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Cardiac Adipose Tissue Segmentation via
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Abstract— Automatically identifying the structural sub-
strates underlying cardiac abnormalities can potentially
provide real-time guidance for interventional procedures.
With the knowledge of cardiac tissue substrates, the treat-
ment of complex arrhythmias such as atrial fibrillation
and ventricular tachycardia can be further optimized by
detecting arrhythmia substrates to target for treatment (i.e.,
adipose) and identifying critical structures to avoid. Optical
coherence tomography (OCT) is a real-time imaging modal-
ity that aids in addressing this need. Existing approaches
for cardiac image analysis mainly rely on fully supervised
learning techniques, which suffer from the drawback of
workload on labor-intensive annotation process of pixel-
wise labeling. To lessen the need for pixel-wise labeling, we
develop a two-stage deep learning framework for cardiac
adipose tissue segmentation using image-level annotations
on OCT images of human cardiac substrates. In particu-
lar, we integrate class activation mapping with superpixel
segmentation to solve the sparse tissue seed challenge
raised in cardiac tissue segmentation. Our study bridges
the gap between the demand on automatic tissue analysis
and the lack of high-quality pixel-wise annotations. To the
best of our knowledge, this is the first study that attempts
to address cardiac tissue segmentation on OCT images
via weakly supervised learning techniques. Within an in-
vitro human cardiac OCT dataset, we demonstrate that
our weakly supervised approach on image-level annota-
tions achieves comparable performance as fully supervised
methods trained on pixel-wise annotations.

Index Terms— Optical coherence tomography, cardiac
tissue analysis, deep learning, image segmentation, weakly
supervised learning.
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CARDIOVASCULAR disease is the leading cause of death
in the United States, with atrial fibrillation alone affect-

ing at least 2.3 million people [29]. Treatment of complex
arrhythmias such as atrial fibrillation and ventricular tachycar-
dia is through catheter ablation, which directly destroys the
cardiac substrates that cause irregular impulse propagation.
However, this treatment is sub-optimal, due to the lack of
capability to accurately identify optimal ablation targets. With
the knowledge of patients’ heart structure, the ablation strategy
can be further optimized by avoiding critical structures and
identifying arrhythmia substrates, such as areas with increased
amounts of adipose tissues. Recent work has shown that an
increased amount of adipose tissues within the myocardium is
a substrate for cardiac arrhythmias [7], [8], [12], [46].

Optical coherence tomography (OCT) is a non-destructive
optical imaging modality that could provide an ideal balance
between a penetration depth of 2 mm with a resolution of 4-
10 µm [40]. Recent advances have demonstrated the capability
of OCT on capturing myocardial structures such as Purkinje
network [55], atrial ventricular nodes [20], sinoatrial nodes
[5], and myofiber organization [18]. In addition, it can be
used to resolve critical tissue substrates of arrhythmias, such
as fibrosis and adipose tissues [38]. With the development of
OCT-integrated catheters [14], OCT can image the heart wall
in real time through percutaneous access [51], which holds
promise to aid catheter ablation.

To benefit from the real-time capacity of OCT imaging,
analysis of OCT images is expected to be automated for timely
decision making. Evaluation of adipose tissue distribution
within a human atrial sample requires pixel-wise analysis of
large volumetric datasets [15]. Manually annotating adipose
tissues within a single OCT volumes can take a well-trained
annotator over 10 hours. Therefore, automated identification
of cardiac tissues, especially adipose tissue, in OCT images is
greatly needed.

Current automated analysis on cardiac OCT images is
mostly based on fully supervised learning models [22], [23],
[34]. These models were limited and suffered from the draw-
back of manual workload in the labeling process. To avoid
overfitting, a large amount of data is required to support
the model training. For segmentation tasks, the labeling pro-
cess is extremely time-consuming and has limited accuracy.
Moreover, OCT images are volumetric, adding an additional
challenge to labeling. Thus, automatic analysis with weakly
supervised learning models is of great interest.
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Fig. 1. Representative OCT images from cardiac dataset. Sample (A) is obtained from right ventricle. Sample (B) and sample (C) are obtained from
right atrium. Sample (D) is obtained from left atrium submerged in PBS solution. The features of adipose tissue present great variations among
different locations and imaging conditions. The unclear boundary and irregular shape of adipose tissues add unique challenges for automated
segmentation. Scale bar: 500 µm.

Although recent studies have conducted retinal OCT analy-
sis [52], [56], transferring OCT retinal segmentation to cardiac
solution for weakly supervised cardiac OCT segmentation is
still elusive for three reasons. First, cardiac adipose and fibrosis
tissues can appear in multiple sub-regions with irregular shapes
and infiltrating patterns. Thus, cardiac OCT images are more
complicated than retinal substrates with rather regular layered
structures. Second, boundaries between cardiac substrates are
more blurry than between the retinal layers. Third, cardiac
substrates have a larger variance among patients than retinal
tissues.

In this study, we present a weakly supervised learning
framework for cardiac tissue segmentation using image-level
labels. Our training approach has two stages, namely pseudo
label generation and segmentation network training. We first
use the class activation map (CAM) results obtained from
a binary classification network to generate adipose location
seeds. Then, we develop a superpixel-based segmentation
algorithm to generate pseudo labels followed by segmentation
training. Our contributions are as follows:
(1) We propose a weakly supervised learning framework for
cardiac tissue segmentation. Our model is trained without the
need of pre-training or domain adaptive learning.
(2) We combine CAM with superpixel segmentation to effec-
tively address the tissue segmentation challenges caused by
irregular shape and blurry boundary in cardiac OCT images.
(3) We evaluate our approach on a human cardiac dataset
and demonstrate that our weakly supervised model achieves
comparable performance with fully supervised algorithms.

II. RELATED WORK

Regarding tissue analysis on cardiac OCT images, [16]
imaged and analyzed features on dense collagen, loose col-
lagen, fibrotic myocardium, normal myocardium, and adipose

tissue for automatic classification. In [42], segmentation was
obtained from the variance map through compressive sensing
reconstruction. In [38], the distributions of adipose tissues
and fiber orientations were retracted and mapped throughout
human left atrium, while in [6], the visualization of car-
diac fibers in the atrium, ventricle, atrioventricular node, and
sinoatrial node were presented. Overall, conventional cardiac
OCT image analysis relies on handcrafted features for tissue
characterization or fiber orientation-based methods to focus on
myofibers.

Superpixel is a classic unsupervised segmentation method
that has been widely used in biomedical data analysis. Without
requirement on pre-annotated training sets, the superpixel
based methods group the pixels into homogeneous clusters
according to the similarity among pixels. [54] combined
superpixel with LogitBoost adaptive boosting to detect glau-
comatous damage in 3D OCT images. In [44], the superpixel
technique was applied to generate the flexible kernels of local
statistics on the Jones matrix-based polarization sensitive OCT.

Deep learning approaches have achieved great success in
OCT image segmentation tasks [19], [25], [32], [36], [41],
[43], [48]. [47] developed a fully convolutional network with
Gaussian process based post processing for retinal OCT seg-
mentation. [13] proposed a novel framework that combined a
hybrid convolutional neural network and graph search method
for retinal layer boundary detection. [4] developed a fully con-
volutional network-based AV-Net for artery-vein classification.
Their model contained a multi-modal training process that
involved both en-face OCT and optical coherence tomography
angiography (OCTA) to provide the intensity and geometric
profiles. [23] trained a fully supervised segmentation network
for cardiac tissue segmentation and used model uncertainty
to estimate tissue heterogeneity. Existing work mainly relies
upon fully supervised learning techniques.
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Fig. 2. Algorithm training flow of the proposed weakly supervised segmentation approach. The framework consists of two separate modules, namely
pseudo label generation and segmentation network training. In pseudo label generation module, pixel-wise pseudo annotations are generated by
the integration of CAM and superpixel methods. In segmentation network training module, a segmentation network is trained on the pseudo labels
with a novel loss function.

In contrast to fully supervised methods, weakly supervised
approaches use higher level labels including scribbles [26],
[35], bounding boxes [28], [53], and image-level labels [52]
to guide the pixel-level segmentation training process. [52]
successfully segmented lesions by calculating the differences
between the input abnormal images and normal-like retinal
OCT images from a CycleGAN model. [56] employed a few
shot learning technique for retinal disease classification and
applied a GAN to enrich normal OCT images with OCT
images of rare diseases. [27] proposed a Noise2Noise [33]
based weakly supervised learning model for OCTA image
reconstruction task.

The image-level label is the most convenient and easiest
supervision among all weak annotations, as it does not require
any detailed annotations in the input images. As a result, it
cannot be directly used for segmentation guidance, due to the
lack of location clues for the target tissues. By generating the
initial location seeds, CAM [58] provides a practical solution
to solve this issue, and thus has been widely adopted as the
first step of weakly supervised learning frameworks. [10], [21],
[57]. [57] developed an end-to-end approach named reliable
region mining for weakly supervised semantic segmentation.
Combined with CAM, their model applied additional condi-
tional random field operation to get reliable object regions.
In [10], a boundary exploration based segmentation approach
was proposed to explore object boundaries in the segmentation
training process. Researchers in [21] deployed an iterative
learning framework to gradually expand the seeded regions.

III. PROBLEM ANALYSIS

Our study is conducted on a cardiac dataset that was
acquired from 44 human hearts with a median age of 62 years.
The dataset contains both healthy hearts, end-stage heart fail-
ure, atrial fibrillation, coronary heart disease, cardiomyopathy,
and myocardial infarction. A detailed clinical characteristic is
presented in Section V-A. These various disease conditions

might alter the visual features of cardiac substrates, raising
the following unique challenges on the algorithm design:

In-depth image and focal plane. OCT provides in-depth
cross-sectional images in which the x-axis and y-axis are not
interchangeable. The signal intensity decreases with increasing
axial (depth) distance due to light attenuation as it travels in
the tissue. In addition to the depth, the signal intensity is also
affected by the system optics and configuration. The optical
focus, corresponding to one depth (horizontal row of pixels),
will have a higher intensity than regions deeper within the
image. As a result, noise distribution within a 2D image is
not uniformly distributed.

Various features and irregular shapes. As shown in Fig. 1,
adipose regions present great variations among cardiac OCT
images from human donors with cardiovascular disease due
to heterogeneous heart remodeling. In Fig. 1 (A), intra-scan
inconsistency can be clearly observed in the two sub-regions.
Meanwhile, in comparison with Fig. 1 (B), the size of fat
cells in Fig. 1 (A) is much smaller and the number of fat cells
is larger, as indicated in the histology images. In addition,
the distance to the endocardium tissue can also affect tissue
appearance. Adipose tissues in Fig. 1 (C) are deeper in the
myocardium and appear darker and blurrier than in Fig. 1
(B). Finally, the features and shapes can be further impacted
by experimental conditions. In Fig. 1 (D), the OCT image
was obtained from tissues submerged in phosphate buffered
saline (PBS). In this sample, the adipose tissues have very low
contrast with the surrounding normal tissues. Thus, algorithms
relying on shape constraints or boundary exploration cannot
be easily extended to this task.

Similar pattern among adipose tissue and noise. Im-
age noise and artifacts are inevitable during the acquisi-
tion process. Features of adipose tissue are very similar to
those of speckle noise and artifacts. To avoid over-smoothing
the adipose regions, we do not deploy any image registra-
tion/denoising algorithm.
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Data imbalance and limited training data. In human
cardiac samples, the majority of regions are normal tissues,
such as myocardium and endocardium, rather than targeted
adipose tissues. In our dataset, only around 11% OCT images
show visible clusters of adipose tissues. At the pixel level,
pixels belonging to adipose tissues only account for 2.6% of
the total pixels to label. Even for images that contain adipose
tissues, the ratio of number of adipose-related pixels over the
total number of pixels is very small. Hence, the samples that
are informative for model training are very limited.

Mathematical modeling. Let X = {Xi; i = 1, . . . , N} de-
note the set of images. For each image Xi ∈ X (i = 1, . . . , N ),
the image-level annotation yi ∈ {0, 1} indicates whether or
not Xi contains the adipose tissues. The training data is
denoted by Dtr = {(Xi, yi); i = 1, . . . , N ′}, which consists
of N ′ images X1, . . . , XN ′ with corresponding image-level
annotations y1, . . . , yN ′ . Let X ′ = {Xi; i = 1, . . . , N ′}.
The goal of our approach is to build a segmentation network
fseg(X; θ) with network parameters θ, so that it can generate
the pixel-wise segmentation masks Pred, which has binary
label Pred(ω) at each pixel position ω in X .

IV. METHODOLOGY

In this paper, we propose a weakly supervised learning
framework for cardiac tissue segmentation tasks. Fig. 2 shows
the pipeline of our proposed framework. As shown, our
training approach consists of two major stages: pseudo label
generation and segmentation network training. The pseudo
label generation module is formed by two components: we
first apply the CAM approach to generate initial adipose
seeds and then we use superpixel-base segmentation method
to propagate the adipose seeds into pseudo pixel-wise labels.
A detailed pseudo algorithm for the pseudo label generation
module is listed in Algorithm 1. In the segmentation module,
we introduce a novel loss function with a special focus on the
adipose seed regions to increase the detection performance of
our segmentation network. The proposed method addresses the
issue of great variation among adipose tissues for two reasons.
First, the proposed method relaxes a predicting precise irreg-
ular boundary issue to a rough localization of adipose seed
issue using CAM. Without the need of prior knowledge, the
CAM can be used to indicate the location of potential adipose
tissues. Second, we determine the actual boundary of detected
adipose using an unsupervised way, superpixel segmentation,
thus bypassing the challenge of learning from large amounts
of adipose regions with great boundary variation.

A. Pseudo Label Generation

1) CAM-based seed localization: The first stage of our
model is to find reliable adipose seeds to indicate the location
of adipose tissues. We follow the learning steps in [58] to get
the initial CAM to indicate the location of adipose regions.
To identify the extent of target tissue regions, we employ the
global average pooling (GAP) layer to the last convolution
layer of the classification network. The final prediction of the
network is classified by a fully connected layer. After model

Algorithm 1: Algorithm Framework for Pseudo Label
Generation Module
Input: Training dataset X = {X1, X2, ..., Xn} with
image-level labels Y = {y1, y2, ..., yn};

Output: Pixel-wises pseudo labels.
Procedure:
Step 1: Train localization network from X and Y .
Step 2: Apply the CAM method to generate the initial
tissue seed results C = {c1, c2, ..., cn}.

Step 3: Apply the boundary masking on C and get
updated tissue seeds Ĉ.

Step 4: Apply superpixel-based propagation method on
Ĉ to generate the initial pseudo segmentation labels S .

Step 5: Update S with the spatial regularisation
strategy and get the final pseudo segmentation labels
Ŝ .

training, the CAM results for the adipose tissues are obtained
as follows:

Madipose(ω) =
∑
j

µjfj(ω)

where fj(ω) is the activation of unit j in the last convolutional
layer at spatial location ω and µj is the weight corresponding
to the adipose tissue for unit j.

The class activation maps have strong responses on regions
with artifacts and high-intensity noise. To increase the reliabil-
ity of pseudo label generation, we apply a boundary masking
algorithm on the class activation maps to filter out adipose
seeds that are located in the background regions (false positive
caused by noise) and regions close to the tissue-background
boundary (false positive caused by artifacts). We adopt the
cardiac layer segmentation algorithm from [16] and use the
boundary of the top generated layer as the tissue-background
interface. After getting the tissue surface, we remove adipose
seeds above or close to the tissue-background boundary.

2) Superpixel-based seed propagation: Superpixels are gen-
erated as in [2] with an approximate number of superpixels
as 2000. An entire superpixel is labeled as adipose tissue
if one of its inner pixels is labeled as adipose tissue. Upon
the generation of superpixels, the initial segmentation pseudo
labels can be further improved to eliminate the following
two misclassifications: 1) The adipose seeds may omit some
adipose regions, and 2) the adipose seeds may incorrectly mark
the normal regions as the adipose regions, due to the artifacts
and intensity noise. To further remove the noisy annotations,
we apply the Markov spatial regularization strategy [19] to add
the ignored regions and remove the noisy adipose superpixels
which only contain the normal tissues. Since the adipose cells
are clustered in the cardiac tissue, the neighbors of an adipose
region are more likely to belong to the adipose tissue clan,
while small isolated adipose superpixels are more likely to
be the normal regions corrupted by noise. Based on these
criteria, we develop a simple yet effective spatial regularisation
strategy: the label of a superpixel will be updated if most of
its neighbors (≥ 80%) belong to another class.
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B. Segmentation Network Training

Adipose tissues are sparse compared with normal tissues,
such as myocardium and endocardium. Without special con-
sideration, the segmentation performance might be severely
limited due to data imbalance. To overcome this challenge,
we use an adipose seed loss, inspired by [31], to optimize our
segmentation network. In comparison with the original form of
seed loss in [31], our adipose seed loss function only focuses
on the regions of target tissues while the background regions
are omitted. The final outputs of our segmentation network are
pixel-wise segmented adipose location results.

We first introduce the loss function. Let pk(ω) denote the
network output probability for class k at the pixel position
ω ∈ Ω with Ω ⊂ R2 and sk(ω) denote the pseudo-pixel-wise
label where k ∈ {0, 1}. The cross-entropy loss (CEL) and
adipose seed loss (ASL) is defined as follows:

CEL = − 1

|Ω|
∑
ω∈Ω

1∑
k=0

sk(ω) log(pk(ω)) (1)

ASL = − 1

|Ω1|
∑
ω∈Ω1

s1(ω) log(p1(ω)) (2)

where Ω1 = {ω ∈ Ω : s1(ω) = 1} is the set of spatial
locations that are pseudo-labeled with class 1 (i.e., the adi-
pose class). Compared with the CEL (Equation 1), the ASL
(Equation 2) only focuses on the regions of adipose tissue,
and thus, it helps to reduce the impact of the false negatives
in the pseudo segmentation labels.

We also use Dice loss (DL) in our loss function to learn the
context information. The DL is defined as:

DL = 1− 1
2

1∑
k=0

2
∑

ω∈Ω

(pk(ω)sk(ω))∑
ω∈Ω

(pk(ω))2+
∑

ω∈Ω

(sk(ω))2 (3)

Finally, our segmentation network fseg(X; θ) is jointly opti-
mized by the combination of CEL, ASL, and DL:

Loss = α1 · CEL+ (1− α1) ·ASL+ α2DL (4)

where α1 and α2 are weight hyper-parameters. The sum of
CEL and ASL is equivalent to a weighted loss. For better
understanding, we use the form in Equation 4 to separate the
weight of CEL and ASL.

V. EXPERIMENT EVALUATION

A. Dataset

We evaluate the performance of our proposed model on the
human cardiac dataset previously used in [15]. It consists of
in-vitro cohort of 385 images taken from 44 human atria and
ventricles using the Thorlabs OCT system. The samples were
acquired through a National Disease Research Interchange
approved protocol from Columbia University. All specimens
were de-identified and considered not human subjects research,
according to the Columbia University Institutional Review
Board under 45 CFR 46. Table I presents the clinical charac-
teristic of the human donor hearts. A detailed feature analysis
study among different group of people was presented in [39].
The source of the Thorlabs OCT system was centered at

TABLE I
CLINICAL CHARACTERISTICS OF HEART DONORS

Characteristic Value
N 44
Demographic profile

Age in years, median (average) 62 (62.2)
Female, n (%) 20 (45.5)

Medical history, n (%)
Heart failure 10 (22.7)
Cardiomyopathy 8 (18.2)
Coronary artery disease 11 (25.0)
Myocardial infarction 10 (22.7)
Atrial fibrillation 3 (6.8)
Chronic obstructive pulmonary disease 16 (36.4)
Diabetes 17 (38.6)
Hypertension 27 (61.4)

Cause of death, n (%)
Cardiac arrest 18 (40.9)
Cardiopulmonary arrest 2 (4.5)
Respiratory failure 5 (11.4)
Chronic obstructive pulmonary disease 1 (2.27)
Congestive heart failure 1 (2.27)
Others, cardiac related 11 (25.0)
Others, not cardiac related 6 (13.6)

1325 nm with a bandwidth of 150 nm. The axial and lateral
resolutions were 6.5 and 15 µm in air, respectively. All datasets
were acquired at 28 kHz. Each OCT image is of size 512 ×
800 pixels with a field of view of 2.51 mm × 4 mm. We
crop the images into small overlapping patches with size of
512 × 128 pixels. Three experts, blinded to the algorithm
design, annotate the OCT images under the guidance from a
pathologist. All images are carefully annotated at pixel level
with visual cron-check on corresponding histology images.
Our evaluation is conducted on a five-fold cross validation
strategy with validation sets randomly divided over human
subjects.

B. Implementation Details
Seed localization network. To avoid overfitting, we only

train a localization network with three hidden layers for
adipose tissue seed generation. We use the ReLU function
as the activation function. The number of channels in each
hidden layer is 32, 32, and 64. We applied the GAP layer
to the last convolutional layer to learn the cluster pattern of
adipose tissues. The output of the GAP layer is classified
with a fully connected layer. The digital resolution of output
CAM drops down to 1

4 of original digital resolution after
passing through the localization network. The networks are
optimized on cross entropy loss via Adam optimizer [30]
with random Glorot uniform initialization [17]. The batch size
used for training is 16. Over the cross validation sets, all
networks converged within 300 epochs with a learning rate of
1e−3. After normalizing, the background threshold in CAM
generation is 0.15.

Segmentation network. We employ the classic medical
segmentation network UNet [49] as the baseline of our learn-
ing framework. In the loss function (Equation 4), the hyper-
parameter α2 is 0.5 while α1 ∈ [0, 1] is determined by the
proportion of adipose tissues in the training set: α1 = 1 if the
ratio of adipose images is less than 5%. Otherwise, α1 =
0.5. All segmentation networks were randomly initialized
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Fig. 3. Comparison of tissue seeds before and after the boundary
masking algorithm. Red: the detected tissue-background boundaries;
blue: accurately annotated adipose seeds; green: false positives. As
shown, the boundary masking algorithm can effectively remove the false
positive adipose seeds caused by the artifacts and noise. Benefiting
from it, the adipose seeds are more precise to be propagated for
segmentation guidance. Scale bar: 500 µm.

Fig. 4. The tissue seed results in samples with different adipose
features. Sample (A) is obtained from the left atrium. The highlighted
regions in sample (A) are two regions with different focal statuses. The
red box is within the focal plane while the green box is out of focus.
Sample (B) is obtained from the right ventricle. The highlighted regions
in sample (B) are with different tissue structures. The orange box is with
multiple small fat cells while the yellow box is with a few big fat cells.
Scale bar: 500 µm.

and converged within 200 epochs with a learning rate of
0.1−3, batch size 32, and weight decay 10−4. Our study is
based on the Keras [11] and TensorFlow [1] deep learning
frameworks. All experiments are conducted on a computer
with the following features: an Intel core i9-9900K (16M
Cache, up to 5.00 GHz) CPU and a RTX 2080 Ti GPU.
The number of training images in a cross-validation set is
around 300 images, with a size of 512 × 800 pixels. In
the preprocessing stage, the training images were cropped
into around 1800 overlapping patches (512 × 128 pixels)
to enrich the training size. The total execution time for a
single trial, which includes the following steps: preprocessing,

Fig. 5. Comparison of pseudo labels with and without the spatial
regularisation strategy. Blue: accurately annotated adipose pixels; red:
false negatives. The spatial regularisation strategy helps to correct the
mis-labeled pseudo labels by using the context information from nearby
regions. After applying it, the false negatives have been significantly
reduced. Scale bar: 500 µm.

TABLE II
EVALUATION METRICS (%) OF ADIPOSE TISSUE SEEDS BEFORE AND

AFTER THE BOUNDARY MASKING ALGORITHM.

Before After
Accuracy 80.79 ± 1.15 83.91 ± 2.45
Precision 56.43 ± 11.95 75.90 ± 8.18

classification network training, generation of pseudo labels,
and segmentation network training, is less than 3 hours.

C. Evaluation Metrics

In our experiment, we use accuracy and precision to evaluate
the overall accuracy and the detection performance of adipose
seed results. For pseudo label generation and segmentation
evaluation, we use true positive rate (detection rate), false
positive rate, and Dice coefficient (F1 score) to evaluate the
tissue segmentation performance.

D. Evaluation of Pseudo Label Generation

Adipose tissue seed localization. The binary accuracy
for our proposed localization network achieves very stable
performance on all validation sets. Figure 3 presents two repre-
sentative adipose seed results generated from our localization
network. In Fig. 3, the detected tissue-background boundary
is delineated in red, and the accurately located adipose seeds
are marked in blue, with misclassified adipose seeds marked
in green. As seen, the boundary masking algorithm can
effectively remove the misclassified edges and background
noise from the original adipose seed results. Meanwhile, these
results also demonstrate the capability of recognizing various
types of adipose features using our proposed network. In the
lower-left region of Fig. 3 (A) and lower region of Fig. 3 (B),
the adipose region is out-of-focus, and the wall of adipose
cells is not distinctive. In the majority of parts of Fig. 3 (B),
the adipose regions are in focus and appear in the honeycomb
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TABLE III
EVALUATION METRICS (%) ON TISSUE PSEUDO LABELS BEFORE AND AFTER THE SPATIAL REGULARISATION ON ADIPOSE SAMPLES.

Method True Positive Rate False Positive Rate Dice Coefficient
Superpixel 71.17 ± 6.36 10.03 ± 2.87 67.09 ± 2.96

Superpixel + Spatial regularisation 71.77 ± 6.72 8.33 ± 2.90 69.70 ± 3.34

TABLE IV
EVALUATION METRICS (%) ON PSEUDO LABELS GENERATED FROM DIFFERENT MODELS ON ADIPOSE SAMPLES.

Model Precision True Positive Rate (%) False Positive Rate (%) Dice Coefficient (%)
Deeper Model 0.93 ± 0.08 64.13 ± 10.76 5.38 ± 0.97 68.29 ± 7.18
Wider Model 0.92 ± 0.07 63.78 ± 3.98 5.31 ± 1.50 68.87 ± 1.59

Proposed 0.93 ± 0.06 71.77 ± 6.72 8.33 ± 2.90 69.70 ± 3.34

TABLE V
EVALUATION METRICS (%) OF DIFFERENT MODELS ON WHOLE DATASET. EXCEPT FULLY SUPERVISED METHOD, THE BEST AND SECOND BEST

PERFORMANCE ARE MARKED IN RED AND BLUE CORRESPONDINGLY.

Method True Positive Rate False Positive Rate Dice Coefficient
Fully supervised baseline U-Net 82.32 ± 5.69 0.99 ± 0.90 81.57 ± 5.71

Weakly supervised baseline RRM 76.00 ± 16.36 5.44 ± 2.70 40.39 ± 9.01
CycleGAN 55.19 ± 17.46 7.23 ± 6.44 64.14 ± 17.21

Proposed framework
U-Net 85.52 ± 5.44 1.35 ± 0.74 72.11 ± 10.12
FCN 87.77 ± 1.01 1.49 ± 0.85 72.14 ± 8.94

DeepLab 80.22 ± 4.18 1.45 ± 0.84 67.83 ± 11.25

Ablation study

w/o Boundary masking 72.59 ± 8.46 1.37 ± 1.09 70.91 ± 16.95
w/o Spatial regularisation 77.84 ± 5.67 1.21 ± 1.08 70.77 ± 12.54

Adipose seed loss + Dice loss 87.62 ± 8.79 2.24 ± 0.72 64.15 ± 9.82
CE loss + Dice loss 74.04 ± 15.25 0.77 ± 0.30 74.99 ± 14.72

Fig. 6. Impact of the number of superpixels on pseudo label quality.
The quality of pseudo labels only has slight variance on the evaluation
metrics (Dice coefficient, true positive rate, and false positive rate)
among different K values, which indicates the robustness of our model
on pseudo label generation.

structures. These adipose regions are correctly identified using
our proposed approach. In Table II, we report the accuracy and
precision of adipose seeds before and after boundary masking.
As shown, both accuracy and precision are improved after
applying the boundary masking algorithm. In particular, the
precision of adipose seeds has been significantly increased by
approximately 20%, which further demonstrates the effective-
ness of boundary masking on accuracy improvement.

In Fig. 4, we show two representative samples that were
obtained from different chambers. In each sample, the adi-
pose tissues are located in multiple regions with different
appearances. As shown, our model can successfully localize
the adipose tissue in a single sample with different adipose
appearances. These results indicate that our model is able to

solve the various feature challenges described in Section III.
Pseudo label generation. Figure 5 shows two superpixel

segmentation results with accurately segmented pixels marked
in blue and false negatives marked in red. In Table III, we
provide a quantitative evaluation of our spatial regularisation
strategy on samples with adipose tissues. There is an increase
of 2% in Dice coefficient after applying it.

Localization network architecture. To avoid overfitting,
we apply a small localization network with 32, 32, and 64
channels on CAM generation. To learn the impact of network
architecture on pseudo label generation, we conduct sensitivity
analysis on models with more parameters: a deeper network
with 32, 32, 32, and 64 channels and a wider network with
64, 64, and 64 channels in corresponding convolutional layers.
Table IV presents the evaluation metrics on pseudo labels
generated from different networks over the adipose samples.
The quality of pseudo labels from deeper and wider networks
is slightly worse than our proposed network. This discrepancy
is probably caused by the noise and artifacts in the OCT
images, as these large models might overfit to some non-robust
features [24].

Sensitivity analysis on the number of superpixels.
The number of superpixels K is the most important
hyperparameter in the pseudo label generation module, with
larger K values leading to smaller sizes of superpixels. To
learn the impact of K on pseudo label quality, we report
the evaluation metrics of pseudo labels with different K
values in Fig. 6. Along with increased K values, the true
positive rate slightly decreases while the false positive rate is
improved. Thus, we empirically set K = 2000 to balance the
true positive rate and false positive rate in our study.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3263838

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

Fig. 7. Representative segmentation results from human atrium and ventricle samples. Our proposed approach accurately identifies the adipose
tissues located at different regions with various sizes and shapes. All prediction results are highly consistent with the ground truth labels. Scale bar:
500 µm

E. Evaluation of segmentation performance

1) Cross Validation Experiments: We use fully supervised
models trained from pixel-wise accurate segmentation masks
as the baseline for comparison. Table V summarizes the
averaged results and the standard deviation of our proposed
weakly supervised approach and fully supervised baselines.
To fully evaluate our model, we report the results calculated
from all samples.

Weakly supervised learning vs fully supervised learning.
Our weakly supervised model, trained from image-level labels,
achieves comparable quality results to the fully supervised
model that trained on pixel-wise labels. In addition, our dataset
was acquired within a time frame that spanned over five
years. During this time frame, imaging setup, such as sample
freshness, imaging condition, and tissue preparation, varied
among experiments. Thus, our results also demonstrate the
generalization ability of our model against imaging condition
variance, showing its strong potential on real-world clinical
applications.

Comparison with different segmentation models. In
addition to the classic UNet model, we also evaluate the
performance of our approach with other state-of-the-art seg-
mentation models including DeepLab V3 [9] and FCN [37].
The evaluation metrics of these models are shown in Table
V. As shown, all models achieve comparable results (true
positive rate>0.80, false positive rate<1.5 over all samples),
which indicates the genericity of our framework on weakly
supervised tissue identification.

Comparison with existing weakly supervised learning

framework. We compared our method with two existing
weakly supervised learning frameworks: reliable region min-
ing (RRM) [57] and CycleGAN [52]. As shown in Table V,
our methods generally produce a higher true positive rate and
a lower false positive rate than RRM and cycleGAN, indepen-
dent of segmentation models (i.e., U-Net, FCN, and DeepLab).
RRM is based on the concept of conditional random field
(CRF). CRF was originally designed for natural images where
the boundary of objects was with high contrast, and pixel-
wised affinity could be calculated accordingly. However, the
blurry boundary of adipose regions within OCT images can
add additional challenges in tissue segmentation and thus lead
to lower performance of RRM. In contrast, the combination
of superpixel design and Markov regularization can contribute
to addressing the unique challenges that adipose and speckle
noise happen to be similar.

Our approach also achieves higher performance than the
CycleGAN-based method [52], which relies heavily on spatial
constraints. In our problem setting, the adipose tissue could ap-
pear in any region under the endocardium. The morphological
change is significant compared to those within retinal images
[52]. Furthermore, their model detected the bottom layer
(RPE) of the retina to avoid the interruption of background
noise. However, in the cardiac OCT dataset, there does exist
a distinctive bottom layer to avoid background noise.

Although the adipose tissues and the noise are similar on
pixel-wise, they are different on cluster-wise. The walls of
adipose cells can be differentiated from the background when
the adipose regions are close to the endocardial surface (first
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Fig. 8. The prediction results of images obtained from nearby regions.
Our approach successfully pinpoints the adipose tissues from other
tissue types, showing its strong identification ability on adipose tissues.
Scale bar: 500 µm.

layer). As the location of adipose regions appears deeper
within the tissue, within the OCT image, it is farther from
the focus and thus is blurred and has a lower contrast with
the background. The superpixel, as a basic unit, carries more
regional information than a single pixel, thus showing promise
to distinguish the adipose and noise. In addition, the use of
Markov spatial regularization could also help to filter isolated
noise by removing noise if the majorities are non-adipose
regions and expanding regions if the majorities are adipose
regions.

Ablation study. Performance drops are observed in Table
V when the boundary masking algorithm and spatial regular-
isation strategy are removed. In particular, after removing the
boundary masking algorithm, the true positive rate is severely
decreased along with an increased standard deviation. This
result indicates the necessity of using a boundary masking
algorithm to improve adipose seed quality at the early stage of
pseudo-label generation. In comparison with the false positive
rate, the true positive rate has notable changes after applying
the spatial regularisation, which shows its effectiveness in false
negative correction.

We further conduct experiments to assess the influence of
different loss functions in our proposed model. As shown in
the last four rows of Table V, our model which is optimized
with adipose seed loss and Dice loss achieves the best true
positive rate, while the version without adipose seed loss (CE
loss and Dice loss), achieves the best false positive rate in
ablation study. The use of seed loss can notably increase
the model detection performance but meanwhile, hinder the
false positive rate. In contrast, the cross entropy loss is more
efficient in controlling the false alarms. These results show
that the use of seed loss can efficiently reduce the impact of
false negatives in the pseudo labels. This detection rate and

false alarm trade-off can be balanced through adjusting the
weights of seed loss and cross entropy loss.

2) Representative Segmentation Results: In this section, we
present the visual output of our proposed weakly supervised
model in overall performance, small adipose tissue region
detection, and 3D segmentation.

Overall performance. Figure 7 shows the predicted tissue
maps on four human cardiac samples. In Fig. 7 (A) and (B),
our model accurately localizes the adipose tissue regions in
arbitrary shapes. Meanwhile, in Fig. 7 (A), we can also observe
the over-segmented regions (regions at the left corner) in the
ground truth figure. Human annotators tend to over-segment
the regions below the penetration depth, while for the network,
it may identify these regions as non-adipose tissues because of
the low signal-to-noise ratio. This over-segmentation tendency
can lead to decreased values in evaluation metrics. In Fig. 7
(C), our model successfully identifies the adipose tissues in
the multiple regions with different penetration depths. In Fig.
7 (D), we show a human atrium sample that is slightly off the
focus. Similar to previous results, our models still accurately
differentiate the adipose tissues from other tissues, showing
their robustness over different image qualities. In all cases,
the predicted results are highly consistent with the ground
truth labels. These results demonstrate the learning ability of
our model via image-level labels, showing its effectiveness in
clinical tissue identification.

Identifying small adipose tissue regions. Figure 8 presents
two images obtained from nearby regions within the same
human heart. As shown, Fig. 8 (A) and (B) are very similar and
they all contain large regions of fibrosis tissue. However, in
Fig. 8 (A), there is a small cluster of adipose tissue surrounded
by the fibrosis tissues, while in Fig. 8 (B), there is no adipose
tissue. As shown, this is a very challenging segmentation task
due to the size of adipose tissue and the blurry boundary
between different tissue types. Our model accurately delineates
the adipose tissue regions in Fig. 8 (A) and it does not put any
false alarm in Fig. 8 (B). In both cases, our model successfully
distinguishes adipose tissues from other cardiac substrates.
These results further demonstrate the strong learning ability of
our model, as it can learn the most discriminative features via
image-level labels, rather than simply memorizing the training
samples.

Visualization of 3D segmentation. Figure 9 shows a typical
result of 3D visualization of adipose tissue segmentation. We
sequentially apply the trained network to segment consecutive
Bscans and align segmented Bscans in 3D space. As shown,
the segmented boundaries accurately delineate the morpholog-
ical changes in the adipose tissues. Even though our model is
trained on a small quantity of training data with image-level
labels, it still successfully segments adipose regions of various
sizes. These results indicate that our model has great potential
to be applied to assess adipose tissue regions in catheter-based
ablation operations.

VI. DISCUSSION

In this study, we propose a weakly supervised learning
framework for cardiac adipose tissue segmentation on OCT
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Fig. 9. 3D visualization of adipose tissue segmentation. (A): the original OCT volume; (B): the original volume overlaid with segmented adipose
regions; (C): the segmented adipose regions from proposed approach. The segmented boundaries accurately delineate the morphological changes
in adipose shape.

images. Our approach contains two powerful modules: the
pseudo label generation and the segmentation network train-
ing. In the pseudo label generation module, we use the
superpixel-based propagation algorithm to address the sparse
location seed challenge raised in the CAM results. Benefiting
from our boundary masking algorithm and spatial regularisa-
tion strategy, the quality of the pseudo labels has been signifi-
cantly improved for the training guidance. In the segmentation
network training module, we introduce a novel loss function to
increase adipose tissue detection performance. By evaluating
on a human cardiac dataset with cross-validation strategy, our
model achieves comparable results with the fully supervised
baseline, showing its effectiveness on tissue characterization.

Our study can provide valuable detail on adipose dis-
tribution within myocardium regions, holding promise to
improve cardiac therapies including ablation procedure and
endomyocardial biopsy. Previous research has shown that the
accumulation of adipose tissue in ventricular myocardium
is associated with severe cardiac arrhythmias such as left
ventricular tachycardia and arrhythmogenic right ventricular
cardiomyopathy. By pointing out the location of abnormalities,
our study could directly improve the radiofrequency ablation
treatment, reducing the risk of treatment recurrence and com-
plications. In addition, the knowledge of adipose distribution
could also provide referral suggestions on ablation parameters
for lesion formation, as the biophysical properties are various
among different tissue types. Moreover, our approach also
holds promise to be extended for weakly supervised segmen-
tation of adipose tissue in other applications, such as adipose
detection in breast cancer classification.

Previous research has shown that the accumulation of adi-
pose tissue in the ventricular myocardium is a substrate for
cardiac arrhythmias, which is associated with left ventricular
tachycardia and arrhythmogenic right ventricular cardiomy-
opathy. Additionally, about 75% to 80% of cases of sudden
cardiac death are caused by ventricular arrhythmias, and over
80,000 people are detected with supraventricular tachycardia
annually [29], [45]. However, there are no existing methods for
real-time image guidance of ablation procedures, to the best
of our knowledge. Current guidance of ablation procedures
is through the measurement of electrograms. Low voltage
measurements can be due to increased amounts of collagen
(scar or fibrosis) or adipose. Knowledge of the substrate will

provide the necessary feedback to determine how to interpret
functional measurements. Future OCT-enabled assessment of
the presence of adipose (true positive rate) will provide a valu-
able addition to an electrophysiologist’s toolbox for treating
cardiac arrhythmias.

Similar to the experiments in RRM, we notice that other
weakly supervised methods that were originally developed in
computer vision might not be easily applied to our unique OCT
task. For instance, SEC [31] is a CRF-based method. Note
that the CRF-based method is originally designed for natural
images where the boundary of objects is high contrast and
continuous. However, some adipose regions in OCT images do
not satisfy this condition, especially when the adipose cells are
in out-of-focus regions. Likewise, the pairwise affinity-based
IRN [3] approach is also hard to handle such subtle feature
variation challenges in OCT adipose images. In addition, the
IRN framework relies upon multiple instances of CAM, where
each object is considered as a single subject for instance
segmentation. Such design cannot be easily integrated with
adipose tissue which shows a sparse distribution within the
myocardium (shown in Fig. 3), as this sparsity could lead to
over hundreds of instances in a single OCT image. Moreover,
erasing-based methods [50] could not be applied to our prob-
lem setting as normal tissue can be likely removed with fat
cells due to the blurry boundary of the adipose region.

One limitation of this study is that the results are evaluated
on a benchtop OCT system. To move towards the aid of abla-
tion procedures, a catheter-based OCT system is needed, as it
can help to optimize the treatment strategy by providing real-
time cardiac substrate information. In the future, we will ex-
tend our current work into catheter-based in-vivo OCT images.
Such extension will require further investigation of challenges
such as image quality degeneration and motion disturbance.
Compared with benchtop OCT images, catheter-based OCT
images are with lower image quality, suffering from lower
contrast and motion effects. Without special consideration, the
decreased image contrast may hinder the performance of the
model. Motion disturbance caused by breath and heartbeat
is another important factor that could lead to performance
degradation. These disturbances could be partially corrected
by applying low-pass filters. In the future, we will also extend
our proposed weakly supervised framework to other OCT
segmentation tasks, such as breast images and retinal images.
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Moreover, the segmentation performance is limited by the
generated pseudo labels. In the future, we will explore the
direction of semi-supervised learning if a separate set of pixel-
wise labels is available for training.

VII. CONCLUSION

In this paper, we propose the first weakly supervised
learning framework for adipose tissue segmentation in human
cardiac OCT images. We design a novel CAM-superpixel
segmentation approach that converts the sparse CAM results
into pseudo-pixel-wise labels for training. In addition, we
also present and analyze the necessity and effectiveness of
proposed steps and loss functions. Experimental results on the
human cardiac dataset demonstrate that our model achieves
comparable performance with models trained under full masks,
showing the learning capability of our proposed model on
image-level labels.

In the future, we will extend our work in the following
aspects. First, we will evaluate the performance of our current
work into catheter-based in-vivo OCT images or synthetic
in-vivo OCT images generated by generative models and
image kernels. Second, we will validate the effectiveness of
our model on other OCT segmentation tasks to open up
opportunities for broader applications.
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