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We show that bilayer graphene in the presence of a 2D superlattice potential provides a highly tunable

setup that can realize a variety of flat band phenomena. We focus on two regimes: (i) topological flat bands

with nonzero Chern numbers, C, including bands with higher Chern numbers jCj > 1 and (ii) an

unprecedented phase consisting of a stack of nearly perfect flat bands with C ¼ 0. For realistic values of the

potential and superlattice periodicity, this stack can span nearly 100 meV, encompassing nearly all of the

low-energy spectrum. We further show that in the topological regime, the topological flat band has a

favorable band geometry for realizing a fractional Chern insulator (FCI) and use exact diagonalization to

show that the FCI is in fact the ground state at 1=3 filling. Our results provide a realistic guide for future

experiments to realize a new platform for flat band phenomena.
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Introduction.—Moiré heterostructures have attracted

tremendous interest in recent years, exhibiting a wide

variety of phases driven by electron correlations, including

superconductivity [1–3], Chern insulators [3–7], Mott

insulators [8–10], and Wigner crystals [11]. Underlying

the emergence of these phenomena are flat bands. While

flat bands were theoretically predicted in twisted bilayer

graphene (TBLG) over a decade ago [12,13], seminal

experiments [1,8] showing correlated insulators and super-

conductivity in magic-angle TBLG ignited a search for flat

bands in a variety of systems. In quick succession, new

twisted graphene heterostructures entered the scene, such

as twisted trilayer and double bilayer graphene [14–22].

Twisted heterostructures beyond graphene include transition

metal dichalcogenides [9–11,23–33], magnets [34–36],

nodal superconductors [37–39], and topological surface

states [40–43].

However, while twisted heterostructures realize a variety

of correlated phases on demand, they are not a panacea.

Twist angle introduces disorder in the form of inhomog-

enous angle and strain. Devices are further complicated by

domain formation, lattice relaxation, and the impact of the

substrate. Combined, these factors severely hinder sample

reproducibility [44].

Thus, it is desirable to explore alternative platforms to

realize flat bands and moiré physics. From an electronic

structure perspective, the main effect of a twisted moiré

heterostructure is to introduce both interlayer tunneling and

interlayer potentials on the moiré length scale. The latter

can be reproduced by imposing a spatially modulated

electric field, which has already been realized on monolayer

graphene by inserting a patterned dielectric superlattice

between the gate and the sample, with a periodicity as

small as 35 nm [45]. Such a gate-defined superlattice

potential also offers control over the superlattice symmetry

and geometry.

We introduce Bernal stacked bilayer graphene (BLG) in

the presence of a superlattice (SL) potential as a tunable

and realistic platform to realize topological flat bands. We

envision the experimental setup depicted in Fig. 1(a), where

BLG is subject to a spatially varying gate that creates the

superlattice, denoted the SL gate, in addition to spatially

constant top and bottom gates. We find two distinct regimes

of flat bands with possible sub-meV bandwidth, shown

schematically in Fig. 1(b), with their corresponding band

structures in Figs. 1(c) and 1(d). In the first regime, the

flat bands possess a nontrivial (valley) Chern number,

C ≠ 0. Importantly, the flat Chern bands have a near-ideal

band geometry [46–48] and realize a fractional Chern

insulator (FCI) at 1=3 filling, as we will demonstrate

below. Moreover, unlike TBG, our system also realizes

sought-after bands with a higher Chern number, jCj > 1,

which could give rise to exotic FCIs without Landau level

analogues [49–58].

The second regime describes a stack of perfect flat

bands with C ¼ 0, but nonzero Berry curvature. This

regime does not require fine-tuning, a situation unprec-

edented in TBLG. Remarkably, for a reasonably strong

superlattice potential, this stack can span ∼100 meV,

covering most of the relevant energy spectrum. In both

regimes, we study the role of the superlattice potential

period, geometry, and relative potential on each layer,

providing a practical guide for experimental realization of

in situ gate-tunable flat band phenomena.
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Model.—We model biased Bernal BLG in the presence
of a superlattice potential by the Hamiltonian

Ĥ ¼ ĤBLG þ ĤV0
þ ĤSL; ð1Þ

where the three terms describe the Hamiltonian of bilayer
graphene, an applied displacement field, and a spatially
varying superlattice potential, respectively. Each term is of

the form Ĥi ¼
R
d2rHiðrÞΨ̂

†ðrÞΨ̂ðrÞ, where Ψ̂ðrÞ is the

electron annihilation operator at position r, which has
implicit layer, sublattice, and valley indices. We now
describe each term in detail:

HBLGðrÞ ¼ ℏvτ0ð−iχ∂xσ
1 − i∂yσ

2Þ þ
t

2
ðτ1σ1 − τ

2
σ
2Þ ð2Þ

describes biased Bernal BLG, with χ ¼ � the valley index
and t the interlayer coupling; Pauli matrices τ and σ

correspond to the layer and sublattice spaces. A displace-
ment field V0 is included via

HV0
ðrÞ ¼ V0τ

3
σ
0: ð3Þ

Finally, the spatially modulated superlattice potential is
described by

HSLðrÞ ¼
VSL

2
½ðτ0 þ τ

3Þ þ αðτ0 − τ
3Þ�σ0

X

n

cosðQn · rÞ;

ð4Þ

where VSL is the strength of the superlattice potential
and the set ofQn are its wave vectors. We specialize to the
case of a triangular superlattice potential with Qn ¼
Q½cosð2nπ=6Þ; sinð2nπ=6Þ�, n ¼ 1;…; 6, which define
the “mini Brillion zone” (mBZ) by Γm ¼ ð0; 0Þ, Mm ¼
1

2
Q0, and Km ¼ ð1=3ÞðQ0 þQ1Þ, as shown in the inset to

Fig. 1(d). Note that Γm corresponds to the original K point
of BLG. The parameter α is the ratio of the superlattice
potential felt on one layer relative to the other; the
asymmetry between the layers results from the experi-
mental setup [see Fig. 1(a)] where the superlattice gate is
applied to only one side of BLG. To be concrete and
realistic, in the calculations that follow we take the
periodicity of the superlattice to be L ¼ 50 nm and the
ratio of the potential in each layer to be α ¼ 0.3 [59]. We
discuss the effects and physical implications of varying L
and α at the end of the Letter and in the Supplemental
Material [60].

In the proposed setup shown in Fig. 1(a), VSL, V0 and the

overall electron density can be tuned independently

through the three gates. Thus, there is a vast phase space

in which to explore both regimes depicted in Fig. 1(b).

Flat Chern bands in the weak field limit.—In the absence

of a superlattice potential (VSL ¼ 0), the gate bias V0 opens

a gap at the Dirac points (labeled by Γm in the mBZ), which

flattens the dispersion at the mBZ center. This gap has been

well studied experimentally [61] and theoretically [62–65].

Since the gap has opposite signs in the two valleys, the

result is a valley Chern insulator, which exhibits the valley

Hall effect [66–71].

Starting from the valley Chern insulator, the role of the

superlattice potentialVSL is to open gaps at the boundaries of

the mBZ, creating an isolated Chern band whose bandwidth

is given approximately by the difference between the energy

at the mBZ boundary and the gaps opened by V0 and VSL.

Since the size of the mBZ scales like 1=L, appropriate
choices of L, V0, and VSL will yield a nearly flat Chern band

gapped from the rest of the spectrum.

We verify this argument by a numerical calculation of the

spectrum of Eq. (1) for a superlattice strength VSL ¼
10 meV and displacement potential V0 ¼ −5 meV. The

result is shown in Fig. 1(c): the lowest energy conduction

band possesses C ¼ −1 and has a very small bandwidth,

only 0.66 meV. The indirect gaps above and below the flat

band are 8.3 and 3.6 meV, respectively. Our calculation also

reveals an unexpected feature in the band structure: the next

band above the gap is also topological, with a higher Chern

number C ¼ −2, although it is less flat. Flat bands with

higher Chern number jCj > 1 are intriguing and sought

after because they have no analogue in Landau levels and

can realize exotic phases at fractional filling [49–58]. We

emphasize that while the flatness is achieved by optimizing

the superlattice potential strength, the appearance of Chern

bands does not require fine-tuning.

The triangular superlattice potential, unlike the square

geometry, induces a particle-hole asymmetry in the

FIG. 1. (a) The proposed experimental setup allows for a tunable

displacement field, V0, and spatially varying superlattice potential,

VSL. (b) Schematic phase diagram showing stacked and topologi-

cal flat bands. (c) Energy spectrum of Eq. (1) in the weak field

limit, exhibiting a flat Chern band (red, C ¼ −1) for representative

parameters VSL ¼ 10; V0 ¼ −5 meV. A higher Chern band also

appears (red, C ¼ −2). Dotted lines indicate the low-energy bands

of BLG in the limit VSL ¼ 0. (d) The strong field limit exhibits a

stack of flat bands (shaded green area) for representative param-

eters VSL ¼ 50; V0 ¼ −70 meV; mBZ in inset.

PHYSICAL REVIEW LETTERS 130, 196201 (2023)

196201-2



spectrum, as is evident from Figs. 1(c) and 1(d). However,

for a weak superlattice potential VSL, the two lowest energy

bands [dotted band and red band in Fig. 1(c)] enjoy an

approximate particle-hole symmetry. As V0 and VSL are

turned up, multiple band inversions result in a vast and

complex space of band structures. In the following, we

explore this phase space to determine the effect of the

superlattice potential on the bandwidth and topology of

BLG.

Flat band engineering with a superlattice potential.—

Instead of starting from the valley Chern insulator

described above, we now consider V0 ¼ 0 and slowly turn

on VSL (Fig. 2). VSL opens gaps at the mBZ boundary,

resulting in two low-energy bands (dotted lines), which

correspond to the low-energy bands of BLG in the absence

of VSL, that detach from the rest of the bands but remain

gapless at Γm in the absence of V0. These two bands have a

combined Chern number C ¼ −1: consistent with our

previous argument, turning on small V0 will open the

gap at Γm and split them into a trivial and a Chern band

[Fig. 1(c)]. Keeping V0 ¼ 0 and continuing to turn up VSL,

the two low-energy bands remain gapless up to a critical

value of VSL ¼ 16 meV where they merge with a third

band to form a triple degeneracy at Γm, shown in Fig. 2(b).

Further increasing VSL, a small gap opens at Γm between

the two original bands. Though none of the low-energy

bands possess C ≠ 0 [see Fig. 2(c)], relatively flat topo-

logical bands emerge at higher energies. Surprisingly,

higher Chern number bands appear again, e.g., C ¼ −2

in Fig. 2(c). Turning up V0 from Fig. 2(c) yields several

Chern bands with jCj ¼ 1, both at the Fermi level and at

higher energies, as shown in Fig. 2(d). Summarizing, a

triangular superlattice potential, VSL, not only opens a gap

at the mBZ boundary but also can induce flat topological

bands, including those with Chern numbers jCj > 1. This

can occur even in the absence of the displacement field, V0.

Stack of flat bands.—As topological gaps open away

from the original low energy bands of BLG, leading to

Chern bands at higher energies, turning up V0 causes

multiple phase transitions and induces a larger gap between

the conduction and valence bands. Ultimately, a new

regime appears, exhibiting a stack of flatbands, indicated

by the shaded green region in Fig. 1(d). While these almost

perfectly flat bands have vanishing Chern number (C ¼ 0),

they have nonvanishing Berry curvature. Thus, the elec-

trons are not completely localized in real space.

Furthermore, the small bandwidth of the flat bands makes

them highly susceptible to the Coulomb interaction, creat-

ing a quantum simulator for correlation-driven physics,

similar to flat bands in moiré heterostructures [72] but with

complete tunability over symmetry and geometry via to the

superlattice gate.

The flat band regime can be realized for both signs of V0,

although the spectrum is asymmetric under V0 → −V0

from the asymmetry of the experimental setup [Fig. 1(a)]

where the superlattice potential is applied to only one side

of the heterostructure. The asymmetry enters Eq. (1) by

setting jαj ≠ 1. Empirically, when V0 and VSL have

opposite signs, a weaker V0 is required to realize the stack

of flat bands (see Ref. [60] for details).

At stronger fields, and keeping V0 > VSL, the stack of

flat bands becomes dramatically wider. This is illustrated in

Fig. 1(d) with VSL ¼ 50; V0 ¼ −70 meV. The stack of flat

bands span nearly ∼100 meV, without fine-tuning V0 or

VSL. A phase with flat bands spanning a wide energy range

has not been observed in moiré materials and is in sharp

contrast to TBLG, which requires the twist angle be tuned

very near the magic angle to realize a single set of isolated

flat bands near charge neutrality.

Role of superlattice period and harmonics.—The super-

lattice period L provides another experimentally accessible

tuning knob. While Fig. 2 was computed with L ¼ 50 nm,

the same phenomena appear for any value of L [60].

Optimizing the value of L in an experiment must balance

two considerations: (i) larger L leads to flatter bands at

smaller applied fields, making it easier to achieve corre-

lation-driven physics; versus (ii) large L corresponds to a

large supercell more susceptible to disorder. Further con-

siderations depend on the precise platform.

Role of α.—The charge distribution of multilayer gra-

phene in a superlattice potential is a complicated problem

due to electron screening. We chose α ¼ 0.3 following

Ref. [59]. To ensure our conclusions are not sensitive to this

choice, we explored several other values of α. While

changing α qualitatively changes the band structure, the

main features discussed in this work, i.e., the generation of

topological flat bands and the stack of perfect flat bands,

remain intact. Band structures for different values of α

are shown in [60], including the special limits α ¼ 1 and

FIG. 2. Band evolution of (1) upon turning up VSL. (a) At zero

displacement field (VSL ¼ 5; V0 ¼ 0 meV), the combined Chern

number of the dotted bands is C ¼ −1. Turning up VSL first

yields (b) a triple degenerate point (VSL ¼ 16; V0 ¼ 0 meV) and

then a trivial gap, shown in (c) for VSL ¼ 20; V0 ¼ 0 meV.

(d) Turning on V0 from (c) opens topological gaps

(VSL ¼ 20; V0 ¼ 24 meV). Red lines show topological bands

with Chern numbers indicated.
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α ¼ −1 studied in Refs. [73,74]. These values of α are not

achievable by the experimental setup in Fig. 1(a), but could

be realized by applying two spatially modulated fields

symmetrically to the top and bottom layers of BLG, with

same or opposite sign.

Lattice geometry.—To investigate the role of superlattice

geometry, we show that a square lattice potential yields the

same phases achieved with a triangular lattice [Fig. 1(b)],

with qualitative differences. Figures 3(a)–3(c) show that,

unlike the triangular geometry, in the absence of a dis-

placement field the spectrum remains particle-hole sym-

metric and gapless for all VSL. The square lattice is less

favorable for realizing isolated topological flat bands in the

weak potential limit, but tends to require a relatively weaker

displacement field V0 to realize stacks of flat bands

[Fig. 3(d)]. The two geometries and their symmetries are

described in detail in [60].

Connection to previous work.—Our study of BLG is the

first to show a spatially modulated 2D potential creates

topological flat bands. It differs from previous studies of

BLG in a superlattice potential [73–75] in three funda-

mental ways: (i) we consider a 2D superlattice; (ii) we

consider all four low-energy bands instead of only the

lowest two, which is crucial to model the band structure at

energies above the interlayer coupling strength; and

(iii) importantly, we consider a realistic experimental

platform where the spatially modulated field is imposed

on only one side of the heterostructure [see Fig. 1(a)].

Previous studies of a superlattice potential on monolayer

graphene [45,76–84] and transition metal dichalcogenides

[85,86] did not study topological flat bands.

Fractional Chern insulator.—The competition between

FCIs and symmetry-broken phases in topological flat

bands is of intense current interest [87–93]. The FCI

stability is impacted by both bandwidth and band geom-

etry. We have already demonstrated [Fig. 1(c)] that our

platform realizes topological flat bands with sub-meV

bandwidth. We now demonstrate their near-ideal band

geometry by computing the BZ averaged trace condition:

T̄ ¼ hTðkÞiBZ ¼ hTr½gðkÞ� − jΩðkÞjiBZ, where gðkÞ and

ΩðkÞ are the quantum metric and Berry curvature [shown

in Fig. 4(a)], respectively [46–48]. We find T̄ ∼ 2.15,

which is a slight improvement over the estimate T̄ ¼ 4 in

TBG [89].

Thus, the band geometry is favorable for realizing an FCI

ground state. To verify this single-particle prediction, we

perform an exact diagonalization study of the interacting

problem of a long range dual-gated Coulomb potential

projected onto the Chern band and neglecting its small

dispersion. For small system sizes, we find the ground state

to be spin and valley polarized (see Supplemental Material

[60]). We then compute the many body spectrum assuming

spin and valley polarization for a larger system size, shown

in Fig. 4(b). We find clear signatures of a Laughlin-like FCI

at fractional filling ν ¼ 1=3, specifically, the threefold

many-body ground-state degeneracy on the torus, shown

in Fig. 4(b), as well as the expected spectral flow and state

counting from entanglement spectroscopy [94–98], shown

in the Supplemental Material [60].

Discussion.—We introduced BLG in the presence of a

superlattice potential as an alternative and tunable platform

to realize moiré physics, where the superlattice symmetry

and geometry can be chosen on demand. We proposed a

realistic experimental design to realize two regimes of gate-

tunable flatbands. The first regime exhibits topological flat

bands with C ≠ 0 and, in some instances, more exotic

higher Chern numbers with jCj > 1. Of particular interest

is a isolated C ¼ −1 band with sub-meV bandwidth, whose

quantum geometry is favorable for realizing an FCI ground

state at fractional filling. This single-particle prediction is

verified by exact diagonalization including a screened

Coulomb interaction projected into the topological flat

band, which reveals a Laughlin-like ground state. A more

thorough multi-band calculation will be carried out in

future work.

FIG. 3. Band structures for a square superlattice potential.

Band structure of Eq. (1) with (a) VSL ¼ 5; V0 ¼ 0 meV;

(b) VSL ¼ 30; V0 ¼ 0 meV; (c) VSL ¼ 30; V0 ¼ −5 meV shows

red Chern bands; and (d) VSL ¼ 45; V0 ¼ −65 meV shows the

stack of flat bands.

FIG. 4. (a) The Berry curvature of the topological flat band

labeled byC ¼ −1 in Fig. 1(c) in the first mBZ [inset to Fig. 1(d)].

(b) The many-body spectrum (defined relative to the lowest energy

value) obtained from momentum space exact diagonalization

including a dual-gated Coulomb potential projected onto the

C ¼ −1 band in Fig. 1(c) at filling ν ¼ 1=3. The inset shows

the geometry of the finite cluster used.
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The second regime realizes a stack of many isolated

almost perfectly flat bands with C ¼ 0. Again the band-

width is ∼1 meV. Although these bands are topologically

trivial, they have nonvanishing Berry curvature and may

also exhibit interesting correlated phases at integer or

fractional filling. The possibility of superconducting phases

analogous to the observation in TBG [1–3] are of particular

interest.
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Note added in proof.—Our results motivate the experimen-

tal study of BLG with a superlattice potential to achieve

topological and nontopological flat bands without fine-

tuning twist angle or introducing twist disorder. Recently,

we have shown that similar phases may be realized in

multilayer graphene in the presence of a superlattice

potential [99].
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double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108,

12233 (2011).

[13] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and

Z. Barticevic, Flat bands in slightly twisted bilayer gra-

phene: Tight-binding calculations, Phys. Rev. B 82, 121407

(R) (2010).

[14] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. H.

Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and

P. Kim, Tunable spin-polarized correlated states in twisted

double bilayer graphene, Nature (London) 583, 221 (2020).

[15] M. He, Y. Li, J. Cai, Y. Liu, K. Watanabe, T. Taniguchi, X.

Xu, and M. Yankowitz, Symmetry breaking in twisted

double bilayer graphene, Nat. Phys. 17, 26 (2021).

[16] G.W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H.

MacDonald, and E. Tutuc, Correlated Insulating States in

Twisted Double Bilayer Graphene, Phys. Rev. Lett. 123,

197702 (2019).

[17] C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J.

Liu, J. Tian, K. Watanabe, R. Yang, Z. Y. Meng, D. Shi,

O. V. Yazyev, and G. Zhang, Correlated states in twisted

double bilayer graphene, Nat. Phys. 16, 520 (2020).

[18] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park,

K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable

correlated states and spin-polarized phases in twisted

bilayer-bilayer graphene, Nature (London) 583, 215 (2020).

[19] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.

Jarillo-Herrero, Tunable strongly coupled superconductivity

in magic-angle twisted trilayer graphene, Nature (London)

590, 249 (2021).

[20] S. Xu, M. M. A. Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B.

Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi,

K. Watanabe, A. Carvalho, A. Mishchenko, A. K. Geim,

V. I. Fal’ko, S. Adam, A. H. C. Neto, K. S. Novoselov, and

Y. Shi, Tunable van Hove singularities and correlated states

PHYSICAL REVIEW LETTERS 130, 196201 (2023)

196201-5



in twisted monolayer–bilayer graphene, Nat. Phys. 17, 619

(2021).

[21] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K.

Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R.

Dean, and M. Yankowitz, Electrically tunable correlated

and topological states in twisted monolayer-bilayer gra-

phene, Nat. Phys. 17, 374 (2021).

[22] Z. Hao, A. Zimmerman, P. Ledwith, E. Khalaf, D. H.

Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath,

and P. Kim, Electric field–tunable superconductivity in

alternating-twist magic-angle trilayer graphene, Science

371, 1133 (2021).

[23] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H.

MacDonald, Topological Insulators in Twisted Transition

Metal Dichalcogenide Homobilayers, Phys. Rev. Lett. 122,

086402 (2019).

[24] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C.

Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, K.

Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio,

A. N. Pasupathy, and C. R. Dean, Correlated electronic

phases in twisted bilayer transition metal dichalcogenides,

Nat. Mater. 19, 861 (2020).

[25] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hubbard

Model Physics in Transition Metal Dichalcogenide Moiré
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Metal Dichalcogenides: Phase Diagram, Resistivity, and

Quantum Criticality, Phys. Rev. X 12, 021064 (2022).

[31] A. Wietek, J. Wang, J. Zang, J. Cano, A. Georges, and A.

Millis, Tunable stripe order and weak superconductivity in
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