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We show that bilayer graphene in the presence of a 2D superlattice potential provides a highly tunable
setup that can realize a variety of flat band phenomena. We focus on two regimes: (i) topological flat bands
with nonzero Chern numbers, C, including bands with higher Chern numbers |C| > 1 and (ii) an
unprecedented phase consisting of a stack of nearly perfect flat bands with C = 0. For realistic values of the
potential and superlattice periodicity, this stack can span nearly 100 meV, encompassing nearly all of the
low-energy spectrum. We further show that in the topological regime, the topological flat band has a
favorable band geometry for realizing a fractional Chern insulator (FCI) and use exact diagonalization to
show that the FCI is in fact the ground state at 1/3 filling. Our results provide a realistic guide for future
experiments to realize a new platform for flat band phenomena.
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Introduction.—Moiré heterostructures have attracted
tremendous interest in recent years, exhibiting a wide
variety of phases driven by electron correlations, including
superconductivity [1-3], Chern insulators [3-7], Mott
insulators [8—10], and Wigner crystals [11]. Underlying
the emergence of these phenomena are flat bands. While
flat bands were theoretically predicted in twisted bilayer
graphene (TBLG) over a decade ago [12,13], seminal
experiments [1,8] showing correlated insulators and super-
conductivity in magic-angle TBLG ignited a search for flat
bands in a variety of systems. In quick succession, new
twisted graphene heterostructures entered the scene, such
as twisted trilayer and double bilayer graphene [14-22].
Twisted heterostructures beyond graphene include transition
metal dichalcogenides [9-11,23-33], magnets [34-36],
nodal superconductors [37-39], and topological surface
states [40—43].

However, while twisted heterostructures realize a variety
of correlated phases on demand, they are not a panacea.
Twist angle introduces disorder in the form of inhomog-
enous angle and strain. Devices are further complicated by
domain formation, lattice relaxation, and the impact of the
substrate. Combined, these factors severely hinder sample
reproducibility [44].

Thus, it is desirable to explore alternative platforms to
realize flat bands and moiré physics. From an electronic
structure perspective, the main effect of a twisted moiré
heterostructure is to introduce both interlayer tunneling and
interlayer potentials on the moiré length scale. The latter
can be reproduced by imposing a spatially modulated
electric field, which has already been realized on monolayer
graphene by inserting a patterned dielectric superlattice
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between the gate and the sample, with a periodicity as
small as 35 nm [45]. Such a gate-defined superlattice
potential also offers control over the superlattice symmetry
and geometry.

We introduce Bernal stacked bilayer graphene (BLG) in
the presence of a superlattice (SL) potential as a tunable
and realistic platform to realize topological flat bands. We
envision the experimental setup depicted in Fig. 1(a), where
BLG is subject to a spatially varying gate that creates the
superlattice, denoted the SL gate, in addition to spatially
constant top and bottom gates. We find two distinct regimes
of flat bands with possible sub-meV bandwidth, shown
schematically in Fig. 1(b), with their corresponding band
structures in Figs. 1(c) and 1(d). In the first regime, the
flat bands possess a nontrivial (valley) Chern number,
C # 0. Importantly, the flat Chern bands have a near-ideal
band geometry [46—48] and realize a fractional Chern
insulator (FCI) at 1/3 filling, as we will demonstrate
below. Moreover, unlike TBG, our system also realizes
sought-after bands with a higher Chern number, |C| > 1,
which could give rise to exotic FCIs without Landau level
analogues [49-58].

The second regime describes a stack of perfect flat
bands with C =0, but nonzero Berry curvature. This
regime does not require fine-tuning, a situation unprec-
edented in TBLG. Remarkably, for a reasonably strong
superlattice potential, this stack can span ~100 meV,
covering most of the relevant energy spectrum. In both
regimes, we study the role of the superlattice potential
period, geometry, and relative potential on each layer,
providing a practical guide for experimental realization of
in situ gate-tunable flat band phenomena.

© 2023 American Physical Society
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FIG. 1. (a) The proposed experimental setup allows for a tunable

displacement field, V), and spatially varying superlattice potential,
V1. (b) Schematic phase diagram showing stacked and topologi-
cal flat bands. (c) Energy spectrum of Eq. (1) in the weak field
limit, exhibiting a flat Chern band (red, C = —1) for representative
parameters Vg = 10,Vy = —5 meV. A higher Chern band also
appears (red, C = —2). Dotted lines indicate the low-energy bands
of BLG in the limit Vg = 0. (d) The strong field limit exhibits a
stack of flat bands (shaded green area) for representative param-
eters Vg = 50,V = =70 meV; mBZ in inset.

Model.—We model biased Bernal BLG in the presence
of a superlattice potential by the Hamiltonian

ﬁl:ﬁ]BLG‘FﬁIvO‘FHSL’ (1)

where the three terms describe the Hamiltonian of bilayer
graphene, an applied displacement field, and a spatially
varying superlattice potential, respectively. Each term is of
the form H; = derH,»(r)‘i’T(r)‘i‘(r), where W(r) is the
electron annihilation operator at position r, which has
implicit layer, sublattice, and valley indices. We now
describe each term in detail:

t
Hpg(r) = hvt®(—iyd,0' —idy6?) + 3 (zle! = %6%) (2)

describes biased Bernal BLG, with y = = the valley index
and t the interlayer coupling; Pauli matrices 7 and o
correspond to the layer and sublattice spaces. A displace-
ment field V|, is included via

Hy,(r) = Vorie. (3)

Finally, the spatially modulated superlattice potential is
described by

_ Vs

Hg (r) = = [(° +7°) +a(x = )]o*) _ cos(Q, - ).

4)

where Vg is the strength of the superlattice potential
and the set of Q,, are its wave vectors. We specialize to the
case of a triangular superlattice potential with Q, =
Q[cos(2nz/6),sin(2nz/6)], n=1,...,6, which define
the “mini Brillion zone” (mBZ) by I'), = (0,0), M,, =
1Qy, and K, = (1/3)(Qq + Q;), as shown in the inset to
Fig. 1(d). Note that I',,, corresponds to the original K point
of BLG. The parameter « is the ratio of the superlattice
potential felt on one layer relative to the other; the
asymmetry between the layers results from the experi-
mental setup [see Fig. 1(a)] where the superlattice gate is
applied to only one side of BLG. To be concrete and
realistic, in the calculations that follow we take the
periodicity of the superlattice to be L = 50 nm and the
ratio of the potential in each layer to be @ = 0.3 [59]. We
discuss the effects and physical implications of varying L
and a at the end of the Letter and in the Supplemental
Material [60].

In the proposed setup shown in Fig. 1(a), Vg, V) and the
overall electron density can be tuned independently
through the three gates. Thus, there is a vast phase space
in which to explore both regimes depicted in Fig. 1(b).

Flat Chern bands in the weak field limit.—In the absence
of a superlattice potential (Vg = 0), the gate bias V) opens
a gap at the Dirac points (labeled by I',,, in the mBZ), which
flattens the dispersion at the mBZ center. This gap has been
well studied experimentally [61] and theoretically [62—65].
Since the gap has opposite signs in the two valleys, the
result is a valley Chern insulator, which exhibits the valley
Hall effect [66-71].

Starting from the valley Chern insulator, the role of the
superlattice potential Vg is to open gaps at the boundaries of
the mBZ, creating an isolated Chern band whose bandwidth
is given approximately by the difference between the energy
at the mBZ boundary and the gaps opened by V() and Vyg; .
Since the size of the mBZ scales like 1/L, appropriate
choices of L, V,, and Vg will yield a nearly flat Chern band
gapped from the rest of the spectrum.

We verify this argument by a numerical calculation of the
spectrum of Eq. (1) for a superlattice strength Vg =
10 meV and displacement potential V; = —5 meV. The
result is shown in Fig. 1(c): the lowest energy conduction
band possesses C = —1 and has a very small bandwidth,
only 0.66 meV. The indirect gaps above and below the flat
band are 8.3 and 3.6 meV, respectively. Our calculation also
reveals an unexpected feature in the band structure: the next
band above the gap is also topological, with a higher Chern
number C = -2, although it is less flat. Flat bands with
higher Chern number |C| > 1 are intriguing and sought
after because they have no analogue in Landau levels and
can realize exotic phases at fractional filling [49-58]. We
emphasize that while the flatness is achieved by optimizing
the superlattice potential strength, the appearance of Chern
bands does not require fine-tuning.

The triangular superlattice potential, unlike the square
geometry, induces a particle-hole asymmetry in the
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FIG. 2. Band evolution of (1) upon turning up Vg . (a) At zero
displacement field (Vg = 5, Vy = 0 meV), the combined Chern
number of the dotted bands is C = —1. Turning up Vg first
yields (b) a triple degenerate point (Vg = 16, Vy = 0 meV) and
then a trivial gap, shown in (c¢) for Vg = 20,V, =0 meV.
(d) Turning on V, from (c) opens topological gaps
(VgL =20,Vy =24 meV). Red lines show topological bands
with Chern numbers indicated.

spectrum, as is evident from Figs. 1(c) and 1(d). However,
for a weak superlattice potential Vg , the two lowest energy
bands [dotted band and red band in Fig. 1(c)] enjoy an
approximate particle-hole symmetry. As V and Vg are
turned up, multiple band inversions result in a vast and
complex space of band structures. In the following, we
explore this phase space to determine the effect of the
superlattice potential on the bandwidth and topology of
BLG.

Flat band engineering with a superlattice potential.—
Instead of starting from the valley Chern insulator
described above, we now consider V, = 0 and slowly turn
on Vg (Fig. 2). Vg opens gaps at the mBZ boundary,
resulting in two low-energy bands (dotted lines), which
correspond to the low-energy bands of BLG in the absence
of Vg, that detach from the rest of the bands but remain
gapless at I',, in the absence of V;. These two bands have a
combined Chern number C = —1: consistent with our
previous argument, turning on small V, will open the
gap at I, and split them into a trivial and a Chern band
[Fig. 1(c)]. Keeping V; = 0 and continuing to turn up Vg,
the two low-energy bands remain gapless up to a critical
value of Vg = 16 meV where they merge with a third
band to form a triple degeneracy at I',,, shown in Fig. 2(b).
Further increasing Vg, a small gap opens at I',, between
the two original bands. Though none of the low-energy
bands possess C # 0 [see Fig. 2(c)], relatively flat topo-
logical bands emerge at higher energies. Surprisingly,
higher Chern number bands appear again, e.g., C = -2
in Fig. 2(c). Turning up V,, from Fig. 2(c) yields several
Chern bands with |C| = 1, both at the Fermi level and at
higher energies, as shown in Fig. 2(d). Summarizing, a
triangular superlattice potential, Vg, not only opens a gap
at the mBZ boundary but also can induce flat topological

bands, including those with Chern numbers |C| > 1. This
can occur even in the absence of the displacement field, V.

Stack of flat bands.—As topological gaps open away
from the original low energy bands of BLG, leading to
Chern bands at higher energies, turning up V, causes
multiple phase transitions and induces a larger gap between
the conduction and valence bands. Ultimately, a new
regime appears, exhibiting a stack of flatbands, indicated
by the shaded green region in Fig. 1(d). While these almost
perfectly flat bands have vanishing Chern number (C = 0),
they have nonvanishing Berry curvature. Thus, the elec-
trons are not completely localized in real space.
Furthermore, the small bandwidth of the flat bands makes
them highly susceptible to the Coulomb interaction, creat-
ing a quantum simulator for correlation-driven physics,
similar to flat bands in moiré heterostructures [72] but with
complete tunability over symmetry and geometry via to the
superlattice gate.

The flat band regime can be realized for both signs of V|,
although the spectrum is asymmetric under V, — -V,
from the asymmetry of the experimental setup [Fig. 1(a)]
where the superlattice potential is applied to only one side
of the heterostructure. The asymmetry enters Eq. (1) by
setting |a| # 1. Empirically, when V, and Vg have
opposite signs, a weaker V|, is required to realize the stack
of flat bands (see Ref. [60] for details).

At stronger fields, and keeping V, > Vg, the stack of
flat bands becomes dramatically wider. This is illustrated in
Fig. 1(d) with Vg =50, Vy = =70 meV. The stack of flat
bands span nearly ~100 meV, without fine-tuning V, or
V1. A phase with flat bands spanning a wide energy range
has not been observed in moiré materials and is in sharp
contrast to TBLG, which requires the twist angle be tuned
very near the magic angle to realize a single set of isolated
flat bands near charge neutrality.

Role of superlattice period and harmonics.—The super-
lattice period L provides another experimentally accessible
tuning knob. While Fig. 2 was computed with L = 50 nm,
the same phenomena appear for any value of L [60].
Optimizing the value of L in an experiment must balance
two considerations: (i) larger L leads to flatter bands at
smaller applied fields, making it easier to achieve corre-
lation-driven physics; versus (ii) large L corresponds to a
large supercell more susceptible to disorder. Further con-
siderations depend on the precise platform.

Role of a.—The charge distribution of multilayer gra-
phene in a superlattice potential is a complicated problem
due to electron screening. We chose a = 0.3 following
Ref. [59]. To ensure our conclusions are not sensitive to this
choice, we explored several other values of a. While
changing a qualitatively changes the band structure, the
main features discussed in this work, i.e., the generation of
topological flat bands and the stack of perfect flat bands,
remain intact. Band structures for different values of a
are shown in [60], including the special limits @« = 1 and
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FIG. 3. Band structures for a square superlattice potential.
Band structure of Eq. (1) with (a) Vg =35,Vy=0meV;
(b) Vg, =30,Vy =0 meV; (c) Vg =30,Vy = —5 meV shows
red Chern bands; and (d) Vg = 45,V, = —65 meV shows the
stack of flat bands.

a = —1 studied in Refs. [73,74]. These values of a are not
achievable by the experimental setup in Fig. 1(a), but could
be realized by applying two spatially modulated fields
symmetrically to the top and bottom layers of BLG, with
same or opposite sign.

Lattice geometry.—To investigate the role of superlattice
geometry, we show that a square lattice potential yields the
same phases achieved with a triangular lattice [Fig. 1(b)],
with qualitative differences. Figures 3(a)-3(c) show that,
unlike the triangular geometry, in the absence of a dis-
placement field the spectrum remains particle-hole sym-
metric and gapless for all V. The square lattice is less
favorable for realizing isolated topological flat bands in the
weak potential limit, but tends to require a relatively weaker
displacement field V, to realize stacks of flat bands
[Fig. 3(d)]. The two geometries and their symmetries are
described in detail in [60].

Connection to previous work.—Our study of BLG is the
first to show a spatially modulated 2D potential creates
topological flat bands. It differs from previous studies of
BLG in a superlattice potential [73-75] in three funda-
mental ways: (i) we consider a 2D superlattice; (ii) we
consider all four low-energy bands instead of only the
lowest two, which is crucial to model the band structure at
energies above the interlayer coupling strength; and
(iii) importantly, we consider a realistic experimental
platform where the spatially modulated field is imposed
on only one side of the heterostructure [see Fig. 1(a)].
Previous studies of a superlattice potential on monolayer
graphene [45,76—84] and transition metal dichalcogenides
[85,86] did not study topological flat bands.

Fractional Chern insulator.—The competition between
FCIs and symmetry-broken phases in topological flat
bands is of intense current interest [87-93]. The FCI
stability is impacted by both bandwidth and band geom-
etry. We have already demonstrated [Fig. 1(c)] that our

1 3 5 7 9 1113151719 21 23
Momentum Label

FIG. 4. (a) The Berry curvature of the topological flat band
labeled by C = —1 in Fig. 1(c) in the first mBZ [inset to Fig. 1(d)].
(b) The many-body spectrum (defined relative to the lowest energy
value) obtained from momentum space exact diagonalization
including a dual-gated Coulomb potential projected onto the
C = —1 band in Fig. 1(c) at filling v = 1/3. The inset shows
the geometry of the finite cluster used.

platform realizes topological flat bands with sub-meV
bandwidth. We now demonstrate their near-ideal band
geometry by computing the BZ averaged trace condition:
T = (T(k))pz = (Tr[g(k)] — |Q(K)|)pz, where g(k) and
Q(k) are the quantum metric and Berry curvature [shown
in Fig. 4(a)], respectively [46—48]. We find T ~2.15,
which is a slight improvement over the estimate T = 4 in
TBG [89].

Thus, the band geometry is favorable for realizing an FCI
ground state. To verify this single-particle prediction, we
perform an exact diagonalization study of the interacting
problem of a long range dual-gated Coulomb potential
projected onto the Chern band and neglecting its small
dispersion. For small system sizes, we find the ground state
to be spin and valley polarized (see Supplemental Material
[60]). We then compute the many body spectrum assuming
spin and valley polarization for a larger system size, shown
in Fig. 4(b). We find clear signatures of a Laughlin-like FCI
at fractional filling v = 1/3, specifically, the threefold
many-body ground-state degeneracy on the torus, shown
in Fig. 4(b), as well as the expected spectral flow and state
counting from entanglement spectroscopy [94-98], shown
in the Supplemental Material [60].

Discussion.—We introduced BLG in the presence of a
superlattice potential as an alternative and tunable platform
to realize moiré physics, where the superlattice symmetry
and geometry can be chosen on demand. We proposed a
realistic experimental design to realize two regimes of gate-
tunable flatbands. The first regime exhibits topological flat
bands with C # 0 and, in some instances, more exotic
higher Chern numbers with |C| > 1. Of particular interest
is aisolated C = —1 band with sub-meV bandwidth, whose
quantum geometry is favorable for realizing an FCI ground
state at fractional filling. This single-particle prediction is
verified by exact diagonalization including a screened
Coulomb interaction projected into the topological flat
band, which reveals a Laughlin-like ground state. A more
thorough multi-band calculation will be carried out in
future work.
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The second regime realizes a stack of many isolated
almost perfectly flat bands with C = 0. Again the band-
width is ~1 meV. Although these bands are topologically
trivial, they have nonvanishing Berry curvature and may
also exhibit interesting correlated phases at integer or
fractional filling. The possibility of superconducting phases
analogous to the observation in TBG [1-3] are of particular
interest.
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Note added in proof.—Our results motivate the experimen-
tal study of BLG with a superlattice potential to achieve
topological and nontopological flat bands without fine-
tuning twist angle or introducing twist disorder. Recently,
we have shown that similar phases may be realized in
multilayer graphene in the presence of a superlattice
potential [99].
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