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Abstract

We define a combinatorial model for F-polynomials and g-vectors for type D,
cluster algebras where the associated quiver is acyclic. Our model utilizes a com-
bination of dimer configurations and double dimer configurations which we refer to
as mixed dimer configurations. In particular, we give a graph theoretic recipe that
describes which monomials appear in such F-polynomials, as well as a graph theo-
retic way to determine the coefficients of each of these monomials. In addition, we
prove that a weighting on our mixed dimer configuration model yields the associated
g-vector. To prove this formula, we use a combinatorial formula due to Thao Tran
(arXiv:0911.4462, 2009) and provide explicit bijections between her combinatorial
model and our own.

Mathematics Subject Classifications: 13F60, 82B20, 06 A07

1 Introduction

Positivity of the coefficients in the Laurent expansions of cluster variables was a long-
running open question in the theory of cluster algebras, until it was proven around 2014
[LS15, GHKK18]. Even with positivity verified, explicit combinatorial interpretations for
the Laurent expansions as generating functions has still been a question of active research
for many different cluster algebras. In the case of cluster algebras of classical type, i.e.
those defined by a (valued) quiver mutation-equivalent to a Dynkin Diagram of type A,
B,, C,, or D,, there are various such interpretations in the literature. For example, see
[Mus07, FZ03b, Tra09, YZ08| depending on whether the initial quiver is bipartite, acyclic,
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or more general. The Caldero-Chapoton formula, as first appearing in [CC06] for ADE
types, also yields positive formulas, modulo verification that the Euler characteristics of
the relevant quiver Grassmannians are positive.

Furthermore, when a cluster algebra comes from a surface, there is a combinatorial
interpretation of cluster variables via the language of snake graphs [MSW11]. The only
cluster algebras that are both of classical type and from a surface are those of type A,
or type D,. Such cluster algebras are associated to triangulations of (n + 3)-gons or
once-punctured n-gons, respectively.

Going beyond cluster algebras of classical type or cluster algebras from surfaces,
there are families of cluster algebras associated to coordinate rings of the Grassmannians
[Sco06], or more generally positroid varieties [Pos06, GL19]. For such cluster algebras,
a finite subset of cluster variables (namely those parametrized by Pliicker coordinates),
admit combinatorial interpretations using (almost) perfect matchings of plabic graphs.
Such interpretations are often packaged together into what Postnikov called the bound-
ary measurement map. See [Laml15, MS16, MS17]. However, beginning with examples
such as cluster algebras associated to the Grassmannian of 3-planes in 6-space, additional
cluster variables lack such an interpretation.

Another rich source of cluster algebras, which contain (toric) cluster variables with
combinatorial interpretations also given via dimers on bipartite graphs, are those associ-
ated to the octahedron recurrence [Spe07], Gale-Robinson sequences [Spe07, BMPW09],
T-systems [DF14], or brane tilings [EF12, FHVT06, HV07]. The first author has in par-
ticular studied such cases in [JMZ13, LMNT14, LM17, LM20]. We also note the work of
[Gli11] which focused on related cluster algebras, but explicitly focused on Y-system and
F-polynomial interpretations rather than expansions of cluster variables.

More recent work [KP16], also see [LM20], has developed (and proven or conjectured)
a double dimer configuration combinatorial interpretation for cluster variables whose Lau-
rent expansions were previously not understood combinatorially. Related work appears
in [Lam15, Sections 3-4], where products of exactly two (resp. three) Pliicker coordinates
are interpreted as Temperley-Lieb Immanants (resp. webs). See also the work of [Jen19]
that shows that partition functions of double dimers on certain graphs with nodes satisfy
three-term identities. With these examples in mind, we have returned to the classical
case of type D,, cluster algebras arising from acyclic quivers with an eye towards a combi-
natorial interpretation for Laurent expansions of cluster variables that utilized a mixture
of dimer configurations and double dimer configurations. To this end, we demonstrate a
combinatorial interpretation via mixed dimer configurations for F-polynomials in the case
of acyclic quivers of type D,,. Thanks to the separation of addition formulae of Fomin and
Zelevinsky [FZ07], the F-polynomials and g-vectors provide as much information as the
Laurent expansions of the cluster variables (with principal coefficients) themselves. We
anticipate that this new interpretation will provide further insight into the conjectured
mixed dimer configuration combinatorial interpretations arising in [LM20], or allow the
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generalization of techniques using weighted decompositions of Quiver Grassmannian as in

[GW17].

We begin this paper by reviewing the basics of cluster algebras in Section 2. We then
describe our combinatorial model, culminating with our main theorem for F-polynomials
in Section 3. The proof of this theorem (Theorem 35) is given in Section 4 by introducing
Thao Tran’s model from [Tra09] and then showing the two directions of our combinatorial
bijection. In Section 5, we complete the picture by providing an approach for reading off
the associated g-vector from the minimal matching M_ associated to () and d as part of
our model. This allows for the computation of the Laurent expansion for the associated
cluster variables as well. We end with a discussion of future directions in Section 6.

Acknowledgements: The authors would like to thank the support of the NSF, grants
DMS-1745638 and DMS-1854162. We would also like to thank Esther Banaian, Sebastian
Franco, Helen Jenne, Rick Kenyon, David Speyer, and Lauren Williams for many helpful
conversations. We additionally thank the anonymous referee whose suggestions improved
our exposition. Lastly, we would like to acknowledge the REU report from University of
Minnesota’s 2018 Summer REU for inspiration and insightful examples [PW18].

2 Background

2.1 Cluster Algebra Basics

Cluster algebras were originally defined by Fomin and Zelevinsky in [FZ02] in order to
give a combinatorial characterization of total positivity and canonical bases in algebraic
groups, but have since been found to be helpful in many other areas of mathematics
such as algebraic combinatorics, symplectic geometry, Teichmiiller theory, and even some
areas of physics. Loosely speaking, a cluster algebra is a certain commutative algebra
generated by a distinguished set of generators called cluster variables. To obtain these
cluster variables, we start with an initial seed, which consists of n cluster variables as well
as a quiver or an exchange matrix. Using the quiver/exchange matrix, we mutate in the
k'™ direction, transforming our original set of cluster variables into a new set where we
change the k' cluster variable for a new expression in the rest of the variables based on
the binomial exchange relation. After mutation, we obtain a new seed containing a new
set of cluster variables and we iterate mutation in all possible directions. The total set of
resulting cluster variables generates the cluster algebra.

In [FZ07], the notion of F-polynomials and g-vectors were introduced which gave a
formula for cluster variables in terms of data only dependent on the initial seed. So, once
the F-polynomial and associated g-vectors are computed, we can recover the Laurent
polynomial expansion for the associated cluster variable.
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2.1.1 Defining a Cluster Algebra

In this section, we formally define a cluster algebra of geometric type following [FWZ16].

Definition 1. Let J be a finite set and let Trop(u; : j € J) be an abelian group with
respect to multiplication freely generated by the elements u; for j € J. Define tropical

plus, denoted @, via
a; bj min(a;,b;)
Hujj @Huj” .—Huj (R
J J J

Call Trop(u; : j € J) a tropical semifield with respect to multiplication and .

Remark 2. If J = (), then we obtain the trivial semifield consisting of the single element
1. The group ring of Trop(u; : j € J) is the ring of Laurent polynomials in the variables
Uj.

Let m,n € Z~o such that m > n and let P = Trop(z,11,...,%x). Let F be the field
of fractions in n algebraically independent variables with coefficients in QP, the field of
fractions of the group ring ZP.

Definition 3. A labeled seed in F is a pair (Z, B’) where

e T = (xy,...,%n,Tpys1,--.,Ty) is the extended cluster where zy,...,x, are alge-
braically independent over QP and F = QP(xy,...,x,) and

e B is the extended exchange matrix i.e. an m X n matrix over Z such that the
top n X n submatrix B is skew-symmetrizable. That is, the top n x n submatrix B
can be written as a skew symmetric matrix of the form DB for some n x n diagonal
matrix D with positive integer diagonal entries. B is called the principal part of
the exchange matrix.

Remark 4. If we restrict our attention to a skew-symmetric cluster algebra of geometric
type, we can replace the notion of an exchange matrix with a quiver.

Definition 5. Let 1 <k < n. An m x n matrix B’ is obtained by matrix mutation in
the k* direction from B if the entries of B' = (b};) are given by

b/ . _bij le:k'OI'j:l{
“ bij + sgn(by) max(biby;,0) otherwise

Definition 6. Let (%, B = (bij)) be a labeled seed in F. Seed mutation py, in the k'
direction transforms (Z, B) into the labeled seed p(Z, B) = (&', B') where

o i’ = (xy,...,2),...,2,) where

m m

_ big,0 b0

l‘;ﬁ =1 1 H x;nax( ik>0) + H :B;flax( ik,0)
i=1 =1
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e B’ is obtained by matrix mutation in the direction k.

Remark 7. In the skew-symmetric case, there is a notion of quiver mutation that is
completely graph theoretic.

Definition 8. Let T, be the n-regular tree. A cluster pattern is an assignment of
labeled seed (Z, Bt) to every vertex t € T, such that if ¢ LN , then the seeds labeled
by ¢ and ¢’ are obtained from one another via mutation in the k™ direction. Write
Ty = (T1, - Tmy) and By = (bj;).

Definition 9. Given a cluster pattern {(&;, B;) }tet, , we let X denote the set of all cluster
variables, i.e.

Xo={z;, : 1<j<n,teT,}.
The cluster algebra associated to a given cluster pattern is the ZP subalgebra of F
generated by all of the cluster variables, i.e. we set A = ZP[X].

One of the first fundamental properties proven about cluster algebras is the Laurent
Phenomenon.

Theorem 10. [FZ02, Theorem 3.1] For j € [n] and t € T,, any cluster variable x;;, € A
can be expressed as

N(z1,...,2,)
‘r.. - —
gt 2B g
where N(xy,...,2,) € Z[xiiy, ..., v [21,...,2,) and is not divisible by any x;. The
denominator vector of xj, is the vector d = (di,...,d,) and the denominator vector

d only depends on B°, the principal part of the exchange matriz, rather than on B, the
extended exchange matriz.

It took another decade-and-a-half, but a related fundamental theorem is Laurent
Positivity.

Theorem 11. [LS15, Theorem 1.1]/[GHKK18, Theorem 4.10] Under the same hypothe-

ses as Theorem 10, the polynomial N(xy,...,x,), appearing in the numerator for the
Laurent expansion of ., is not only in Zlztl,, ... x|z, ..., 2,], but is in fact in
Z;O[xfj_l, . ,$§1][$1, ey Ty

2.1.2 F-Polynomials and g-Vectors

Fix an n x n skew-symmetrizable matrix B® = (by;) over Z and an initial vertex ty € Ty,.

Note that a choice of an initial labeled seed (Z4,, B%) determines a cluster pattern. Here,
B® is an extended exchange matrix which has B° as its principal part, and 7, is an
extended cluster of the appropriate size.

ot
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Definition 12. A cluster algebra A has principal coefficients at ¢ if 7;, = (x1,...,%2,)
and the exchange matrix at ¢, is the principal matrix corresponding to B given by

- BY
to __
-(7)

where [ is the n x n identity matrix. Denote this cluster algebra by A, = A.(B°t).
Using the initial cluster of A,, define the new variables for 1 < j < n

n bo
N~ ) i
Yj = Tntj | |9Ul :
=1

Using these new variables, we are ready to define the F-polynomial and g-vectors.

Definition 13. Let 1 </ < n, t € T,. There exists a unique primitive polynomial
Ff;t = FZ;BtO;tO S Z[Ul, . ,Un]

and a unique vector gy = gfto to — (91,---,9n) € Z" such that the cluster variable

Ty € Ao(BY, 1) is given by

_ B%tog » ~ Y01 g
xﬂ;t_Fg;t (yla--'7yn)x1 '”xnn'

The polynomial Fy, is called an F'-polynomial and g, is called a g-vector.

The importance of F-polynomials and g-vectors is motivated by the following funda-
mental “separation of additions” property of cluster algebras of geometric type.

Theorem 14. [FZ07, Theorem 3.7/Corollary 6.3] Given a cluster algebra A defined over
an arbitrary semifield P with an initial labeled seed (T4, B®), then all cluster variables in
A can be expressed as

0' ~ ~
. _FEZ (g, )l adn
it — )
Fft 7t0|IP>(y1, o yn)

In the denominator, the expression is evaluated in P using ordinary multiplication and &.

In particular, computing the patterns of F-polynomials {F};}icn); tet, and g-vectors
{ist Yicpn); ter, is sufficient for deriving the cluster pattern {Z;};cr, regardless of the choice
of initial coefficients, i.e. the choice of initial extended exchange matrix B°.

Because of Theorems 11 and 14, the F-polynomials arising from a cluster algebra have
positive integer coefficients. This observation motivates our desire to have a direct combi-
natorial explanation for this positivity and integrality, which motivates the combinatorial
interpretation studied in this paper.
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2.2 Cluster Algebras and Finite Type Classification

In our combinatorial model, we define a graph theoretic interpretation of the F-polynomial
in “type D.” In particular, one of the most striking results about cluster algebras is that
the classification of finite type cluster algebras is parallel to that of the Cartan-Killing
classification of complex simple Lie algebras, or equivalently of crystallographic finite root
systems. Such Lie algebras are modeled by finite type Dynkin diagrams, which are built
out of irreducible diagrams coming from four infinite families or from five exceptional
cases: A, B,,C,, D,, Egs, E7, Eg, Fy, Gs.

Definition 15. We say that a cluster algebra is of finite type it is has finitely many
seeds.

Definition 16. Let B be an n x n exchange matrix. The diagram of B, denoted I'( B),
is the weighted directed graph on nodes vy, ..., v, with v; directed towards v; if and only
if bij > 0 and Welghted by |b1]bﬂ|

Theorem 17. [FZ03a] The cluster algebra A is of finite type if and only if it has a seed
(x, B) such that T'(B) is an orientation of a finite type Dynkin diagram.

If the conditions of the above theorem hold, A is of finite type X where X is one of
Ay, B, Ch, Dy, Eg, B, Eg, Fy, G, as determined by the Dynkin diagram.

2.2.1 F-polynomials and Positive Roots

In order to show the connection of F-polynomials to types of a cluster algebra, we have the
following setup. Suppose that B° is an acyclic n X n exchange matrix of type A,, By, Ch,
or D, ie. b = %a;; where (a;;) is the Cartan matrix of the corresponding type. Let
A(B°, ty) be any cluster algebra which has the extended cluster (z1, ..., Tn, Tpi1,- - - Tm)-
By the Laurent phenomenon, Theorem 10, we can associate a denominator vector d to
each cluster variable x;,; in a given cluster algebra. For acyclic finite type cluster algebras,
such denominator vectors can be described concisely as follows.

Theorem 18. [FZ03a, Theorem 1.9] Suppose A(B°, ty) is defined as above, i.e. B® =
bi;], where each b;; = £a;; and (a;;) is the Cartan matriz of a finite root system ®. Equiv-
alently, the diagram (resp. quiver) defining A(BY,ty) is an orientation of a (simply-laced)
finite type Dynkin diagram. Let D denote the set of all denominator vectors of cluster
variables in As(B°, to) which do not occur in the initial cluster. Let S = {ay,...,a,} be
the set of simple roots of the corresponding root system ® and let & be the set of positive
roots of ®. There is a bijective correspondence between these cluster variables in A and
the positive roots in ® . More specifically, if a cluster variable corresponds to o = d;c;,
then the denominator vector of the cluster variable is (di, ..., d,) € Z%.

Recall that we are working with type D, cluster algebras, so we focus on the associated
root system of type D,,. Namely, let &, be the set of positive roots given by

O, ={e;+---+e  0<i<j<n—1}U{e+ - -+epst+e,m1 : 0<i<n—3}U
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Ufe;+---4+ej1+2¢+---+2e,3+e,a+e,01 0 0<i<j<n—3}

The data of a positive root d = (dy, .. .,d,_1) € &, will be included in our definitions for
our graph theoretic interpretation of the F-polynomial.

3 Owur Model

In this section, we describe our combinatorial model for how to obtain the F-polynomial
associated to a type D, cluster algebra where the associated quiver is acyclic. Our model
assigns a graph comprised of one hexagon and n — 1 squares to a given quiver where
we attach these tiles based on the orientation of each arrow in the quiver. Relying on
a bijection between denominator vectors of cluster variables and positive roots in a type
D,, root system, we use the data of the quiver () and a positive root d to assign a mixed
dimer configuration to this graph. From this assignment, we create a poset of mixed dimer
configurations each of which corresponds to a monomial of the F-polynomial associated
to d and whose coefficient is given by the number of cycles appearing in the mixed dimer
configuration.

3.1 Type A Case: Snake Graphs

We model our approach off of the snake graphs for type A, cluster algebras. This can
be viewed as a special case of positive formulas for cluster variables associated to arcs
in (unpunctured) surfaces [MS10, MSW11]. We also note [Pro05, Section 2-4] describing
unpublished work of Carroll-Price during an REU advised by Jim Propp.

In particular, for an acyclic type A, quiver, i.e. an orientation of the line segment
on n vertices, we can build a bipartite planar graph by adjoining square tiles together.
Inductively, an arrow ¢ — (i+1) or i <— (i+ 1) corresponds to adding a tile to the current
snake graph to the North or East of the preceding tile, as described by the following rule:
when two consecutive arrows are in the same direction, i.e. (i —1) - i — (i + 1) or
(i —1) <= i < (i + 1), the corresponding tiles are placed so that they zig-zag (i.e. North
then East, or East then North). On the other hand, when two consecutive arrows are in
opposite directions, the corresponding tiles are placed straight (i.e. North then North,
or East then East). The first step of the snake graph (i.e. the placement of the second
tile) may be taken arbitrarily although we conventionally take this as a step to the East,
without loss of generality.

Furthermore, we can color the vertices black and white so that for the edge at the
border of tiles ¢ and (i + 1), if we draw the arrow i — (i + 1) or ¢ < (i + 1) perpendicular
to this edge, then the white vertex appears on the right.

Example 19. Consider the A5 quiver given by

Q = 0—1+—2+—3—4.
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By the rules described above, this orientation of the A5 quiver yields the following snake
graph on 5 square tiles.

4
k 3
wi 0 |e 0 1 2 3
0 1 2
s 0—=1~—2 0 1 2
0---»le—2—3
Q---= 1 <m -2 —m B 4

Note the diagram is split up by the inductive process of stacking tiles on the North or
East edge of the previous tile. The subquivers are placed below each snake graph where
the arrows are bolded in the quiver that dictate the inductive rule for stacking.

In the ensuing subsection, we extend this procedure to acyclic quivers of type D,
which leads to a single hexagonal tile in addition to the usual square tiles.

3.2 Obtaining a Hexagon-Square Graph from a Quiver

Consider the Dynkin diagram of type D, where we agree to associate the labels 0,1,
...,n — 1 to the vertices of the diagram such that the unique degree 3 vertex is labeled
n— 3.

We turn this Dynkin diagram into an acyclic quiver of type D,, by assigning an ori-
entation to each edge of the diagram. We now associate a graph to ) we call the base
graph, by associating either a square tile or hexagon tile to each vertex in (). Then, we
attach these tiles based on rules dictated by the orientation of the arrow connecting the
vertices [PW18].

The unique trivalent vertex labeled n — 3 corresponds to the unique hexagon tile in
our graph. The rest of the vertices in () are assigned square tiles. For the case when
n = 4, all vertices are incident to the trivalent vertex n — 3, so we attach the square tiles
to the hexagon based on the orientation of the arrow in (). Note that the base graph, by
construction, is a planar bipartite graph. Hence, there are two choices for a black and
white coloring on the vertices of the base graph. We adopt the convention that if i — j
in the quiver ), we “see white on the right.” For example, the 8 possible acyclic quivers
of type D, are illustrated superimposed below, with the associated base graphs similarly
superimposed.
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Using the fact, for n > 4, that an acyclic D,, quiver contains an acyclic A,,_3 subquiver
induced on vertices {0,1,2,...,n—4}, we build the usual type A snake graph via square
tiles, and include this snake graph as an induced subgraph of our base graph.

From this point forward, when we refer to the base graph, we implicitly take it with
this bipartite coloring. When n > 5, to attach the remaining tiles, we adopt the type
A snake graph convention as described in Section 3.1. Below we illustrate some of the
possible base graphs for n = 5 and 6. To limit the number of cases, we omit the square
tiles associated to (n — 2) and (n — 1), and assume without loss of generality that the
quiver contains the arrow (n —3) — (n — 4) rather than its opposite.
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Definition 20. Given a quiver @) of type D,, where the associated quiver is acyclic, the
hexagon-square of () obtained from the above process is called the base graph of Q).

Example 21. Suppose we have the following D; quiver:

By definition of the base graph, mimicking the construction in Example 19, the asso-
ciated hexagon-square graph is:

3.3 Associating a Minimal Mixed Dimer Configuration to the Base Graph

For the following definitions, suppose that G is a planar bipartite graph.

Definition 22. A dimer configuration (also known as a matching) is a subset D C
E(G) such that every vertex v € V(G) is contained in exactly one edge e € D.

For example, consider the red edges in the following graph:

Definition 23. A double dimer configuration D’ of GG is a multiset of the edges of G
such that every vertex v € V(@) is contained in exactly two edges e, e’ € D'.

For example, consider the red edges in the following graph:
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Now, we aim to associate a “mixed dimer configuration” to the base graph obtained

in the previous section which, as the name suggests, is a mixture between a dimer con-
figuration and a double dimer configuration. For example, consider the red edges in the
following graph:

In order to define mixed dimer configurations that satisfy a certain “valency condition,”
we need to introduce another piece of global data other than the quiver Q).

Definition 24. Let d be an n-tuple whose entries are each 0, 1, or 2, i.e. d € {0,1,2}".
A mixed dimer configuration M of G is a multiset of the edges of GG such that every
vertex v € V(@) is contained in zero, one, or two edges in M. Furthermore, we say that
M satisfies the valence condition with respect to d if

e Bach vertex incident to a tile labeled ¢ with d; = 2 is contained in two edges in M.

e Each vertex incident to a tile labeled ¢ with d; = 1 is contained in at least one edge
in M.

For example, in the above toy example of a mixed dimer configuration, the associated
4-tuple would be d = (2,2,1,0). Motivated by denominator vectors of cluster variables
for cluster algebras of type D,, i.e. of finite type, we focus on the special case where d is
a positive root of the root system of type D,,, which we denote as ®.

3.3.1 Defining the minimal mixed dimer configuration M _

Fix some type D, quiver () where the associated quiver is acyclic and let d € ®,. Let
G be the associated base graph with fixed bipartite coloring. For all the entries d; > 1,
consider the induced subgraph G; C G using the associated tiles ¢ for 0 <7 < n — 1.
Traversing around the boundary of GG clockwise, distinguish the edges that go from black
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to white in the bipartite coloring which should notably result in a dimer configuration of
G, call it M;.

We remark that this is well-defined because the subgraph GG; C G is connected due to
the structure of the root d € @, i.e. all of the positive entries appear such that the tiles
in G associated to them are neighboring.

Next, for all the entries d; = 2, consider the induced subgraph Gy C Gy C G using
the associated tiles j for 0 < 7 < n — 1. Going around the boundary of G5 clockwise,
distinguish the edges that go from black to white in the bipartite coloring which should
notably result in a dimer configuration of G, call it Ms.

Again, we remark that this is well-defined because the subgraph Gy C G is connected
due to the structure of the root d € ®,.

Taking the superimposition of M; and M,, we have some multiset of the edges of our
base graph G. At this stage, the valence! of each vertex in either 0, 1, or 2 in M, U M.
In particular, for every vertex v € GG, we insist the valence of v in M; U M, is the maximal
value of d;, for 7 in the set of labels for tiles incident to vertex v. In particular, the mixed
dimer configuration M; LI M, constructed in this way satisfies the valence condition with
respect to d, as defined in Definition 24.

Definition 25. The minimal mixed dimer configuration associated to the bipartite
planar base graph G and to the type D, positive root d = (dy,...,d,_1) € ®, is given by

M,(Q,C_l) = M1 (] Mg.

For brevity, we denote the minimal mixed dimer configuration by M_ = M_(Q,d).
Sometimes we will instead use the term minimal matching for M_. We illustrate this
process via an example.

Example 26. Consider the quiver in Example 2.1 and take the positive root
d=1(0,1,1,2,2,1,1). Then, the graph G; will consist of all the tiles except the tile 0, as
dy = 0. When enumerating the boundary edges of GGy oriented black to white clockwise,
we obtain M;:

IHere, and from now on, when we refer to the “valence” of a vertex, we refer to the valence with
respect to a mixed dimer configuration rather than the valence of the vertex in the base graph.
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Since d3 = d, = 2, we have that the graph (G5 contains tiles 3 and 4. So, we distinguish
a double dimer configuration on these tiles by traversing the boundary of tiles 3 and 4
and enumerating the edges that are oriented black to white clockwise. If one of these
edges was distinguished in the previous step, distinguish it again with a doubled edge.
We obtain M_(Q,d) = M; LI My:

This is the minimal matching associated to ) and d.

3.4 Poset of Mixed Dimer Configurations

We now create the poset of mixed dimer configurations where each of the mixed dimer
configurations appearing in this poset corresponds to a monomial that appears in the
F-polynomial associated to d. In order to define this poset, we first define a larger poset,
and then refine its set of elements to obtain the poset which we desire.

The poset relation we will define is inspired by flips of tiles in dimer configurations, in
the sense of [KW10] and [MS10]. This local operation is classically given by:

Remark 27. Not all tiles in a given dimer configuration can be flipped. Consider the
following example:

In the left dimer configuration, we can flip every tile 0, 1, and 2 from the vertical
configuration to the horizontal configuration. However, in the right dimer configuration,
the only tile we can flip is tile 1, i.e. by replacing the horizontal configuration with the
vertical configuration. We cannot flip tile 0 because the edge straddling tile 0 and 1 is
not present in this configuration. Similarly, we cannot flip tile 2.
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To extend this to a mixed dimer configuration, we define flipping as moves that we
can perform twice in a row on tiles:

-0
OO0,

Remark 28. This modification is necessary to model the F-polynomial in type D because
there are monomials that appear with terms with an exponent of two i.e. a term like

2

u;. In the type A case, no such exponent of two appears which meant that the dimer

configurations where flipping is an involution was sufficient.

Definition 29. We say that the flip of tile 7 is allowable if we can flip tile 7 as in the
pictures shown above. More concretely, if all edges going black to white clockwise occur
in a mixed dimer configuration on tile ¢, we can exchange these edges for the edges that
go white to black clockwise. If for a given edge of the graph, there are multiple copies of
that edge in a mixed dimer configuration, then with each flip, we only exchange a single
copy of that edge. Implicit in this definition is that the associated d; is positive.

Definition 30. Let (P, <) be the poset of mixed dimer configurations that satisfy
the valence condition and are reachable via a sequence of allowable flips from M_(Q, d).
For two such mixed dimer configurations D and D’, we say that D < D’ if there exists a
sequence of allowable flips from D to obtain D’.

The poset P turns out to have more elements than the number of monomials in the
F-polynomial associated to d. Hence, we need to refine the number of elements in our
poset by disallowing some sequences of allowable flips. We will let (P, <) C (P, <) be the
subposet of mixed dimer configurations that satisfy the valence condition, are reachable
via a sequence of allowable flips from M_, and satisfy the following condition known as
being node monochromatic.

3.4.1 Node Monochromatic Mixed Dimer Configurations

Fix a type D, quiver () and a positive root d = (dy,...,d,—1) € ®,. Let G be the
associated base graph with fixed bipartite coloring. We now define a condition required
of mixed dimer configurations to model the F-polynomial.

We distinguish three pairs of vertices of G that we call nodes via the following pre-
scription:
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e On the tile labeled n—1, take the two vertices of the square tile that are not incident
to the hexagon, call them u,v € V(G). Color these nodes u, v red.

e On the tile labeled n—2, take the two vertices of the square tile that are not incident
to the hexagon, call them w,z € V(G). Color these nodes w, x blue.

e The last choice of vertices splits into a few cases. Let d; be a 2 in the positive root
d of minimal index.

Case 1: If j — 2 < 0, then this means that j = 1. Take the two vertices on tile 0
that are not incident to tile 1, call them y, z € V(G). Color these nodes y, z green.

Case 2: Suppose j = 2. We now have two subcases.

— Case 2a. If the tiles j — 2,5 — 1,5 are placed straight, i.e. the orientation in
the quiver is given by j —2 - j— 1< jor j —2 <+ 57— 1 — j, we take the
two vertices on tile j — 1 that are not incident to tile j, call them y, z € V(G).

— Case 2b. If the tiles j — 2,7 — 1, 7 are placed in a zig-zagging fashion, i.e. the
orientation in the quiver is given by j =24+ j—1<+jorj—2—757—1— 7,
we choose y on tile j — 1 as the vertex belonging to the edge that is incident to
tile 7 — 2, but not tile j. We choose z on tile j — 2 that is “diagonally across”
from y. Color these nodes y, z green. In the two figures (above and below), we
illustrate our definition of the green nodes.

The placement of the green nodes is illustrated in the following figure:?

Case 2a Case 2b

Definition 31. A mixed dimer configuration M of G is node-monochromatic if any
path consisting of edges in M between nodes connects nodes of the same color. If there
exists a path consisting of edges in M between nodes of different colors, we say M is
node-polychromatic.

2Note that to make these diagrams as clear as possible, we have fixed an orientation of the arrows
between n — 1, n — 2 and n — 1, n — 3 as we previously defined the red and blue nodes. We have also
fixed an orientation between n — 3 and n — 4 as it does not affect the definition of the green nodes.
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Remark 32. We note that if d € {0,1}", i.e. d does not contain a 2, then any mixed dimer
configuration satisfying the valence condition given by d is always node-monochromatic.
To see this most easily, we observe that such a mixed dimer configuration is a perfect
matching on the subgraph defined by the support of d, but the distance between any two
nodes of different colors is at least two.

Remark 33. Our definition of node-monochromatic dimer configurations in Definition 31
differs from the rules appearing in related research on weighted enumeration of double
dimer configurations such as in Jenne’s work [Jen19] or in Kenyon-Wilson’s work [KW10]
in the following way. In [Jen19] or [KW10], the set of nodes is divided into three circularly
contiguous sets /7, (-, and B in such a way so that no node is paired with a node in the
same set. In our model, we also have nodes colored by three circularly continguous sets,
but being node-monochromatic requires (rather than forbids) the endpoints of a path are
of the same color.

Now that the poset P is well-defined, we aim to show that the minimal matching is
in this poset.

Proposition 34. M_ isin P, i.e. is a mized dimer configuration on the base graph that
satisfies the valence condition and is node-monochromatic.

Proof. First note that M_ trivially satisfies the condition that it is reachable by a sequence
of allowable flips from M_ by taking the empty sequence. Note that M_ also satisfies the
valence condition by construction. So, it suffices to show that M_ is node-monochromatic
by showing that there are no paths between nodes of different colors. This is a consequence
of the bipartite coloring. By a case-by-case analysis for the acyclic orientations of quivers
of type Dy, we see that no nodes of different colors can be connected in any orientation
of the quiver. The following diagram represents all 8 acyclic orientations of D, drawn on
one graph where the choice of orientation of arrow in the quiver is indicated on top of the
graph:

By the definition of M_, for any n, the longest path distinguished in the matching has
length 3. This occurs because when enumerating the dimer configuration in Gy, we only
create paths of length 1. When enumerating edges in G, we distinguish all clockwise
black to white oriented edges on the boundary of G5. If these edges are also boundary
edges of (G1, then we create a 2-cycle on these edges. If these edges were not boundary
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edges of GG1, they must be interior edges of G; in which case their inclusion creates a
path of length 3 as enumerating this interior edge connects two boundary edges that were
previously distinguished.

Suppose that two nodes of different colors can be connected by a path of length 2 in
G. (Note that no path of length 1 can connect nodes of different colors by definition.) In
this case, it suffices to look at Dy, as with higher D,,, the nodes y, 2 move farther away
from the other nodes and cannot be connected by a path of length 2. Both edges in this
path of length two must be boundary edges of GG, i.e. edges that do not straddle two
different tiles in G. Moreover, with respect to the full graph G, one is colored black to
white clockwise and the other must be colored white to black clockwise. By definition of
M_, we do not distinguish boundary edges that are oriented white to black clockwise. So,
only the edge oriented black to white clockwise will appear in M_ which means that this
path cannot be contained in M_.

Now suppose that there is a path of length 3 in G connecting nodes of different colors.
In this case, it suffices to look at Ds, as with higher D,,, the nodes y, z move farther away
from the other nodes and cannot be connected by a path of length 3. In order to connect
nodes of different colors, this path would have to traverse over a white to black clockwise
edge on the boundary of 5. This is because in any orientation of Dj, paths cannot be
formed using the white to black clockwise oriented edges with respect to the hexagon in
M-_.

For Ds, there are two positive roots that make it potentially possible for nodes of
different color to be connected; either d = (1,2,2,1,1) or d = (1,1,2,1,1). The following
diagram represents the minimal matching when d = (1,2,2,1,1), i.e. Case 1 in Section
3.4.1. In all possible orientations of Ds, paths in M_ do not connect nodes of different
colors?.

The next diagram represents the minimal matching when d = (1,1,2,1,1) i.e. Cases

3 Just like in the D, case above, we superimpose together the various possible base graphs for Ds, but
use dotted edges to illustrate the contrasts.
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2a and 2b in Section 3.4.1. In all possible orientations of Dj, paths in M_ do not connect
nodes of different colors.

So, by definition of M_, no boundary white to black clockwise edge is distinguished in
(G5 which means this path cannot be contained in M_. Thus, M_ is
node-monochromatic. O

We show that the elements in (P, <) give the nonzero monomials in the F-polynomial
associated to d.

3.5 Main Theorem

Theorem 35. Given an acylic quiver Q) of type D,, and a choice of positive root d € P,
for the corresponding root system, we let Fy denote the F'-polynomial corresponding to the
cluster variable with denominator vector d. This expression is based on the appropriate
cluster algebra of type D,, and assuming an initial seed defined by the choice of quiver )
and the standard initial cluster of {x1,x9,...,Tp}.

Furthermore, let M_ = M_(Q, d) be the minimal matching, as defined in Section 3.5.1
and let P be the poset of mized dimer configurations that satisfy the valence condition, are
reachable via a sequence of allowable flips from M_, and satisfy the node monochromatic
condition. Then the expansion of F-polynomial Fy can be expressed as a weighted multi-
variate rank-generating function on the poset (P, <) determined by M_:

to t b
Fq= § 2 ug'uy' - u,
DcP

where the sum is taken over mized dimer configurations D obtained by flipping tile i t;-

times (keeping track of multiplicities) and c is the number of cycles enclosing a face in
D.

We provide an example before proceeding to the proof of Theorem 35.

Example 36. Suppose that we have the following Dy quiver:
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Suppose that we take d = (1,1,2,2,1,1) € &,. Then, we have that the F-polynomial
associated to d is given by:

Fé =1+ Ug + Uz + Us + UpU1 + UgUz + UpUs + UaUs
+ 2upuius + UgUiUs + UgUaUs + UsUsUs + 2UgU UsUs + uoulug
+ uguquaUs + UgUaUsUs + 2UgU UsUsUS5 + u0u1u§u5 + uoulugu;g
+ UgU U U3 U4 U5 + 2u0u1u§u§u5 + u0u1u§u3u4u5 + u0u1u§u§u5 + u0u1u§u§u4u5

The poset P is Figure 1 on the following page where tiles are shaded grey to emphasize
when they have been enclosed by a cycle.

Remark 37. We see that we do not flip at all tiles at which we can perform allowable
flips. It is crucial that these mixed dimer configurations stay node-monochromatic. For
example, if we analyze the set of allowable flips from the minimal matching M_, after
flipping tile 2, an allowable flip can occur at the hexagon, tile 3. However, the monomial
usus does not appear in F,;. With our choice of nodes, we see that by flipping tile 3,
we connect nodes of different colors i.e. there is a path between the green node z to
the red node v. This is why the mixed dimer configurations in our poset must be node-
monochromatic. In Section 3.6, we show a poset-theoretic consequence of this restriction.

3.6 The poset of node-monochromatic mixed dimer configurations is not dis-
tributive

After defining our poset of (node-monochromatic) mixed dimer configurations, which we
denoted as (P, <), it is of independent combinatorial interest to investigate its properties.
Our poset of mixed dimer configurations forms a lattice since the unique minimal element
corresponds to the constant term 1 in the F-polynomial and the unique maximal element
corresponds to u? in the F-polynomial.

Recall a lattice is distributive if the operations of meet and join distribute over one
another i.e. for any A, B,C' € P, we have

AV (BNC)=(AVB)AN(BVC).

In the Type A case, Theorem 5.2 in [MSW13], based on [Pro02, Section 3], states that
the snake graph poset of perfect matchings form a distributive lattice. It turns out
that this is not the case for our poset of mixed dimer configurations as it contains a
forbidden sublattice? on 5 vertices that form a pentagon shape. Consider the following
counterexample deduced from Figure 13:

4On this sublattice, we have the property that the meets and joins of pairs of elements agree with
their images as they would be in the original lattice.
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Note that = V (y A z) = x whereas (x V y) A (z V z) = z, Hence, our poset of mixed
dimer configurations fails to be distributive.

4 Proof of Theorem 35

In order to prove that this mixed dimer configuration model indeed gives the F-polynomial,
we construct bijections between mixed dimer configurations and tuples of integers which
come from a model of Thao Tran [Tra09].

4.1 Thao Tran’s Model
Define a partial order > on Z" via
a>difa—d eZl.

Definition 38. [Tra09, Definition 4.1] Fix n > 4, and let @) denote an acyclic quiver of
type D,,. Further, fix d € &, a positive root of type D,, and e = (eg,...,€,-1) € Z"
with 0 < e < d. An arrow ¢ — j in @) is acceptable with respect to the pair (e, d) if

€ —€j < max(di — dj, 0)
An arrow i — j is critical with respect to the pair (e, d) if either
(di,e;) =(2,1) and (dj,¢e;) = (1,0)

or

(di,e;) = (1,1) and (dj,e;) = (2,1).

Let S be the induced subgraph of @ on the set of vertices {i : (d;,e;) = (2,1)}. For a
connected component C' of S, define

v(C') = #{critical arrows having a vertex in C'}.
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Theorem 39. [Tra09, Theorem 4.2] Fix d € ®,, e € Z™. For the cluster algebra defined
by the initial quiver Q (acyclic of type D,,), the coefficient of the monomial u’ - - - u." 7" in
the F'-polynomial associated to d is nonzero if and only if all of the following conditions,

which we refer to as Tran’s conditions in the sequel, are satisfied:
1.0<e<d
2. all arrows in ) are acceptable

3. v(C) < 1 for all connected components C' of S, where S is the induced subgraph as
defined above.

The coefficient of uf’ - --u."7' is 2¢, where c is the number of connected components C
such that v(C') = 0.

Remark 40. Although [Tra09] proves Theorem 39 in more generality, i.e. for other Dynkin
types, we focus on her proof in case of Type D,, quivers. For this, she utilizes [Tra09,
Theorem 4.7], whose proof involves the Quiver Grassmanian, denoted Gr (M), which
is the variety of all subrepresentations of a quiver representation M of dimension e. It
is a closed subvariety of a product of Grassmannians. Her proof involves computing the
F-polynomial by calculating Euler-Poincaré characteristics for multiple quiver Grassman-
nians ranging over various vectors e, relying on [DWZ10] for the correspondence between
these two objects. To compute the Euler-Poincaré characteristic of Gr.(M), Tran shows
that conditions (1), (2), and (3) exactly give subrepresentations of dimension e for which
the corresponding Euler-Poincare characteristic is nonzero. This provides the computa-
tion of the support of the F-polynomial.

4.2 Bijection of Models
4.2.1 Monomials

Theorem 41. Let () be an acyclic quiver of type D,, and let d € ®,. There is a bijection
between

{mized dimer configurations D in P} <— {vectors e satisfying Tran’s conditions}.

This bijection is described as a map in both directions. The map sending ¢ — D is
given by performing a particular set of flips from M_. In order to describe this direction
of the bijection, we weight the edges of the base graph G (which is associated to some
quiver () and positive root d) via

w(e) := #{ edges on e in M_}
for all e € E(G).

Definition 42. The weights of the edges are transformed via the following prescription
after flipping a tile:
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This is known as a weighted flip.

Remark 43. Implicit in this definition is the fact that our weights will stay non-negative
when we perform what we have previously called “allowable flips.” However, in the context
of this direction of the bijection, we will allow for weighted flips at any tile; meaning that
we now allow the weight of an edge to be negative. To emphasize the deficits which arise
when we flip edges that we previously could not in the “allowable” sense, we distinguish
edges of negative weight in yellow and call them “antiedges.” By introducing these weights
and allowing them to be negative, we simplify the noncommutativity of flipping sequences
of tiles.

Theorem 44. Given (Q,d,e) where e satisfies Tran’s conditions, i.e. (1), (2), and (3)
of Theorem 39, there exists a unique mized dimer configuration D in poset P (see Section
3.4) such that D is associated to this e. Further, the mized dimer configuration D is
obtained by the following procedure:

1. Given (Q,d), construct the corresponding base graph G and the minimal matching
M_ associated to d via the procedure described in Section 3.2. Weight the edges of
G by w(e) for e € E(G).

2. From this weighted minimal matching, take the positive entry e;; > 0 in e of minimal
index. Flip tile i1 e;;, number of times and transform its edge weights as prescribed
in Definition 42 with respect to the black and white coloring of the vertices to arrive
at the mized dimer configuration Dy. (Note that if this flip (or flips) were not
“allowable,” then we will obtain “antiedges”, i.e. edges with negative weight we
highlight in yellow.)

3. From Dy, take the next positive entry e;, > 0 in e of minimal index. Flip tile is
e;, number of times and transform its edge weights as prescribed in Definition 42 to
arrive at the mized dimer configuration Ds.

4. Iterate this process until we have exhausted all positive entries in e. The resulting
mized dimer configuration D will only have mon-negative weights, i.e. no yellow
edges will remain. Moreover, it will be an element of P. The resulting configuration
D s the mixed dimer configuration associated to e.
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Before proving this theorem, we compute an example.

Example 45. Suppose d = (1,1,2,2,1,1) and @ is superimposed on the first mixed
dimer configuration. Let e = (0,0,1,2,1,1) which we see satisfies conditions (1)-(3) in
[Tra09]. Performing the flips in left to right order as prescribed in Theorem 44, we obtain
the following sequence of weighted flips

where yellow edges have weight —1 that we refer to as “antiedges” and the last dimer
configuration D is the resulting mixed dimer configuration. Note that, in this example,
we could flip tiles in the order 3,2,4,5,3 to obtain a sequence of allowable flips yielding D.

In order to prove the above statement, we will utilize the following lemmas:

Lemma 46. Let d € &, and let 0 < e < d. Suppose that i — j in QQ and for any
0< 1< n—1,let D be the mized dimer configuration obtained by flipping tile i e; number
of times from M_. Let m;; be the number of edges distinguished in D on the edge between
tiles i and j. Then

mivj = max(di — dj, 0) + (ej — 67;) = ni,j~

Proof. In order to prove this formula holds, we proceed by induction on |e| := Z;é e

When |e| =0, i.e. e =(0,0,...,0), the associated mixed dimer configuration is M_. By
definition of M_, we distinguish boundary edges in G; and G that are oriented black to
white clockwise with respect to the bipartite coloring. This means that we only distinguish
internal edges when G, Gy are strict subsets of G. Suppose that d; > 0, but d; = 0, i.e.
i € G and possibly Go whereas j ¢ G1 or Gy. If i — j in @, then locally we have that
the edge straddling ¢ and j is oriented black to white clockwise with respect to the tile
t. So, this gives that m, ; = d; - as we will distinguish this edge in G;. If d; = 2, we will
distinguish it once again. Therefore, in the case that i — j, we’ve shown

n;; = max(di — dj, O) = dl =Ty ;.

If 7 — 4, then we locally have that the edge straddling 7 and j is oriented white to black
clockwise with respect to the tile 7. So, this gives that m;; = 0 as we will never distinguish
this edge in GG; or G5. Therefore, in the case that j — i, we’ve shown

TL]‘J' = max(dj — di, O) =0= mm
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Thus, when |e| = 0, our formula holds. Suppose up to k € N, we have that when |e| = k,
our formula holds. Now, suppose |e¢| = k + 1, and choose & with |€] = k, such that e
can be derived from & by adding 1 to the i*" entry of €. On the level of the mixed dimer
configuration, this means we flipped tile ¢ from the mixed dimer configuration associated
to € to obtain the mixed dimer configuration associated to e.

Suppose i — j in (). Note that by definition of the weighted flip, we have that the
weight of the edge straddling tiles ¢ and j is oriented black to white clockwise on tile ¢
which gives us that the weight decreases by 1. So, we have that m; ; has decreased by 1
and since e; has increased by 1, we have

TLZ'J‘ = max(di — dj, O) + (ej — (Bi + 1)) = max(d,- — dj, O) + (6]' — ei) — 1.

Therefore, performing a flip at tile 7 decreased both n; ; and m;; by 1. If j — 7 in @, the
argument is similar. O

Corollary 47. The values n;; = max(d; — d;,0) + (e; — e;) all satisfy n;; > 0 if and
only if all weights on interior edges on the mixed dimer configuration D associated to e
are nonnegative. In particular, all arrows i — j are acceptable with respect to (d, e) if and
only if all weights on interior edges are nonnegative on the mixed dimer configuration D
associated to e.

Lemma 48. (Analogous formula to Lemma 46 with boundary edges). Let d € @, and let
0<e<d Forany0<i<n—1,let D be the mized dimer configuration obtained by
flipping tile i e; number of times from M_. Let the outer face of our graph G be indexed
by co. We assign an arrow to each of the boundary edges of G where the orientation of
this arrow depends on the bipartite coloring of G following the convention that we “see
white on the right.” For example,

We assign a weight to the edge v on tile i as follows:
Nioo(@) = max(d;,0) —e; if i = oo about a

Neoi(@) = max(—d;,0) +e; if co — i about a

Let m; o (cv) (respectively moo i(v)) be the number of edges distinguished on o on tile i in
D where i — oo about o (respectively oo — i about «v.) Then for any boundary edge o on
tile 1,

Nioo() = Mioo(a) and neg () = me ().

)
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Proof. The proof is similar to that of Lemma 46. [

Remark 49. Note that if we set (dwo, €xo) = (0,0), our formula for the number of boundary
edges in Lemma 48 coincides with our formula for the number of internal edges in Lemma
46 as

Nioo(@) = max(d; — doo, 0) + (s — €;) if i = 00 about a

max(de — d;, 0) + (6; — es) if 00 — 7 about «

Nooi()
Corollary 50. Whenever 0 < e < d, there are no antiedges on the boundary.

We now prove Theorem 44.

Proof. Let @ be a quiver of type D,, where the associated quiver is acyclic. Let d € ..
Obtain the base graph G(Q)) = G and the minimal matching M_(Q,d) = M_ via the
procedures prescribed in Sections 3.2 and 3.3.1. Assign weights to the edges in M_ as
prescribed in Definition 24. Note that we agree to associate the vector e = (0,0,...,0),
which trivially satisfies the all of Tran’s conditions, to the minimal matching M_ which
is in P by Proposition 34.

Suppose that we have some nonzero e satisfying all of Tran’s conditions. To see that
the resulting mixed dimer configuration D after our performing our algorithm is reachable
by a sequence of allowable flips, we apply Lemmas 46 and 48. We proceed by induction on
le]. To establish the base case, we use M_ which is by definition reachable by an empty
sequence of allowable flips. Suppose that up to £ € N, our algorithm yields a mixed
dimer configuration that is reachable by a sequence of allowable flips. Now suppose that
le| = k + 1 and that we have added 1 to the i*! entry of ¢, i.e. flipped tile i. Note that
as i — j is acceptable with respect to (d,e), we have that e; — e; < max(d; — d;,0),
ie. n;; > 0. By Lemma 46, we have that n;; = m,; which implies that the number
of edges straddling tiles ¢ and 7 must be non-negative. Moreover, by Lemma 48, since
0 < e < d, we have that for any boundary edge a on tile 7, n; o () = max(d;,0) — e; =
d; —e; > 0 giving that m; o (), the number of edges on « in D is non-negative. Similarly,
Neoi(@) = max(—d;,0) +e; = 0+e¢; > 0 giving that me ;(a), the number of edges on « in
D is non-negative. Hence, the resulting mixed dimer configuration D has edges with all
non-negative weights. With this, we claim that there exists some reading of the entries
of e (not simply left to right as the algorithm prescribes) which yields a mixed dimer
configuration with non-negative weights at each flip along the way in the sequence.

Let j denote the label of a vertex of the quiver () such that e; > 0 and such that for
any arrow pointing ¢ — j, we have e; > e;. Note that since |e] = k+1 > 0 and Q is
an oriented tree, it follows that such a vertex j exists. Consequently, if we let €’ be the
result of subtracting the j*® unit vector from e, we see that (1) for every arrow i — j, we
have nj ; = max(d; — d;,0) + (e; — 1 — ¢;) is nonnegative; (2) for every arrow j — i, we
have n;; = max(d; — d;,0) + (e; — e; + 1) is nonnegative; (3) the value n; = d; —¢; is
nonnegative, and (4) the value n_; = e; is nonnegative.
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Hence, utilizing Lemmas 46 and 48, we see that e’ corresponds to a mixed dimer
configuration D’. Since |¢’| = k, by the inductive hypothesis, D’ is reachable by a sequence
of allowable flips from M_. Hence D itself is reachable from M_ by a sequence of allowable
flips, where we tack on a flip of tile . This last flip is allowable since both D’ and D are
mixed dimer configurations, i.e. with nonnegative weights on edges, and the difference
e — ¢ is the ;'™ unit vector.

Hence, any mixed dimer configuration with non-negative weights must be reachable
via a sequence of allowable flips from M_. Therefore, since the resulting mixed dimer
configuration D from our algorithm has all non-negative weights, it is reachable via a
sequence of allowable flips from M_.

The last thing we need to show is that the resulting mixed dimer configuration D
is node-monochromatic. We again proceed by induction on |e|. By Proposition 34, we
have that M_ is node-monochromatic, establishing the base case. So suppose that up
to k € N, we have that when |e| = k, the resulting mixed dimer configuration D is
node-monochromatic. Now take e with |e| = k + 1 where we have added 1 to the i*!
entry of e. Since we have previously established that this mixed dimer configuration D
is reachable by an allowable sequence of flips, we can assume that D was obtained via a
sequence of k£ 4+ 1 allowable flips from M_. We claim that the only way we could have
produced a path connecting nodes of different colors is if there is more than one critical
arrow in () with respect to (d,e). We first show that if a path between u, v and w, x can
be formed, then the corresponding quiver must have at least two critical arrows. We start
with the minimal matchings for each orientation of the last three vertices n —3,n — 2 and
n — 1 in @) and show that the only way to obtain paths between blue and red nodes via a
sequence of allowable flips is when two critical arrows (namely, violating Tran’s condition
(3)) involving these three vertices arise:

G — r g — T q q
21 (1,0) 21 (1,0) (1,1) (2,1) (1,1) (2,1)
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By the symmetry of the vertices n — 1 and n — 2 in ), it suffices to show no paths
between green nodes to either blue or red can occur. To do this, we show that if such a
path exists, there would be two critical arrows: one being the arrow ¢ — ¢ — 1 where d;
is the 2 in the d-vector of maximal index and one involving the vertices n — 3 and one
of n — 2 or n — 1 (connecting to u,v or w,z respectively). To simplify the case work,
suppose that one of the arrows n —3 —n — 2 and n — 3 — n — 1 are critical. With this
assumption, we can potentially make paths connecting both red to green and/or blue to
green. We show that is this case, an additional critical arrow must be created in order to
connect red or green to blue. Suppose that i is the 2 of maximal index in the d vector.
For the definition of where to place the nodes y, z, we need to examine the cases where
1,1 — 1,1 — 2 are zigzagging or straight.

Note that if # — 2 < 0, then this case reduces to the straight case. Suppose that the
tiles 4,7 — 1,7 — 2 are placed straight in G. Then, in order to create a path from either
red or green to blue, we must flip all tiles with d; = 2 for j > ¢ to obtain edges that are
from white to black clockwise with respect to Go. This gives that (d;,e;) = (2, 1) for all
vertices j > 1. When we flip tile ¢, note that we will connect the green nodes to both the
red and blue nodes as pictured below in the left column:

We see that this must create a critical arrow ¢ — @ — 1 as (d;,e;) = (2,1) and
(di—1,e;-1) = (1,0). Now consider when i,7 — 1,7 — 2 are stacked in a zigzagging fashion
in GG. As before, in order to create a path from either red or green to blue, we must flip
all tiles with d; = 2 for j > i to obtain edges that are from white to black clockwise with
respect to G. This gives that (dj,e;) = (2, 1) for all vertices j > i. When we flip tile 1,
note that we will connect the green node y to the blue node u as pictured in the above
figure on the right.
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Thus, we see that via a sequence of allowable flips from M_, this mixed dimer config-
uration will remain node-monochromatic as e satisfies Tran’s criticality condition. Hence,
we have associated a mixed dimer configuration D in our poset P to our given vector e
satisfying all of Tran’s conditions. O]

To continue our proof of Theorem 41, we now construct a map D — e. The map
sending D — e does not require the weighted version of flipping used in the previous
theorem. For this direction of the bijection, we restrict our attention to allowable flips.
This map is given by the superimposition of D with M_ and it is constructed via the
following theorem:

Theorem 51. Given (Q,d, D), there ezists a unique way to produce e that satisfies all of
Tran’s conditions i.e. conditions (1), (2), and (3) of Theorem 39. The process is given
by the following procedure:

1. Let v =(0,0,...,0) € Z". Given (Q,d, D), construct the corresponding base graph
and minimal matching M_ via the procedure described in Section 3.2.

2. Superimpose D with M_ to obtain the multigraph M, := D U M_.

3. Using the edges distinguished in D and M_, create the largest cycle of length 1 > 2,
call it Cy. (Note that Cy may not be the unique cycle of length ¢1). For all faces
1 enclosed by C1, add +1 to v; in v and delete Cy from M. Call the resulting
multigraph My = M \ C}.

4. Fxamine My and if there are any cycles of length {5 > 2, find the cycle of largest
length and call it Cy. For all faces i enclosed by Cs, add +1 to v; and delete Co
from M.

5. Iterate this process of deleting cycles of of largest length and adding 1’s to the vector
v until nothing is left besides 2-cycles. The resultant vector v corresponds to e.

Before proving this theorem, we compute an example:

Example 52. Consider the quiver () from Example 45 with the same positive root d =
(1,1,2,2,1,1). Suppose we start with the mixed dimer configuration D € P given by

which is obtained by the sequence of allowable flips at tiles 3,2,4,5,3 in order. Superim-
posing this with the minimal matching, distinguished in blue, we obtain the multigraph
as shown here.
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Following the algorithm stated in Theorem 51, we see the largest cycle we can create
is of length 12 enclosing tiles 2,3,4 and 5, call it C; which we distinguish in green.

and since this cycle enclosed tiles 2,3,4 and 5, we now have that v = (0,0,1,1,1,1).
Looking for the next largest cycle, we see that the cycle enclosing the hexagon i.e. tile 3
is largest, call it C5. Deleting (5 from our multigraph, we obtain the figure below,

and we add +1 to vs, giving that v = (0,0,1,2,1,1). Because there are only 2-cycles left
in our multigraph, we have that v = (0,0,1,2,1,1) is the e we associate to D.

We now prove Theorem 51.

Proof. Let @ be a quiver of type D,, where the associated quiver is acyclic. Let d € &, .
Obtain the base graph G(Q) = G and M_(Q,d) = M_ via the procedure prescribed in
Sections 3.2 and 3.3.1. Let D # M_ be a mixed dimer configuration in P and initialize
v=1(0,0,...,0).
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We first illustrate why we can delete a cycle from the superimposition of D and M_.
Note that as both D, M_ € P, they individually satisfy the valence condition. Hence, we
obtain that each vertex that was previously valence 2 is now valence 4 in M; and each
vertex that was valence 1 is now valence 2 in M;. Because D # M_, there must exist
some cycle of length at least 4 in their superimposition as D differs from the minimal
matching by at least one allowable flip. Hence, there exists some cycle of maximal length
(> 4.

We aim to show that after each iteration of cycle deletion and adding the corresponding
1’s to the entries in the vector v, the resultant vector satisfies all of Tran’s conditions.

Tran Condition (1). We claim that Condition (1) of Theorem 39, ie. 0 < v < d
is satisfied. Note that the only way a cycle can enclose tile 7 in the superimposition of
D and M_ is if D differs from M_ at a tile j. The only way this could happen is if an
allowable flip occurred at tile j. By definition of allowable flip, we require that d; > 0.
Moreover, the only positive entries in v correspond to tiles enclosed by some cycle C; in
our algorithm. The only way v; > d; is if v; = 2 and d; = 1. However, this would imply
that the tile j was enclosed by two cycles in our algorithm i.e. the tile 5 can be flipped
twice. This can only happen in d; = 2. Hence, v; < d; for all j giving that 0 < v < d.

Tran Condition (2). In order to prove the other two Tran conditions, we will be
using two forms of induction. We will be inducting of the number of iterations needed
such that nothing is left in DL M_ but a disjoint union of 2-cycles. Within this induction,
we will also induct on the number of tiles that each cycle in the algorithm encloses. We
can establish the base case of both inductions immediately as we agree to associate M_
to e = (0,0,...,0) which trivially satisfies Tran’s conditions (2). We first claim that
deleting C; and adding the appropriate 1’s to v/, we obtain a vector v that satisfies Tran’s
acceptability condition, i.e. Condition (2) of Theorem 39. In order to do this, we now
induct on the number of tiles enclosed by Cj.

Suppose that C; encloses one face, call it j. In order to check that v is acceptable in
this case, it suffices to check that any arrows involving vertex j satisfies the acceptability
condition. Note that v; = 1 or 2 because j could have been enclosed in a previous cycle
in an earlier iteration. We first address the case when v; = 1. Also, suppose that j is the
tail of an arrow & — j. In this case, when vy # 2, the acceptability is trivially satisfied as
v — v; < 0. So, we consider when v, = 2 which gives us that v, —v; = 1. Note that all
the cases where acceptability fails, i.e. when max(dy — d;,0) = 0, are precisely the cases
where

Ngj; = max(dk — dj,O) + (Uj - Uk) =0—1=-1.

However, this violates Corollary 47 which tells us that all edges weights must be nonneg-
ative. Hence, these cases are impossible.

Now suppose that j is the head of an arrow, i.e. 7 — k in (). In this case, when
v # 0, the acceptability is trivially satisfied as v, — v; < 0. So, we consider when v = 0
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which gives us that v; —v, = 1. Note that all the cases where acceptability fails, i.e. when
max(d; — d,0) = 0, are precisely the cases where

nj = max(d; — dy,0) + (vp —v;) =0 —1=—1.

Again, this violates Corollary 47 as all edge weights must be nonnegative. Hence, this
cases is also impossible.

Now suppose that v; = 2. Note that j is the tail of an arrow & — j, the acceptability
is trivially satisfied as vy — v; < 0 for any choice of v. So, it suffices to consider when
j is the head of an arrow, i.e. j — k in ). In this case, when vy = 2, the acceptability
is trivially satisfied as v; — v, = 0. So, we consider when v, = 0 or 1. If v, = 1, then
v; —vr = 1 and all the cases where acceptability fails, i.e. when max(d; — d, 0) = 0, are
precisely the cases where

njr = max(d; —dy,0) + (v —v;) =0—-1=—1.

However, this again violates Corollary 47. Similarly, if v;, = 0, then v; — v, = 2. Then, all
the cases where acceptability fails, i.e. when max(dy — d;,0) < 1, are precisely the cases
where

nj, = max(d; — dy, 0) + (v, —v;) <0

violating Corollary 47. Hence, these cases are impossible. Therefore, we have established
the base case for our induction on the number of tiles enclosed by Ci.

Now, assume that if C; enclosed k tiles, then v satisfies Tran’s acceptability condition.
Now, suppose that C; encloses k + 1 tiles, ty,...,%;1. We aim to show that v +e;,,, =y
satisfies Tran’s acceptability condition.

Again, by our inductive hypothesis, it suffices to show that any arrow with vertex
tro1 still satisfies the acceptability condition. Since tile ¢4, is enclosed by C; and may
have been enclosed by another cycle in a previous iteration, we have that y;, , > 1. If
J is the other vertex in an arrow involving f;.;, we also have to consider all possible
values of dj,y;,dy, ., as well as if #;, is the head or tail of the arrow. First, suppose
that y;, ., = 1 which means that d;,, = 1 or 2. Next, suppose that ¢, is the tail of an
arrow, i.e. j — tpy1 in . When y; < 2, the acceptability condition is trivially satisfied
as Yj — Yu.,, < 0. So suppose that y; = 2 and since y; < d;, this implies that d; = 2. As
d; > 1, the acceptability condition is satisfied in all cases.

Now, still suppose that y;, ., = 1, but now suppose that #;,; is the head of an arrow,
ie. tpy1 — jin . When y; > 0, the acceptability condition is trivially satisfied as
Ytr.n — Y5 < 0. So suppose that y; = 0, note that if d;,, — d; > 1, the acceptability
condition is satisfied. When d;, ., — d; < 0, this means that

Nty = maX(dtk+1 - dj O) + (yj - ytk+1) =1
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violating Corollary 47. Hence, these cases are impossible. Now, suppose that y;, ., = 2
which means that dy, ., = 2. Note that when 7, is the tail of an arrow, i.e. j — f341
in Q, ¥; — Y., < 0 giving that acceptability is trivially satisfied. So suppose that #j,
is the head of an arrow, i.e. tx1; — j in . When y; = 2, the acceptability condition is
trivially satisfied as 1, ., —y; = 0. So suppose that y; = 1 or 2, note that as d;,,, = 2,
the acceptability condition only fails if y; < d;. But this is precisely when

Ny 0,5 = maX(dtk+1 — dj, 0) + (yj - ytk+1) =—1

violating Corollary 47. Hence, these cases are impossible. Therefore, we have shown that
if C; encloses k+1 cycles, the resulting vector y satisfies Tran’s acceptability condition. By
induction, we have that after the i*" step of our algorithm, v satisfies Tran’s acceptability
condition. Therefore, any vector obtained via this algorithm must satisfy the acceptability
condition. Hence, the resultant e must be acceptable.

Tran Condition (3). We now show that the criticality condition, Tran’s condition
(3), is satisfied by v. In order to do this, we again induct on the number of steps needed
to complete our algorithm. Furthermore, we induct on the number of tiles enclosed by Cj
at each step.

To establish the base cases of both inductions, suppose that C; encloses a unique tile
j. Then v = e;, the unit vector with a 1 in the j™ position. Note that if d; # 2, no
critical arrows can be formed as S := {i € Q : (di,e;) = (2,1)} = 0. So, suppose that
d; = 2. Then, as (dj,v;) = (2,1), j € S and the only way that the criticality condition
could have failed is if this created two critical arrows i.e.

k+—j—1/(
(1,0) < (2,1) — (1,0)

where we must have vy, = 0 = v, as the only tile enclosed by a cycle is j. Note that since
the subgraph (G5 associated to all tiles with d entry 2 is connected, this means that 7 must
be the unique tile in G5. By the structure of the positive root d € ®,, we have that j
must be on the tile associated to the hexagon, i.e. vertex n — 3 in (). Hence, our base
graph is:

(1,0) (2,1) (1,0)

Figure 2

based on the orientation of the quiver. In this case, our minimal matching and mixed
dimer configuration D will locally look like the following:
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Figure 3

where we obtained the minimal matching, distinguished in red, with the convention that
we distinguish edges going black to white in the bipartite coloring and obtain D, distin-
guished in blue, by performing an allowable flip at tile 7. We now have two cases: either
both k, £ are terminal vertices, i.e. are degree one in the quiver, or one of k or £ is terminal
and the other is not, meaning it has degree two in the quiver. Suppose that both k, ¢ are
terminal. With the labeling of the nodes as prescribed in Section 3.4.1, we see that the
mixed dimer configuration D has two paths connecting nodes of different colors.

This means that D ¢ P which is a contradiction. Now, without loss of generality,
suppose that k is the terminal vertex and ¢ has degree two in the quiver. Since j is the
minimal index with d; = 2 in d, the nodes y, z will either be placed on tile / = j — 1 or
7 — 2 depending on the orientation of the arrows connecting j, ¢, j — 2. In either case, we
see paths between nodes of different colors formed:

j— 1—132

@1 L0 (d,0 (1) (L0 (4,0

Figure 5
Hence, two critical arrows cannot be formed if C'; encloses a single tile. Now, suppose
that if C'; encloses k tiles, the resulting vector v satisfies the criticality condition. We now

aim to show that if C; encloses k + 1 tiles, then the resulting vector w := v + e; satisfies
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the criticality condition. Note that by our inductive assumption, (v, d) has at most one
critical arrow. Suppose that (v, d) created 0 critical arrows. Since w only differs from v in
the ;" entry, it suffices to only check any arrows involving j. Moreover, we need to show
that two critical arrows cannot be created by adding +1 to the j* entry of v to obtain
w. The only way that this could happen is if j is the unique vertex in S, i.e. d; is the
unique 2 in d with a quiver of one of the following orientations:

p o J < ¢ (i)
(1,0) < (2,1) « (1,1)
p — j — q (ii)
(1,1) — (2,1) — (1,0)
p — j — q (iif)
(1,0) «+ (2,1) — (1,0)
p — j — ¢ (iv)

(1,1) — (2,1) « (1,1)

Note that case (iv) will not be possible as if w, = w, = 1. This means that both p
and g were enclosed by C. However, since j is in between these vertices, this impossible
without having enclosed j as well by the connectedness of the tiles enclosed by Cf.

Note that we analyzed case (iii) in the base case. Namely, since C enclosed a connected
set of tiles, we must have that p, ¢ are terminal which puts us in the case of Figure 4.

Also note that cases (i), (ii) are symmetric. So it suffices to focus on case (i). Based
on the orientations of the arrows, our base graph is up to isometry/ bipartite coloring is
one of the following:

Figure 6

Within these cases, we have to consider if p,q are terminal vertices in the quiver.
This gives that for each of these base graphs, there are two cases: either both p,q are
terminal in @) or one of p or ¢ is terminal in ). Suppose that the base graph is given by
the left graph in Figure 6. Then, if both p, ¢ are terminal, we obtain the mixed dimer
configuration D by performing allowable flips at tile j, then tile ¢q. In this case, we see D
is node-polychromatic as:
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Figure 7

Without loss of generality, suppose that ¢ is terminal and p has degree 2 in (). Namely,
in either case of the orientation of this arrow, we see D is node-polychromatic as:

j—p—J2
1) 10  (d,0

j—p~—1j2

(21) (10 (d_,0)

Figure 8

Now, suppose the base graph is given by the right graph in Figure 6 and suppose that
both p, g are terminal. Then, we see D is node-polychromatic as:

Figure 9

Without loss of generality, suppose that ¢ is terminal and p has degree 2 in (). Namely,
in either case of the orientation of this arrow, we analyzed isometric copies of these cases
in Figure 8 and saw they produce node-polychromatic mixed dimer configurations.

So, if no critical arrows were created when C; enclosed k tiles, we have shown that two
critical arrows are not created when C' encloses k+ 1 tiles. Now suppose that one critical
arrow is created if C) encloses k tiles. We now aim to show that enclosing k£ + 1 tiles
creates no critical arrows. Note that S # () as one critical arrow was created. Suppose
that s € S, i.e. (ds,ws) = (2,1), and as vs = 1, we know that s must have been enclosed
by C4. Note that if j were not connected to s, then the only way another critical arrow
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can be made is if (d;,v;) = (2,1). However, entries that are 2 in d € &, are consecutive,
so this cannot happen. So suppose that j is connected to s. The only way that another
critical arrow can be made is if either j — s with (d;,w;) = (1,1) and (ds, w,) = (2,1)
or j < s with (d;, w;) = (1,0) and (ds,ws) = (2,1). However, note that the ladder case
is impossible as w; = 1 by hypothesis that j is enclosed by C;. This gives that we are in
one of the following two situations:

j — s <«— t (a)
(1,1) — (2,1) «+ (1, 1)
j «— s — t (b)

(1,0) «+ (2,1) — (1,0).

Note that case (b) was done previously where j plays the role of ¢ and s plays the role
of j in case (i) where we assumed that zero critical arrows were formed with C; enclosing
k tiles. So, we only need to address case (a). Again, s € S must be the unique vertex
with ds = 2 as the 2’s are consecutive in any positive root which gives us that s must be
the hexagon. Note that with the orientation of the arrows, the only possibility for the
base graph up to isometry is:

Figure 10

Now we consider if j,t are terminal vertices. If j,¢ are both terminal, note that a
node-polychromatic mixed dimer configuration is produced as:

X

Figure 11

Without loss of generality, suppose that j is terminal and ¢ has degree 2 in ). Then,
we need to consider the other arrow with vertex ¢ to use the nodes y, z. In these cases,
we obtain paths between nodes of different colors:
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(1,1)

§-2 === t — S

@, A @nNr G (1) @A
(&)

(dr W)

Figure 12

Note that in both figures, it does not matter what (d,., w,) are because even if w, > 0,
this does not affect the path formed between x and y. In fact, it creates another path
connecting nodes of different colors from u to z. Therefore, we have shown that if one
critical arrow was formed by enclosing £ tiles, then no critical arrows are created when
enclosing k+ 1 tiles. Hence, by induction, we have proven that if C'; encloses n tiles, then
v satisfies the criticality condition which establishes the base case of our induction on the
number of steps of our algorithm.

Suppose that up the i*" step of our algorithm, each v satisfies the criticality condition.
We now aim to show that after removing C;,; to create v, we still satisfy the criticality
condition. To do this, we again induct on the number of tiles enclosed by cycle C;,;.
Suppose that C;,; enclosed a single tile j. Note that we cannot create any additional
critical arrows if j was enclosed in a previous cycle as v, = 2, so we suppose that v, = 1.
Again, either 0 or 1 critical arrows were created with (v, d). In either case, this reduces to
the argument made in the base case for C'; with the only difference being that v, = 2 for
some vertices m. But note that this will not affect the analysis of creating critical arrows
because the definition of critical arrows require that v, = 0, 1.

Suppose that C;,, encloses k tiles and that the associated vector satisfies the criticality
condition. Now, we aim to show that if C;,; encloses k + 1 tiles, then the resulting vector
w still satisfies the criticality condition. As in the base case above, note that we cannot
create any additional critical arrows if j was enclosed in a previous cycle as v; = 2, so
we suppose that v; = 1. Similarly, note that even if some v, = 2, this will not affect the
analysis of creating critical arrows because the definition of critical arrows require that
vy, = 0, 1. So, this case reduces to the base case of the inductive step even if w;_5 > 0.

So, we see that by definition of the mixed dimer configuration D being node- monochro-
matic that the criticality condition is satisfied by v. By induction, enclosing m tiles with
Ci41 results in v that satisfies Tran’s condition (3). This gives that after each step of
our algorithm, the resulting vector v must satisfy Tran’s condition (3). Therefore, the
resulting vector e must satisfy all of Tran’s conditions. O
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We now show that these maps described in Theorems 44 and 51 are indeed inverses
of one another. For an example of this, see that Examples 45 and 52 are inverses of each
other. This completes the proof of Theorem 41.

Proof. In order to show that these maps are inverses of each other, first note that by
definition of the algorithm in Theorem 44, we see that the number of steps in the algorithm
exactly equals |e|, where e is the resulting vector associated to D. Therefore, it makes
sense to induct on |e|.

For the base case, suppose that |e|] = 0, i.e. we do not perform any steps of the
algorithm in Theorem 44. Then, by conventions of both algorithms for Theorems 51 and
44, we have that e is associated to M_ and vice versa.

Suppose up to k € N, when |e|] = k, i.e. we perform k steps of our algorithm in
Theorem 44, these maps are inverses of one another. Let e such that |e| = k + 1 where
we added 1 to the i*® entry of ¢’ where |¢/| = |e| — 1 = k. Suppose that by Theorem 44,
we associated the mixed dimer configuration D’ corresponding to ¢ and D is the mixed
dimer configuration associated to e. Note that as |e|] = k + 1, we had to perform k + 1
flips from M_ to obtain D and by assumption, we had to perform one more flip at tile ¢
to obtain D from D’.

We aim the show that using the algorithm in Theorem 51, we have that our initial
vector e is the vector associated to D. If we take the superimposition of D LI D', note that
will consist of all 2-cycles and exactly one 4-cycle enclosing tile . This implies that DUM_
will also have at least one cycle containing ¢. Moreover, D LI M_ will have exactly one
more cycle containing 4 that that of D’ LI M_. Hence, the corresponding vector obtained
by performing the algorithm in Theorem 51 must be e’ + e; which is exactly e.

Now suppose that given a mixed dimer configuration D, using the algorithm in The-
orem 51, we obtain an e such that |e| = k4 1. Let D’ be the mixed dimer configuration
associated to ¢/ = e — ¢;, i.e. subtracting 1 from the ith entry of e. By the prescription
of the algorithm in Theorem 51, we must have enclosed the tile ¢ e; number of times
when looking at D and (e; — 1) number of times when looking at D’. By our inductive
assumption, let ¢’ be associated to D’. Note that the order in which we flip tiles in the
algorithm in Theorem 44 does not matter, so to obtain the mixed dimer configuration D
from D', it suffices to flip the tile i. Therefore, we see that the mixed dimer configuration
associated to e prescribed by the algorithm in Theorem 44 is exactly the mixed dimer
configuration D we began with.

Therefore, we see that these maps are indeed inverses of each other. Thus, our graph-
ical model bijects to that of Tran’s. m
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4.2.2 Coeflicients

To show that our model gives the exact F-polynomial associated to d € ®, all that is
left to do is show that our model gives the right coefficients, i.e. show that the coefficient
of ug® -+ -u;" ' is 2¢, where ¢ is the number of cycles in the mixed dimer configuration
associated to e. Note that when we refer to cycles, we insist the length of the cycle is
larger than 2. To show our model yields the correct coefficients, we show that the number

of cycles in D corresponds to the number of connected components C' of S with v(C') = 0.

First note that we cannot have a cycle on a tile that is a dimer configuration, i.e. we
need d; = 2 in order for ¢ to potentially be enclosed by a cycle. Also, note that there are
no cycles in M_ by the convention of the black and white coloring in the definition of
M_, so in order for tile ¢ to be enclosed by a cycle, we must have that e; > 1. This tells
us that the set of all tiles that can potentially be enclosed by a cycle are contained within

S={i€Q : (de)=(21)

Fix D associated to (d,e). Let C' be a connected component of S. Suppose that
v(C) # 0, that is, there is some ¢ € C such that ¢ is the vertex of a critical arrow.
Namely, this ¢ must be connected to a tile outside of .S by definition of the d, e coordinates
of the other vertex of the critical arrow. Let ¢’ be the other vertex of the critical arrow
involving c¢. Note that if ¢ — ¢ about the edge «, then (dv,er) = (1,0) and we have
that n. = max(d. — dv,0) + (ev —e.) =1 —1=0. If ¢ — ¢ about the edge «, then
(de,ers) = (1,1) and we have that n. . = max(d, — d.,0) + (e. — e~) = 0. Therefore, by
Lemma 46, the edge a cannot have an edge from D which tells us that no cycle in D can
enclose tile c. This tells us that if a cycle encloses any tile or collection of tiles in C'; then
v(C) =0.

Now, suppose that C' is a connected component of S with v(C) = 0, i.e. no critical
arrows involve any vertex ¢ from C. Suppose that C' is comprised of the tiles i,...,m
where ¢ is the minimal tile in C' and m is the maximal tile in C' with respect to the
indexing in (). We aim to show that there exists a cycle in D enclosing all of C'. Note
that for ¢ < j < m — 1, we have that (d;,e;) = (2, 1), so there are no edges in D on the
edge straddling tiles j and j + 1 by Lemma 46 since n; ;.1 = 0. This implies that if we
can show that all the boundary edges of C' are in D, that there is a cycle enclosing all of
Cin D.

Note that as e; = 1 for all © < j < m, we have that each of the tiles in C' have been
flipped exactly once from M_ using our bijection of adding 1’s to the e-vector coinciding
with flipping the corresponding tile from Theorem 51. Note that if a boundary edge o on
tile ¢ is oriented black to white clockwise with respect to Gs, then by definition of M_,
a must have two edges distinguished in M_. After one flip at tile ¢, w(«) decreases by
1. This gives that this edge now has exactly one edge in D. On the other hand, if « is
oriented white to black clockwise with respect to Gs, then by definition of M_, a has no
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edges distinguished in M_. After performing a flip on tile ¢, we have that w(«) increases
by 1. This gives that o now has exactly one edge distinguished in D. Hence, all the edges
of the cycle enclosing C' that are on the boundary of G have exactly one edge on them in
D.

Now, we need to show that the cycle closes up on the interior edges of G, i.e. if i > 0
and/or m < n — 1, we need to verify that the edges straddling tiles ¢,7 — 1 and m, m + 1
have one edge distinguished in D. Note that as i,m € C with v(C) = 0, no arrow
involving ¢ or m is critical. By structure of d € ®,, we have that d;_; > 1 and d,,,,1 > 1.
Seeking a contradiction, suppose that n; ;1 = 0. Then, max(d; — d;,—1,0) = e; — e;_1, i.e.
max(2 —d;_1,0) =1 —e;_1. Since e;_1,d;_; € {0, 1,2}, this only occurs if either d;_; =1
giving that e;_; = 0 or if d;_; = 2 giving that e;_; = 1. In the first case, this gives that the
arrow ¢ — ¢ — 1 is critical which contradicts that v(C') = 0. In the second case, i —1 € C
which contradicts the minimality of ¢. Hence, n;;—1 > 0 and by Lemma 51, this means
there must be an edge straddling tiles 7,7 — 1 in D. Note that this same argument holds
for showing that there must be an edge in D straddling tiles m, m + 1. Therefore, we see
that one cycle is formed around all of C' when v(C') = 0. Hence, the number of cycles in
D is exactly the number of connected components C' of S with v(C) = 0. Therefore, the
coefficients from our graphical model match those in Tran’s.

Example 53. Note that in Examples 45 and 52, the mixed dimer configuration D has
a cycle enclosing the tile 2. From Example 36, we see the term in the F-polynomial
associated to this dimer configuration D has the coefficient of 2!.

4.3 Direct Connection to Quiver Grassmannian

Now that we have shown the connection between our model and that of Thao Tran, we
can state the direct connection between our model and the quiver Grassmannian.

Corollary 54. Let () be an acyclic quiver of type D,, and d be a positive root in the root
system. Let M be the corresponding indecomposable representation of Q) of dimension d.

Then 4
Z 2#{cycles n D}y(D> — Z XQ(M)yfl . yreLn
DeP e€Z™ such that
0<e;<d;

where x (M) is the Euler Poincaré characteristic of the Quiver Grassmannian Gr.(M).

Loosely speaking, an acceptable flip at tile ¢ corresponds to increasing the dimension
of the vector space at vertex ¢ € () in a subrepresentation N of M. Moreover, our
notion of node-connectivity corresponds to avoiding conflicts in choices of 1-dimensional
subspaces of 2-dimensional vector spaces. Paths between nodes of different colors indicate
inconsistent choices of subspaces on the vertices in .
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5 Computation of g-vectors from our model

Since we have established that our dimer configuration model gives a graph-theoretic
interpretation of the F-polynomial, it is natural to want an interpretation of the g-vector
from our model. By [FZ07], the data of F-polynomials and g-vectors is equivalent to the
data of Laurent expansions of cluster variables. In particular, this data is in a sense richer
because it yields the Laurent expansions of the cluster variables decorated with principal
coefficients.

To give the interpretation of the g-vector, we must establish an edge weighting on the
minimal matching M_ associated to some acyclic quiver @) of type D,, and a positive root
d € &,. Note that this is a separate notion from the definition of “weighted flip” given in
Section 42. Following the edge weights of [MS10], we define the edge weights of the base
graph associated to @) as follows:

1. For any internal edge e, define wt(e) = 1.

2. For any arrow j — ¢, on tile j, weight a white to black clockwise with respect to j
boundary edge by z;. On tile 7, weight a black to white clockwise with respect to ¢
boundary edge by ;.

3. Otherwise, weight the edge 1.

Remark 55. In step 2 of the definition of the edge weights from above, there is an ambigu-
ity. Namely if there are multiple black to white clockwise with respect to tile j boundary
edges a, B of j, we can choose either o or 8 to assign weight of z;. It turns out that
this choice does not affect the edge-weighting of matchings given the proof of Theorem
57 below.

Define the weight of the minimal matching M_ = M_(Q, d), denoted wt(M_), to be
the product of the edge weights distinguished in M_. Let’s see this definition in the
following example:

Example 56. Let ) be the Dy quiver in Example 45. Then, we assign the following
weights to the edges of the base graph:

If we consider the positive root
minimal matching which has wt(M_)
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With this choice of weighting, we have the following result:

Theorem 57. The g-vector associated to Q and a positive root d € @, denoted g =

g(Q, d), is given by
wit(M_
g deg( (xd ))

where deg(z°z{" - - 2" ) = (ag, a1, ..., Qp_1).

Before proving this result, we return to Example 56.

Example 58. Through direct computation, the associated g-vector is given by
(—1,2,0,0,—1,—1) and using Theorem 57, we see that

wt(M-) airirs ~1,2,0,0,—1_-1
d ——— ] =d —— ] =d =(—-1,2,0,0,—1,-1).
eg( 7 ) cg (xox1x§x§m4x5 eg(x w13ty 5 ) = ( )

Proof. Theorem 4.4 in [Tra09] gives an interpretation of the g-vector in terms of the data
(e,d) where e is a vector that again satisfies conditions (1)-(3) in Theorem 39. Namely it
says that given a classical type acyclic quiver @), the g-vector g g corresponding to d € &,
is -

n n

_ Z die; + Z d; max(—bj;, O)ﬁ

i=1 ij=1
where b;; denotes the (j,7)™ entry of the exchange matrix associated to the quiver Q.
Note that we can re-express this statement for the g—vector in terms of the quiver ¢ and

the positive root d € @, :
111+

1€Qo j—1

=d
g=deg | =3

This is because the denominator of the above expression coincides with Tran’s term
— Z?Zl d;e; and since we weight the black to white clockwise orientation with z; with
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j — % which coincides with Tran’s term Z?jzl d; max(—b;;,0)e;. Hence, we can re-
express Tran’s Theorem 4.4 in this way. Moreover, by definition of M_ this expression

is the same as
wt(M_
gzdeg(—(d )) O

Corollary 59. Theorem 35 and Theorem 57 give the full Laurent expansions of cluster
variables. Namely, for an acyclic quiver Q) of type D,,, and positive root d € @, we have
that

_ -~ h ~ 90 ,.91 In—1
'TQ@ - Fd(ymyla s 7yn—1)x0 A R

n—1 _b?‘i

where 1; = v; szo T

To see what the Laurent expansions for the cluster variables are, let’s look at an
example.

Example 60. Let d = (1,1,2,1,1) € &, and let @ be the following orientation of Ds.

‘/3

0¢—1<¢—2
~

4

Then our F-polynomial is given by

Fg =14 ug + ug + oy + ugtly + Ugtly + Uglity + Ugty Uz + Uglaly

2 2
+ 2upu Uy + UpUi UUzUy + UUIUSUL + UpUT USUS U4,

and our g-vector is g = (—1,0,0, =1, —1). In order to get our cluster variables, we evaluate
the F-polynomial at ¢; and then multiply by zZ. Note that

N -1 N —1 A —1 N A —1
Yo = Yoy y Y1 = Y120y y Y2 = Yal1Ty T4, Y3 =Y3T2 5, Ya = Ysaloy .

This gives that the F-polynomial is

U U a1 - — Yoy x YoYa  YoYaT1Tg  YoY1Y4T
Fd(yo7y1,y2,ys7y4)=1+y0$11—|—y4:v21+ 07120 | J0J4 | J29471 0Y1Y4Lo

1T 1T ToTs 123
YoY1Y2Zoxy YoY2Y4Ty 2Y0Y1Y2YaToT 4 YoY1Y2Y3lYaToly
+ + + 5 +
T3 ) I2£L'3 ToT3
2 2 2 2
4 YoY1Y2YaToZ1Ty I YoY1Y2Y3YaloT1Ty
x3x? Tox%

Therefore, the cluster variable is given by

x x 1T x
T4 = 3 (1+@+%+yoy1 o+yoy4+?/294 1 4+y0y1y§0
o4 T T2 1T T1T2 ToT3 X135
Lol T 2 Lol Lok
+ YoY1Y2ToT4 4 YoY2Yaly 4 yoy1y22y4 0T4 I YoY1Y2Y3lYaToly
ToT3 T3 ToT3 ToT3
i yoy1y§y4wow1xi i yoylygysywoxlwi)
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The cluster variable’s Laurent expansion can be seen term by term using the edge
weighting in the poset in Figure 13.

This example is made precise through the following formula mimicking [MSW11].

Theorem 61 (Expansion Formula). Let D be the mized dimer configuration in P obtained
from flipping tiles t1, ..., t, from M_. Define the height monomial of D by

L

y(D) = H Yi

=1

i.e. y(D) is the product of all y; for which a flip occurred at tiles i to obtain D from M_.
Define x(D) = [],cpw(e) to be the weight of the dimer configuration D. Then the cluster
variable associated to (Q,d) is given by

Proof. We proceed by induction on k = |d|, the number of allowable flips from M_ in the
poset P. When k = 0, our poset has one element, M_. The associated F-polynomial is 1
and z¢ = w(M_) and our expansion holds. Assume by induction that our claim holds up
to k € N. We aim to show that if & + 1 flips occurred from M_ i.e. |d| =k + 1 to obtain
the maximal mixed dimer configuration D’, then our expansion formula holds. It suffices
to show that the term in the expansion associated to D’ is —za(D’')y(D’). By definition
of the height monomial y(-), we have that y;’s account for flipping at each d; > 0 which
gives that the y;’s are indeed y(D') = y¢. Moreover, if the k + 1% flip occurred at tile
i, we have the weighting of the 2’s is changed by dividing by xj where j — 7 in ) and
multiplying by x, when i — ¢ in ). Hence, the x term in the term corresponding to D’
is indeed x(D’). Therefore, we have that

rqu =3 3 #D)y(D). =

— DeP

6 Future Directions

In terms of future directions, there are a few possible avenues. For example, we would
like to extend our model beyond the acyclic case. If we were to not rely on Tran’s model
for our proof, which requires that our quiver be acyclic, then we could potentially try to
extend our dimer configuration model to apply beyond the acyclic case. Perhaps there is
a proof of our model using recurrences of the F-polynomial or representation theory that
we could utilize to use this model in less restrictive settings. (Note in Postscript: Between
submission and acceptance, together with Libby Farrell, the two authors have succeeded
at such an extension [FMW22].)
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Figure 13 — The full poset associated to Example 60.
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Another possible direction would be to try to find a connection between our dimer
configuration model and to the punctured disk model with a possible comparison to for-
mulas for tagged arcs from [MSW11]. The punctured disk model is the surface model
for type D cluster algebras. When working with surfaces with punctures, i.e. marked
points in the interior of the surface, we can use the notion of tagged arcs in a triangu-
lation which can then be translated into vy-symmetric matchings of an associated snake
graph. We suspect that there is a way we can use a double dimer configuration model
via an “unfolding” method, which is similar to our methods from this paper, to give the
connection between double dimer configurations and the surface model. In addition to
this question, a paper from 2020 simplifies and unifies the approaches of [MSW11] by
considering “good matchings of loop graphs” [Wil20]. These loop graphs add additional
structure to the snake graphs in [MSW11] in order to provide a framework to write ex-
pansion formulae for the variables corresponding to any tagged arc in a surface. With this
new machinery, we wonder if using this additional structure on our dimer configurations
could help find the precise connection to the punctured disk model or yield any other
interesting generalizations.

We also believe our interpretation is of independent combinatorial interest for the case
of type D,, cluster algebras, especially since these arise as cases of the recently investigated
cluster structures of Schubert varieties [SSBW19]. This new model for cluster variables
has the potential to be extended to other cluster algebras - potentially shedding light
on cluster structures on various Grassmannians. Namely, we believe that this mixed
dimer configuration approach can improve our understanding of certain cluster variables
that arise as quadratic differences in terms of Pliicker coordinates. In particular, it is of
interest to see if we could embed our base graphs into the disk to create plabic graphs,
and relate them to cluster algebras from Schubert varieties. This may dovetail with recent
work in progress of Moriah Elkin [Elk21], which has been followed up by joint work in
progress with the two authors [EMW22]. We have conjectural double and triple dimer
interpretations for Laurent expansions associated to cluster variables in cluster algebras
associated to Grassmannians of types Gr(3,6), Gr(3,7), and Gr(3,8).
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