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For an arc on a bordered surface with marked points, we associate a holonomy matrix 
using a product of elements of the supergroup OSp(1|2), which defines a flat OSp(1|2)-
connection on the surface. We show that our matrix formula of an arc yields its super 
λ-length in Penner-Zeitlin’s decorated super Teichmüller space. This generalizes the matrix 
formula of Fock-Goncharov and Musiker-Williams. We also prove that our matrix formulas 
agree with the combinatorial formulas given in the authors’ previous works. As an 
application, we use our matrix formula in the case of an annulus to obtain new results 
on super Fibonacci numbers.
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0. Introduction

Cluster algebras, first introduced by Fomin and Zelevinsky [3], are certain commutative algebras possessing additional 
combinatorial structures. Since their discovery, cluster algebras have been connected to many other areas of mathematics 
and physics such as representation theory, integrable systems, Teichmüller theory and string theory. In recent years, much 
progress has been made towards a theory of super-commutative cluster algebras, such as [11,10], [4], [16,15] and [5,6]. 
The current authors, in our previous two papers [5,6], began the project of exploring a possible super cluster algebraic 
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Fig. 1. The default orientation of an arbitrary acyclic triangulation where each fan segment is colored differently. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

interpretation of Penner-Zeitlin’s decorated super Teichmüller theory, generalizing the known cluster structure of Penner’s 
λ-length coordinates. This paper is the third in this series, and as such we will use several conventions and definitions from 
our previous works, citing them where appropriate.

For a triangulation T of a marked surface (S, M), we define a graph �T embedded in S and for each point of the 
decorated super Teichmüller space, a flat OSp(1|2)-connection on �T . A similar construction was given in [1] of a graph 
connection in terms of shear coordinates on the (un-decorated) super Teichmüller space.1 We then define certain canonical 
paths on �T for each arc (a, b) of S , thereby associating the arc with a holonomy matrix Ha,b . Our main result (Theo-
rem 3.10) is that for a polygon (i.e. a marked disk) the (1, 2)-entry of the holonomy matrix is the super λ-length, up to 
sign. We also give precise formulas for all entries of the holonomy matrices in terms of super λ-lengths and μ-invariants 
(Theorem 4.3), and we give combinatorial interpretations of these matrix entries (Theorem 5.2) as generating functions for 
double dimer covers in the spirit of [8].

The structure of the paper is as follows. In Section 1, we review background on the decorated super Teichmüller theory 
of [14], and recall some conventions in our previous papers [5,6]. In Section 2, we provide necessary information on super-
matrices and the ortho-symplectic group OSp(1|2). In Section 3, we define the graph �T and a flat OSp(1|2)-connection on 
it, and state our main theorem. A more detailed version of our matrix formulas can be found in Section 4 which is devoted 
to a proof of the main theorem. In Section 5 we give a combinatorial interpretation of the result of this paper using double 
dimer covers, connecting the main results of the current paper and those of [6]. We revisit the super Fibonacci numbers

studied in [6], and examine the corresponding holonomy matrices in Section 6. Finally, in Section 7, we provide a more 
geometric interpretation of our matrix formula, via a different viewpoint of the decorated super Teichmüller theory.

1. Background on decorated super Teichmüller theory

In this section, we briefly recall the basic definitions of the decorated super Teichmüller space of a polygon (see [14] and 
[5] for more details). Consider a polygon P (i.e. a disc with marked points on its boundary), a fixed triangulation T , and a 
choice of orientation of the edges of T .

Without loss of generality, we restrict our attention to acyclic triangulations, i.e. those in which all triangles have a 
boundary edge.2 For simplicity, we will always consider a “default orientation”, as defined in [5], which is pictured in Fig. 1. 
The maximal groupings of consecutive triangles which share a common vertex (indicated by different colors) are called “fan 
segments”, and the common vertex they share is called the “fan center” (vertices labeled c1, c2, . . . , cN from top to bottom). 
The default orientation is defined so that the edges connecting fan centers are oriented c1 → c2 → c3 → ·· · → cN , and the 
remaining edges are oriented away from the fan centers.

The decorated super Teichmüller space of P is a super-commutative algebra3 A with the following generators: for each 
edge in T with endpoints i and j, an even generator λi j (called a “λ-length”), and for each triangle in T with vertices i, j, k, 
an odd generator i jk (called a “μ-invariant”).4

When two triangulations are related by a flip, as in Fig. 2, one can define new elements of the algebra by the following 
“super Ptolemy relations”:

1 In the language of the cluster algebra literature, shear coordinates are X -type cluster variables, while λ-lengths are A-type cluster variables.
2 We will always be concerned with an arc γ = (a, b) on the triangulated polygon, thus we can “ignore” the triangles that do not intersect the arc, which 

will leave us a sub-triangulation which is acyclic.
3 Technically, each choice of spin structure (represented by a choice of orientation of the triangulation) corresponds to a different connected component 

of the space.
4 The algebra A is technically the tensor product of the field of rational functions in the square roots of the λ-lengths and the exterior algebra generated 

by μ-invariants.

2



G. Musiker, N. Ovenhouse and S.W. Zhang Journal of Geometry and Physics 189 (2023) 104828

a b

cd

ei

�

k

j

θ

σ

a b

cd

f

i

�

k

j

θ ′ σ ′

Fig. 2. Super Ptolemy transformation.

ef = ac + bd +
√
abcdσ θ (1)

σ ′ =
σ

√
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√
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√
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=
σ

√
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√
ac√
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θ
√
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√
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√
ac + bd

=
θ
√
bd + σ

√
ac√

ef
(3)

Note that in Equation (1), the order of multiplying the two odd variables σ and θ is determined by the orientation of 
the edge being flipped (see the arrow in Fig. 2).

In Fig. 2, the orientations of the four boundary edges are omitted, but the super Ptolemy transformation does change the 
orientation of the edge labeled b (the edges a, c, d keep their same orientation).

Definition 1.1. For a triangle with vertices i, j, k, define the h-length at vertex i to be

hijk =
λ jk

λi jλik

Note that this is the same as the definition of “h-length” in the classical (i.e. non-super) case. See e.g. [13].

Definition 1.2. For a triangle with vertices i, j, k and μ-invariant θ = i jk , we also define two sets of normalized μ-invariants:

�i
jk :=

√
λ jk

λi jλik

θ =
√
hi
jk

θ, � j

ik
:=

√
λik

λi jλ jk

θ =
√
h
j

ik
θ, �k

i j :=
√

λi j

λikλ jk

θ =
√
hk
i j

θ,

�i
jk :=

√
λi jλik

λ jk

θ =
√

1

hi
jk

θ, � j

ik
:=

√
λi jλ jk

λik

θ =
√

1

h
j

ik

θ, �k
i j :=

√
λikλ jk

λi j

θ =
√

1

hk
i j

θ,

all of which are associated to a (triangle, vertex) pair, i.e. to an angle.

Remark 1.3. The h-lengths and normalized μ-invariants within a triangle satisfy the following relations

(i) h
j

ik
=

(
λik

λ jk

)2
hi
jk

(ii) � j

ik
= λik

λ jk
�i

jk

(iii) � j

ik
= λ jk

λik
�i

jk

(iv) � j

ik
= λi j�i

jk

Remark 1.4. In terms of the normalized μ-invariants, the super Ptolemy relations (Equations (1) to (3)) take a very simple 
form. Using the labeling of vertices of the quadrilateral in Fig. 2, we can rewrite these equations as follows.

λ j� =
λi jλkl + λi�λ jk

λik

+ � j

ik
��

ik (1�)

�k
j� = �k

i j − �k
i� (2�)

�i
j� = �i

jk + �i
k� (3�)

Proposition 1.5. Let i jk and ik� be two adjacent triangles, with the edge separating the triangles oriented i → k (as in Fig. 2). Then

(a) hij� = hijk + hik� + �i
jk�

i
k�
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(b) hkj� = hkji + hki� + �k
ji�

k
i�

Proof. We will just prove part (a). The calculation for (b) is analogous. By definition, hij� = λ j�

λi jλi�
. Using the super Ptolemy 

relation (Equation (1)) and substituting for λ j� , we get

hij� =
λi jλk� + λ jkλi�

λi jλi�λik

+
� j

ik
��

ik

λi jλi�

=
λk�

λi�λik

+
λ jk

λi jλik

+
� j

ik

λi j

·
��

ik

λi�

.

By definition, the first two terms are hi
k�

and hi
jk
. By Remark 1.3(iv), the last term is equal to �i

jk
�i

k�
. �

2. Super-matrices and OSp(1|2)

An m|n ×m|n (even) super-matrix M over a super-algebra can be written as a block matrix of the form

M =
(

A 	


 B

)
,

where A, B are m ×m, n ×n matrices with even entries, and 
, 	 are m ×n, n ×m matrices with odd entries. We follow the 
convention that Greek letters denote odd variables. The super-symmetric analogue of the determinant of a matrix, called 
Berezinian, is defined as follows.

Ber(M) := det(B)−1 det(A + 	B−1
)

when B is invertible. Let At denote the transpose of a matrix, the super-transpose of a super-matrix is defined as:

Mst :=
(

At 
t

−	t Bt

)
.

Consider the set of 2|1 × 2|1 super matrices over A.

M =

⎛
⎝

a b γ
c d δ

α β e

⎞
⎠

Its Berezinian is given by Ber(M) = 1
e
(ad − bc) + α

e2
(dγ − bδ) + β

e2
(cγ − aδ) − 2αβγ δ

e3
. Let J denote the following matrix

J =

⎛
⎝

0 1 0
−1 0 0
0 0 1

⎞
⎠

The group OSp(1|2) is defined as the set of 2|1 × 2|1 super-matrices g with Ber(g) = 1, and satisfying gst J g = J . These 
constraints can be written down explicitly in the following system of equations.

e = 1+ αβ (4)

e−1 = ad − bc (5)

α = cγ − aδ (6)

β = dγ − bδ (7)

γ = aβ − bα (8)

δ = cβ − dα (9)

Notice that combining equations (4) and (5) gives us that

ad − bc = 1− αβ. (10)

Cross multiplying equations (6) and (8) or equations (7) and (9) give us that

αβ = γ δ. (11)

4
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Fig. 3. The graph �T , with T in dashed lines.

Remark 2.1. Re-arranging the equation gst J g = J gives g−1 = J−1gst J . Thus if Ber(g) = 1, then g ∈ OSp(1|2) if and only if 
the inverse is given by

g−1 =

⎛
⎝

a b γ
c d δ

α β e

⎞
⎠

−1

=

⎛
⎝

d −b −β

−c a α

δ −γ e

⎞
⎠

Now we define special elements of OSp(1|2) which will be the main ingredients in our matrix formulas in Section 3.

Definition 2.2. Let x and h be even variables (with 
√
h well-defined), and θ an odd variable. Then we define the following 

matrices:

E(x) =

⎛
⎝

0 −x 0
1/x 0 0
0 0 1

⎞
⎠ A(h|θ) =

⎛
⎝

1 0 0
h 1 −

√
hθ√

hθ 0 1

⎞
⎠ ρ =

⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠

Their inverses are given by ρ−1 = ρ , E(x)−1 = ρE(x) = E(−x), and

A(h|θ)−1 =

⎛
⎝

1 0 0
−h 1

√
hθ

−
√
hθ 0 1

⎞
⎠

If i, j, k are three marked points (vertices of a polygon), then we will almost always use the following shorthand notations:

E i j := E(λi j) =

⎛
⎝

0 −λi j 0
λ−1
i j

0 0

0 0 1

⎞
⎠ Ai

jk := A
(
hijk

∣∣∣ i jk
)

=

⎛
⎜⎝

1 0 0
hi
jk

1 −�i
jk

�i
jk

0 1

⎞
⎟⎠

Remark 2.3. The matrix ρ was called “fermionic reflection” in [14]. Note that we have ρA(h|θ)ρ = A(h| − θ) (i.e. conjugation 
of A by ρ negates the fermionic variable θ ). This is easy to see, since left-multiplication by ρ scales the first two rows by 
−1, and right-multiplication by ρ scales the first two columns by −1.

Remark 2.4. Observe that Ber E(x) = Ber A(h|θ) = Berρ = 1, and that A(h|θ)−1 , E(x)−1 , and ρ−1 have the form of Re-
mark 2.1, and so these matrices are in OSp(1|2).

3. A flat OSp(1|2)-connection

Following [2,8], from a triangulation T of a marked surface with boundary, we will define a planar graph �T and 
associate certain matrices to the (oriented) edges of the graph, giving a flat OSp(1|2)-connection.

Remark 3.1. Although our main results (Theorem 3.10 and Theorem 4.3) are stated only for polygons, the constructions 
given below for �T and the connection make sense for any triangulated surface. For a surface with non-trivial topology, the 
monodromy of this connection should coincide (up to conjugation) with the representation π1(S) → OSp(1|2) described in 
section 6 of [14]. The benefit of our approach is that we are able to get nontrivial information even in the case of a polygon 
(where the fundamental group is trivial).

5
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Counterclockwise Clockwise

Type (i)

i

k

j

θ

Ai
jk

−1
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θ
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jk
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i

k

j

θ
E−1
i j

i

k

j

θ
E i j

Type (iii)
i j

ρ
i j

id

Fig. 4. The three types of holonomy matrices.

Definition 3.2. Inside each triangle of T , there is a hexagonal face of �T with three sides parallel to the sides of the triangle. 
When two triangles share a side, the two vertices of �T on opposite sides of this edge are connected (see Fig. 3).

Remark 3.3. The graph �T has 3 kinds of edges and 2 kinds of faces. The three types of edges of �T are:

• The edges parallel to arcs τ of the triangulation T . (If τ ∈ T is a boundary edge, then there is only one such edge of 
�T , and if τ is an internal diagonal, then there are two such parallel edges in �T .)

• The edges within a triangle that are not parallel to arcs τ of T . (These naturally correspond to the angles of the 
triangles.)

• The edges which cross the arcs τ of T .

The two types of faces are as follows:

• Within each triangle of T , there is a hexagonal face of �T .
• Surrounding each internal diagonal of T , there is a quadrilateral face of �T .

Definition 3.4. For a graph embedded on a surface, a graph connection is an assignment of a matrix to each oriented edge, 
such that opposite orientations of the same edge are assigned inverse matrices. For a path in the graph, the holonomy is 
the corresponding composition/product of matrices along the path. If the path is a loop, then the holonomy is also called 
monodromy. A connection is called flat if the monodromy around each contractible face is the identity matrix.

We will now define a flat OSp(1|2)-connection on the graph �T .

Definition 3.5. Given (S, M) and T with a given orientation, we define the following holonomy matrices for the edges 
described in Remark 3.3. They are pictured in Fig. 4.

(i) Inside triangle i jk, the clockwise orientation5 of the edge at angle i is assigned the matrix A(hi
jk
|θ).

(ii) Inside triangle i jk, the clockwise orientation of the edge i j is assigned the matrix E(λi j).
(iii) For each internal diagonal i j, there are two edges of �T which cross i j. Supposing that the spin structure has orientation 

i → j, the edge closer to i is assigned the identity matrix, and the edge closer to j is assigned ρ (the fermionic 
reflection).

Proposition 3.6. The holonomy matrices from Definition 3.5 define a flat OSp(1|2)-connection on �T .

5 Here we mean the clockwise orientation of a path which moves around the inner boundary of the triangle.
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H 	→ H · Ai
jk H 	→ H · Ai

jk

−1

H 	→ H · id H 	→ H · ρ

Fig. 5. The different ways to move to another “near” vertex.

Proof. As was mentioned in Remark 3.3, there are only two types of faces in �T . So we only need to check that these two 
types of monodromy give the identity matrix. Also note that changing the starting point of a cycle changes the monodromy 
only by conjugation. So if we verify that a particular monodromy around a face is the identity, then the same follows for 
any starting point.

First let us consider a rectangular face corresponding to a diagonal i j of the triangulation. The (counter-clockwise) mon-
odromy around this face is

id · E i j · ρ · E i j

But since ρ · E i j = E−1
i j

, this gives the result.
Second, we must consider a hexagonal face inside a triangle i jk. The (clockwise) monodromy around this face, starting 

near vertex i, is given by

Ai
jk E ji A

j

ik
Ekj A

k
i j E ik

It is straightforward to check that this product is the identity matrix. �

Remark 3.7. Since the connection is flat, the holonomy between two vertices of �T does not depend on the choice of path, 
since the graph is planar and any two paths are homotopic (thought of as paths on the ambient surface).

Remark 3.8. Note that the additional data of the spin structure on the triangulation T allows an additional elementary 
step corresponding to ρ that was not present in [2] nor [8]. However, its inclusion ensures that all monodromies yield the 
identity matrix (rather than the identity matrix up to sign).

Definition 3.9. If vertex i of a polygon is incident to m triangles in T , then there are 2m vertices of �T corresponding to the 
angles of these triangles at m. We will say that any of these 2m vertices of �T are “near” the vertex m.

Theorem 3.10. Suppose we have a triangulation T of a polygon endowed with an orientation. Let i and j be two vertices of the polygon, 
and i′ and j′ any vertices of �T that are near i and j, and let H be the holonomy from i′ to j′ . Then the (1, 2)-entry of H is equal to 
±λi j .

We will prove this theorem in the next section. The first step in partially proving this theorem is the following.

Lemma 3.11. The result of Theorem 3.10 does not depend on the particular choices of i′ and j′ .

Proof. Choosing different i′ or j′ near the same i and j corresponds to multiplying H (on the right for i and the left for 

j) by a product of matrices of the following types: Ai
jk
, Ai

jk

−1
, ρ , or id. Note that we do not need a separate case for ρ−1

since ρ−1 = ρ . See Fig. 5 for an illustration of the different cases. In the figure, adding the red edge to the beginning of the 
blue path corresponds to prepending (i.e. right-multiplying) the holonomy by the indicated matrix.

In the third case, multiplying by ρ (on either the left or right) will negate the (1, 2)-entry. For the first and second case, 

it is easy to see (simply by matrix multiplication) that multiplying on the left or right by Ai
jk

or Ai
jk

−1
will not change the 

(1, 2)-entry. �

7
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Fig. 6. Single fan triangulation. Left: type 00. Right: type 11.

4. Proof of Theorem 3.10

This section is devoted to a proof of our main theorem, Theorem 3.10. We first state a more detailed version of the main 
theorem. Let T be a triangulation with default orientation, and with fan centers labeled as ci for 1 ≤ i ≤ N . Let (a, b) be the 
longest diagonal in T and denote a = c0 and b = cN+1 .

Definition 4.1. Let Ha,b denote the holonomy following a path from a vertex near a = c0 (on the side closer to c1) to a 
vertex near b = cN+1 (on the side closer to cN ). We say that the holonomy is of type εaεb where

εa =
{
0 if (c0, c1, c2) are oriented clockwise,

1 otherwise.

εb =
{
0 if (cN−1, cN , cN+1) are oriented clockwise,

1 otherwise.

Remark 4.2. Note that given εa , εb is determined by the number of fans N via the relation εa + εb = N + 1 mod 2.

Theorem 4.3. Let T be an arbitrary acyclic triangulation endowed with an arbitrary orientation (based on its spin structure), and with 
fan centers labeled as ci for 1 ≤ i ≤ N and a = c0, b = cN+1 . The holonomy matrix Ha,b of type εaεb is given by

Ha,b =

⎛
⎜⎜⎝

− λc1,cN+1
λc0,c1

(−1)εaλc0,cN+1 �cN+1
c0,c1

(−1)εb
λc1,cN

λc0,c1λcN ,cN+1
(−1)εa+εb−1 λc0,cN

λcN ,cN+1
(−1)εb−1 1

λcN ,cN+1
�cN

c0,c1

1
λc0,c1

�c1
cN ,cN+1 (−1)εa−1�c0

cN ,cN+1 1+ �

⎞
⎟⎟⎠

Here the formula for the (3, 3)-entry (i.e. 1 + �) can be given two equivalent ways, which (due to Remark 2.4) follows from appli-
cations of both Equation (4) and Equation (11):

1 + � = 1+ (−1)εa−1 1

λc0,c1

�c1
cN ,cN+1 �c0

cN ,cN+1 = 1+ (−1)εb−1 1

λcN ,cN+1

�cN+1
c0,c1 �cN

c0,c1 .

We begin the proof of Theorem 4.3 by considering the special case of a fan triangulation with default orientation. 
Without loss of generality, we will assume the fan has vertices labeled by 1, 2, . . . , n in cyclic order. In particular, there is 
one non-trivial fan center, but including the endpoints of the longest arc, we have a = c0 = 2, c1 = 1, and b = c2 = cN+1 = n. 
We recover that the holonomy H2n can only be type 00 or 11, see Fig. 6.

4.1. Fan triangulation

The next two results (Lemma 4.4 and Corollary 4.5) compute the holonomy of a path which stays near a fan center, and 
traverses over all the angles in a fan segment.

Lemma 4.4. Suppose i, j, k, � are vertices of a quadrilateral in counter-clockwise order, and the (oriented) triangulation contains the 
edge i → k (as in Fig. 2). Then the product of A-matrices is

8
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(a) Ai
k�

Ai
jk

= Ai
j�

(b) Ak
i j
ρ Ak

i�
= Ak

j�
ρ

Proof. (a) Let θ = ik� and σ = i jk . The matrix product gives

⎛
⎜⎝

1 0 0
hi
k�

+ hi
jk

− �i
k�

�i
jk

1 − �i
jk

−�i
k�

�i
k�

+ �i
jk

0 1

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

hi
jk

+ hi
k�

+ �i
jk
�i

k�
1 −

(
�i

jk
+ �i

k�

)

�i
jk

+ �i
k�

0 1

⎞
⎟⎠ .

By Proposition 1.5(a), the (2, 1)-entry is equal to hi
j�
. By Equation (3�), the (2, 3)- and (3, 1)-entries are −�i

j�
and �i

j�
, 

respectively.
(b) Recall from Remark 2.3 that ρA(h|θ)ρ = A(h| − θ). By right-multiplying the equation in part (b) by ρ , the claim is 

equivalent to

Ak
i j A(hki�| − θ) = Ak

j�.

This matrix product is equal to
⎛
⎜⎝

1 0 0
hk
i j

+ hk
i�

+ �k
i j
�k

i�
1 �k

i�
− �k

i j

�k
i j

− �k
i�

0 1

⎞
⎟⎠ .

By Proposition 1.5(b) and Equation (2�), the (2, 1)-entry is hk
j�

and the (2, 3)- and (3, 1)-entries are −�k
j�

and �k
j�
, respec-

tively. �

Corollary 4.5. Consider a single fan triangulation with default orientation, as depicted in Fig. 6. The ordered product of all A-matrices 
is

A1
n−1,n · · · A1

34 A1
23 = A1

2n (12)

if the holonomy is type 00, and

A1
n−1,n

−1 · · · A1
34

−1
A1
23

−1 = A1
2n

−1
(13)

if the holonomy is type 11.

Proof. This follows from Lemma 4.4 by induction. The base case of two triangles is simply Lemma 4.4. In general, if we first 
multiply the two right-most factors, they combine to give A1

24 . After performing the associated flip on the arc (1, 3), we now 
have a smaller polygon (on the vertices 1, 2, 4, 5, . . . , n −1, n in counter-clockwise order), again with a fan triangulation and 
the default orientation. For k ≥ 4, after (k − 3) such steps, we have multiplied together the (k − 2) right-most factors into 
A1
2k and have flipped the arcs (1, 3), (1, 4), . . . , (1, k − 1) in order, resulting again in a smaller polygon, this time on the 

vertices 1, 2, k, k +1, . . . , n −1, n, with a fan triangulation and the default orientation. So the result follows by induction. �

The special case of Theorem 4.3 (and hence of Theorem 3.10) for a fan triangulation is the following.

Theorem 4.6. Consider a fan triangulation with default orientation (as in Fig. 6). The holonomy H2n , of type εε , is given by

H2n =

⎛
⎜⎝

− λ1n
λ12

(−1)ελ2n �n
12

0 − λ12
λ1n

0

0 −�2
1n 1

⎞
⎟⎠

In particular, the (1, 2)-entry is equal to ±λ2n .

Proof. By Corollary 4.5, the holonomy is simply the product of three matrices:

E1nA
1
2nE12 or E−1

1n A1
2n

−1
E−1
12

After multiplying the matrices, use Remark 1.3 to simplify (in particular λ1n�1
2n = �n

12 , and −λ12�1
2n = −�2

1n). �

Remark 4.7. By Lemma 3.11, if we choose different starting and ending vertices near 2 and n, the resulting holonomy matrix 
will still have (1, 2)-entry equal to ±λ2n .

9
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a

c2 c3

c4

c5

b

c1 a

c2 c3

c4

c5

b

c1

Fig. 7. Left: Example of a late-crossing canonical path. Right: Example of an early-crossing canonical path (with default orientation illustrated).

4.2. Canonical paths

Given a generic triangulation6 T , we identify its fan centers as in Section 1, letting a = c0 and b = cN+1 so that (a, b) is 
the longest arc of T . We define two canonical paths along the corresponding graph �T in order to compute the holonomy 
Ha,b as follows.

The first one, called the early-crossing canonical path (or early path for short), is defined as follows:

(1) For each 0 ≤ k ≤ N − 1, follow the E-edge parallel to (ck, ck+1) and then continue along a series of A-edges until 
reaching a point near (ck+1, ck+2). Immediately cross the diagonal (ck+1, ck+2).

(2) Continue step (1) N − 1 times until reaching the last fan segment. After crossing the diagonal (cN−1, cN ) from a point 
near cN−1 , we follow by an E-edge parallel to (cN−1, cN) and continue along a series of A-edges until reaching a point 
near cN as well as the arc (cN , cN+1). We then end with the E-edge parallel to (cN , cN+1).

We also define the late-crossing canonical path (or late path for short).

(1) Follow the E-edge parallel to (c0, c1) and then, as long as N ≥ 1, continue along a series of A-edges until reaching a 
point near c1 as well as the arc (c1, c2). Immediately follow the E-edge parallel to (c1, c2).

(2) For 1 ≤ k ≤ N − 1, cross the arc (ck, ck+1), followed by A-edges until reaching a point near ck+1 as well as the arc 
(ck+1, ck+2). Immediately follow the E-edge parallel to (ck+1, ck+2).

(3) After traversing along N − 1 such subpaths, we have arrived at a point near b = cN+1 .

Note that flipping the triangulation upside down turns an early path into a late path, and vice-versa.

4.3. Zig-zag triangulation

Let T be a zig-zag triangulation with default orientation, and with fan centers labeled as ci = i, as depicted in Fig. 8. Let 
Ha,b denote the holonomy following one of the canonical paths from a vertex near a = c0 (on the side closer to c1) to a 
vertex near b = cN+1 (on the side closer to cN ), as in Fig. 7.

Remark 4.8. The holonomy matrix obtained from the late path will be a product of E , A, and ρ matrices. In particular, if 

we define Xi := E i,i+1A
i
i−1,i+1ρ and Y i := E−1

i,i+1A
i
i−1,i+1

−1
ρ , then we will have the following forms for Hab depending on 

the type7:

Hab εb = 0 εb = 1
εa = 0 XN · · · Y4X3Y2X1E

−1
01 YN · · · Y4X3Y2X1E

−1
01

εa = 1 XN · · · X4Y3X2Y1E01 YN · · · X4Y3X2Y1E01

6 Here, we follow the nomenclature of our previous papers, and being generic signifies an arbitrary acyclic triangulation that is not a single fan or a 
zigzag triangulation.
7 If εa = 0, the late path actually starts · · · Y2E12 A

1
02E01 . But since ρ2 = id and ρE01 = E−1

01 , this is equal to the more concise expression given in the 
table. Similarly when εa = 1, the path starts with · · · X2E

−1
12 A1

02
−1

E−1
01 , but this is equal to the product shown.

10
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0 1

2 3

4 5

6
N − 1

N N + 1

θ1

θ2

θ3

θ4

θ5

θN

0 1

2 3

4 5

6
N − 1

N N + 1

θ1

−θ2

θ3

−θ4

θ5

±θN

Fig. 8. Reversing the default orientation of a zig-zag triangulation.

To describe the early path, define Xi := Ai
i−1,i+1E i−1,i and Yi := Ai

i−1,i+1
−1

E−1
i−1,i . Then the early path will have the form

Hab εb = 0 εb = 1

εa = 0 EN,N+1XN · · ·Y4X3Y2X1 E−1
N,N+1YN · · ·Y4X3Y2X1

εa = 1 EN,N+1XN · · ·X4Y3X2Y1 E−1
N,N+1YN · · ·X4Y3X2Y1

Our proof has two parts: the first is an induction via left matrix multiplication, proving the first two columns of the 
holonomy matrix formula, and the second is an induction via right matrix multiplication, proving the formula for the first 
two rows. As mentioned earlier, the expression for the (3, 3)-entry follows immediately from Equation (4).

4.3.1. Proof for the first two columns

We first induct by left-multiplication, which corresponds to flipping certain diagonals from top to bottom. Recall that 
performing a quadrilateral flip will alter the orientation of another edge, so it is important that we keep track of the arrows 
as we perform a sequence of flips. For a zig-zag triangulation with default orientation 1 → 2 → ·· · → N , the natural flip 
sequence is from bottom to top,8 because every flip in this sequence will not alter the arrows of other un-flipped edges. On 
the other hand, if we flip from top to bottom, certain steps in this sequence will change the orientation of other edges that 
are not yet flipped, which makes it difficult to keep track of the orientations. Therefore, we need to “manually” reverse all 
the arrows so that the top-to-bottom flip has the desired property.

It is explained in [14] that reversing the arrows of a triangle and negating the μ-invariants is an equivalence of spin 
structure, so we start by applying this equivalence move on every even numbered triangle, i.e. ci−1, ci, ci+1 for even i. This 
will negate all the θi ’s for even i and turn the orientation in to the reversed default orientation as desired. See Fig. 8 for 
illustration.

Proof. We show the proof of Theorem 4.3 only in the case when c0, c1, c2 are oriented clockwise (i.e. εa = 0), noting that 
the argument can be checked in a similar manner when εa = 1. We will induct on N , the number of triangles.

Base Case. For the base case, we have a single triangle. In the notation from earlier in Section 4.3, we are computing H02 . 
Using Theorem 4.6 with the specialization N = 1 and using the labeling of Fig. 6 (so that c0 = 2, c1 = 1, and c2 = 3) yields 
the desired matrix Ha,b after the proper substitutions, noting e.g. that λi j and i jk equals zero when i = j.

Next, when k > 1, we assume that the formula holds for H0,k and prove it for H0,k+1 . The induction step will be slightly 
different when k is even or odd. Note that if k is even (resp. odd), then the holonomy H0,k is of type 00 (resp. type 01) and 
H0,k+1 is of type 01 (resp. type 00).

Inductive step for k even. By the induction hypothesis, we have

H0,k =

⎛
⎜⎝

− λ1k
λ01

λ0k �
λ1,k−1

λ01λk−1,k
− λ0,k−1

λk−1,k
�

1
λ01

�1
k−1,k −�0

k−1,k �

⎞
⎟⎠

Next we compute H0,k+1 = YkH0,k = E−1
k,k+1A

k
k−1,k+1

−1
ρH0,k:

8 This is called the default flip sequence in [5].
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⎛
⎜⎜⎜⎝

−
(

λ1,kλk−1,k+1+λ1,k−1λk,k+1
λ0,1λk−1,k

+ �1
k−1,k�

k+1
k−1,k

λ0,1

)
λ0,kλk−1,k+1+λ0,k−1λk,k+1

λk−1,k
− �k+1

k−1,k�
0
k−1,k �

− λ1,k
λ01λk,k+1

λ0,k
λk,k+1

�

λ1k
λ01

(
�k

1,k−1 − �k
k−1,k+1

)
λ0,k

(
�k

k−1,k+1 − �k
0,k−1

)
�

⎞
⎟⎟⎟⎠ (14)

Note that the expressions in the first column are the Ptolemy relations (cf. Remark 1.4) on the quadrilateral 
(1, k, k − 1, k + 1). So matrix multiplication in the first column corresponds to flipping the edges (2, 3), (3, 4), · · · , (k − 1, k). 
Recall that the flips in this sequence will not alter the orientation of other (un-flipped) edges. So for every even k, the 
quadrilateral flip is depicted as follows, where the μ-invariants associated to the triangle k − 1, k, k + 1 are negated.

k

1

k − 1

k + 1

k

1

k − 1

k + 1

Thus by Equations (1�) and (2�), we have

λ1,k+1 =
λ1,kλk−1,k+1 + λ1,k−1λk,k+1

λk−1,k
+ (−�k+1

k−1,k)�
1
k−1,k

�k
1,k+1 = (−�k

k−1,k+1) + �k
1,k−1

Now for the second column, the matrix multiplication corresponds to flipping the edges (1, 2), (2, 3), · · · , (k − 1, k). Similar 
to the previous case, the quadrilateral flip is depicted as follows

k

k + 1

k − 1

0

k

k + 1

k − 1

0

and the Ptolemy relations are

λ0,k+1 =
λ0,kλk−1,k+1 + λ0,k−1λk,k+1

λk−1,k
+ (−�k

k−1,k+1)�
0
k−1,k

�k
0,k+1 = (−�k

k−1,k+1) + �k
0,k−1

Now plugging these back into Matrix (14), and using Remark 1.3 (iv) twice, we get

H0,k+1 =

⎛
⎜⎜⎝

− λ1,k+1
λ01

λ0,k+1 �

− λ1,k
λ01λk,k+1

λ0,k
λk,k+1

�

λ1k
λ01

�k
1,k+1 −λ0k�k

0,k+1 �

⎞
⎟⎟⎠ =

⎛
⎜⎝

− λ1,k+1
λ01

λ0,k+1 �

− λ1,k
λ01λk,k+1

λ0,k
λk,k+1

�

1
λ01

�1
k,k+1 −�0

k,k+1 �

⎞
⎟⎠ .

This agrees with the formula of type 01 holonomy matrix.
Induction step for k odd. By the induction hypothesis, we have

H0,k =

⎛
⎜⎝

− λ1,k
λ01

λ0,k �

− λ1,k−1
λ01λk−1,k

λ0,k−1
λk−1,k

�

1
λ01

�1
k−1,k −�0

k−1,k �

⎞
⎟⎠

Then we compute H0,k+1 = XkH0k = Ek,k+1A
k
k−1,k+1ρH0,k:

12
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⎛
⎜⎜⎜⎝

−
(

λ1,kλk−1,k+1+λ1,k−1λk,k+1
λ01λk−1,k

+ �1
k−1,k�

k
k−1,k+1

λ01

)
λ0,kλk−1,k+1+λ0,k−1λk,k+1

λk−1,k
+ �0

k−1,k�
k
k−1,k+1 �

λ1,k
λ01λk,k+1

−λ0,k
λk,k+1

�

λ1k
λ01

(
�k

1,k−1 + �k
k−1,k+1

)
−λ0k

(
�k

k−1,k+1 + �k
0,k−1

)
�

⎞
⎟⎟⎟⎠ (15)

Similar to the k even case, the first column are Ptolemy relations corresponding to flipping the edges (2, 3), (3, 4), · · · , (k −
1, k). The last flip is depicted as follows. Note that in this case, the μ-invariant associated to the triangle (k − 1, k, k + 1) is 
not negated.

k − 1

1

k

k + 1

k − 1

1

k

k + 1

Thus by Equations (1�) and (3�), we have

λ1,k+1 =
λ1,kλk−1,k+1 + λ1,k−1λk,k+1

λk−1,k
+ �1

k−1,k�
k+1
k−1,k

�k
1,k+1 = �k

k−1,k+1 + �k
1,k−1

The matrix multiplication for the second column corresponds to flipping the edges, in order, (1, 2), (2, 3), · · · , (k − 1, k), 
where the quadrilateral flip is depicted as follows

k

0

k − 1

k + 1

k

0

k − 1

k + 1

and the Ptolemy relations are

λ0,k+1 =
λ0,kλk−1,k+1 + λ0,k−1λk,k+1

λk−1,k
+ �0

k−1,k�
k+1
k−1,k

�k
0,k+1 = �k

k−1,k+1 + �k
0,k−1

Now plugging these Ptolemy relations into Matrix (15) we get

H0,k+1 =

⎛
⎜⎜⎝

− λ1,k+1
λ01

λ0,k+1 �
λ1,k

λ01λk,k+1
− λ0,k

λk,k+1
�

λ1k
λ01

�k
1,k+1 −λ0k�k

0,k+1 �

⎞
⎟⎟⎠ =

⎛
⎜⎝

− λ1,k+1
λ01

λ0,k+1 �
λ1,k

λ01λk,k+1
− λ0,k

λk,k+1
�

1
λ01

�1
k,k+1 −�0

k,k+1 �

⎞
⎟⎠

This agrees with the formula of type 00 holonomy matrix. �

4.3.2. Proof for the first two rows

Next we turn to the induction for the first two rows via right multiplication. In this case we will use the early path.
It turns out that induction by right multiplication corresponds to flipping the diagonals from bottom to top, as opposed 

to the previous case. This already has the property that each flip does not alter the orientation of other unflipped edges. 
Therefore here we do not need the extra step of reversing all the arrows.

Proof. We illustrate the proof in the case that cN−1, cN , cN+1 are oriented counterclockwise, i.e. the path is of type 01 or 
11. In this case the holonomy matrix looks like

H0,N+1 = E−1
N,N+1YN · · ·Y2X1 or E−1

N,N+1YN · · ·X2Y1,

13
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the former for type 01 and the latter for type 11 (recall that we are using the early path).
The base case is a triangle HN−1,N+1 = E−1

N,N+1A
N
N−1,N+1EN−1,N , which can be verified using Theorem 4.6 with the 

specialization N = 1.
We now assume by induction that the formula holds for Hk,N+1 for some k < N .
Induction step for N − k even. If N − k is even, i.e. there are even number of triangles in the sub-triangulation spanned 

by the diagonal (k, N + 1), the holonomy Hk,N+1 is of type 01. Thus by induction hypothesis we have

Hk,N+1 =

⎛
⎜⎝

− λk+1,N+1
λk,k+1

λk,N+1 �N+1
k,k+1

− λk+1,N
λk,k+1λN,N+1

λk,N

λN,N+1

1
λN,N+1

�N
k,k+1

� � �

⎞
⎟⎠ .

Then we compute Hk−1,N+1 = Hk,N+1Yk = Hk,N+1A
k
k−1,k+1

−1
E−1
k−1,k:

⎛
⎜⎜⎜⎝

− λk,N+1
λk−1,k

−
(

λk−1,kλk+1,N+1+λk−1,k+1λk,N+1
λk,k+1

+ �N+1
k,k+1�

k−1
k,k+1

)
λk,N+1

(
�k

k+1,N+1 + �k
k−1,k+1

)

− λk,N

λk−1,kλN,N+1
−

(
λk−1,kλk+1,N+λk−1,k+1λk,N

λk,k+1λN,N+1
+ �N

k,k+1�
k−1
k,k+1

λN,N+1

)
λk,N

λN,N+1

(
�k

k+1,N + �k
k−1,k+1

)

� � �

⎞
⎟⎟⎟⎠ (16)

The expressions in the first row are given by Ptolemy relations from flipping, starting from the bottom, the diagonals 
(N, N + 1), (N − 1, N), · · · , (k, k + 1). The final flip in the sequence is depicted as follows:

k

k − 1

k + 1

N + 1

k

k − 1

k + 1

N + 1

Equations (1�) and (3�) give us

λk−1,N+1 =
λk−1,kλk+1,N+1 + λk−1,k+1λk,N+1

λk,k+1
+ �N+1

k,k+1�
k−1
k,k+1

�k
k−1,N+1 = �k

k−1,k+1 + �k
k+1,N+1

The expressions on the second row come analogously from flipping the diagonals (N −1, N), (N−2, N−1), · · · , (k, k +1), 
where the final flip is depicted as follows.

k

k − 1

k + 1

N

k

k − 1

k + 1

N

Here the Ptolemy relations are

λk−1,N =
λk−1,kλk+1,N + λk−1,k+1λk,N

λk,k+1
+ �N

k,k+1�
k−1
k,k+1

�k
k−1,N = �k

k−1,k+1 + �k
k+1,N

Now Plugging these relations into Equation (16), we get

Hk−1,N+1 =

⎛
⎜⎝

− λk,N+1
λk−1,k

−λk−1,N+1 �N+1
k−1,k

− λk,N

λk−1,kλN,N+1
− λk−1,N

λN,N+1

1
λN,N+1

�N
k−1,k

� � �

⎞
⎟⎠

14
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which matches the formula for type 11 holonomy matrix.
Induction step for N − k odd. Next we turn to the case when N − k is odd, where Hk,N+1 is of type 11 and Hk−1,N+1 is 

of type 01. By the induction hypothesis we have

Hk,N+1 =

⎛
⎜⎝

− λk+1,N+1
λk,k+1

−λk,N+1 �N+1
k,k+1

− λk+1,N
λk,k+1λN,N+1

− λk,N

λN,N+1

1
λN,N+1

�N
k,k+1

� � �

⎞
⎟⎠

Then we calculate Hk−1,N+1 = Hk,N+1Xk = Hk,N+1A
k
k−1,k+1Ek−1,k:

⎛
⎜⎜⎝

− λk,N+1
λk−1,k

λk−1,kλk+1,N+1+λk−1,k+1λk,N+1
λk,k+1

+ �k−1
k,k+1�

N+1
k,k+1 λk,N+1

(
�k

k+1,N+1 + �k
k−1,k+1

)

− λk,N

λk−1,kλN,N+1

λk−1,kλk+1,N+λk−1,k+1λk,N

λk,k+1λN,N+1
+ �k−1

k,k+1�
N
k,k+1

λN,N+1

λk,N

λN,N+1

(
�k

k+1,N + �k
k−1,k+1

)

� � �

⎞
⎟⎟⎠ (17)

Similar to the previous case, the first row corresponds to the flip sequence given by the following (N, N + 1), (N −
1, N), · · · , (k, k + 1) and the second row corresponds to the flip sequence (N − 1, N), (N − 2, N − 1), · · · , (k, k + 1), which 
are given by the following two diagrams respectively.

k

N + 1

k + 1

k − 1

k

N + 1

k + 1

k − 1

k

N

k + 1

k − 1

k

N

k + 1

k − 1

The Ptolemy relations are

λk−1,N+1 =
λk−1,kλk+1,N+1 + λk−1,k+1λk,N+1

λk,k+1
+ �k−1

k,k+1�
N+1
k,k+1

�k
k−1,N+1 = �k

k−1,k+1 + �k
k+1,N+1

λk−1,N =
λk−1,kλk+1,N + λk−1,k+1λk,N

λk,k+1
+ �k−1

k,k+1�
N
k,k+1

�k
k−1,N = �k

k−1,k+1 + �k
k+1,N

Plugging into Equation (17) we get

Hk−1,N+1 =

⎛
⎜⎝

− λk,N+1
λk−1,k

λk−1,N+1 �N+1
k−1,k

− λk,n

λk−1,kλN,N+1

λk−1,N
λN,N+1

1
λN,N+1

�N
k−1,k

� � �

⎞
⎟⎠

which matches the formula for type 01 holonomy matrix.
We omit the proof of the other case when cN−1, cN , cN+1 are oriented clockwise. �

Remark 4.9. In Section 4.3.2, it was noted that the matrix product computes the odd entries in the third column (�N+1
0,1

and 1
λN,N+1

�N
0,1) using a particular sequence of Ptolemy relations, which always uses Equation (3�), rather than Equation

(2�), from Remark 1.4. Therefore by Theorem 6.2(b) from [6], these odd elements, when expressed as polynomials in the 
variables from the original triangulation, have all positive terms. Similarly, in Section 4.3.1, the matrix product computes 
the odd elements from the third row ( 1

λ01
�1

N,N+1 and �0
N,N+1) using Ptolemy relation Equation (2�), which can be seen as 

an instance of Equation (3�) after negating half of the odd variables, and reversing the orientations on all the diagonals. 
So although the polynomial expressions of these odd elements have some signs, Theorem 6.2(b) from [6] says that these 
expressions have all positive terms when expressed instead in the new variables θ ′

i = (−1)i+1θi .

We have now completed the proof of Theorem 4.3 (and hence of Theorem 3.10) for zig-zag triangulations with default 
orientation.
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4.4. Generic triangulation

The theorem for generic triangulations (with default orientation) is a direct consequence of the zig-zag case and Corol-
lary 4.5. Write the holonomy as a product of matrices following one of the canonical paths. As we traverse through the i-th 
fan segment, we can use Corollary 4.5 to write the product of A-matrices in a fan as the single matrix Aci

ci−1,ci+1

±1
. This is 

the same as flipping the diagonals inside each fan segment, which turns a generic triangulation into a zig-zag triangulation 
whose vertices are the original fan centers. See [5, Figure 15].

What remains is to consider the case of an orientation τ of T that is not the default one. In this case, it is possible to 
define the holonomy matrix Ha,b as a product of matrices just as we did in Definition 3.5, but relative to orientation τ . The 
only difference will be that some instances of the matrix ρ will instead be an identity matrix, and vice-versa. The effect in 
either case is that the holonomy matrices crossing the edges whose orientation has changed are multiplied by ρ .

It is explained in [14] (and again in [5,6] using our notations and conventions) that reversing the orientations around all 
three edges of a triangle corresponds to negating the associated odd variable. Also, it is possible to go from any orientation 
to the default one (the boundary edges may differ, but the interior diagonals can be made to agree with the default orien-
tation) by a sequence of such orientation-reversals around triangles. So we may reduce the general case to examining what 
happens when we do this orientation-reversal in a single triangle.

When reversing the orientation of all three edges around a triangle, all six vertices of the hexagonal face of �T in this 
triangle will be incident to an edge whose holonomy has been multiplied by ρ . If we perform a gauge transformation by ρ
at each of these six vertices,9 we can restore those edges to their previous weights (before we changed their orientations). 
Since each edge has two endpoints which are gauged, the effect on the three A matrices and the three E matrices will be 
that they are all conjugated by ρ . Since E commutes with ρ , and ρ2 = id, this leaves the E-matrices unaffected. But as was 
pointed out in Remark 2.3, we have ρA(h|θ)ρ = A(h| − θ). So, in agreement with the remark in the preceding paragraph, 
the effect that this orientation-reversal has on the connection is simply to change θ 	→ −θ in the A-matrices.

It is clear that if a path passes through a vertex v of �T , then a gauge transformation at v will not affect the holonomy 
along this path (the contributions of the incoming and outgoing edges will cancel). The conclusion here is that the holonomy 
formula from Theorem 4.3 still holds for an arbitrary orientation, provided we negate the corresponding odd variables every 
time we do such an orientation-reversal around a triangle.

However, if the vertex v where we perform a gauge transformation is either the beginning or ending point of the path, 
then the holonomy will change. Specifically, if we reverse the orientations around the first or last triangle (or both), the 
effect on the holonomy is Hab 	→ Habρ , or Hab 	→ ρHab , or Hab 	→ ρHabρ .

5. Double dimer interpretation of matrix formulae

Motivated by the methods of Sections 4 and 5 of [8], we now provide a combinatorial interpretation of the holonomy 
matrices, which were defined in Section 3 and described explicitly for generic triangulations with the default orientation 
in Theorem 4.3. In the case considered in [8], the construction involved matrices in PSL2(C) whose entries were given 
interpretations in terms of perfect matchings of snake graphs. In the present work, we instead consider 2|1-by-2|1 matrices 
in the group OSp(1|2), and obtain combinatorial interpretations of the entries in terms of double dimer covers of snake 
graphs, using results from [6].

Let T be an arbitrary acyclic triangulation of a polygon such that the arc (a, b) is the longest arc in T , i.e. it cuts through 
all internal arcs of T . Assume further that T is equipped with the default orientation with fan centers labeled as ci for 
1 ≤ i ≤ N . Like in Section 4, we let a = c0 , b = cN+1 , and let Hab be the holonomy as defined in Definition 4.1. The main 
result of this section is to reinterpret the entries of Ha,b as combinatorial generating functions as follows.

First, let T̃ denote the triangulation that extends triangulation T by defining two new marked points, ã and b̃, and 
adjoining the triangles (̃a, c0, c1) and (cN , cN+1, ̃b), respectively about the edges (c0, c1) and (cN , cN+1). We will use θ̃a and 
θ̃b to denote the μ-invariants associated to these two new triangles, respectively. See Fig. 9. We let G̃ = G T̃ be the snake 
graph corresponding to the longest arc (̃a, ̃b) in T̃ , as defined initially in [7] and extended to the case of decorated super 
Teichmüller space in [6, Sec. 3].

In T̃ , we let i1, i2, . . . , id denote the internal arcs crossed in order by the longest arc (̃a, ̃b). In particular, i1 = (c0, c1) and 
id = (cN , cN+1).

Given our earlier definitions of εa and εb , and noting that in the quadrilateral on ã, c0, c1, c2 , the triangles (c0, c1, c2)
and (̃a, c0, c1) are of opposite orientations (and we have an analogous statement for the quadrilateral on cN−1, cN , cN+1, ̃b
we get the following equivalent usage of the values εa and εb:

εa =
{
0 if (̃a, c0, c1) are oriented counter-clockwise,

1 otherwise.

9 By a “gauge transformation by ρ at a vertex”, we mean left-multiplying all outgoing edge holonomies by ρ and right-multiplying all incoming edge 
holonomies by ρ .
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a = c0

v

c2 w

b = c3

c1

b̃

ã

a′

b′

θ
b̃

θã

Fig. 9. Extended triangulation T̃ . We let v (resp. w) denote the fourth corner of the quadrilateral defined by the marked points ̃a, a = c0 , and c1 (resp. cN , 
b = cN+1 , and ̃b).

|T | − N = 0 mod 2 |T | − N = 1 mod 2

εa = 0
· · ·

e1

λc1,v

e0

xi1
λc0,v xi2

xid−1 xid

eN+1

eN

· · ·

e1

λc1,v

e0

xi1
λc0,v xi2

xid−1

xid eN+1

eN

εa = 1
· · ·

e1

λc1,ve0 xi1

xi2

xid−1

xid eN+1

eN

λc0,v

· · ·

e1

λc1,v
e0 xi1

xi2

xid−1 xid

eN+1

eN

λc0,v

Fig. 10. Different Snake Graphs as εa and (|T | − N) vary, where |T | is the number of triangles in T .

εb =
{
0 if (cN , cN+1, b̃) are oriented counter-clockwise,

1 otherwise.

When building the snake graph G T̃ , we note that as we progress from the bottom-left to the top right, the second tile 
is to the east (resp. north) of the first tile if εa = 0 (resp. 1). We use the following notation as shorthand for the weights 
that appear on the bottom and left edges of the first tile as well as the top and right edges of the last tile, in some order: 
e0 = λ̃a,c0 , e1 = λ̃a,c1 , eN = λcN ,̃b , and eN+1 = λcN+1 ,̃b

. For example, e0 is the weight of the bottom edge (resp. left edge) of 
the first tile if εa = 0 (resp. εa = 1), and e1 is the weight of left edge (or bottom edge) respectively. See Fig. 10. We will 
sometimes abuse notation and let e0 , e1 , eN , and eN+1 denote the corresponding arcs themselves.
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e0, e0 e1, e1 e0, e1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

eN , eN

eN+1, eN+1

eN , eN+1

Fig. 11. Graphical interpretations of entries of Hab . Here the case of εa = 0, |T | − N = 1 mod 2 is illustrated.

Definition 5.1. For a snake graph G , let D(G) denote the set of double dimer covers of G . Also, let Dab(G̃), Dcd(G̃), and 
Dcd
ab

(G̃) denote the subsets of double dimer covers which includes (as sub-multisets) {ea, eb}, {ec, ed}, or {ea, eb, ec, ed} re-
spectively. Here, a and b will always be 0 or 1 (the bottom/left edges of the first tile), and c, d will always N or N + 1 (the 
top/right edges of the last tile).

Theorem 5.2. The entries of Ha,b each have combinatorial interpretations as weighted generating functions of double dimer covers of 
G T̃ , where each is subject to a restriction on the bottom-left and top-right tiles of G T̃ . More precisely Ha,b is given by the following 
matrix:

1

xi2 · · · xid−1

⎛
⎜⎜⎝

1
eN

0 0

0 (−1)εb−1

xid eN+1
0

0 0 1√
xid eNeN+1

⎞
⎟⎟⎠

⎛
⎝

− Ã −B̃ γ̃

−C̃ −D̃ δ̃

α̃ β̃ Ẽ

⎞
⎠

⎛
⎜⎜⎝

1
e0xi1

0 0

0 (−1)εa−1

e1
0

0 0 1√
e0e1xi1

⎞
⎟⎟⎠

such that

Ã =
∑

M∈DNN
00 (G̃)

wt(M), B̃ =
∑

M∈DNN
11 (G̃)

wt(M), γ̃ =
∑

M∈DNN
01 (G̃)

wt(M)∗

C̃ =
∑

M∈D
N+1,N+1
00 (G̃)

wt(M), D̃ =
∑

M∈D
N+1,N+1
11 (G̃)

wt(M), δ̃ =
∑

M∈D
N+1,N+1
01 (G̃)

wt(M)∗

α̃ =
∑

M∈D
N,N+1
00 (G̃)

±wt(M)†, β̃ =
∑

M∈D
N,N+1
11 (G̃)

±wt(M)†, Ẽ =
∑

M∈D
N,N+1
01 (G̃)

±(wt(M)∗)†

where wt(M) denotes the weight of the double dimer cover (see [6, Def. 4.4]), and (∗) denotes the toggle operation on θ̃a while (†)
indicates the toggle operation on θ̃b . In our cases, the toggle operation (∗) (resp. (†)) removes θ̃a (resp. θ̃b) from the corresponding term. 
See [6, Def. 5.6] for the more general definition.

The signs on the terms in ̃α and β̃ are determined as in Remark 4.9. That is, wt(M) is written in the positive order, followed by a 
substitution θ 	→ −θ for an appropriate subset of the odd variables (i.e. all those in the even-numbered fan segments). The ̃E-entry 
also potentially contains terms of both signs, but it is more complicated to specify.

Note that even though the expression for Hab in Theorem 5.2 involves the quantities e0 , e1 , eN , and eN+1 , after reducing 
each of the nine matrix entries to lowest terms, such factors will always cancel. This is consistent with the fact that Hab

is defined by the arc (a, b) that is contained in the original triangulation T , where the triangles containing ̃a and ̃b do not 
appear.

Remark 5.3. Comparing the entries of the top-left 2-by-2 submatrix with the entries in the matrix appearing in Proposition 
5.5 of [8], we see that our new result matches the expected formulas when we reduce to the classical case, up to using the 
identifications xa = e0 , xb = e1 , xw = eN and xz = eN+1 .

We now prove Theorem 5.2.
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·
·

·
·· ·

D(Ḡ) DNN
11 (G̃)

i2

id−1

i1

id

eN

e1

Fig. 12. Illustrating part of the proof of Theorem 5.2 for the (1,2)-entry.

Proof. We begin with the (1, 2)-entry of Hab , namely (−1)εaλc0,cN+1 . By Theorem 6.2(a) of [6], λc0,cN+1 can be expressed as 
the generating function counting double dimer covers in the snake graph G associated with the arc (c0, cN+1):

λc0,cN+1 =
∑

M∈D(G) wt(M)

xi2 · · · xid−1

,

where i1, i2, . . . id−1, id label the arcs crossed by the arc (̃a, ̃b) in order. In particular, arc (c0, cN+1) crosses the same list 
of arcs in order, except for i1 = (c0, c1) and id = (cN , cN+1). We have a bijection between D(G) and DNN

11 (G̃) by appending 
a tile on either side of G (corresponding to arcs i1 and id , respectively), and adjoining the doubled edges e1 and eN . See 
Fig. 12. After dividing through by e1eN , accounting for the weight of the doubled edges on the first and last tiles, it follows 

that λc0,cN+1 =
∑

M∈DNN
11 (G̃)

wt(M)

(xi2 ···xid−1
)e1eN

as desired.

We next consider the (2, 1)-entry of Ha,b , namely (−1)εb
λc1,cN

λc0,c1λcN ,cN+1
. Assume that inside of the extended triangulation 

T̃ , the fan center c1 has k ≥ 2 internal arcs incident to it, including the arcs i1 = (c0, c1) and ik = (c1, c2), while the fan 
center cN has � ≥ 2 internal arcs incident to it, including id−�+1 = (cN−1, cN) and id = (cN , cN+1). We let G denote the snake 
graph associated to the arc (c1, cN), noting that G is a connected subgraph in the middle of G . Then, as above, Theorem 

6.2(a) of [6] implies that λc1,cN equals 
∑

M∈D(G) wt(M)

xik+1
···xid−�

.

We have a bijection between D(G) and DN+1,N+1
00 (G̃) by appending tiles on both sides of G (corresponding to the zig-zag 

of tiles for arcs i1, i2, . . . , ik on the one hand, and the zig-zag of tiles for arcs id−�+1, . . . , id−1, id on the other), and adjoin 
the doubled edges e0 and eN on tiles i1 and id , respectively. This leads to a cascade of doubled edges from both ends of G̃ , 
giving a unique way to extend a given double dimer cover of G . See Fig. 13. We also divide through by e0eN+1 , as well as by 
xi2xi3 · · · xik and xid−�+1 · · · xid−2xid−1 the latter of which account for the two cascades of doubled edges. Noting the equalities 

(c0, c1) = i1 and (cN , cN+1) = id , it follows that (−1)εb
λc1,cN

λc0,c1λcN ,cN+1
= (−1)εb

∑
M∈D

N+1,N+1
00 (G̃)

wt(M)

(xi1 ···xid )e0eN+1
.

The proofs for the validity of the (1, 1)- and (2, 2)-entries are analogous and involve combinations of the previous two 
cases.

To prove the result for the (1, 3)-, (2, 3)-, (3, 1)-, (3, 2)-, and (3, 3)-entries takes further work, and combining together 
Theorem 6.2(b) and Lemma 5.8, both of [6], as we now show:

Consider the (1, 3)-entry of Hab , namely �cN+1
c0,c1 =

√
λc0,cN+1λc1,cN+1

λc0,c1
c0, c1, cN+1 .

We wish to apply Theorem 6.2(b) of [6] here to simplify this expression, but before we can do so we need to redraw 
the extended triangulation T̃ so that it matches the illustration in Figure 13(a) of [6] so that c0, c1, cN+1 = ϕ = i jk . In 

particular, let v denote the endpoint of arc i2 = (c1, v) so that the first two triangles of T̃ are (̃a, c0, c1) and (c0, c1, v)

respectively. Then in the notation of Figure 13(a) of [6], we have a = (c0, c1), b = (c0, v), d = (c1, cN+1), e = (c1, v), and 
f = (c0, cN+1). If the first diagonal e is oriented incorrectly, we can reverse it and replace ϕ 	→ −ϕ . As discussed in Remark 
2.6 of [6], this does not change the positive ordering.

Theorem 6.2(b) of [6] then yields

√
λc1,cN+1λc0,cN+1 c0, c1, cN+1 =

1

xi2 · · · xid−1

√
λc1,v

λc0,v

∑

M∈D0(G)

wt(M)(∗2)

where G is the snake graph associated to the arc (c0, cN+1) (just as above) and D0(G) = D00(G) ∪D01(G) denotes the subset 
of double dimer covers that uses edge (c0, v) as a single or doubled edge on the first tile of G .10

10 In [6], Theorem 6.2(b) uses the notations Dt (G) and Dr(G). The new notations used here allow a more uniform treatment.
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··
·

··
·

D(Ḡ) D
N+1,N+1
00 (G̃)

ik+1

id−l

ik

id−l+1

e0

xi2

xi3

xik−1

xik

xi4

xid−l+1

xid−l+2

xid−2

eN+1

xid−1

Fig. 13. Illustrating part of the proof of Theorem 5.2 for the (2,1)-entry.

·
·

·
·· ·

D01(G
+) DNN

01 (G̃)

i2

id−1

i1

id

eN

e1

e0

e1

e0

Fig. 14. Illustrating part of the proof of Theorem 5.2 for the (1,3)-entry.

The notation wt(M)(∗2) also signifies that the weight of the double dimer cover M ∈ D0(G) is altered by toggling 
c0, c1, v , the μ-invariant corresponding to the lower left triangle of the first tile of G (second tile of G̃).

By Lemma 5.8 of [6], there is a bijection between D0(G) and in D01(G
+) where G+ is the subgraph of G̃ that con-

tains tiles i1, i2, . . . , id−1 (i.e. it contains subgraph G plus tile i1), where the weights are related by 
∑

M∈D0(G) wt(M)(∗2) =√
λc0,v

e0e1λc1,v

∑
M∈D01(G

+) wt(M)∗ where (∗2) toggles the weight by c0, c1, v and (∗) toggles the weight by θ̃a = ã, c0, c1 .

The quantity 

√
λc0,v

e0e1λc1,v
is based on the edge weights on the first tile, and recalling that arc i2 = (c1, v).

Putting this altogether, and remembering that λc0,c1 = xi1 , we get
√

λc1,cN+1λc0,cN+1

λc0,c1

c0, c1, cN+1 =
1

√
xi1(xi2 · · · xid−1)

√
λc1,v

λc0,v

√
λc0,v

e0e1λc1,v

∑

M∈D01(G
+)

wt(M)∗.

Furthermore, there is another straightforward bijection between D01(G
+) and DNN

01 (G̃) by adjoining the last tile id , and 
utilizing the edge eN as a double edge. See Fig. 14. Dividing through by this contribution, and noting that the weight of the 
single forced edges on the first tile is 

√
e0e1 , we thus conclude that the (1, 3)-entry of Ha,b is

1
√
e0 e1

√
xi1(xi2 · · · xid−1)eN

∑

M∈DNN
01 (G̃)

wt(M)∗

as desired.
We use an analogous argument to verify the formulas for the (2, 3)-, (3, 1)-, and (3, 2)-entries, noting that we must 

sometimes divide by λc0,c1 = xi1 or λcN ,cN+1 = xid to get the formula. Also, as mentioned in Remark 4.9, the terms in α̃ and 
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it it

Fig. 15. The case when it is a double edge. M1 is in blue, and M2 is in red.

β̃ will sometimes have signs. This is because Theorem 6.2(b) from [6] implicitly assumes one of two possible choices of 
positive ordering of the odd variables, and we need to use the opposite choice when applying the theorem to the (3, 1)-
and (3, 2)-entries.

For the case of the (3, 3)-entry of Ha,b , we need to show that

1 + (−1)εa−1 1

λc0,c1

�c1
cN ,cN+1 �c0

cN ,cN+1 = 1+ (−1)εb−1 1

λcN ,cN+1

�cN+1
c0,c1 �cN

c0,c1

equals

1

(xi2 · · · xid−1)
√
xi1xid

√
e0e1eNeN+1

∑

M∈D
N,N+1
0,1 (G̃)

(wt(M)∗)†.

Since we have already shown that the (3, 1)- and (3, 2)-entries each have the desired combinatorial interpretations, then 
by Equation (4), it remains to show that

Ẽ − ∂ =
(−1)εa−1

∂
α̃β̃

where ∂ :=
√
e0e1xi1 (x

2
i2

· · · x2
id−1

)xideNeN+1 is the product of the (square roots of the) edge weights of all the outer boundary 

sides of G̃ .
Note that among the double dimer covers in DN,N+1

0,1 (G̃), there is the unique one that consists of a single cycle comprised 

of the entire boundary of G̃ . Based on the definition of edge weights on G̃ , this will contribute to ̃E a weight of ((∂ θãθb̃)
∗)† =

∂ . This means the left-hand side, Ẽ − ∂ , is simply the sum over DN,N+1
01 minus this one special element.

Therefore, we need to show that

(−1)εa−1

⎛
⎜⎝

∑

M∈D
N,N+1
00

wt(M)†

⎞
⎟⎠

⎛
⎜⎝

∑

M∈D
N,N+1
11

wt(M)†

⎞
⎟⎠ = wt(M0)

∑

M∈D
N,N+1
01 \{M0}

(wt(M)∗)†

where M0 the special double dimer cover mentioned above (with weight wt(M0) = ∂). We will do this by seeing that some 
pairs of terms in the product on the left-hand side cancel, and that the remaining terms are in bijection with the terms on 
the right-hand side, with weights differing by a factor of ∂ .

Let (M1, M2) be a pair of double dimer covers, where M1 is in the α̃ sum (over DN,N+1
00 ) and M2 is from the β̃ sum 

(over DN,N+1
11 ). Let it denote the first internal (non-boundary) edge of G̃ which is used in either M1 or M2 .

First consider the case when it is used as a double edge in either M1 or M2 . This is illustrated in Fig. 15. Note that it 
cannot be used as a double edge in both because it is the first occurrence of an internal edge, and so at least one of the 
Mi ’s uses an adjacent boundary edge twice. Let us assume (for simplicity of the following exposition) that it belongs to M1 . 
In this case, the next two boundary edges adjacent to it (those immediately to the right or above) can be used by neither 
M1 nor M2 . Thus we can swap the portions of M1 and M2 to the right of it , and obtain a new pair (M ′

1, M
′
2) using the 

same edges. However, since we swapped the portions at the end, the odd variables corresponding to the cycles ending on 
the last tile now are multiplied in the opposite order. Therefore wt(M1)

†wt(M2)
† +wt(M ′

1)
†wt(M ′

2)
† = 0.

In all the remaining terms, it is not used as a doubled edge, so it is used only once in either M1 or M2 . Note that if 
it is used as a single edge in both M1 and M2 then we would have two cycles (one from M1 and one from M2) which 
contribute the same odd variable. But since θ2 = 0 for all odd variables, such terms would contribute a weight of zero. So 
we do not need to consider such configurations. So we only consider the case that it is used once in exactly one of the Mi ’s 
(and is used either twice or not at all in the other). Again, assume for the sake of exposition that it is used only once in 
M1 .

At this point we further divide into two cases: either the cycle of M1 beginning at it continues until the last tile of G̃ , 
or not.

Consider first the former case, which is pictured in Fig. 16. Note that in the union M1 ∪ M2 , all boundary edges are used 
at least once. Indeed, all boundary edges before it are used twice, and all boundary edges after it are used in the cycle 
beginning at it . Therefore the product of the weights of M1 and M2 is divisible by ∂ , and what remains after deleting one 
instance of each boundary edge is a double dimer cover with at least two cycles: one starting at the first tile and ending at 
it , and one ending at the last tile of G̃ (coming from M2). This is precisely the type of configurations counted by Ẽ − ∂ .
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it it

Fig. 16. The case when it is part of a cycle going to the last tile (M1 in blue, M2 in red). Removing one copy of each boundary edge gives an element of ̃E
(in green).

isit is

Fig. 17. The case when it is part of a cycle that does not go to the last tile (M1 in blue, M2 in red). Removing the part of the picture before is results in a 
similar situation, in a smaller graph.

it is is′

Fig. 18. The case when the cycle starting at it overlaps with a cycle from M2 (M1 in blue, M2 in red). We can continue the argument with is′ instead of is .

In the latter case (when the cycle beginning at it does not extend all the way to the last tile of G̃), then let is be 
the internal edge which is either the top or right edge of the last tile of this cycle. We now consider the different cases by 
looking at the two boundary edges immediately to the right/above is . There are three cases, depending on if these boundary 
edges are used once, twice, or not at all by M2 .

In the case that the boundary edges adjacent to is are not used at all in either M1 or M2 , then as described earlier (and 
pictured in Fig. 15), we may swap the parts of M1 and M2 occurring after is to get another pair (M ′

1, M
′
2) whose product 

of weights cancels with (M1, M2).
If these boundary edges are used twice by M2 then replacing is with a double edge and looking at the truncated snake 

graph from is to the end, we are in the same situation we started with: the truncated M1 has a double edge on one side 
of the first tile (either the left or bottom), and the truncated M2 has a double edge on the other, while both still end 
with cycles. Therefore we may repeat the argument up to this point, looking for the next occurrence of an internal edge 
used by either M1 or M2 , and finding either another term that cancels, or concluding that this product 1

∂
wt(M1)

†wt(M2)
†

represents a term from Ẽ − ∂ . See Fig. 17.
The final case that has not been considered is when M2 uses the boundary sides adjacent to is once (not doubled). As 

mentioned before, M2 cannot have a cycle beginning or ending adjacent to is (else the weight would be zero). Therefore we 
need only consider the case that M2 has a cycle beginning before is and ending after is . Let is′ be the internal edge on the 
end of this cycle of M2 . We continue the current argument with is′ instead of is . If is′ is not on the boundary of the last 
tile, we continue to look at the cases of the boundary sides adjacent to is′ . Finally, if is′ is on the boundary of the last tile 
(which must eventually happen, since both M1 and M2 are assumed to end with cycles), then we are back in the earlier 
case and this gives a term from Ẽ − ∂ . See Fig. 18.

The inverse map, which shows that each term of Ẽ − ∂ can be written uniquely as the product of terms from α and β , 
can be constructed using an analysis similar to the above argument. �

6. Super Fibonacci numbers revisited

In [6], we used the decorated super Teichmüller space of an annulus to find a sequence of λ-lengths satisfying a recur-
rence which generalizes the Fibonacci sequence. This is in the same spirit as Ovsienko’s “shadow sequences” [12], although 
our shadow of the Fibonacci sequence differs from his.11

In this section, we revisit these “super Fibonacci numbers” from the point of view of the matrix formulas presented in the 
current paper.

Consider an annulus with one marked point on each boundary component, and the oriented triangulation pictured in 
Fig. 19, where all λ-lengths are equal to 1. Let zn be λ-length of the arc connecting the two marked points which winds 
around the annulus n − 2 times. That is, z1 = z2 = 1 are the diagonals of the triangulation (in blue and red in Fig. 19), z3
circles once, z4 circles twice, etc. For example, z4 is shown as a dashed line in the left picture of Fig. 19. In [6], we showed 
that these satisfy the recurrence

zn = (3+ 2σ θ)zn−1 − zn−2 − σ θ,

which generalizes a recurrence satisfied by the sequence of every-other Fibonacci number, i.e.

11 Note that Ovsienko’s shadow sequence for the Fibonacci numbers actually coincides with the gn ’s defined in [6, Sec. 11].
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σ

θ

θ θ θ

σ σ σ

· · · · · ·

Fig. 19. Left: Triangulation of an annulus. Right: its universal cover.

fn = 3 fn−2 − fn−4

Furthermore, zn “counts” double dimer configurations on the snake graph G2n−5 , which consists of a horizontal row of 
2n − 5 boxes. By this we mean zn is the weight generating function of double dimer configurations, and since all even 
variables are set equal to 1, it is of the form zn = x2n−5 + y2n−5σ θ , where xk and yk are integers. Specifically, xk = fk+1
counts those double dimer configurations on the horizontal strip of k boxes that are really single dimer covers (i.e. all 
edges are doubled), and yk counts all double dimer configurations which contain one cycle surrounding an odd number of 
boxes.12

As in [6], let wn = x2n−4 + y2n−4σ θ be the corresponding generating function for double dimer covers on horizontal 
strips with an even number of boxes. These two sequences satisfy the following Fibonacci-like recurrences.

Lemma 6.1 ([6], Lemma 11.6). The sequences zn and wn satisfy the following recurrences:

(a) zn = zn−1 + (1 + σ θ)wn−1

(b) wn = wn−1 + (1 + σ θ)zn − σ θ

We will use the matrix product method to calculate these numbers, utilizing a path as shown on the right side of Fig. 19. 
Although Theorem 4.3 was only stated for polygons, we can lift the triangulation to the universal cover to obtain a polygon 
with a zig-zag triangulation (in the default orientation), in which the appropriate odd elements are identified.

Since all λ-lengths are 1, let us abbreviate E := E(1) and Aθ := A(1|θ). The figure shows the example of z4 . In general, 
the holonomy matrix product for zn is

Hn = Xn−2E−1, where X := E−1A−1
θ ρE Aσ ρ

Lemma 6.2. The holonomy Hn , realizing the arc zn , is given by

Hn =

⎛
⎝

−wn−1 zn (zn − 1)σ + wn−1θ

−zn−1 wn−1 (zn−1 − 1)θ + wn−1σ

(zn−1 − 1)σ − wn−1θ (zn − 1)θ − wn−1σ 1− (�2n−4 − 2)σ θ

⎞
⎠

=

⎛
⎝

−(x2n−6 + y2n−6σ θ) x2n−5 + y2n−5σ θ (x2n−5 − 1)σ + x2n−6θ

−(x2n−7 + y2n−7σ θ) x2n−6 + y2n−6σ θ (x2n−7 − 1)θ + x2n−6σ

(x2n−7 − 1)σ − x2n−6θ (x2n−5 − 1)θ − x2n−6σ 1 − (�2n−4 − 2)σ θ

⎞
⎠

Here �k denotes the kth Lucas number defined by �1 = 1, �2 = 3, and �k = �k−1 + �k−2 for k ≥ 3.13

Proof. Consider the polygon in the universal cover of the cylinder surrounding the canonical path pictured in Fig. 19. Note 
that this polygon, which has 2n − 2 vertices, has a zig-zag triangulation with the default orientation. Furthermore, the 
holonomy has type 01 (in the sense of Definition 4.1). This ensures that the signs match those in Theorem 5.2.

Label the vertices 0, 1, . . . , 2n − 1, as in Section 4.3 (note that since this picture is on the universal cover, i = i + 2). 
The snake graph GT associated to this zig-zag triangulation is G2n−5 , a horizontal row of 2n − 5 boxes. Therefore the snake 
graph G T̃ described in Section 5 is G2n−3 . Since, as we mentioned above, this holonomy is of type 01, and since G2n−3 has 
an odd number of boxes, we will always have e0 (resp. e1) on the bottom (resp. left) side of the first tile, and eN (resp. 
eN+1) on the right (resp. top) of the last tile. Theorem 5.2 gives formulas for all nine entries of Hn in terms of subsets of 

12 The number yk is really the weighted sum of all configurations which contain cycles, but those which have either more than one cycle or a cycle of 
even length have weight zero. This is because the same two odd variables appear repeatedly. See [6] for details.
13 This quantity �2n−4 − 2 also equals κ(Wn−2), the number of spanning trees on the wheel graph with (n − 1) vertices (see [9]).
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double dimer covers of G T̃ = G2n−3 . Note that since we set all λ-lengths equal to 1, we can ignore the denominators in 
these expressions.

The following picture is the specialization of Fig. 11 to the situation G̃ = G2n−3 .

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

The (1, 2)-entry (resp. the (2, 1)-entry) has an obvious bijection with double dimer covers of G2n−5 (resp. G2n−7), and 
hence by a result from [6] is equal to zn (resp. zn−1). Similarly, the (1, 1) and (2, 2) entries have obvious bijections with 
double dimer covers of G2n−6 , and so are equal to wn−1 .

The (1, 3)-entry has a bijection with double dimer covers of G2n−4 containing a cycle which surrounds (at least) the first 
square. The first μ-invariant in T̃ is θ , so cycles which surround an odd number of squares will end with a σ , and those 
surrounding an even number of squares will end with θ . According to Theorem 5.2, we additionally need to toggle the first 
θ , meaning the weights will contain only the μ-invariant at the end of the cycle. If the first cycle surrounds k tiles, the rest 
can be any double dimer configuration on the complement of the first k + 1 tiles (i.e. on G2n−5−k). When k is odd, this is 
counted by w

n− k+1
2
, and when n is even by z

n− k
2
. Thus, we have that the (1, 3)-entry is given by

(wn−1 + wn−2 + · · · + w2)σ + (zn−1 + zn−2 + · · · + z2)θ.

Note that each w i or zi is of the form x + yσ θ , so multiplying by either σ or θ annihilates the y-term, and so we may 
replace each zi with x2i−5 and each w i with x2i−4 , which are simply Fibonacci numbers. The following are well-known 
identities of Fibonacci numbers:

x0 + x2 + · · · + x2n−6 = x2n−5 − 1 and x−1 + x1 + x3 + · · · + x2n−7 = x2n−6

The arguments for the (2, 3), (3, 1), and (3, 2)-entries are similar. The signs in the bottom row come from Remark 4.9. In 
particular, this corresponds to a zig-zag triangulation where half of the odd variables are all set equal to σ and the other 
half all set equal to θ . Since we negate half of the odd variables in Remark 4.9, this means simply negating either σ or θ .

For the (3,3)-entry, we use standard identities on Fibonacci and Lucas numbers: In particular, by Equation (4), we can 
express the (3,3)-entry as 1 + αβ , where α is the (3,1)-entry and β is the (3,2)-entry. We thus obtain

Hn(3,3) = 1+
(

(x2n−7 − 1)σ − x2n−6θ

)(
(x2n−5 − 1)θ − x2n−6σ

)

= 1−
(
x22n−6 − x2n−5x2n−7 + x2n−5 + x2n−7 − 1

)
σ θ

By Cassini’s identity on Fibonacci numbers, we have the equality x2n−5x2n−7 − x22n−6 = 1 and another standard identity 
relating Fibonacci and Lucas numbers is �k = xk−3 + xk−1 . Using this in the case of k = 2n − 4, we rewrite Hn(3, 3) =
1 + (�2n−4 − 2)θσ = 1 + (κ(Wn−3) − 2)θσ as desired. �

Remark 6.3. In [6], we showed that zn , defined as the generating function of double dimer covers of G2n−5 , is equal to the 
λ-length of certain arcs in an annulus, as described above. In the previous paper, we defined the wn ’s as double dimer 
generating functions for G2n−4 , and used them for algebraic calculations, but did not give a geometric interpretation. In 
Remark 11.17 and Conjecture 11.19 in [6], we suggested that the wn ’s should have a particular geometric meaning, which 
we are now able to verify. Comparing Hn from Lemma 6.2 with Hab from Theorem 4.3, we see that the wn ’s can also be 
interpreted as certain λ-lengths. In particular, wn is the λ-length of an arc which winds around the annulus n − 2 times, 
and has both endpoints on the same boundary component.

7. Geometric interpretation

In this section, we will describe a more geometric interpretation of the results of this paper, in terms of the definitions 
of decorated super Teichmüller spaces given in [14]. We take a viewpoint along the lines of [2] (section 11), which is 
slightly different than the viewpoint of [14]. Some version of this viewpoint was also present in [1], applied to super shear 
coordinates (rather than λ-lengths).

This alternative viewpoint is as follows. Let A be the commutative super-algebra generated by λ-lengths and μ-invariants 
coming from some particular triangulation. The definitions of Penner and Zeitlin in [14] are in terms of the Minkowski 
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geometry of the free module A3|2 , whereas our alternate viewpoint will be to instead view the elements of OSp(1|2) acting 
on the free module A2|1 (by ordinary matrix-vector multiplication).

To connect the two viewpoints, we will give a map s : A2|1 →A3|2 , which is equivariant with respect to the actions. This 
way, statements about the action may be stated in A2|1 , where the action is simpler, and the statements will transfer over 
to A3|2 .

In particular, our main goal in this section is to use this viewpoint to give geometric interpretations for the matrices 
E(λ) and A(h|θ), and thus also the holonomy matrices Ha,b of Definition 4.1 and Theorem 4.3.

The map s : A2|1 →A3|2 , mentioned above, is given explicitly as follows:

s(x, y|φ) :=
(
y2 − x2, −2xy, y2 + x2

∣∣∣−2yφ, 2xφ
) 1

√
2
.

Proposition 7.1. The map s : A2|1 →A3|2 is equivariant with respect to the OSp(1|2)-actions.

Proof. In [14, section 1], each element v ∈ A3|2 was identified with a 2|1-by-2|1 matrix Q (v), and the action of OSp(1|2)
on A3|2 was defined by

g · Q (v) = (g−1)stQ (v)g−1.

Therefore one just needs to verify that

Q (s(g · v)) = (g−1)st Q (s(v)) g−1.

We omit this calculation, as it is straightforward. �

Remark 7.2. Note that all entries of s(x, y|φ) are homogeneous quadratic expressions in x, y, and φ. It follows that s(v) =
s(−v) for all v ∈ A2|1 . We may therefore think of the domain of the map s as the quotient A2|1/ ± 1, where vectors are 
identified with their negatives.

In [14], the λ-lengths were defined in terms of a certain Minkowski inner product on A3|2. Specifically, they define 
λ(a, b) :=

√
〈a,b〉. Under this map s, the λ-lengths correspond to a certain bilinear form, which we now describe.

Definition 7.3. Define the map ω : A2|1 ×A2|1 →A as follows. If v = (a, b|φ) and w = (x, y|θ), then

ω(v, w) := ay − bx+ φθ.

Remark 7.4. The map ω is the bilinear form defined by the matrix J (from Section 2), so by definition, OSp(1|2) is the 
group which preserves ω.

Proposition 7.5. For any v, w ∈A2|1 , we have 〈s(v), s(w)〉 = ω(v, w)2 . In particular,

λ(s(v), s(w)) =
√

ω(v, w)2 = ±ω(v, w).

Lemma 7.6. Let v1, v2 ∈ A2|1 with ω(v1, v2) = 1. Then there is a unique matrix g ∈ OSp(1|2) whose first two columns are v1 and 
v2 .

Proof. Let v1 = (a, b|φ) and v2 = (x, y|θ). We want to show there is some v3 = (α, β, f ) such that
⎛
⎝

a x α
b y β

φ θ f

⎞
⎠ ∈ OSp(1|2).

If such a v3 exists, it is unique by the relations defining OSp(1|2). In particular, equations (4), (8), and (9) say that α, β , 
and f are determined by v1 and v2 as follows:

f = 1+ φθ, α = aθ − xφ, β = bθ − yφ

However, the entries of the matrix must also satisfy equations (5), (6), and (7), so we must check that defining v3 by the 
formulas above is consistent with these other three equations.

First is equation (5), which says that ay −bx = 1 −φθ , or equivalently ay −bx +φθ = 1, which is precisely our assumption 
that ω(v1, v2) = 1. So we see this assumption is necessary in order to satisfy equation (5).
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Next, equation (6) requires that φ = bα − aβ . The right-hand side is

bα − aβ = b(aθ − xφ) − a(bθ − yφ) = (ay − bx)φ.

But we already know from the discussion above that ay − bx = 1 − φθ . Substituting this gives the desired result.
The calculation verifying equation (7), i.e. θ = yα − xβ , is similar. �

Definition 7.7. Let A2|1
+ be the set of vectors with non-zero bodies. That is

A
2|1
+ := {(x, y|φ) ∈ A

2|1 | x �= 0 or y �= 0}

Corollary 7.8. The action of OSp(1|2) on A2|1
+ is transitive.

Proof. Let v = (x, y|φ) ∈ A
2|1
+ . If there exists some w with ω(v, w) = 1, then Lemma 7.6 tells us that there is some g ∈

OSp(1|2) with g · e1 = v . If x �= 0, we can choose w = (0, x−1|φ), and if y �= 0, we can choose w = (−y−1, 0|φ). �

Remark 7.9. The image of A2|1
+ under the map s was called the “special light cone” L+

0 in [14], and the decorated super 
Teichmüller space of a polygon is the configuration space of tuples of points in this set, modulo the diagonal action of 
OSp(1|2). From the point of view described in this section, we instead consider configurations of points in A2|1

+ , up to 

diagonal action of OSp(1|2). Also, by Remark 7.2, we identify v = −v in A2|1
+ , since s(v) = s(−v).

The following is a kind of standard form result (which can be seen in the argument used in the proof of Lemma 3.1 from 
[14]). In order to state it, we first define the vectors u := s(e1) and w = s(e2) in A3|2 .

Proposition 7.10. Let p, q ∈ L+
0 be two points in the special light cone with λ = λ(p, q). There is some g ∈ OSp(1|2) such that

g · p = u · λ2 and g · q = w

Moreover, g is unique up to post-composition (i.e. left-multiplication) by ρ .

Proof. We will construct the inverse of the matrix g . Let v p, vq ∈ A2|1 be vectors such that s(v p) = p and s(vq) = q. Then 
by Proposition 7.5, we know that ω(v p, vq) = ±λ. Since λ has positive body, it is invertible, and we may replace v p with 
v ′
p = ± v p · 1

λ
, so that ω(v ′

p, vq) = 1. Thus by Lemma 7.6, there is a matrix g ∈ OSp(1|2) whose first two columns are v ′
p

and vq . If e1 , e2 , ε are the standard basis vectors of A2|1 , then this matrix acts by g · e1 = v ′
p and g · e2 = vq . Proposition 7.1

says the map s is equivariant, so g · w = q and g · u = p · 1
λ2 . Then clearly g−1 is the matrix described in the proposition.

Finally, we remark that the choices of v p and vq were not unique, since we may replace either (or both) by their 
negatives (Remark 7.2). If we replace vq 	→ −vq , then when we re-scale v p to get v ′

p , it will also be negated. The overall 
effect is that the first two columns of g will be negated (but the third column will remain the same). This is the same as 
right-multiplication by ρ . Since the matrix from the statement is g−1 , it will be unique up to left-multiplication by ρ . �

Proposition 7.11. Let p, q ∈ L+
0 be in the standard form guaranteed by Proposition 7.10. That is, if λ = λ(p, q), assume that q = w and 

p = u · λ2 . Then E(λ) and E(−λ) = E(λ)−1 are the only matrices g ∈ OSp(1|2) such that g · p = q and g · q = p.

Proof. By Proposition 7.10, such a matrix is unique up to ρ . Note that E(−λ) = ρ E(λ), so if we show that E(λ) satisfies the 
conditions, then we are done.

If e1, e2, ε are the standard basis vectors of A2|1 , then looking at the columns of E(λ) shows that

E(λ) · e1 = e2 · λ−1 and E(λ) · e2 = −e1 · λ

Re-arranging the first equation gives E(λ) · (e1 · λ) = e2 . Applying s to these equations, remembering that s is equivariant, 
and that s(v · α) = s(v) · α2 , we get

E(λ) · (u · λ2) = w and E(λ) · w = u · λ2
�

To prove the corresponding result about the A(h|θ) matrices, we will use the following lemma.

Lemma 7.12. Let p1, p2, p3 ∈ L+
0 , with λ(pi, p j) = λi j , and μ-invariant θ . Suppose the edge p1, p3 is in the standard form guaranteed 

by Proposition 7.10. That is, assume that p1 = u · λ2
13 and p3 = w. Then p2 = s(z), where
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• If p1, p2, p3 appear in clockwise order, then z =
(
λ23,

λ12
λ13

∣∣∣ ± �2
1,3

)
.

• If p1, p2, p3 appear in counter-clockwise order, then z =
(
λ23, − λ12

λ13

∣∣∣ ± �2
1,3

)
.

In both cases, the sign of �2
1,3 cannot be determined from this information alone.

Proof. We will show the calculation for (a), and that of (b) is similar. Suppose that p1, p2, p3 are in clockwise order. This 
means they are a “negative triple” (in the language of [14]). Let p2 = s(z) for z = (x, y|α) ∈ A2|1 . Because this is a negative 
triple, the signs of x and y must be the same. By Proposition 7.5, we can deduce that

λ12 = λ(u · λ2
13, p2) = ±ω(e1 · λ13, z) = ±y · λ13

λ23 = λ(p2, w) = ±ω(z, e2) = ±x

Since s(z) = s(−z), we may choose z so that x = λ23 and y = λ12
λ13

. In order to compare α with the μ-invariant θ , we need 
to put the triple p1, p2, p3 into the standard form described in Lemma 3.3 and Lemma 3.5 of [14]. This can be done with 
the following matrix:

g =

⎛
⎜⎜⎝

√
h312 0 0

0 1√
h312

0

0 0 1

⎞
⎟⎟⎠

The effect on z is then

g · z =
(
1,1

∣∣∣∣
√
h213 α

)
·

1√
h213

By the definition of μ-invariant from [14], we see that α = ±θ√
h213

= ±�2
1,3 . By Corollary 3.4 in [14], knowing the three points 

p1 , p2 , p3 only determines θ up to sign.
The proof of (b) is the same, except x and y have opposite signs, and there are some signs in the diagonal matrix g . �

The following proposition is essentially a restatement of what is called the “basic calculation” in section 4 of [14], but 
phrased in a way that highlights the significance of the A-matrices we defined in Section 3.

Proposition 7.13. Let pi, p�, pk ∈ L+
0 in clockwise order, as in Fig. 2, with λ-lengths a, b, e and μ-invariant θ , and suppose the edge 

pi, pk is in the standard form guaranteed by Proposition 7.10. That is, pi = u · e2 and pk = w. Then there is a unique point p j ∈ L+
0

such that

(a) The triangle pi, p j, pk has the λ-lengths and μ-invariant as in Fig. 2.
(b) The point p j is defined by Ak

i j · p j = u · c2 (or Ak
i jρ · p j = u · c2), depending on the orientation of the edge (i, k). In other words, 

Ak
i j (or A

k
i jρ) puts the edge ( j, k) into standard position.

Proof. Part (b) completely determines some point. We simply need to see that it satisfies the claim of part (a). Let us 
consider the case pictured in Fig. 2, where the edge labeled “e” is directed pi → pk . If p j = s(v), then v must be (up to 

sign) the first column of ρAk
i j

−1
, multiplied by c, which gives

v =
(

−c,
d

e

∣∣∣∣ − � j

i,k

)

Now, it is straightforward to check, using Proposition 7.5, that

λi j = ω(v, e1) · e = d and λ jk = ω(v, e2) = c,

and by the same calculation done in Lemma 7.12, we see that the μ-invariant i jk is σ . �

We conclude with a discussion of how the holonomy matrices Ha,b from Definition 4.1 and Theorem 4.3 can be inter-
preted in this geometric context. The main point is that we may represent a polygon as a configuration of points in A2|1 or 
A3|2 , in such a way so that if the first edge (c0, c1) of the canonical path is in standard position, then the matrix Hab is the 
transformation which puts the final edge (cN , cN+1) into standard position. Indeed, we can build this configuration of points 
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inductively. Start by choosing three points for the first triangle using Proposition 7.10 and Lemma 7.12. Then Proposition 7.13
tells us how to choose the third point of the next triangle (which shares one side with the first one). Then we may use 
some product of E or A matrices to put the appropriate edge in standard position and continually use Proposition 7.13 to 
choose each subsequent point.
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