t)) is continuous with f(0) = 0 and f(1) = d(x, y) and we can
take tk ∈ [0, 1] with f(tk) = 2kε for 0 ≤ k ≤ n where 2nε ≤ d(x, y) < 2(n + 1)ε. Then the balls
B(γ(tk), ε) are disjoint, embedded, and contained in Nε(C(M)). Thus, the number of disjoint
ε-balls is bounded in terms of the volume of Nε(C(M)) which in turn bounds d(x, y).

To bound the volume of Nε(C(M)), let Vt be the volume of Nt(C(M)). Then V̇t = At is the
area of ∂Nt(C(M)). If βM is the bending lamination on ∂C(M) then an easy calculation gives

At = 2π|χ(∂M)| cosh2(t) + L(βM ) sinh(t) cosh(t),

where L(βM ) is the length of βM . Also, by [BBB19], there are universal constants A, B such that
L(βM ) ≤ (A + B/δ)|χ(∂M)|. Integrating, it follows that the volume of Nε(C(M)) is bounded by
a function of V , χ(∂M), and δ. !

To apply the previous lemma to bound the diameter of C(M)>ε, we need to know that this
set is connected. In general this will be false. The next lemma shows that in our setting it holds
for sufficiently small ε for hyperbolic manifolds in a relatively acylindrical deformation space.

Lemma 5.12. Given CC(N, S; X) with (N, S) relatively acylindrical, there exists a δ > 0 such
that if M ∈ CC(N, S; X) then C(M)>δ is connected.

Proof. Let X ′ be the union of components of ∂C(M) that face X. The retraction from X to
∂C(M) is Lipschitz with Lipschitz constant only depending on inj(X) (see [BC03]). Therefore,
the diameter of X is bounded by D, a constant depending only on χ(X) and inj(X).

Let Y ′ be the union of components of ∂C(M) facing Y and recall that the path metric on
Y ′ is hyperbolic. Since (N ; S) is relatively acylindrical there is at most one homotopy class of
curve in S that is homotopic to α. If there is such a curve, let C be the ε3-Margulis collar about
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its geodesic representative α′ in Y ′. Note that if there is no such curve or the curve has length
≥ 2ε3 then C is empty. By a theorem of Bers, Y ′ has a bounded length pants decomposition
with constants only depending on the topology of Y ′, and each point in the ε3-thick part of Y ′

is a uniformly bounded distance from at least two of these curves. On the other hand, if p is in
the ε3-thin part but not in C there is an essential curve of length ≤ 2ε3 that is not homotopic
to a multiple of α. Therefore, there exists an L > 0 such that, for p ∈ Y ′ − C, there is a closed
curve of length ≤ L containing p which is not homotopic to a multiple of α.

We now choose δ > 0 such that dl
ε3(δ) ≥ max{D,L}. Let p be a point in ∂C(M) ∩ Tδ(α). If

p ∈ X ′ then the diameter bound on X ′ implies that X ′ ⊂ Tε3(α). This is a contradiction since
X ′ cannot be contained in a Margulis tube. If p ∈ Y ′ ! C then there is an essential closed curve
β through p of length ≤ L that is not homotopic to α. Then the length bound implies that
β ⊂ Tε3(α), which is again a contradiction. It follows that Tδ(α) ∩ ∂C(M) ⊆ C.

To finish the proof we show that ∂Tδ(α) ∩ C(M) is connected. We can assume that ∂Tδ(α)
and ∂C(M) are transverse. (If not, we can slightly decrease δ.) On ∂Tδ(α) the intersection
∂Tδ(α) ∩ ∂C(M) will be a collection of simple closed curves that either are homotopic to α or
are contractible and bound disks. These curves will bound the region of ∂Tδ(α) that is contained
in C(M). We will show that it is either a pair of parallel curves homotopic to α or a collection
of contractible curves bounding disks whose interiors are disjoint from C(M).

First we assume that the intersection of α′ with the bending lamination is zero. Then the
collar C is totally geodesic outside of α′ where it is bent at some angle (possibly zero). This
implies that for points in C the injectivity radius on ∂C(M) agrees with the injectivity radius
in the ambient hyperbolic 3-manifold M and therefore the intersection of ∂C(M) with Tδ(α)
is the δ-Margulis collar about α. In particular, ∂Tδ(α) ∩ ∂C(M) is a pair of parallel curves
and ∂Tδ(α) ∩ C(M) is an annulus bounded by these curves and therefore is connected. If α′

intersects the bending lamination then we can foliate C with geodesic segments in M joining
the boundary components of C. Note that C is contained in Tε3(α), and as any geodesic in
Tε3(α) will intersect Tδ(α) in a connected set we have that each geodesic arc of the foliation has
connected intersection with Tδ(α). Thus, the intersection is either empty, a point, or a closed
interval. By continuity of the foliation this implies that C ∩ Tδ(α) is either a union of disks or
an annulus. In the annulus case, ∂Tδ(α) ∩ C(M) is also an annulus and therefore is connected.
For the disk case, Y ′ intersects Tδ(α) in a union of disjoint disks and ∂Tδ(α) ∩ C(M) is either
a union of disks or the complement of a union of disks. As Tδ(α) ∩ C(M) is the intersection of
two convex sets, it is connected. Therefore, ∂Tδ(α) ∩ C(M) must be the complement of a union
of disks and therefore is connected. !

5.4 Proof of Proposition 5.3
We now are ready to prove Proposition 5.3, which will complete the proof that the auxiliary
components do not contribute to the limiting model flow. We restate it.

Proposition 5.3. There exists δ > 0 such that the following assertion holds. Given η, K > 0,
there exists a ε > 0 such that if Re Lα(MY ) ≤ 2δ and VolC(MY ) ≤ K then

areaα
(
supp

((
µ<ε

)aux
T

))
≤ η · Re Lα(MY ).

Proof. The support of
(
µ<ε

)aux
T

is contained in the union of Sαε (β) where β ranges over the closed
geodesics of length < 2ε in Y . There are at most 3g − 3 such curves, where g is the genus of Y ,
so it will be enough to bound the area of the individual Sαε (β).
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Figure 6. Vector field v(z) = 1
4

(
|z|4 − 2z Re(z2) − z2 + 2z

)
.

Fix δ > 0 as in Lemma 5.12 and choose x̃ ∈ H3 that maps to x ∈ M≥ε3 ∩ ∂C(M) under the
covering map H3 → MY . Then by Lemmas 5.9 and 5.10 we have, for α,β of length less than 2δ,

∑

u∈Oα
δ (β)

e−2#(u) ≤ Ne2D
∑

γ∈Γ

e−2d(x̃,γ(x̃)) ≤ 8Ne2D coth2(ε3),

where D is a the diameter bound on C(MY )<δ and N depends on D. By Lemma 5.11, the
diameter of each component of C(MY )<δ is bounded by a constant only depending on the
volume of C(MY ). By Lemma 5.12, C(MY )<δ is connected. Therefore, D, and hence N , only
depend on the volume of C(MY ) and the sum only depends on the volume of C(MY ). The result
then follows from Corollary 5.7 by further choosing 2δ < δ0 so that Re Lα(MY ) < δ0. !

6. Vector field at infinity

We now return to our flowline Yt of the gradient vector field V on Teich(S) and recall that by
Theorem 3.2 we have Yt → Ŷ ∈ Teich(S) and ‖V (Yt)‖2 = ‖φYt‖2 → 0. The surface Ŷ is a noded
surface (with possibly empty nodal set). We can assume that α is one of the nodes and let
cα(t) = )α(Yt)/Lα(MYt). Then, by Theorem 4.10, if tn → ∞ is a subsequence with cα(tn) → c
for some c ∈ C we have c′α(t) → v(c) where v is the vector field

v(z) = 1
4

(
|z|4 − 2z Re(z2) − z2 + 2z

)

shown in Figure 6.

Proposition 6.1. The critical points of the vector field v(z) are z = 0 (unstable), z = 1 (stable),
z = 2 (saddle), and z = −1 (saddle). The basin of attraction of z = 1 is the disk |z − 1| < 1, and
the circle |z − 1| = 1 consists of two trajectories from 0 to 2.

Proof. A direct computation shows that v(−1) = v(0) = v(1) = v(2) = 0 and that there are no
other zeros. The linearization of each zero is non-trivial and gives that each zero of v is as
described. Once we show that the circle |z − 1| = 1 consists of two trajectories from 0 to 2 it will
follow that |z − 1| < 1 is the basin of attraction for z = 1 as there are exactly two trajectories
limiting to the unstable fixed point at z = 2 and therefore all the other trajectories in the disk
must limit to z = 1 (since they cannot limit to the unstable fixed point at z = 0).
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If we let w(z) = (z − 1)/|z − 1| be the radial vector field centered at z = 1 then the Euclidean
inner product of v and w is given by taking the real part of the product of v and the conjugate
of w (as functions). Points in the circle |z − 1| = 1 are of the form z = 1 + eiθ and on calculates
to see that 〈v(z), w(z)〉 = 0 for such points so v is tangent to this circle.

On the other hand, if we let h(z) = 1 be the constant horizontal vector field then on the
circle we have

〈v(z), h(z)〉 = Re v(1 + eiθ) = 3
4 sin2 θ(2 + cos θ). (6.3)

This is zero only when z is 0 or 2 (and θ is π or 0) and is positive otherwise. This implies that
z = 0 and z = 2 are the only critical points on the circle and that the flowlines are from 0 to 2
as claimed. !

We will use the next lemma to analyze the limiting behavior of the path cα.

Lemma 6.2. Let v be a smooth vector field on Rn and γ : [0,∞) → Rn be a smooth path whose
image lies in a compact subset. Also assume that γ′(tn) → v(p) for all sequences tn with γ(tn)
converging to some p ∈ Rn.

Let A be the accumulation set for γ. Then A is a union of trajectories of the flow of v.
If A contains distinct points p and q then there exists an ε > 0 such that if δ < ε then there

is a trajectory β ∈ A and a t ∈ R such that |β(t) − p| = δ and 〈w,β′(t)〉 ≥ 0, and similarly a
trajectory with 〈w,β′(t)〉 ≤ 0. In particular, if p ∈ A is an attracting or repelling fixed point of
v or p is an isolated point of A then A = {p} and γ(t) → p.

Proof. Since the image of γ has compact support we can assume that v has compact support and
|v| is bounded. We first show that |γ′(t) − v(γ(t))| → 0 as t → ∞. If not we can find a sequence
tn → ∞ such that γ(tn) → p in M but |γ′(tn) − v(γ(tn))| converges to some non-zero s ∈ R. But
by assumption γ′(tn) → v(p) which implies |γ′(tn) − v(γ(tn))| → 0, a contradiction.

Therefore, γ′(t) is bounded. Now let γτ (t) = γ(t + τ) and for p ∈ A choose a sequence τi → ∞
with γτi(0) → p. As the γ′τ are also bounded, by Arzelà–Ascoli (after possibly passing to a
subsequence), we have a locally uniform limit γi(t) = γτi → β and γ′τi(t) limits locally uniformly
to v(β(t)). Note that β is defined on all of R. Therefore, we have

β(0) +
∫ t

0
v(β(s)) ds = γi(t) −

(
γi(0) +

∫ t

0
γ′i(s) ds

)
+ β(0) +

∫ t

0
v(β(s)) ds

= lim
i→∞

(
γi(t) +

(
β(0) − γi(0)

)
+

∫ t

0

(
v(β(s)) − γ′i(s)

)
ds

)

= β(t)

which implies that β is a trajectory of v. Note that the image of β will be contained in A , so
we have shown that A is a union of trajectories.

For the final statement let ε = |p − q|/3. Then for any δ > 0 the path γ must leave and
enter any ball of radius δ < ε centered at p infinitely often. Therefore, we can find tn → ∞
such that |γ(tn) − p| = δ and 〈w, γ′(tn)〉 ≥ 0. After possibly passing to a subsequence there is a
trajectory β ∈ A with γ(tn) → β(t) and γ′(tn) → β′(t). Continuity implies that |β(t) − p| = δ
and 〈w,β′(t)〉 ≥ 0 as claimed. The other inequality follows similarly. !

We can now show that cα(t) converges to 1.

Proposition 6.3. As t → ∞ we have cα(t) → 1.

Proof. Let C be the accumulation set of cα. As cα(t) is contained in the disk |z − 1| ≤ 1, we
must have that all of the trajectories in C are contained in this disk. Note that any non-constant
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trajectory in the disk contains either 0 or 1 (and often both) in its closure, so if C contains a
non-constant trajectory then it contains either 0 or 1, and by the second part of Lemma 6.2 we
then have C = {0} or C = {1}. In particular, C cannot contain any non-constant trajectories
and therefore, again by the second part of Lemma 6.2, must be equal to one of the zeros of v in
the disk |z − 1| ≤ 1. We finish the proof by showing that cα(t) does not converge to 0 or 2.

If as t → ∞ we have cα(t) → 0, then for f(t) = Re(log(cα(t)) we have f(t) → −∞. But by
Theorem 4.10,

lim
t→∞

c′α(t)
cα(t)

=
1
2
.

As f ′(t) = Re(c′α(t)/cα(t)) it follows that f(t) is increasing for t, contradicting that limt→∞ f(t) =
−∞. Thus, limt→∞ cα(t) 0= 0.

If cα(t) → 2 as t → ∞ then by (1) of Theorem 4.10 we have

lim
n→∞

)′α(tn)
)α(tn)

=
3
2

for all sequences tn → ∞. On the other hand, as )α(t) → 0 as t → ∞, we can choose a subsequence
such that )′α(tn) ≤ 0 and therefore

lim
n→∞

)′α(tn)
)α(tn)

≤ 0.

This is a contradiction, and therefore limt→∞ cα(t) 0= 2. It follows that limt→∞ cα(t) = 1. !

7. Main theorem

Before we finish the proof of the main theorem, we will need the following bound on the L∞-norm
of a harmonic Beltrami differential in terms of the L2-norm and the derivative of the length of
short geodesics.

Lemma 7.1 (Wolpert [Wol17, Lemma 11]). There exists an ε0 satisfying the following assertion.
Given ε < ε0, there exists c > 0 such that if τ is the family of geodesics with )α < ε for α ∈ τ
and µ is a harmonic Beltrami differential on Y then

‖µ‖∞ ≤ c

(
1
2

max
α∈τ

|d(log )α)(µ)| + ‖µ0‖2

)
,

where µ0 is the component of µ orthogonal (in the Weil–Petersson inner product) to the span of
the of the gradients ∇)α.

Wolpert’s original bound is in terms of the gradient of the root-length functions )1/2
α . One

can translate his statement to the above statement via the chain rule.
The above gives the following immediate corollary.

Corollary 7.2. Let (N ; S) be relatively acylindrical and Mt ∈ CC(N ; S, X) be a flowline
for V , with quadratic differential φt. Then

lim
t→∞

‖φt‖∞ = 0.

Proof. We have Yt → Yτ where τ is the collection of nodes. Then there is an ε1 > 0 such
that if )β(Yt) < ε1 then β ∈ τ . We apply the above to µ = Vt = −φt/ρYt for ε < min(ε0, ε1).
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As ‖µ0‖2 ≤ ‖µ‖2, we have

‖φt‖∞ ≤ c

(
1
2

max
α∈τ

|d(log )α)(Vt)| + ‖φt‖2

)
.

By Proposition 6.3, limt→∞ cα(t) = cα = 1. Thus, by Theorem 4.10,

lim
t→∞

d(log )α)(Vt) = 1
2(Re(c2

α) − 1) = 0.

Thus, as limt→∞ ‖φt‖2 = 0 the result follows. !
We now have everything in place to prove our main result.

Theorem 1.1. Let (N ; S) be relatively acylindrical and Mt ∈ CC(N ; S, X) be a flowline for V .
Then Mt converges to Mgeod.

Proof. If Yt is the corresponding flowline of V on Teich(S) we have that Mt = MYt . We let φt

be the quadratic differential given by the Schwarzian on Yt. Then by Theorem 3.2 we have that
Yt → Ŷ where Ŷ is a possibly noded surface in the Weil–Petersson completion Teich(S). We will
show that the set of nodes is empty as the Ŷ is actually contained in Teich(S).

We let σ = σ(N ;S) : Teich(S) → Teich(S) be the restriction of the skinning map to S ⊆ ∂N .
By McMullen, the skinning map is contracting in the Teichmüller metric dTeich with con-

traction factor c < 1 depending only on the topology of (N ; S) (see [McM90, Theorem 6,1
and Corollary 6.2]). It follows that there is a unique fixed point of σ which we label Ygeod

since Mgeod = MYgeod .
For any contraction mapping we can bound the distance from a point to the fixed point in

terms of the distance between the point and its first iterate. In particular, for any Yt we have

dTeich(Yt, Ygeod) ≤
dTeich(Yt,σ(Yt))

1 − c
.

By the Ahlfors–Weill quasiconformal reflection theorem (see [AW62, Theorem A]) if ‖φt‖∞ < 1/2
then

dTeich(Yt,σ(Yt)) ≤
1
2

log
(

1 + 2‖φt‖∞
1 − 2‖φt‖∞

)
.

By Corollary 7.2, limt→∞ ‖φt‖ → 0. so we can combine the two inequalities to get
limt→∞ dTeich(Yt, Ygeod) = 0. Therefore, Mt → Mgeod as claimed. !
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