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hyperbolic manifolds with geodesic boundary

MIKHAIL BELOLIPETSKY
MARTIN BRIDGEMAN

We derive explicit estimates for the functions which appear in the previous work of
Bridgeman and Kahn. As a consequence, we obtain an explicit lower bound for the
length of the shortest orthogeodesic in terms of the volume of a hyperbolic manifold
with totally geodesic boundary. We also give an alternative derivation of a lower
bound for the volumes of these manifolds as a function of the dimension.

32Q45

1 Introduction

Let M be a compact hyperbolic n—dimensional manifold with nonempty totally geodesic
boundary. An orthogeodesic of M is a geodesic arc with endpoints in dM which are
perpendicular to dM at the endpoints. The orthospectrum Aps of M is the set (with
multiplicities) of lengths of orthogeodesics. As the orthogeodesics of M correspond
to a subset of the closed geodesics of its double, the set of orthogeodesics of M is
countable. We let Vol(M') and Vol(dM ) be the volumes of the hyperbolic manifolds M
and dM. We further let L(M) be the length of the shortest orthogeodesic of M. We
will explore the relation between the three quantities Vol(M'), Vol(dM) and L(M).

The orthospectrum was first introduced by Basmajian [2], who showed that a totally
geodesic hypersurface S in a hyperbolic manifold can be decomposed into embedded
disks which are in one-to-one correspondence with the orthogeodesics of the mani-
fold M obtained by cutting along the hypersurface S. Then, by describing the radii
of the disks in terms of the length of the corresponding orthogeodesics, Basmajian
obtained the orthospectrum identity

Vol(S) = Y Vyi(logcoth (37)),

leApn

where V,(r) is the volume of a hyperbolic ball of radius r in H".
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Using a decomposition of the tangent bundle via orthogeodesics, the second author and
Kahn proved the following:

Theorem 1 (Bridgeman and Kahn [6]) Given n > 2, there exists a continuous
monotonically decreasing function F,: Ry — R4 such that, if M is a compact
hyperbolic n—manifold with nonempty totally geodesic boundary, then

Vol(M) = > Fu(D).

leApn

The function F}, is given by an integral formula; see (4) below. The above theorem was
generalized to noncompact finite-volume hyperbolic manifolds with totally geodesic
boundary by Vlamis and Yarmola [13].

An analysis of the asymptotic behavior of F, (/) as | — 0 gives:

Theorem 2 (Bridgeman and Kahn [6]) For n > 3, there exists a monotonically
increasing function H,: R4 — R and a constant C,, > 0 such that, if M is a compact
hyperbolic n—manitold with totally geodesic boundary with Vol(dM ) = A, then

Vol(M) > Hy(A) = Cp - AP/ =1

The functions F, and Hy, and the implied constants C,, which appear in [6] are defined
by complicated formulas and it is difficult to evaluate or estimate them. We resolve
this issue and find explicit lower bounds in terms of the dimension n. We first prove
the following relation between Vol(M) and L(M):

Theorem 3 Forn > 3, if M is a compact hyperbolic n—manifold M with totally
geodesic boundary, then either L(M) > % log % or

0 LD 1 = g, [2ZE L (Vol(M)) 702,

where g, is an explicit monotonically increasing function tending to 1.

The function g, is given by (6) below. In particular, the first few approximate values
are g3 = 0.120822, g4 = 0.464543, g5 = 0.563796, g6 = 0.617183.

One consequence of Theorem 3 is the following dichotomy between volume and
shortest orthogeodesic:

Algebraic & Geometric Topology, Volume 22 (2022)



Lower bounds for volumes and orthospectra of hyperbolic manifolds 1257

Corollary 4 Let M be a compact hyperbolic manifold with nonempty totally geodesic
boundary of dimension n > 3. Then either

Vol(M)>1 or eL(M)—lzmin(\N/z—l,g,, %)

The results of [6] have a number of applications that can be made more precise now.
For example, Belolipetsky and Thomson [5] used them to estimate the volumes of
hyperbolic manifolds with small systole constructed there. Inequality (1) allows us to
restate the inequality from [5, Theorem 1.2]:

Corollary 5 Hyperbolic manifolds with small systole constructed by Belolipetsky—
Thomson in [5] satisty

2me 1 "2
Vol(M)> (1 . )
1002 ($en 325 555,77

We also use our analysis to investigate the relation between Vol(M') and Vol(dM ),
which we compare with the results of Miyamoto in [12]. We prove:

Theorem 6 Let M be a compact hyperbolic manifold with nonempty totally geodesic
boundary of dimension n > 3. Then either

(2) Vol(M)=>1log3Vol(@M) or Vol(M)>1nh, %(VOI(BM))(”_Z)/(”_”,

where h;, is an explicit monotonically increasing function tending to 1.

The function 4, is given by (7), with the first few approximate values /3 = 0.203335,
hg = 0.448875, hs = 0.542675, hg = 0.601147.

In earlier work Miyamoto obtained a lower bound for the volume in terms of a linear
function of the volume of the boundary:

Theorem 7 (Miyamoto [12, Theorem 4.2]) Let M be a hyperbolic n—manifold with
totally geodesic boundary. Then there are constants p, > 0 such that

3) Vol(M') = pp - Vol(0M ).

One application of both (2) and (3) is to obtain lower bounds on the volume of a

hyperbolic manifold with totally geodesic boundary in terms of the dimension. Although
both use very different methods, their resulting bounds are surprisingly similar.
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For n even, applying the Gauss—Bonnet formula for the double DM gives
Vol(M) = 1 Vol(DM) = 4| x(DM)|Vy = £V,

where V), is the volume of the unit n—sphere in R”*+!. For n odd, both (2) and (3) can
be used to leverage the Gauss—Bonnet theorem on the boundary to give lower bounds
for the volume of the manifolds.

In [9], Kellerhals used packing estimates to show that Miyamoto’s function pj, is
monotonically increasing with the approximate values p3 = 0.29156, p4 = 0.43219,
ps = 0.54167, pg = 0.64652.

Thus, for M a hyperbolic n—manifold with nonempty totally geodesic boundary and »
odd, we have

Vol(M) = 5 pnVa—1.

Using our bound in (2), we can derive a similar estimate. We prove:

Theorem 8 Let M be a hyperbolic n—manifold with nonempty totally geodesic bound-
ary and n odd. Then

Vol(M) > min(§ log 3, 11,) Vi

The paper is organized as follows. We first describe the functions Fj(x) and M, (x)
and, by a careful analysis, obtain uniform lower bounds for each as functions of n
and x. An important step is bounding an incomplete Beta function which requires
us to restrict to x < 1 log % (see Lemma 12). We then apply these bounds to prove
the bounds on volume and ortholength in Theorems 3 and 6 above. In Section 5 we
consider more carefully the 3—dimensional case. In Section 6 we conclude with the
proof of Theorem 8 and a related discussion.

Acknowledgments We thank Ruth Kellerhals for helpful correspondence. We would
also like to thank the referee for their comments and insights which improved the paper.
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2 The functions F, and M,

In previous work, an integral formula for F}, is derived: We let V be the volume of
the unit k—sphere in RX+1 Then, from [6], we have!

_ 2" Wy o Vs (! pn=3 022
I [0 i HM”( s )dr,
where 1 2 2 2 2 2 5
5) Mn(b)zf du/ log((v2 — 1)(u? b )/(: —p)w-1)
-1 b (v—u)

Furthermore, it is shown that the function M, (b) can be given in terms of standard
functions. In order to describe this function, we define the following: For n > 1 we
define the polynomial function P, by

"ok
Pu(x) =) %
k=1
We also define Po(x) = 0. We note that for |x| < 1, P,(x) is the first n terms
of the Taylor series of —log(l — x). We therefore define the function L,(x) by
L,(x)=1log|l —x|+ Py(x). For |x| < 1 we have

k=n+1

We note that Lo(x) =log|1 —x|. We also note that P,(1) =1 + +oeet sy L the n
Harmonic number. Using these functions, M}, can be written down exphcltly.

Lemma 9 (Bridgeman and Kahn [6, Lemma 7]) The function My: (1,00) — R4
has the explicit form

(n=1)(n—=2) M (b)

B 1 (b+1)? h—1 ny —b+1
- (b—l)”_2 (log 4bh +2Pn 2(1) Ln S(b ) (_) n— 3( b+ )

1
2
+W(_log (b4b1) _2Pn 2(1)+Ln 3(2+ )+( l)n n— 3( bb ))
1 2b 2b
by (L“(m)_ ”‘3(5))
rga ()0 (51))
on—2 b+1 "\ -1

I'The original formula had an incorrect factor of 2 rather than 2”1, which was corrected by Theorem 2.1
of [13].
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Furthermore, M, satisfies
2P, »(1) pr—1

and  lim 2— M,(b) = %.

lim (b—1)""2M,((b) = —2"~_
b—1>r?+( ) n(0) nm—1Dmn-2) b—oo logh

We note that the above is a consequence of the following formulas:

Lemma 10 (Bridgeman and Kahn [6, Corollary 6]) Forn > 2
loglx—al , _ 1 (Ln_z((a—m/(x b)) _loglx—df )
(x —b)" n—1 (a—b)n—1 (x=b)yn—1 )"
Furthermore, fork > 1,

: (loglx—al Ln((b—a)/(b—X))) log|b —a| — Py(1)
lim — =
(b—x)k (b—a)k (b—a)k

xX—>a

3 Explicit lower bounds for F, and M,

In this section, we give explicit lower bounds on for the functions F, and M;,. As
these functions are only defined for n > 3, in the following a standing assumption is
that n > 3. In order to obtain our bounds, we need to derive a lower bound on M, (b)

which is uniform both in 7 and . By Lemma 9, we have

. _ 2P, »(1)
lim (b—1)""2M,(h) = ——=—-"_.

P O M) = G )

We prove the following uniform lower bound:

Lemma 11 Forb € (1,2],

Pu3(1) + (1= 1/3"72)(Py—p(1) +log 3)

n—2
(b—1)""2 My (b) = T

Proof From (5), for M, we have that
1 00 2 2,2 2_ 12 2
1 —1)(b"— —-b7)(1—
= [ [V 02 1)
-1 b (v—u)"
1 00 2 _ _ 2_p2y(1 =
[ [To@DO /0 ),
-1 Jb (v—u)"
as b +u > 1 + u. We split the interior integral on the right into two integrals,

00 - o0 2 _ _ _
P TS D

(v —u)" (v —u)"

dv
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By Lemma 10, we have

1 (IOg(v—b) B Ln—z((b—u)/(v—u))) °°
I AU (b —uyr=! b
1 (Ln_2<<b—u)/(v—u)) B 1og<v—b))
Cn—1ysp+ (b —u)r=1 (w—wy1)
By the limit in Lemma 10, we have
S (Pn_za)—log(b—u))
1= .
n—1 (b—u)r—1
Integrating by parts, we get
o] (IOg((vz—1)(b—u)/(v+b)(1—u)) °°
,=—
n—1 (v—u)"! b
o dv 1 1 1
+/b (U—u)n_l (v—1+v+1_v+b))'
Asv+b>v+1, wehave
1 1 1 1
v—1 + v+l v+b = v—1" 0
Therefore,
I >__1 (log((v2—1)(b—u)/(v+b)(1—u)) °°)
, > —
n—1 (v—u)"! b
_ 1 (IOg((bz—1)(b—u)/(2b)(1—u)))
Cn—1 (b—u)n—1 '

Therefore, combining, we have

L ([ log((®b® = 1)/26(1 —u) + Pua(D)
o=t ([ by o

) = J1(b) + Ja2(b).

where

L1 (Y log((B2 = 1)/2b) + Pus(])

1 ! —log(1—u)
Jz(b) = n—1 (/;1 (b—u)n_l du)

By integration, we have

log((b2 —1)/2b) + Pp—z(1) 1 1
(n—1)(n—2) ((b— D=2 (b + 1)"—2)'

Ji(b) =
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Using Lemma 10, we get

1
20) =Gz 1)(n—2)(

1

—log(1 —u) " Ly—3((b—1)/(b— ”)))
(b —u)n=2 (b—1)n=2

-1
Therefore,

(=) (1—2) J(b) = —L2=3(6=D/(6FD)

(h—1)n—2
log2 . log(1—u)  Lu—3((b—1)/(b—u))
D2 (_ -2 (=12 )

By Lemma 10, we have the limit
(_ log(1—u) . Ln-3((b=1/(b~ u))) _ Pp3(1)—log(b—1)
(b—u)r—2 (b—1)n=2 B (b—1m=2

Combining, we get

lim

u—1—

—log(b—1) + Pp3(1) = Ly—3((b—1/(b+ 1)) log?2

(n=1)(n=2)J2(b) = (b_l)n—Z b+ ])”_2.

Thus,

(n—1)(n—2) My (b) > log((b+1)/2b)+ Pu—z (1) + Py—3(1)—Ly—3((b—1)/(b+1))

(h—1)n—2
log(4b/(b?—1))— Py—2(1)
(b+1)n—2 '
For b € (1, 2], we have
oe 2t L p () >logd+1>0 and —L, (221} =0
0g 5, + Pa2(l)zlogz+1>0 and - ”_3(b+1)> ’

giving

(1)1 — )My (by > —Fr=3)_ o6+ D/2b) + Pus (1)

(b—1)n—2 (b—1)n—2
log(4b/(b* — 1)) — Pu—a(1)
(b+ 1)n=2 '
As(b+1)/(b—1)=3o0n (1,2], we have
log((b+1)/2b)+ P,—»(1)
(b—1)r—2
(1 log((b+1)/2b)+ Py—>(1) I (log((b+1)/2b)+ Ppr—>(1)
= (1o (s ()
- (1_ 1 )(log((b+1)/2b)—|—Pn_2(1))+log((b—|—1)/2b)+P,,_2(1)
- 3n—2 (b_l)n—z (b+1)”_2 ’
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Therefore,
Pu3(1)+(1—1/3""2)(log((b+1)/2b)+ Pr»(1))
(b _ 1)n—2
log((b+1)/2b)+ Py—3(1)+log(4b/(b*—1))— Py—2(1)
+ .
(b+1)r=2

(n—1)(n—2)M,(b) >

This gives

Py—3(1) + (1 =1/3"2)(log((b +1)/2b) + Pr—2(1))
(b—1)n=2

nm—1)(n—-2)M,(b) >

log(2/(b —1))
(b+ 12
Finally,

Pus3(1) +(1=1/3""2)(log 3 + P,_5(1)) _ 0.474879

nm—1)(n=2)M,(b) > (b—1)"—2 ~(b—1n2

With this bound in hand, we now find a lower bound for Fj,(x) by integration.

Lemma 12 Forl < %log %, we have

Ky
Fu(l) = W’
where
K — (Pu—s(1) + (1= 1/3"72)(Py—s(1) + log 3))2" 2V, 2 Vyu—3T'(3n)?
n — .

(n—2)2Vy—1T'(n)

Proof We let a = e!. Then, by Lemma 11 above, we have

2.2 A 2.2
Mn( a r2 ) > n _ for /@ r2 <2,
1—r (\/(az_,,Z)/(l_VZ)_l) 1—r
where _2 3
Py + (1—=1/3"72)(Py—z(1) +log 3)
" n—1)n-2) '
Solving this for r < v/ %(4 —a?) = r(a), we obtain
2n—1 Vi oV r(a) n—3 A
Fu(l) > = n=2n=3 3/ ! " —dr.
Va1 0 (V1 —=r2)n—2 (\/(az—rz)/(l—rz)_l)”
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Simplifying, we get
2n_1An Vn—ZVn—3 /r(a) rn—3
Vi—1 0 (Va2 —r2—1—r2yn-2
_ 2" A Voo Vs /’(a) (YA V112 "2 o
Vi1 0 a?—1 '
As Va2 —r2/v1—r2 >a, we have Va2 —r2 + 1 —r2 > (a+ 1)v1—r2, giving

2N Ay Vya Vs [T@
Fall) 2 =~y / AW 1-r2) 2 dr,
- n—1 0

dr

Fu(l) =

Therefore,

2"V Ay Vs Vs [T@
Fu(l) > ( 1n)ni2§/ n-3 / P31 =2y 2 gy,
a— n—1 Jo

We change the variable to = 2 to get

on—=2 4 Vo oV r(a)?
Fall) 2 <ty /0 (=P .
- n—1

The Beta function B(a, b) and the incomplete Beta function B(x :a, b) are defined by

X

1
B(a.b) = / (M-l dt. B(x:a.b)= / 1 —nb .
0 0

Therefore,
2n_2An Vn—2 Vn—3

B ==y,

B(r(a)2 : %n— 1, %n)

We note that
B(a—1l,a)=B( :a—1,a)+ B(}:a,a—-1).
On [0,1],as 7 < 1—1¢, we have r*~1(1 —1)?~2 <¢972(1 — )97, giving
B(% ta—1,a) > B(%:a,a— 1).
Thus, B(% ra—1,a) > %B(a —1,a).
Therefore, if we let r(a)? > %, then
C(4n—1)r(n) _n—1r(in)’

2 (n—1) n—-2 T'(n)
For r(a)? > % we require a < 4/ 3/2. Therefore, for [ < %log % we have
(Pn—3(1)+(1_1/3n_2)(Pn—2(1)+10g %))2n—2 Va—2 Vn—3r(%n)2 1

(n=2)2Vy—1T'(n) (el=1)m=2
This concludes the proof. a

B(r(a)2 : %n— 1, %n) > %B(%n— 1, %n) =

F(l)=

Algebraic & Geometric Topology, Volume 22 (2022)



Lower bounds for volumes and orthospectra of hyperbolic manifolds 1265

4 Systole and volume estimates

We now use the bound for F(/) to obtain a lower bound on the length of the shortest
orthogeodesic and to obtain lower bounds on volume in terms of the area of the boundary.
We first will need the following elementary calculation:

Lemma 13 The constants K, from Lemma 12 satisty

5re )(n—l)/2 3(Pu3(1) + (1—1/3"2)(P,_2(1) +log 3))

Kn = (n—l 23/2¢5/2(n —2)

Proof The volumes of spheres are given by

_(n+ )+ D/2
 r(Am+3)

n

We have Legendre’s replacement formula

L) (z +4) =272/l (22).
Thus,
22V g VusT(3n)* (1= 12" 2 =D20 (S (n +2))T (1)
(n—2)2Vy—1I'(n) (n—2)nT (1 (n+ 1))T(n)
_ (n=Dx D20 (L(n +2))
C 2(m—2nr (L + 1))

By using the upper and lower bounds for the Gamma function

/znxx+1/ze—x S F(x + 1) E exx+1/ze—x’

we obtain
(n=Dr D20 (Jn+2) (1= )OI (2r (3n) e
2n—2)nT(L+1)> T 2m=2n(2(3(1—1)) D)
2n/2—1n(n—l)/2n(n—1)/2en/2—3
B (n—2)(n— 1)1
Thus,

K,:>( drne )@—‘VZlz_3(u-+(1—1/3"—?xlm_z(u-+1og%)
"= \(n-1)? (n—2)e5/2/2
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Finally, (n/(n — 1))®~1/2 is monotonically increasing; then, as n > 3, we have
(n/(n—1)"=D/2 >3 50

5re )(n—l)/2 3(Pu—s(D) + (1—1/3""2)(Py_»(1) + log 3))

— . O
n—1 2(n—2)e5/22

Kn= (
We now can prove the bound in Theorem 3, which we restate below:

Theorem 3 Let M be a compact hyperbolic n—manifold with totally geodesic bound-
ary. Then either L(M) > % log % or

D 1 = gy [ ZEE (Vol(3)) ™0,

where g, is an explicit monotonically increasing function tending to 1.

Proof Let L=L(M).If L < %log %, then, by Lemma 12,
K»

Solving the latter, we have

1 -2
eL . Kn /(n—=2)
~— \ \Vol(M) '

el —1> KV #=D vol(p)=1/ =2,

which gives

Therefore, by Lemma 13, we have

ek 12 g | ZZE (Vol(M)) "1/,

33T (Pues(1) 4 (1= 1/3"72)(Py—z(1) +log 3))\ /=2
2(n—2)(n—1)1/2¢2 ) ‘

where

(6) gn = (

We now obtain a lower bound on the volume in terms of the boundary area. We will
need an auxiliary function S, given by

Sp(x) = /OX cosh™ ' (r) dr.

We prove Theorem 6, which we first restate:

Algebraic & Geometric Topology, Volume 22 (2022)
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Theorem 6 Let M be a hyperbolic manifold with totally geodesic boundary. Then
either
Vol(M) > Llog % Vol(dM)

VOI(M) = L\ 228 Vol @) =2/ =D,

where h, is an explicit monotonically increasing function tending to 1.

or

Proof Let L =L(M),V = Vol(M), A = Vol(dM). Then, by Theorem 1,
V> Fy(L).

Further, the totally geodesic boundary dM has embedded collar of radius %L. By

elementary hyperbolic geometry, this embedded collar has volume 4 - S,,(%L). Thus,
V>A4-Su(3L)=A-5L.

It follows that
V > max(Fu(L), A-3L).

As Fj(x) is monotonically decreasing and %Ax monotonically increasing, we have a
unique / > 0 satisfying
Fa(l)=A4-31.

Furthermore, it follows that V > A - %l. If/>1 log %, then
V>1tlogs4,
giving the first inequality of the theorem.

Now assume that / < %log % Then, by Lemma 12,
K
V>max| ———2—— 4-17).
(el _ 1)”_2 2
We therefore consider /(, the unique solution of
Ky
(elo _ 1)n—2

=A-3lp.

We observe that /j </ and therefore we have [y < %log % Solving

Kn

) i LA—
A-3l (elo —1)n=2’

Algebraic & Geometric Topology, Volume 22 (2022)
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we obtain

1/(n—2)
I 1/(n—2) _ (2Kn
(e 0 _ 1)10 n = (T) .

Thus, as [y < % log % and (e* —1)/x is monotonically increasing, we have e0 —1 < al,

k-1
log v/5/2

(n—1)/(n—2)
a'lon n— (
1
a

- 1 2Kn 1/(n—1)
0=, —2/-D\ 4

Combining with the inequality for V, we get

where

= 1.26846.

Hence we have

)1/(11 2)
( )1/(n 1)

V=A4-31>4-11,> %K;/(”_I)A(”_z)/(”_l).
a

v

Hence, by Lemma 13 above,

V> h_ 2me 4 -2)/tn-1)

~ 2a -1
where
7 L (3(Pams () + (1 =1/3 ) (Paa(1) +log 3)) 1/(n—1)
( ) n _( 23/2 5/2(71—2) ) .

For n > 3 it is easy to check that /1, is monotonically increasing to 1. Evaluating a, we

V> hy /2716 A(” 2)/(n=1) > lh [2me 4 (n=2)/(n=1) 5
— 2.53692 n—1

5 Dimension 3 case

get

We note that the constants in the main theorems proved for general dimension can
be improved in any specific case by analyzing Fj individually. We now consider the
3—dimensional case separately.

In [11], Masai and McShane proved that the volume identity of Bridgeman and Kahn
(see Theorem 1) is equal to the identity obtained by Calegari [7] using a different de-
composition. Applying Calegari’s formula in dimension 3, they obtained an elementary
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closed form for F3, namely

) F3(x) = 27 (X—H)

e2x —1
We note that there is a normalization error in [11] (by a factor of 47r) and the above

formula is the corrected version (see [13], where the correct version is also stated).

Using the formula of Masai and McShane for F3, we can give an elementary argument
that improves the constants in Theorem 3 in the case of n = 3. We would like to thank
the referee for this observation.

Propostion 14 Let M be a compact hyperbolic 3—manifold with nonempty totally
geodesic boundary. Then either L(M) > 1.25 or

M) > id

VoD
Proof By elementary calculus for 0 < x < 1.25, we have
x+1 1
> .
eX 4172
Thus, for L(M) < 1.25, equation (8) gives

V(M) > FOL(M)) = Zn(L(M )+ 1) ! ”

>
eLM) 4 1 JeLM) 1 = oLM) _°
Thus, if L(M) < 1.25,

LM) _ >

O

We now compare this with Theorem 3. For n = 3, the theorem states that if L(M) <
% log % then
LOM) | > g3~/me  0.353076
e — = .
- V(M) V(M)

Also in dimension 3, Miyamoto and Kojima proved that Miyamoto’s bound in [12]

is optimal and that the lowest volume hyperbolic 3—manifold with totally geodesic
boundary has boundary a genus 2 surface and volume 6.452 (see [10]). We can compare
this optimal bound to the bound obtained using (8) for F3.

As in our prior analysis in Theorem 6, we obtain a volume bound by finding the
common value of F3(x) =4rS; (%x) Solving numerically, we obtain a lower bound
of 4.079, which is comparable to Miyamoto’s optimal bound. This was also observed
in [6, Section 7] but, due to the missing factor in the integral formula for Fj (see the
footnote on page 1259), the bound obtained there was given as 2.986.
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6 Lower bounds for volume of hyperbolic n—manifolds with
totally geodesic boundary

We now consider our bounds in general dimension #n > 3. In even dimensions the
generalized Gauss—Bonnet theorem gives

(n+ 1)g+D/2
rAm+3)

For odd dimensions, the best lower bound is by Adeboye and Wei [1], with

Vol(M) = |x(M)|V, = 1V, =

2 n%/2

9) Vol(M) > (E) .

Miyamoto [12] showed that, for a hyperbolic manifold M with nonempty totally
geodesic boundary, we have

Vol(M') > pp Vol(OM)

for some constants p,. In [9, Lemma 1.4.3 and Table 1.4.5] (see also [8]), Kellerhals
showed that p, are monotonically increasing with pg = 0.64652. Thus, for n > 6 odd,
we have

Vol(M) > 1p,1V,—1 = 0.32326V,_;.
When it applies, this bound is much stronger than (9) (applied to the double of M).

The key ingredient of Miyamoto’s proof is his notion of the hypersphere packings.
These packings have similar properties to the sphere packings in constant curvature
spaces. In his paper, Miyamoto proved a hypersphere analogue of the well-known
Boroczky’s sphere packing theorem, which says that any sphere packing of radius r
in an n—dimensional space of constant curvature has density at most that of n 4 1
mutually touching balls in the regular n—simplex of edgelength 2r spanned by their
centers. Following this line of argument, the constant p,, in Miyamoto’s volume bound
is given by the ratio of the volumes of certain truncated and regular hyperbolic simplices.
These volumes can be further related to the volumes of orthoschemes. In her thesis [9],
Kellerhals was able to explicitly estimate the latter volumes.

We now show that our results give a new proof of a linear bound for Vol(M). By
Theorem 6, either

Vol(M) > % log 3 Vol(dM )
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or
2mwe

(n—2)/(n—1)
2 (Vol(9M) ,

Vol(M) > 1hy
where /1, monotonically increases to 1. The first bound is linear and implies, for n odd,

Vol(M) > g log 3 V1.

To show that the second bound also gives us a linear lower bound in terms of V,,_{, we
note that, by Stirling’s approximation,

y, = (A Dr DR I (Zrey o1 (2mey”
I'(3n+3) V2in+1 V2 n
Therefore,
2 —2)/(n—1

Thus, for n odd, we have

Vol(M) > min(% log %, %hn)Vn—lv

proving Theorem 8.

This way we obtain another proof of a lower bound linear in V,,_; using different
methods. The answers are remarkably similar in spite of the different approaches. To
compare, our method gives a linear constant tending to % log % ~(.11453 and Miyamoto
and Kellerhals give a slightly better bound of 0.32326. It would be interesting to see if
there is any deeper relation between the two.

In conclusion, let us remark that it is widely believed that these bounds for volumes of
hyperbolic manifolds, as well as the Gauss—Bonnet bound in even dimensions, are far
from sharp. The sharp bounds are known for arithmetic orbifolds, and they imply good
bounds for arithmetic manifolds (see [3; 4]). These bounds grow superexponentially
fast with the dimension. It is not known if there exists a hyperbolic n—manifold whose
volume is less than the minimal volume of an arithmetic #—manifold.
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