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0. Introduction

Cluster algebras, first introduced by Fomin and Zelevinsky [3], are certain commutative algebras possessing additional
combinatorial structures. Since their discovery, cluster algebras have been connected to many other areas of mathematics
and physics such as representation theory, integrable systems, Teichmiiller theory and string theory. In recent years, much
progress has been made towards a theory of super-commutative cluster algebras, such as [11,10], [4], [16,15] and [5,6].
The current authors, in our previous two papers [5,6], began the project of exploring a possible super cluster algebraic
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Fig. 1. The default orientation of an arbitrary acyclic triangulation where each fan segment is colored differently. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

interpretation of Penner-Zeitlin's decorated super Teichmdiiller theory, generalizing the known cluster structure of Penner’s
A-length coordinates. This paper is the third in this series, and as such we will use several conventions and definitions from
our previous works, citing them where appropriate.

For a triangulation T of a marked surface (S, M), we define a graph I'r embedded in S and for each point of the
decorated super Teichmiiller space, a flat OSp(1|2)-connection on I'r. A similar construction was given in [1] of a graph
connection in terms of shear coordinates on the (un-decorated) super Teichmiiller space.! We then define certain canonical
paths on I't for each arc (a,b) of S, thereby associating the arc with a holonomy matrix Hgp. Our main result (Theo-
rem 3.10) is that for a polygon (i.e. a marked disk) the (1,2)-entry of the holonomy matrix is the super A-length, up to
sign. We also give precise formulas for all entries of the holonomy matrices in terms of super A-lengths and p-invariants
(Theorem 4.3), and we give combinatorial interpretations of these matrix entries (Theorem 5.2) as generating functions for
double dimer covers in the spirit of [8].

The structure of the paper is as follows. In Section 1, we review background on the decorated super Teichmiiller theory
of [14], and recall some conventions in our previous papers [5,6]. In Section 2, we provide necessary information on super-
matrices and the ortho-symplectic group OSp(1|2). In Section 3, we define the graph I't and a flat OSp(1|2)-connection on
it, and state our main theorem. A more detailed version of our matrix formulas can be found in Section 4 which is devoted
to a proof of the main theorem. In Section 5 we give a combinatorial interpretation of the result of this paper using double
dimer covers, connecting the main results of the current paper and those of [6]. We revisit the super Fibonacci numbers
studied in [6], and examine the corresponding holonomy matrices in Section 6. Finally, in Section 7, we provide a more
geometric interpretation of our matrix formula, via a different viewpoint of the decorated super Teichmiiller theory.

1. Background on decorated super Teichmiiller theory

In this section, we briefly recall the basic definitions of the decorated super Teichmiiller space of a polygon (see [14] and
[5] for more details). Consider a polygon P (i.e. a disc with marked points on its boundary), a fixed triangulation T, and a
choice of orientation of the edges of T.

Without loss of generality, we restrict our attention to acyclic triangulations, i.e. those in which all triangles have a
boundary edge.? For simplicity, we will always consider a “default orientation”, as defined in [5], which is pictured in Fig. 1.
The maximal groupings of consecutive triangles which share a common vertex (indicated by different colors) are called “fan
segments”, and the common vertex they share is called the “fan center” (vertices labeled c1, c2, ..., cy from top to bottom).
The default orientation is defined so that the edges connecting fan centers are oriented ¢y — ¢ — ¢3 — --- — Cy, and the
remaining edges are oriented away from the fan centers.

The decorated super Teichmiiller space of P is a super-commutative algebra® A with the following generators: for each
edge in T with endpoints i and j, an even generator A;; (called a “A-length”), and for each triangle in T with vertices i, j, k,

an odd generator (called a “p-invariant”).*
When two triangulations are related by a flip, as in Fig. 2, one can define new elements of the algebra by the following
“super Ptolemy relations”:

! In the language of the cluster algebra literature, shear coordinates are X'-type cluster variables, while A-lengths are A-type cluster variables.

2 We will always be concerned with an arc y = (a, b) on the triangulated polygon, thus we can “ignore” the triangles that do not intersect the arc, which
will leave us a sub-triangulation which is acyclic.

3 Technically, each choice of spin structure (represented by a choice of orientation of the triangulation) corresponds to a different connected component
of the space.

4 The algebra A is technically the tensor product of the field of rational functions in the square roots of the A-lengths and the exterior algebra generated
by p-invariants.
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Fig. 2. Super Ptolemy transformation.

ef =ac+ bd + vabcd o6 (1)

J,:G«/E—Gﬁzam—f)ﬁ 2)
Vac+bd Jef

9/:9m+0ﬁ:9m+oﬁ 3)
Jac+bd Jef

Note that in Equation (1), the order of multiplying the two odd variables o and 6 is determined by the orientation of
the edge being flipped (see the arrow in Fig. 2).

In Fig. 2, the orientations of the four boundary edges are omitted, but the super Ptolemy transformation does change the
orientation of the edge labeled b (the edges a, ¢, d keep their same orientation).

Definition 1.1. For a triangle with vertices i, j, k, define the h-length at vertex i to be
i _ Mk
T i

Note that this is the same as the definition of “h-length” in the classical (i.e. non-super) case. See e.g. [13].

Definition 1.2. For a triangle with vertices i, j, k and p-invariant 6 = m we also define two sets of normalized p-invariants:

K _g= Jui o, alo= X0 =\/nl 6. ak = Jn e,
Aijhik Aijhjk zk?»;k

. Aiihi 1 . Aiik A
vljk — ;{ ik 0 — - 0, V{k = 1)]\ jk 0 — Aik ]k —
V' Ajk h'y ik \/ hu

all of which are associated to a (triangle, vertex) pair, i.e. to an angle.

i
Ajk =

Remark 1.3. The h-lengths and normalized w-invariants within a triangle satisfy the following relations

N2 . jk
i h = ()" hi (i) v} = 51t 7
Iy _ ik Al iv _A iAL
(ii) Aik_ﬁA’jk (V) i = kAl

Remark 14. In terms of the normalized p-invariants, the super Ptolemy relations (Equations (1) to (3)) take a very simple
form. Using the labeling of vertices of the quadrilateral in Fig. 2, we can rewrite these equations as follows.

AijAkl + Ak jk i e

je= ™ + VikVik (1)
Ak = ak - Al (2%)
Al = A+ Ay (39

Proposition 1.5. Let ijk and ik¢ be two adjacent triangles, with the edge separating the triangles oriented i — k (as in Fig. 2). Then

@ hy=hy +h + Ay Dy
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(b) hj, = hj; + hy + A A,

Proof. We will just prove part (a). The calculation for (b) is analogous. By definition, hz'e = Agf\‘w. Using the super Ptolemy

relation (Equation (1)) and substituting for Aj,, we get

i Mijhee + A jihie Vijkvfk: Mk A ji V_{k.v_fk
it AjjhieAik Aijhic  Aiekik  AijAik A Ade

By definition, the first two terms are h}, and h;k. By Remark 1.3(iv), the last term is equal to AS.kA;'d. O

2. Super-matrices and OSp(1]2)

An m|n x m|n (even) super-matrix M over a super-algebra can be written as a block matrix of the form

()

where A, B are m x m, n x n matrices with even entries, and W, E are m x n, n x m matrices with odd entries. We follow the
convention that Greek letters denote odd variables. The super-symmetric analogue of the determinant of a matrix, called
Berezinian, is defined as follows.

Ber(M) := det(B) ! det(A + EB~ W)

when B is invertible. Let At denote the transpose of a matrix, the super-transpose of a super-matrix is defined as:

At |t
st.__
e (),

Consider the set of 2|1 x 2|1 super matrices over A.

M =

Qo a

b
d
B

[ HESTINN

Its Berezinian is given by Ber(M) = %(ad —bc) + :‘—z(dy —bd) + eﬁz(cy —as) — 20‘:%5 Let ] denote the following matrix

0 1[0
j=| -10l0
0 0|1

The group OSp(1]2) is defined as the set of 2|1 x 2|1 super-matrices g with Ber(g) = 1, and satisfying g%t Jg = J. These
constraints can be written down explicitly in the following system of equations.

e=1+ap (4)
e !=ad—bc (5)
o=cy—ad (6)
B=dy —bs (7
y =ap — ba (8)
§=cB —da 9)

Notice that combining equations (4) and (5) gives us that
ad—bc=1—ap. (10)
Cross multiplying equations (6) and (8) or equations (7) and (9) give us that

af=ys. (11)
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Fig. 3. The graph I'r, with T in dashed lines.

Remark 2.1. Re-arranging the equation g%t Jg = J gives g~! = J~1gtJ. Thus if Ber(g) =1, then g € 0Sp(1|2) if and only if
the inverse is given by

-1

a bly d -b|-8
gl=|cd|s = - al|«a
o Ble 5 —yle

Now we define special elements of OSp(1|2) which will be the main ingredients in our matrix formulas in Section 3.

Definition 2.2. Let x and h be even variables (with v/h well-defined), and 6 an odd variable. Then we define the following
matrices:

0 —x|o 1 0 O -1 0 |0
Ex)y=| 1/x 00 Ahloy=| h 1|-vho p=| 0 —1/0
0 01 vho o 1 0 01

Their inverses are given by p~! = p, E(x)~! = pE(x) = E(—x), and

Remark 2.3. The matrix p was called “fermionic reflection” in [14]. Note that we have pA(h|0)p = A(h| —6) (i.e. conjugation
of A by p negates the fermionic variable #). This is easy to see, since left-multiplication by p scales the first two rows by
—1, and right-multiplication by p scales the first two columns by —1.

Remark 2.4. Observe that Ber E(x) = Ber A(h|#) = Berp =1, and that A(h|9)~', E(x)~', and p~! have the form of Re-
mark 2.1, and so these matrices are in OSp(1|2).

3. Aflat 0Sp(1]2)-connection

Following [2,8], from a triangulation T of a marked surface with boundary, we will define a planar graph I't and
associate certain matrices to the (oriented) edges of the graph, giving a flat OSp(1|2)-connection.

Remark 3.1. Although our main results (Theorem 3.10 and Theorem 4.3) are stated only for polygons, the constructions
given below for I'r and the connection make sense for any triangulated surface. For a surface with non-trivial topology, the
monodromy of this connection should coincide (up to conjugation) with the representation 71 (S) — OSp(1|2) described in
section 6 of [14]. The benefit of our approach is that we are able to get nontrivial information even in the case of a polygon
(where the fundamental group is trivial).
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Fig. 4. The three types of holonomy matrices.

Definition 3.2. Inside each triangle of T, there is a hexagonal face of I't with three sides parallel to the sides of the triangle.
When two triangles share a side, the two vertices of 't on opposite sides of this edge are connected (see Fig. 3).

Remark 3.3. The graph I't has 3 kinds of edges and 2 kinds of faces. The three types of edges of I't are:

e The edges parallel to arcs T of the triangulation T. (If T € T is a boundary edge, then there is only one such edge of
', and if T is an internal diagonal, then there are two such parallel edges in I't.)

e The edges within a triangle that are not parallel to arcs T of T. (These naturally correspond to the angles of the
triangles.)

e The edges which cross the arcs 7 of T.

The two types of faces are as follows:

e Within each triangle of T, there is a hexagonal face of I't.
o Surrounding each internal diagonal of T, there is a quadrilateral face of I't.

Definition 3.4. For a graph embedded on a surface, a graph connection is an assignment of a matrix to each oriented edge,
such that opposite orientations of the same edge are assigned inverse matrices. For a path in the graph, the holonomy is
the corresponding composition/product of matrices along the path. If the path is a loop, then the holonomy is also called
monodromy. A connection is called flat if the monodromy around each contractible face is the identity matrix.

We will now define a flat OSp(1|2)-connection on the graph I't.

Definition 3.5. Given (S, M) and T with a given orientation, we define the following holonomy matrices for the edges
described in Remark 3.3. They are pictured in Fig. 4.

(i) Inside triangle ijk, the clockwise orientation® of the edge at angle i is assigned the matrix A(h3k|9)-
(ii) Inside triangle ijk, the clockwise orientation of the edge ij is assigned the matrix E(%;j).
(iii) For each internal diagonal ij, there are two edges of I'r which cross ij. Supposing that the spin structure has orientation
i — j, the edge closer to i is assigned the identity matrix, and the edge closer to j is assigned p (the fermionic
reflection).

Proposition 3.6. The holonomy matrices from Definition 3.5 define a flat OSp(1|2)-connection on I't.

5 Here we mean the clockwise orientation of a path which moves around the inner boundary of the triangle.
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Fig. 5. The different ways to move to another “near” vertex.

Proof. As was mentioned in Remark 3.3, there are only two types of faces in I't. So we only need to check that these two
types of monodromy give the identity matrix. Also note that changing the starting point of a cycle changes the monodromy
only by conjugation. So if we verify that a particular monodromy around a face is the identity, then the same follows for
any starting point.

First let us consider a rectangular face corresponding to a diagonal ij of the triangulation. The (counter-clockwise) mon-
odromy around this face is

id~Eij~,0-Eij

But since p - Ejj = 551- this gives the result.
Second, we must consider a hexagonal face inside a triangle ijk. The (clockwise) monodromy around this face, starting
near vertex i, is given by

i p.oal g oAk,
AﬂEﬂAmEhAuEm
It is straightforward to check that this product is the identity matrix. O

Remark 3.7. Since the connection is flat, the holonomy between two vertices of 't does not depend on the choice of path,
since the graph is planar and any two paths are homotopic (thought of as paths on the ambient surface).

Remark 3.8. Note that the additional data of the spin structure on the triangulation T allows an additional elementary
step corresponding to p that was not present in [2] nor [8]. However, its inclusion ensures that all monodromies yield the
identity matrix (rather than the identity matrix up to sign).

Definition 3.9. If vertex i of a polygon is incident to m triangles in T, then there are 2m vertices of I't corresponding to the
angles of these triangles at m. We will say that any of these 2m vertices of 't are “near” the vertex m.

Theorem 3.10. Suppose we have a triangulation T of a polygon endowed with an orientation. Let i and j be two vertices of the polygon,
and i’ and j' any vertices of 't that are near i and j, and let H be the holonomy from i’ to j'. Then the (1, 2)-entry of H is equal to
+Aij.

We will prove this theorem in the next section. The first step in partially proving this theorem is the following.
Lemma 3.11. The result of Theorem 3.10 does not depend on the particular choices of i’ and j'.

Proof. Choosing different i’ or j/ near the same i and j corresponds to multiplying H (on the right for i and the left for
j) by a product of matrices of the following types: Ag.k, Az.k_l, p, or id. Note that we do not need a separate case for p~!
since p~! = p. See Fig. 5 for an illustration of the different cases. In the figure, adding the red edge to the beginning of the
blue path corresponds to prepending (i.e. right-multiplying) the holonomy by the indicated matrix.

In the third case, multiplying by p (on either the left or right) will negate the (1, 2)-entry. For the first and second case,
it is easy to see (simply by matrix multiplication) that multiplying on the left or right by Az.k or AS.,;l will not change the
(1,2)-entry. O
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4 5 5 4

Fig. 6. Single fan triangulation. Left: type 00. Right: type 11.

4. Proof of Theorem 3.10
This section is devoted to a proof of our main theorem, Theorem 3.10. We first state a more detailed version of the main

theorem. Let T be a triangulation with default orientation, and with fan centers labeled as c¢; for 1 <i < N. Let (a, b) be the
longest diagonal in T and denote a =cp and b =cy41.

Definition 4.1. Let H, ) denote the holonomy following a path from a vertex near a = co (on the side closer to c1) to a
vertex near b = cy41 (on the side closer to cy). We say that the holonomy is of type €,€;, where

_]o if (co, €1, c2) are oriented clockwise,
“7 11 otherwise.

0 if (cn—1,cnN,Cn+1) are oriented clockwise,

b= .
1 otherwise.

Remark 4.2. Note that given ¢,, €}, is determined by the number of fans N via the relation €; + €, =N +1 mod 2.

Theorem 4.3. Let T be an arbitrary acyclic triangulation endowed with an arbitrary orientation (based on its spin structure), and with
fan centers labeled as c; for 1 <i < N and a = cg, b = cy+1. The holonomy matrix Hg , of type €q€), is given by

Acq,en c
CN+1 € N+1
T e (=1 a)‘Co,CNH Veo.c1
A A c
H. »= —1)é C1.CN —1)€ater—1 0N —1)é—1 1 N
a.b D Aegerhen.eny D CNACN+1 D Aeneny Veo.ci
1 C1 __1\€a—1C0
*ep.cr Ven.eng (=1 Ven,entt 1+

Here the formula for the (3, 3)-entry (i.e. 1 + x) can be given two equivalent ways, which (due to Remark 2.4) follows from appli-
cations of both Equation (4) and Equation (11):

1 1
T+x=1+(=1)% 1k— Veheni Vemen =14+ (=D T —— g geh

€0,C1 CN,CN+1

We begin the proof of Theorem 4.3 by considering the special case of a fan triangulation with default orientation.
Without loss of generality, we will assume the fan has vertices labeled by 1, 2,...,n in cyclic order. In particular, there is
one non-trivial fan center, but including the endpoints of the longest arc, we have a=cp=2,c1 =1,and b=c; =cy4+1 =n.
We recover that the holonomy Hj, can only be type 00 or 11, see Fig. 6.

4.1. Fan triangulation

The next two results (Lemma 4.4 and Corollary 4.5) compute the holonomy of a path which stays near a fan center, and
traverses over all the angles in a fan segment.

Lemma 4.4. Suppose i, j, k, £ are vertices of a quadrilateral in counter-clockwise order, and the (oriented) triangulation contains the
edge i — k (as in Fig. 2). Then the product of A-matrices is
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(@ Ay A% =AY,

K, ak I
(b) Ajjp Ajy=Aj,p

Proof. (a) Let 6 = and o = . The matrix product gives

1 o‘ 0 1 0 0
h;cﬁ + hljk — A";dAljk 1- A‘ljk _A‘;cﬂ = hljk + h;d + AljkA;cl 1= (Aljk + A;d)
N aho+ni, o 1

By Proposition 1.5(a), the (2, 1)-entry is equal to hz.e. By Equation (3*), the (2,3)- and (3, 1)-entries are _Az'ﬁ and Az'e'
respectively.

(b) Recall from Remark 2.3 that pA(h|0)p = A(h| — ). By right-multiplying the equation in part (b) by p, the claim is
equivalent to

I I k
Ai‘j A(hfd —0)= Ajl'
This matrix product is equal to
1 0 0
k k k Ak k I
hi‘j +fll<,-€ + Al,-‘jAM 1A, — Alfj
A -0, 0] 1

By Proposition 1.5(b) and Equation (2*), the (2, 1)-entry is h’j‘.é and the (2, 3)- and (3, 1)-entries are —A’;Z and A’er, respec-
tively. O

Corollary 4.5. Consider a single fan triangulation with default orientation, as depicted in Fig. 6. The ordered product of all A-matrices
is

1 1 41 1
An_1n- Az Az =Ay, (12)
if the holonomy is type 00, and
1 -1 1 -1 41 -1 1 —1
An_in Az Ay =Ay (13)

if the holonomy is type 11.

Proof. This follows from Lemma 4.4 by induction. The base case of two triangles is simply Lemma 4.4. In general, if we first
multiply the two right-most factors, they combine to give A%4. After performing the associated flip on the arc (1, 3), we now
have a smaller polygon (on the vertices 1, 2,4,5,...,n—1,n in counter-clockwise order), again with a fan triangulation and
the default orientation. For k > 4, after (k — 3) such steps, we have multiplied together the (k — 2) right-most factors into
A;k and have flipped the arcs (1, 3), (1,4), ..., (1,k — 1) in order, resulting again in a smaller polygon, this time on the
vertices 1,2,k,k+1,...,n—1,n, with a fan triangulation and the default orientation. So the result follows by induction. O

The special case of Theorem 4.3 (and hence of Theorem 3.10) for a fan triangulation is the following.

Theorem 4.6. Consider a fan triangulation with default orientation (as in Fig. 6). The holonomy Hy, of type €€, is given by

A
iy ()| v,
Hon = 0 _ﬁ

0 _v%n ‘ 1

In particular, the (1, 2)-entry is equal to £Ayy.

Proof. By Corollary 4.5, the holonomy is simply the product of three matrices:
_ -1_._
EmAyEr2 or EylA}, Ep
After multiplying the matrices, use Remark 1.3 to simplify (in particular )an%n =V, and —Aleén = —v%n). O

Remark 4.7. By Lemma 3.11, if we choose different starting and ending vertices near 2 and n, the resulting holonomy matrix
will still have (1, 2)-entry equal to 4.
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a

Fig. 7. Left: Example of a late-crossing canonical path. Right: Example of an early-crossing canonical path (with default orientation illustrated).

4.2. Canonical paths

Given a generic triangulation® T, we identify its fan centers as in Section 1, letting a = cg and b = cy,1 so that (a, b) is
the longest arc of T. We define two canonical paths along the corresponding graph 't in order to compute the holonomy
Hgyp as follows.

The first one, called the early-crossing canonical path (or early path for short), is defined as follows:

(1) For each 0 <k <N — 1, follow the E-edge parallel to (ck,cr+1) and then continue along a series of A-edges until
reaching a point near (C+1, Ck+2). Immediately cross the diagonal (c+1, Ck+2)-

(2) Continue step (1) N — 1 times until reaching the last fan segment. After crossing the diagonal (cy—1,cn) from a point
near cy—1, we follow by an E-edge parallel to (cy—1,cny) and continue along a series of A-edges until reaching a point
near cy as well as the arc (cy, cy+1). We then end with the E-edge parallel to (cy, cn+1)-

We also define the late-crossing canonical path (or late path for short).

(1) Follow the E-edge parallel to (cg,cq) and then, as long as N > 1, continue along a series of A-edges until reaching a
point near cq as well as the arc (c1, c2). Immediately follow the E-edge parallel to (cq, c2).

(2) For 1 <k <N —1, cross the arc (ck, ck+1), followed by A-edges until reaching a point near cxy; as well as the arc
(Ck+1, Ck+2)- Immediately follow the E-edge parallel to (cx+1, Ck+2)-

(3) After traversing along N — 1 such subpaths, we have arrived at a point near b = cy41.

Note that flipping the triangulation upside down turns an early path into a late path, and vice-versa.
4.3. Zig-zag triangulation

Let T be a zig-zag triangulation with default orientation, and with fan centers labeled as c¢; =i, as depicted in Fig. 8. Let
Hyp denote the holonomy following one of the canonical paths from a vertex near a =¢p (on the side closer to c1) to a
vertex near b =cy+1 (on the side closer to cy), as in Fig. 7.

Remark 4.8. The holonomy matrix obtained from the late path will be a product of E, A, and p matrices. In particular, if
we define X; := Ei it A::—l i1l and Y; := E7l Al

i ,_1,i+1_]p, then we will have the following forms for Hy, depending on
the type’:

Hap | € =0 | =1
€a=0|Xn--YaX3Y2X1Ey] |YN - YaX3Y2 X1Ep,
€a=1|Xn---XqY3XoY1E01 | YN--- X4Y3X2Y1E01

6 Here, we follow the nomenclature of our previous papers, and being generic signifies an arbitrary acyclic triangulation that is not a single fan or a
zigzag triangulation.
7 If € =0, the late path actually starts -~-Y2E12A[1)2E01. But since p2 =id and pEg1 = Eall, this is equal to the more concise expression given in the

table. Similarly when €, = 1, the path starts with -~»X2E1’21A[1)27] Eg, . but this is equal to the product shown.

10
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0 1 0 1

62 —62

N N+1 N N+1

Fig. 8. Reversing the default orientation of a zig-zag triangulation.

) ) : -1 ._
To describe the early path, define A&j := A;—l,i—o—lEi—l,i and ) := A;‘—l,i+1 E,._ll’i.

Then the early path will have the form
Hgp | e, =0 | e =1

€0 =0|ENN+1AN - VaX3)0 X1 EN}N+1yN < VaX3)h X

€a=T1|ENN41 &N - XaD30V1 | Byl VN -+ a3 001

Our proof has two parts: the first is an induction via left matrix multiplication, proving the first two columns of the
holonomy matrix formula, and the second is an induction via right matrix multiplication, proving the formula for the first
two rows. As mentioned earlier, the expression for the (3, 3)-entry follows immediately from Equation (4).

4.3.1. Proof for the first two columns

We first induct by left-multiplication, which corresponds to flipping certain diagonals from top to bottom. Recall that
performing a quadrilateral flip will alter the orientation of another edge, so it is important that we keep track of the arrows
as we perform a sequence of flips. For a zig-zag triangulation with default orientation 1 — 2 — --- — N, the natural flip
sequence is from bottom to top,® because every flip in this sequence will not alter the arrows of other un-flipped edges. On
the other hand, if we flip from top to bottom, certain steps in this sequence will change the orientation of other edges that
are not yet flipped, which makes it difficult to keep track of the orientations. Therefore, we need to “manually” reverse all
the arrows so that the top-to-bottom flip has the desired property.

It is explained in [14] that reversing the arrows of a triangle and negating the p-invariants is an equivalence of spin
structure, so we start by applying this equivalence move on every even numbered triangle, i.e. ¢;_1, ¢, ci+1 for even i. This
will negate all the 6;’s for even i and turn the orientation in to the reversed default orientation as desired. See Fig. 8 for
illustration.

Proof. We show the proof of Theorem 4.3 only in the case when cg, c1, c2 are oriented clockwise (i.e. €, = 0), noting that
the argument can be checked in a similar manner when €; = 1. We will induct on N, the number of triangles.

Base Case. For the base case, we have a single triangle. In the notation from earlier in Section 4.3, we are computing Hg;.
Using Theorem 4.6 with the specialization N =1 and using the labeling of Fig. 6 (so that co =2, c; =1, and ¢ = 3) yields
the desired matrix Hgj after the proper substitutions, noting e.g. that 1;; and equals zero when i = j.

Next, when k > 1, we assume that the formula holds for Hp x and prove it for Hg x4+1. The induction step will be slightly
different when k is even or odd. Note that if k is even (resp. odd), then the holonomy Hy j is of type 00 (resp. type 01) and
Ho k41 is of type 01 (resp. type 00).

Inductive step for k even. By the induction hypothesis, we have

Mk
— 2k *
o ifOk
Hop = 1.k—1 _ hok—1
0.k Ao1Ak—1.k AM—1.k

1 0
%o1 Vk=1k ~Vi—1k|*

-1 4k -1 .
Next we compute Hg 41 = YiHox = Ek,k+1Ak—l,k+1 PHok:

8 This is called the default flip sequence in [5].

11



G. Musiker, N. Ovenhouse and S.W. Zhang Journal of Geometry and Physics 189 (2023) 104828

1 k+1
_ [ Ak tdern A k-1 ke +Vk-1,kvk—1.k Aokrk—1k+1HA0k—1 Mokl _ k+1 0 "
201 M1k 20,1 -1,k Vi=1,kVk-1,k
M.k 0.k (14)
_ . : *
A01 Ak k+1 Ak k1

Mk [ Ak Ak k Ak

o1 \ D11~ Dotk 20k \ Br—1 k1~ Lok—1 *

Note that the expressions in the first column are the Ptolemy relations (cf. Remark 1.4) on the quadrilateral
(1,k,k — 1,k + 1). So matrix multiplication in the first column corresponds to flipping the edges (2, 3), (3,4),---, (k—1,k).
Recall that the flips in this sequence will not alter the orientation of other (un-flipped) edges. So for every even k, the
quadrilateral flip is depicted as follows, where the p-invariants associated to the triangle k — 1, k, k + 1 are negated.

1 1

k+1 k+1
Thus by Equations (1*) and (2*), we have

A kAk—1,k+1 + A1 k—1Ak k41
Ak+1 =

k+1 1
+ (Vi 1 1) Vi1k
)‘k—l,k k—1,k k—1,
ko k k
AT k1 = (A k1) A7k

Now for the second column, the matrix multiplication corresponds to flipping the edges (1, 2), (2, 3),
to the previous case, the quadrilateral flip is depicted as follows

k+1 k+1
k@k]—)k@kl
0 0

and the Ptolemy relations are

-o-,(k—1,k). Similar

_ Ao kMe—1,k+1 F Ao k—1Ak k+1

k 0
Aokt1 = o + (= Vk—1.k+1) Vi1

kK Ak k
Ao k1 = (A g k1) T Dok

Now plugging these back into Matrix (14), and using Remark 1.3 (iv) twice, we get

M k+1 M k41
~Tho AQ k+1 * o1 AOk+1 |*
Hoxr1=| — Mk rok =1 Pk rok
0.k+1 - 101 Mkt 1 Mkt 1 Aot Mkt kil
1k Ak _ k 1 1 .
LAY i okl |* 7ot Vik+1 ~Vieks1|*

This agrees with the formula of type 01 holonomy matrix.
Induction step for k odd. By the induction hypothesis, we have

A
o ok |x
M k— Ao.k—
HO,k — 1,k—1 0.k—1

" MoiM—1k M1k

T 1 0
%o1 Vk=1k ~Vi—1k|*

Then we compute Ho k1= XkHok = Ex k41 Af_1 sq PHok:

12
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1 k
A kAk=1k+1HA 1 k-1 Ak k1 Vic1kVi=1k+1 | A0okA—1.k+1F20k—1 k41 0 k
- ( + + Vi1 Vik-1k41 |*

ho1rk—1k Ao1 A1k
kl,k _)‘O,k (]5)
Aot A k41 Mekt1 *
M k k k k
Tor (Al,k—l + Ak—1.k+1) —hok (Ak—1,l<+1 + Ao,k-1) ‘*
Similar to the k even case, the first column are Ptolemy relations corresponding to flipping the edges (2, 3), (3,4),---, (k —

1, k). The last flip is depicted as follows. Note that in this case, the p-invariant associated to the triangle (k — 1,k,k+ 1) is
not negated.

1 1
kl@k—)kl@k

k+1 k+1
Thus by Equations (1*) and (3*), we have

Al,kkk—l,k—&-] +)\l.k—1)tk,k+1 1 k+1
A k1 = . + qu,kkal,k
k—1,k
k k k
AT g1 = Dt g1 AT kg
The matrix multiplication for the second column corresponds to flipping the edges, in order, (1,2),(2,3),---, (k —1,k),

where the quadrilateral flip is depicted as follows

0
k@kl—)k@

0
k—1
k+1 k+1
and the Ptolemy relations are

A0 kAk—1,k+1 + A0 k=1 k, k41
Ak—1,k
k Ak k
A0 k1 = Dkt k1 T Lok—1

_ 0 k+1
AOk41 = t Vi—1kVi—1k

Now plugging these Ptolemy relations into Matrix (15) we get

M k+1 M k41
T Mok |* ~So Mokl |*
H _ Mk _ Mok « = Mk _ Mok
0.k+1 /\01)»1;<.k+1 ?»k.kk+1 i»m)»kl.kﬂ ?»6 ket 1
Ak — . _
o1 Dk —A0KAg kg ’* %1 Vik+1 ~ Vik+1 |*

This agrees with the formula of type 00 holonomy matrix. O

4.3.2. Proof for the first two rows

Next we turn to the induction for the first two rows via right multiplication. In this case we will use the early path.

It turns out that induction by right multiplication corresponds to flipping the diagonals from bottom to top, as opposed
to the previous case. This already has the property that each flip does not alter the orientation of other unflipped edges.
Therefore here we do not need the extra step of reversing all the arrows.

Proof. We illustrate the proof in the case that cy_1,cn, Ccny41 are oriented counterclockwise, i.e. the path is of type 01 or
11. In this case the holonomy matrix looks like

Hong1 =Egyoq VN DX or Egly v,

13
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the former for type 01 and the latter for type 11 (recall that we are using the early path).

The base case is a triangle Hy_1 n+1 = EI;,]N+1A%—1,N+1EN—1-N' which can be verified using Theorem 4.6 with the
specialization N =1.

We now assume by induction that the formula holds for Hy y11 for some k < N.

Induction step for N — k even. If N — k is even, i.e. there are even number of triangles in the sub-triangulation spanned
by the diagonal (k, N + 1), the holonomy Hy y41 is of type 01. Thus by induction hypothesis we have

Mt 1,N41 N+1
N )):k k+1 A’;N+1 Vi, /<+1
H — k+1.N kN 1
kN+1 M A ANN+1T ANNt1 | ANN41 vk k+1
* * ’ *

k —
Then we compute Hi_1 y+1 = Hx 41k = Hk,N+1Ak—1,l<+1 Ek 1k

M N+1 Ak—1. kM 1,N41FAR— 1, k41 kN1 k k
e ek + Yk k+1 Vk /<+1 MeN+1 D1 N1 T Bk—1 ke
_ M _ (Mt oy | Vike Vickt1 AN k (16)
Ak—1,kAN,N+1 Akk+1AN,N+1 + AN.N+1 AN.N+1 A k+1,N + Ak 1,k+1
* * | *

The expressions in the first row are given by Ptolemy relations from flipping, starting from the bottom, the diagonals
(N,N+1),(N—1,N),---, (k,k+ 1). The final flip in the sequence is depicted as follows:

@k—i—]—)k@

N+1
Equations (1*) and (3*) give us

N Ae—1, kA1, N+1 + Ak—1 k-1 2k, N+1 N1
k—1,N+1 = 3 + Vi, k+1Vk e
kok+1

k k I
ANt = Dkt ket T Dk Nt
The expressions on the second row come analogously from flipping the diagonals (N—1,N), (N—2,N—1),---, (k,k+1),
where the final flip is depicted as follows.

k—1

@k—i—l—)k@

Here the Ptolemy relations are

AMe—1,kAk41,N + Ak—1 k12K, N k-1
Ak—1,N = +v Vik
K— Mkt 1 kk+1 Vi k+1

Kk k
A1 N = Lr—1 k1 T Dk N

Now Plugging these relations into Equation (16), we get

Me,N+1 N+1
—W _)\k;],N+l Vik=1.k
H,_ =1 _ kN M1 1 N
k=1,N+1 M—1.kAN,N+1 AN.N+1 | AN.N+1 Vi-1,k
* * *

14
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which matches the formula for type 11 holonomy matrix.
Induction step for N — k odd. Next we turn to the case when N —k is odd, where Hy yy1 is of type 11 and Hx_1 n41 is
of type 01. By the induction hypothesis we have

Ak+1,N+1 N+1
)):k,kﬂ Ak)\N'H vk k-H
H = _ k+1.N AN
k,N+1 Ak k+1AN N+1 AN.N+1 )nN N+1 Vk k+1
* * *

I .
Then we calculate Hy_1 n+1 = Hi N1 Xk = Hk,N+1A1§_1,k+1Ek71,k~

AkN+1 Ak=1.kAk+1.N+1FHAk—1.k+1 Ak N+1 k—1 N+1 k k
v ket + ka,lk+1vk,k+l MeN+1 Bkt N1 T Bkt ke
-1 _N
_ AN M1,k Mt 1N FAR—1 k11 AR N + Vikt1Vik+1 AN (AK + Ak (17)
Ak=1.kAN,N+1 Mek+1AN,N+1 AN,N+1 AN,N+1 k+1,N k—1,k+1
* * | *

Similar to the previous case, the first row corresponds to the flip sequence given by the following (N,N + 1), (N —
1,N),---, (k,k+ 1) and the second row corresponds to the flip sequence (N —1,N), (N —-2,N —1),---, (k,k + 1), which
are given by the following two diagrams respectively.

N+1 N+1
@k—i—l—)k@ @k—l—l—)k@
k—1 k—1

The Ptolemy relations are

N M1 kMt 1,N41 F A1 k41 Ak N+ k=1 _N+1
k—1,N+1 = , * Vicks1 Vickt1
kk+1

k _ Ak k
A1 N1 = Pr—1 k1 T Dl N1

Ak—1,kAk+1,N T Ak—1 k+1Ak N k=1
Ak—1,N = +
k— )Lk,kJrl Vk k+1 vk k+1

k k
A1 = D1 + D
Plugging into Equation (17) we get

Ak,N+1 N+1
T Mtk Ak=1,N+1 V-1,
Hi_ =1 _ Men Ak—1.N N
k=1,N+1 M—1kAN.N+1 _ ANN+1 | AN.N+1 Vi=1,k
* * | *

which matches the formula for type 01 holonomy matrix.
We omit the proof of the other case when cy_1,cn, cny1 are oriented clockwise. O

Remarl( 4.9. In Section 4.3.2, it was noted that the matrix product computes the odd entries in the third column (vN+l
and AN V7 Vo, 1) using a particular sequence of Ptolemy relations, which always uses Equation (3*), rather than Equation
(2*), from Remark 1.4. Therefore by Theorem 6.2(b) from [6], these odd elements, when expressed as polynomials in the
variables from the original triangulation, have all positive terms. Similarly, in Section 4.3.1, the matrix product computes
the odd elements from the third row (A%V}V,NH and v?,.N_H) using Ptolemy relation Equation (2*), which can be seen as
an instance of Equation (3*) after negating half of the odd variables, and reversing the orientations on all the diagonals.
So although the polynomial expressions of these odd elements have some signs, Theorem 6.2(b) from [6] says that these
expressions have all positive terms when expressed instead in the new variables 6/ = (—1itlg;.

We have now completed the proof of Theorem 4.3 (and hence of Theorem 3.10) for zig-zag triangulations with default
orientation.
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4.4. Generic triangulation

The theorem for generic triangulations (with default orientation) is a direct consequence of the zig-zag case and Corol-
lary 4.5. Write the holonomy as a product of matrices following one of the canonical paths. As we traverse through the i-th

fan segment, we can use Corollary 4.5 to write the product of A-matrices in a fan as the single matrix Agfl.ciﬂi]. This is
the same as flipping the diagonals inside each fan segment, which turns a generic triangulation into a zig-zag triangulation
whose vertices are the original fan centers. See [5, Figure 15].

What remains is to consider the case of an orientation 7 of T that is not the default one. In this case, it is possible to
define the holonomy matrix H,p as a product of matrices just as we did in Definition 3.5, but relative to orientation 7. The
only difference will be that some instances of the matrix p will instead be an identity matrix, and vice-versa. The effect in
either case is that the holonomy matrices crossing the edges whose orientation has changed are multiplied by p.

It is explained in [14] (and again in [5,6] using our notations and conventions) that reversing the orientations around all
three edges of a triangle corresponds to negating the associated odd variable. Also, it is possible to go from any orientation
to the default one (the boundary edges may differ, but the interior diagonals can be made to agree with the default orien-
tation) by a sequence of such orientation-reversals around triangles. So we may reduce the general case to examining what
happens when we do this orientation-reversal in a single triangle.

When reversing the orientation of all three edges around a triangle, all six vertices of the hexagonal face of I't in this
triangle will be incident to an edge whose holonomy has been multiplied by p. If we perform a gauge transformation by p
at each of these six vertices,” we can restore those edges to their previous weights (before we changed their orientations).
Since each edge has two endpoints which are gauged, the effect on the three A matrices and the three E matrices will be
that they are all conjugated by p. Since E commutes with p, and p? =id, this leaves the E-matrices unaffected. But as was
pointed out in Remark 2.3, we have pA(h|0)p = A(h| — 0). So, in agreement with the remark in the preceding paragraph,
the effect that this orientation-reversal has on the connection is simply to change 6 +— —6 in the A-matrices.

It is clear that if a path passes through a vertex v of I't, then a gauge transformation at v will not affect the holonomy
along this path (the contributions of the incoming and outgoing edges will cancel). The conclusion here is that the holonomy
formula from Theorem 4.3 still holds for an arbitrary orientation, provided we negate the corresponding odd variables every
time we do such an orientation-reversal around a triangle.

However, if the vertex v where we perform a gauge transformation is either the beginning or ending point of the path,
then the holonomy will change. Specifically, if we reverse the orientations around the first or last triangle (or both), the
effect on the holonomy is Hgp — Hgpp, Or Hap = pHgp, OF Hgp > pHgpp.

5. Double dimer interpretation of matrix formulae

Motivated by the methods of Sections 4 and 5 of [8], we now provide a combinatorial interpretation of the holonomy
matrices, which were defined in Section 3 and described explicitly for generic triangulations with the default orientation
in Theorem 4.3. In the case considered in [8], the construction involved matrices in PSL,(C) whose entries were given
interpretations in terms of perfect matchings of snake graphs. In the present work, we instead consider 2|1-by-2|1 matrices
in the group OSp(1|2), and obtain combinatorial interpretations of the entries in terms of double dimer covers of snake
graphs, using results from [6].

Let T be an arbitrary acyclic triangulation of a polygon such that the arc (a, b) is the longest arc in T, i.e. it cuts through
all internal arcs of T. Assume further that T is equipped with the default orientation with fan centers labeled as c; for
1 <i < N. Like in Section 4, we let a =cg, b = cn+1, and let Hg, be the holonomy as defined in Definition 4.1. The main
result of this section is to reinterpret the entries of H,  as combinatorial generating functions as follows.

First, let T denote the triangulation that extends triangulation T by defining two new marked points, @ and b, and
adjoining the triangles (@, co, c1) and (cn, cN+1, b), respectively about the edges (co,c1) and (cy, CN+12; We will use 65 and
05 to denote the w-invariants associated to these two new triangles, respectively. See Fig. 9. We let G = G5 be the snake
graph corresponding to the longest arc (d, E) in T, as defined initially in [7] and extended to the case of decorated super
Teichmiiller space in [6, Sec. 3]. _

In T, we let iy, i3, ..., g denote the internal arcs crossed in order by the longest arc (@, b). In particular, i; = (co, c1) and
ig = (CN,CN41)-

Given our earlier definitions of €; and €p, and noting that in the quadrilateral on @, cg, c1, ¢2, the triangles (co, c1, c2)
and (@, co, c1) are of opposite orientations (and we have an analogous statement for the quadrilateral on cy_1,cn, Cny1, b
we get the following equivalent usage of the values €; and €p:

0 if (@, cg, c1) are oriented counter-clockwise,

€q .
1 otherwise.

9 By a “gauge transformation by p at a vertex”, we mean left-multiplying all outgoing edge holonomies by p and right-multiplying all incoming edge
holonomies by p.
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b

b

Fig. 9. Extended triangulation T. We let v (resp. w) denote the fourth corner of the quadrilateral defined by the marked points @, a = cg, and c; (resp. cy,
b=cn+1, and b).

IT|—N=0 mod 2 IT|—N=1 mod 2

Xig eN+1

en+1

Xig—1 Xig en Xig—1

€ =0

Xiy eN+1

eN+1

Xig-1 Xig—1 Xig en

Acyv

Fig. 10. Different Snake Graphs as €; and (|T| — N) vary, where |T| is the number of triangles in T.

0 if (cn,cn+1,b) are oriented counter-clockwise,

€p = .
1 otherwise.

When building the snake graph G7, we note that as we progress from the bottom-left to the top right, the second tile
is to the east (resp. north) of the first tile if €, =0 (resp. 1). We use the following notation as shorthand for the weights
that appear on the bottom and left edges of the first tile as well as the top and right edges of the last tile, in some order:
€0 = Ad,cor €1 = Ad,cyr EN = Ay B and eyy1 = )LCNH’B. For example, e is the weight of the bottom edge (resp. left edge) of
the first tile if ¢, =0 (resp. ¢, = 1), and ey is the weight of left edge (or bottom edge) respectively. See Fig. 10. We will
sometimes abuse notation and let eg, e, ey, and ey denote the corresponding arcs themselves.
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€0, €0 €1, €1 €o, €1

eN,eN "

| | |

en. en+1 ’ ’ ’

Fig. 11. Graphical interpretations of entries of Hg,. Here the case of €, =0, [T| — N =1 mod 2 is illustrated.

Definition 5.1. For a snake graph G, let D(G) denote the set of double dimer covers of G. Also, let Dab(a), DCd(E), and
Dgg(G) denote the subsets of double dimer covers which includes (as sub-multisets) {eq, ep}, {ec, eq}, Or {eq, €p, ec, eq} re-
spectively. Here, a and b will always be 0 or 1 (the bottom/left edges of the first tile), and c, d will always N or N + 1 (the
top/right edges of the last tile).

Theorem 5.2. The entries of Hq j each have combinatorial interpretations as weighted generating functions of double dimer covers of
G7, where each is subject to a restriction on the bottom-left and top-right tiles of G5. More precisely Hg p is given by the following
matrix:

1 - - 1
1 o ( 1?%-1 0 -A =By foti ° 1 0
_ ~ ~ |~ _1)€a—
e BT R | 11 | B B
oMl 0 |l — a B |E 0 0 1
JXigeNenT1 e0e1Xi,
such that
A= Y wtM), B= Y  wtM), y= Y  wiM*
MeD)N(C) MeDYN(@G) MeD)N(©)
C= > wem), D= Yoo wem), §= Yoo wew*
MEDS’0+1,N+1(6) MEDQV1+1,N+1('(‘;’) MEDSI1+1,N+1(5)
a= Y +wm = Y EweL E= ) Ewrn)!
MeDN (@) MeDY,N (@) MeD;N (@)

where wt(M) denotes the weight of the double dimer cover (see [6, Def. 4.4]), and (%) denotes the toggle operation on 6z while (T)
indicates the toggle operation on 6. In our cases, the toggle operation (x) (resp. (f)) removes 6 (resp. 05 ) from the corresponding term.
See [6, Def. 5.6] for the more general definition.

The signs on the terms in & and ,5 are determined as in Remark 4.9. That is, wt(M) is written in the positive order, followed by a
substitution 6 — —0 for an appropriate subset of the odd variables (i.e. all those in the even-numbered fan segments). The E-entry
also potentially contains terms of both signs, but it is more complicated to specify.

Note that even though the expression for Hgy, in Theorem 5.2 involves the quantities eg, e1, ey, and ey41, after reducing
each of the nine matrix entries to lowest terms, such factors will always cancel. This is consistent with the fact that Hgy
is defined by the arc (a, b) that is contained in the original triangulation T, where the triangles containing @ and b do not
appear.

Remark 5.3. Comparing the entries of the top-left 2-by-2 submatrix with the entries in the matrix appearing in Proposition
5.5 of [8], we see that our new result matches the expected formulas when we reduce to the classical case, up to using the
identifications x, = eq, xp =e1, Xy =en and X; = en41.

We now prove Theorem 5.2.
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eN

D(G) DN (©)
Fig. 12. Illustrating part of the proof of Theorem 5.2 for the (1, 2)-entry.

Proof. We begin with the (1, 2)-entry of Hgp, namely (—1)“A¢, cy.,. By Theorem 6.2(a) of [6], Acy,cy,, can be expressed as
the generating function counting double dimer covers in the snake graph G associated with the arc (co, cn+1):

>_Men(c) Wt(M)
Xip * o Xig_ 7

)"COvCNJrl -

where i1, 12, ...i3_1,14 label the arcs crossed by the arc (@, E) in order. In particular, arc (co,cn+1) crosses the same list
of arcs in order, except for iy = (co, ¢1) and ig = (cn, cn+1)- We have a bijection between D(G) and DNN(G) by appending
a tile on either side of G (corresponding to arcs i; and ig4, respectively), and adjoining the doubled edges e1 and ey. See
Fig. 12. After dividing through by eiey, accounting for the weight of the doubled edges on the first and last tiles, it follows

that Acy ey, = as desired.

(Xip = Xig_,)e1en
A'(."1 SCN

We next consider the (2, 1)-entry of Hgp, namely (—1)¢ e
€0:C1 “CN.CN41

. Assume that inside of the extended triangulation

T, the fan center ¢; has k > 2 internal arcs incident to it, including the arcs iy = (co, ¢1) and iy = (¢1, c2), while the fan
center cy has ¢ > 2 internal arcs incident to it, incl_uding ig—¢+1 = (cN—1,¢N) and ig = (cN, Cn+1). We let G denote the snake
graph associated to the arc (cq, cy), noting that G is a connected subgraph in the middle of G. Then, as above, Theorem
2 MeD©@ Wt(M)

Xip 1 Xig_y
N+] ,N+1

6.2(a) of [6] implies that A, ¢, equals

We have a bijection between D(G) and Dy ©) by appending tiles on both sides of G (corresponding to the zig-zag
of tiles for arcs iq,1i>,...,i; on the one hand and the zig-zag of tiles for arcs ig_¢41,...,i4-1,iq on the other), and adjoin
the doubled edges eg and en on tiles i1 and iy, respectively. This leads to a cascade of doubled edges from both ends of G,
giving a unique way to extend a given double dimer cover of G. See Fig. 13. We also divide through by egey, 1, as well as by
XiyXiy -+ Xi, and Xj, ., -+~ Xi;_,Xi,_, the latter of which account for the two cascades of doubled edges. Noting the equalities

Aejoen

N+1 N+1 . Wt(M)
LN (1)
heg.cq )‘CNvCNJr] ( )

MED G)
(Xxl Xig)eoeN+1

The proofs for the validity of the (1, 1)- and (2, 2)-entries are analogous and involve combinations of the previous two

cases.

To prove the result for the (1,3)-, (2,3)-, (3,1)-, (3,2)-, and (3, 3)-entries takes further work, and combining together
Theorem 6.2(b) and Lemma 5.8, both of [6], as we now show:

(co,c1) =11 and (cn, cN+1) = ig, it follows that (—1)¢

N+l _ [ Pepengrta

Consider the (1, 3)-entry of Hgp, namely v¢ ¢, = /T'C”“.
0:41

We wish to apply Theorem 6.2(b) of [6] here to simplify this expression, but before we can do so we need to redraw
the extended triangulation T so that it matches the illustration in Figure 13(a) of [6] so that = ® =. In
particular, let v denote the endpoint of arc i = (c1,v) so that the first two triangles of T are @@, co,c1) and (co,C1, V)
respectively. Then in the notation of Figure 13(a) of [6], we have a = (cp,c1), b = (co, v), d = (c1,CN+1), € = (C1, V), and
f = (co, cn+1). If the first diagonal e is oriented incorrectly, we can reverse it and replace ¢ — —¢@. As discussed in Remark
2.6 of [6], this does not change the positive ordering.

Theorem 6.2(b) of [6] then yields

A
Ve ensiheo.enia[ €0 €1 EN1] = DL win™?

x A
ld—1 €0V MeDo(G)

where G is the snake graph associated to the arc (cg, cy+1) (just as above) and Dg(G) = Dgo(G) U Dg1(G) denotes the subset
of double dimer covers that uses edge (co, v) as a single or doubled edge on the first tile of G.!°

10 1 [6], Theorem 6.2(b) uses the notations D;(G) and D,(G). The new notations used here allow a more uniform treatment.
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eN+1
Xig_y
Xig_
Xig_41
- Xig-i12
ig141
iq—y
Xiy
1 "
X,
iy
Xi,
Xiy
€o
~ N+1,N+1 =~
D(G) DhFINH(Gy

Fig. 13. Illustrating part of the proof of Theorem 5.2 for the (2, 1)-entry.

eN

,id

eq iy e i

€p - ep ~
Do1(G*) Dy (G

Fig. 14. Illustrating part of the proof of Theorem 5.2 for the (1, 3)-entry.

The notation wt(M)®?) also signifies that the weight of the double dimer cover M € Do(G) is_altered by toggling
[€o. €1, V], the u-invariant corresponding to the lower left triangle of the first tile of G (second tile of G).

By Lemma 5.8 of [6], there is a bijection between Dg(G) and in Dg1(GT) where G* is the subgraph of G that con-
tains tiles iy, i,...,ig_1 (i.e. it contains subgraph G plus tile i1), where the weights are related by ZMeDO(G) wt(M)*2) =

A’C v . . ~
m > MeDg; (c+) WHM)* where (x2) toggles the weight by and (x) toggles the weight by 65 = .

)"CO.V
€0eiicy,v

The quantity is based on the edge weights on the first tile, and recalling that arc iy = (cq, v).

Putting this altogether, and remembering that A¢, ¢, = X;,, we get

A A 1 A A
W I RaE] e SR Py sl DI IUOR
Aco,cr Xiy (Xiy - 'Xid,l) Ac,v | €0€1Acq v M +
€Do1(GT)
Furthermore, there is another straightforward bijection between Dg(G*) and D{;’]N(E) by adjoining the last tile iz, and
utilizing the edge ey as a double edge. See Fig. 14. Dividing through by this contribution, and noting that the weight of the
single forced edges on the first tile is \/epe1, we thus conclude that the (1, 3)-entry of Hyp is

! > wemy*
Jeo e1./Xi; (Xi, - -+ Xiy_,)eN

MeDAN ()

as desired.
We use an analogous argument to verify the formulas for the (2, 3)-, (3,1)-, and (3, 2)-entries, noting that we must
sometimes divide by Acy.c, = Xi; O Acy,cy,q = Xi; to get the formula. Also, as mentioned in Remark 4.9, the terms in & and
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) — LRl

Fig. 15. The case when i; is a double edge. M; is in blue, and M, is in red.

,5 will sometimes have signs. This is because Theorem 6.2(b) from [6] implicitly assumes one of two possible choices of
positive ordering of the odd variables, and we need to use the opposite choice when applying the theorem to the (3, 1)-
and (3, 2)-entries.

For the case of the (3, 3)-entry of Hg, we need to show that

CN+1 CN
Veo.c1 Veg,cq

14 (=1)%! Veheni Venensy =14+ (=D

€0,C1 )"CN»CNJrl

equals

1
(we(M)*).
(Xiy -+ Xig_1 ) o/Xi7 Xiga/€0C1ENEN+1 Z -
ip ig-1)v/Xi1 Xig A/ + MeDg,1N+1(G)

Since we have already shown that the (3, 1)- and (3, 2)-entries each have the desired combinatorial interpretations, then
by Equation (4), it remains to show that

~ —1)—1_
Fog=CD"
d

where 9 := \/eoe1x,-1 (xiz2 ~--x1.2d7] )Xi;enen+1 is the product of the (square roots of the) edge weights of all the outer boundary

sides of G.
Note that among the double dimer covers in D(’)V ’1N +1(G), there is the unique one that consists of a single cycle comprised

of the entire boundary of G. Based on the definition of edge weights on G, this will contribute to E a weight of ((d 95,05)*)T =

3. This means the left-hand side, E — 8, is simply the sum over DS’]’NH minus this one special element.

Therefore, we need to show that

EheTt Y wenT YT weT | =weMo) Y0 we)h)T

N,N+1 N,N+1 N.N+1
MeDgy, * MeDy; * MeDy; * \{Mo}

where Mg the special double dimer cover mentioned above (with weight wt(Mp) = ). We will do this by seeing that some
pairs of terms in the product on the left-hand side cancel, and that the remaining terms are in bijection with the terms on
the right-hand side, with weights differing by a factor of 4. NNt

N+

Let (M1, M3) be a pair of double dimer covers, where M; is in the & sum (over Dgs ) and M; is from the E sum

(over Df’]’NH). Let i; denote the first internal (non-boundary) edge of G which is used in either My or Ms.

First consider the case when i; is used as a double edge in either My or M,. This is illustrated in Fig. 15. Note that it
cannot be used as a double edge in both because it is the first occurrence of an internal edge, and so at least one of the
M;'s uses an adjacent boundary edge twice. Let us assume (for simplicity of the following exposition) that i; belongs to Mj.
In this case, the next two boundary edges adjacent to i; (those immediately to the right or above) can be used by neither
M1 nor M. Thus we can swap the portions of My and M, to the right of i;, and obtain a new pair (M}, M}) using the
same edges. However, since we swapped the portions at the end, the odd variables corresponding to the cycles ending on
the last tile now are multiplied in the opposite order. Therefore wt(M{)T wt(M»)T + wt(M/l)Jr Wt(M’z)T =0.

In all the remaining terms, i; is not used as a doubled edge, so it is used only once in either My or M. Note that if
it is used as a single edge in both M; and M, then we would have two cycles (one from M; and one from M;) which
contribute the same odd variable. But since 62 = 0 for all odd variables, such terms would contribute a weight of zero. So
we do not need to consider such configurations. So we only consider the case that i; is used once in exactly one of the M;'s
(and is used either twice or not at all in the other). Again, assume for the sake of exposition that i; is used only once in
Mj.

At this point we further divide into two cases: either the cycle of M; beginning at i; continues until the last tile of G,
or not.

Consider first the former case, which is pictured in Fig. 16. Note that in the union M1 U M>, all boundary edges are used
at least once. Indeed, all boundary edges before i; are used twice, and all boundary edges after i; are used in the cycle
beginning at i;. Therefore the product of the weights of M1 and M, is divisible by 9, and what remains after deleting one
instance of each boundary edge is a double dimer cover with at least two cycles: one starting at the first tile and ending at
ir, and one ending at the last tile of G (coming from M;). This is precisely the type of configurations counted by E—a.
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(LTI~

Fig. 16. The case when i; is part of a cycle going to the last tile (M in blue, M, in red). Removing one copy of each boundary edge gives an element of E
(in green).

Fig. 17. The case when i; is part of a cycle that does not go to the last tile (M7 in blue, M, in red). Removing the part of the picture before is results in a
similar situation, in a smaller graph.

Fig. 18. The case when the cycle starting at i; overlaps with a cycle from M, (M; in blue, M5 in red). We can continue the argument with iy instead of is.

In the latter case (when the cycle beginning at i; does not extend all the way to the last tile of 5), then let is be
the internal edge which is either the top or right edge of the last tile of this cycle. We now consider the different cases by
looking at the two boundary edges immediately to the right/above is. There are three cases, depending on if these boundary
edges are used once, twice, or not at all by M».

In the case that the boundary edges adjacent to is are not used at all in either My or M;, then as described earlier (and
pictured in Fig. 15), we may swap the parts of My and M, occurring after is to get another pair (M}, M}) whose product
of weights cancels with (M1, M>).

If these boundary edges are used twice by M, then replacing i; with a double edge and looking at the truncated snake
graph from is to the end, we are in the same situation we started with: the truncated M; has a double edge on one side
of the first tile (either the left or bottom), and the truncated M, has a double edge on the other, while both still end
with cycles. Therefore we may repeat the argument up to this point, looking for the next occurrence of an internal edge
used by either M1 or M, and finding either another term that cancels, or concluding that this product %wt(MQJr wt(Mz)T
represents a term from E— 9. See Fig. 17.

The final case that has not been considered is when M, uses the boundary sides adjacent to is once (not doubled). As
mentioned before, M, cannot have a cycle beginning or ending adjacent to is (else the weight would be zero). Therefore we
need only consider the case that M, has a cycle beginning before is and ending after i;. Let iy be the internal edge on the
end of this cycle of M,. We continue the current argument with iy instead of is. If iy is not on the boundary of the last
tile, we continue to look at the cases of the boundary sides adjacent to iy. Finally, if iy is on the boundary of the last tile
(which must eventually happen, since both M; and M; are assumed to end with cycles), then we are back in the earlier
case and this gives a term from E— 9. See Fig. 18.

The inverse map, which shows that each term of E — 9 can be written uniquely as the product of terms from « and B,
can be constructed using an analysis similar to the above argument. O

6. Super Fibonacci numbers revisited

In [6], we used the decorated super Teichmiiller space of an annulus to find a sequence of A-lengths satisfying a recur-
rence which generalizes the Fibonacci sequence. This is in the same spirit as Ovsienko’s “shadow sequences” [12], although
our shadow of the Fibonacci sequence differs from his.!!

In this section, we revisit these “super Fibonacci numbers” from the point of view of the matrix formulas presented in the
current paper.

Consider an annulus with one marked point on each boundary component, and the oriented triangulation pictured in
Fig. 19, where all A-lengths are equal to 1. Let z, be A-length of the arc connecting the two marked points which winds
around the annulus n — 2 times. That is, z; =z = 1 are the diagonals of the triangulation (in blue and red in Fig. 19), z3
circles once, z4 circles twice, etc. For example, z4 is shown as a dashed line in the left picture of Fig. 19. In [6], we showed
that these satisfy the recurrence

Zn=034+200)zp_1 — zp—y — 00,

which generalizes a recurrence satisfied by the sequence of every-other Fibonacci number, i.e.

11 Note that Ovsienko’s shadow sequence for the Fibonacci numbers actually coincides with the g,’s defined in [6, Sec. 11].
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Fig. 19. Left: Triangulation of an annulus. Right: its universal cover.

fn :3fn—2 - fn—4

Furthermore, z, “counts” double dimer configurations on the snake graph G,_s, which consists of a horizontal row of
2n — 5 boxes. By this we mean z, is the weight generating function of double dimer configurations, and since all even
variables are set equal to 1, it is of the form z;, = xp5—5 + y2n—506, where x; and yj are integers. Specifically, Xy = fi+1
counts those double dimer configurations on the horizontal strip of k boxes that are really single dimer covers (i.e. all
edges are doubled), and yj counts all double dimer configurations which contain one cycle surrounding an odd number of
boxes.!?

As in [6], let Wy, = Xop—4 + Y2n—406 be the corresponding generating function for double dimer covers on horizontal
strips with an even number of boxes. These two sequences satisfy the following Fibonacci-like recurrences.

Lemma 6.1 ([6], Lemma 11.6). The sequences z, and wy, satisfy the following recurrences:

(@) zn=2zp—1+ A +00)wp—1
(b) wp=wp_1+(1+06)z;, — 00

We will use the matrix product method to calculate these numbers, utilizing a path as shown on the right side of Fig. 19.
Although Theorem 4.3 was only stated for polygons, we can lift the triangulation to the universal cover to obtain a polygon
with a zig-zag triangulation (in the default orientation), in which the appropriate odd elements are identified.

Since all A-lengths are 1, let us abbreviate E := E(1) and Ap := A(1]6). The figure shows the example of z4. In general,
the holonomy matrix product for z, is

Hp=X"2E7',  where X:=E 'A;'pEAsp

Lemma 6.2. The holonomy Hy, realizing the arc zy, is given by

—Wn—1 Zn (zn — 1o +wn_16
Hp = —Zn—1 Wn—1 (zn—1 —1)0 + wp_10
(Zn—1—1)0 —wp_10 (z, —1)6 — Wn—la‘ 1— (lan—q4—2)00

—(X2n—6 + Y2n-600) Xon—5+ Yam-500  |(Xan—5 — 1)0 + Xan—60
—(X2n—7 + Yan-7006) Xon—6+ Yon—600  |(Xan—7 —1)0 + Xon_60
(Xon—7 — 1)0 — X2n-60 (Xon—5 — 1)0 —X2n—60 | 1— (C2n—4 —2)00

Here ¢ denotes the kth Lucas number defined by ¢; =1, £, =3, and £ = £4_1 + £x_p for k> 3.13

Proof. Consider the polygon in the universal cover of the cylinder surrounding the canonical path pictured in Fig. 19. Note
that this polygon, which has 2n — 2 vertices, has a zig-zag triangulation with the default orientation. Furthermore, the
holonomy has type 01 (in the sense of Definition 4.1). This ensures that the signs match those in Theorem 5.2.

Label the vertices 0,1,...,2n — 1, as in Section 4.3 (note that since this picture is on the universal cover, i =i + 2).
The snake graph Gr associated to this zig-zag triangulation is Ga,—s5, a horizontal row of 2n — 5 boxes. Therefore the snake
graph Gy described in Section 5 is Gap—3. Since, as we mentioned above, this holonomy is of type 01, and since G;—3 has
an odd number of boxes, we will always have ey (resp. e1) on the bottom (resp. left) side of the first tile, and ey (resp.
en+1) on the right (resp. top) of the last tile. Theorem 5.2 gives formulas for all nine entries of H, in terms of subsets of

12 The number yy is really the weighted sum of all configurations which contain cycles, but those which have either more than one cycle or a cycle of
even length have weight zero. This is because the same two odd variables appear repeatedly. See [6] for details.
13 This quantity ¢y,_4 — 2 also equals k (W,_3), the number of spanning trees on the wheel graph with (n — 1) vertices (see [9]).
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double dimer covers of G = Go;—3. Note that since we set all A-lengths equal to 1, we can ignore the denominators in
these expressions.
The following picture is the specialization of Fig. 11 to the situation G = Gyj—3.

T 011 mEE
g oo

The (1, 2)-entry (resp. the (2, 1)-entry) has an obvious bijection with double dimer covers of Gy,—s5 (resp. G;—7), and
hence by a result from [6] is equal to z, (resp. z;_1). Similarly, the (1,1) and (2,2) entries have obvious bijections with
double dimer covers of Gy;_g, and so are equal to wy_1.

The (1, 3)-entry has a bijection with double dimer covers of Go,_4 containing a cycle which surrounds (at least) the first
square. The first p-invariant in Tis#,so cycles which surround an odd number of squares will end with a o, and those
surrounding an even number of squares will end with 8. According to Theorem 5.2, we additionally need to toggle the first
6, meaning the weights will contain only the p-invariant at the end of the cycle. If the first cycle surrounds k tiles, the rest
can be any double dimer configuration on the complement of the first k+ 1 tiles (i.e. on Gy,_5_k). When k is odd, this is
counted by wn_;%, and when n is even by zn_%. Thus, we have that the (1, 3)-entry is given by

H H H
L
ainls

Wn—1+Wpo2+--+W2)o + (Zn—1+2Zn—2+---+22)0.

Note that each w; or z; is of the form x + yo 6, so multiplying by either o or 6 annihilates the y-term, and so we may
replace each z; with xy;_s5 and each w; with xy;_4, which are simply Fibonacci numbers. The following are well-known
identities of Fibonacci numbers:

Xo+X2 4+ +Xxpe=xp-5—1 and X_14+Xx1+Xx3+ -+ X7 =Xm_6

The arguments for the (2,3), (3,1), and (3, 2)-entries are similar. The signs in the bottom row come from Remark 4.9. In
particular, this corresponds to a zig-zag triangulation where half of the odd variables are all set equal to o and the other
half all set equal to 6. Since we negate half of the odd variables in Remark 4.9, this means simply negating either o or 6.

For the (3,3)-entry, we use standard identities on Fibonacci and Lucas numbers: In particular, by Equation (4), we can
express the (3,3)-entry as 1+ o8, where « is the (3,1)-entry and 8 is the (3,2)-entry. We thus obtain

Hp(3,3) =1+ ((XZn—7 - 1o — X2n—69> <(X2n—5 —-1)0 — XZn—G")

2
=1~ <x2n76 — Xon—5X2n—7 + Xon—5 + Xon—7 — 1)0'9

By Cassini’s identity on Fibonacci numbers, we have the equality xzp_5X2n,-7 — X%n—ﬁ =1 and another standard identity
relating Fibonacci and Lucas numbers is £, = X¢_3 + x,_1. Using this in the case of k = 2n — 4, we rewrite H,(3,3) =
14+ (ban—g —2)00 =1+ (k(Wy_3) —2)00 as desired. O

Remark 6.3. In [6], we showed that z,, defined as the generating function of double dimer covers of Gy,_s, is equal to the
A-length of certain arcs in an annulus, as described above. In the previous paper, we defined the wy’s as double dimer
generating functions for Gy,—4, and used them for algebraic calculations, but did not give a geometric interpretation. In
Remark 11.17 and Conjecture 11.19 in [6], we suggested that the wy’s should have a particular geometric meaning, which
we are now able to verify. Comparing H, from Lemma 6.2 with Hg, from Theorem 4.3, we see that the wy’s can also be
interpreted as certain A-lengths. In particular, w;, is the A-length of an arc which winds around the annulus n — 2 times,
and has both endpoints on the same boundary component.

7. Geometric interpretation

In this section, we will describe a more geometric interpretation of the results of this paper, in terms of the definitions
of decorated super Teichmdiiller spaces given in [14]. We take a viewpoint along the lines of [2] (section 11), which is
slightly different than the viewpoint of [14]. Some version of this viewpoint was also present in [1], applied to super shear
coordinates (rather than A-lengths).

This alternative viewpoint is as follows. Let .A be the commutative super-algebra generated by A-lengths and p-invariants
coming from some particular triangulation. The definitions of Penner and Zeitlin in [14] are in terms of the Minkowski
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geometry of the free module 432, whereas our alternate viewpoint will be to instead view the elements of OSp(1|2) acting
on the free module 42! (by ordinary matrix-vector multiplication).

To connect the two viewpoints, we will give a map s: A%/ — 4312, which is equivariant with respect to the actions. This
way, 3s‘gatements about the action may be stated in .4%/1, where the action is simpler, and the statements will transfer over
to A>l°

In particular, our main goal in this section is to use this viewpoint to give geometric interpretations for the matrices
E(2) and A(h|0), and thus also the holonomy matrices Hgj, of Definition 4.1 and Theorem 4.3.

The map s: A%1 — 4312, mentioned above, is given explicitly as follows:

1
six, ylg) = (yz —xz, —2XYy, y2 + X ’ —2y¢, 2x¢) E

Proposition 7.1. The map s: A%1 — A3 is equivariant with respect to the OSp(1|2)-actions.

Proof. In [14, section 1], each element v € 4312 was identified with a 2|1-by-2|1 matrix Q (v), and the action of OSp(1]2)
on A3? was defined by

g-Qwm=E " emeg .
Therefore one just needs to verify that

QGs(g-v) = H™ Qg™

We omit this calculation, as it is straightforward. O

Remark 7.2. Note that all entries of s(x, y|¢) are homogeneous quadratic expressions in x, y, and ¢. It follows that s(v) =
s(—v) for all v e A%, We may therefore think of the domain of the map s as the quotient 421/ 4 1, where vectors are
identified with their negatives.

In [14], the A-lengths were defined in terms of a certain Minkowski inner product on A3, Specifically, they define
Aa, b) :=+/{a,b). Under this map s, the A-lengths correspond to a certain bilinear form, which we now describe.

Definition 7.3. Define the map w: A% x A2I" — A as follows. If v = (a, b|¢) and w = (x, y|6), then
w(v,w) :=ay — bx + ¢6.

Remark 7.4. The map w is the bilinear form defined by the matrix | (from Section 2), so by definition, OSp(1|2) is the
group which preserves w.

Proposition 7.5. For any v, w € A1, we have (s(v), s(w)) = w(v, w)2. In particular,
AV, s(W) =vVo(v, w)2 =Fw(v, w).

Lemma 7.6. Let v1, vy € A2" with w(vq, v2) = 1. Then there is a unique matrix g € 0Sp(1|2) whose first two columns are v; and
V.

Proof. Let vi =(a, b|¢) and v, = (x, y|6). We want to show there is some v3 = (c, 8, f) such that

a x|la
b y|B | €0Sp(1]2).
¢ 0|f

If such a vj3 exists, it is unique by the relations defining OSp(1|2). In particular, equations (4), (8), and (9) say that «, g,
and f are determined by vi and v, as follows:
f=14+¢0, a=ab—x¢p, B=Db0—yo

However, the entries of the matrix must also satisfy equations (5), (6), and (7), so we must check that defining v3 by the
formulas above is consistent with these other three equations.

First is equation (5), which says that ay —bx = 1—¢#, or equivalently ay —bx+ 6 = 1, which is precisely our assumption
that w(v1, v2) = 1. So we see this assumption is necessary in order to satisfy equation (5).
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Next, equation (6) requires that ¢ = bae — aB. The right-hand side is

ba —apB =b(ad — x¢p) —a(bbd — y¢p) = (ay — bx)¢.

But we already know from the discussion above that ay — bx =1 — ¢0. Substituting this gives the desired result.
The calculation verifying equation (7), i.e. 6 = yo — xf, is similar. O

Definition 7.7. Let Ai“ be the set of vectors with non-zero bodies. That is

A= (0, yI¢) € A2 [ x#£00r y #0)
Corollary 7.8. The action of OSp(1|2) on .Ai“ is transitive.

Proof. Let v = (X, y|¢) € Aﬂl. If there exists some w with w(v, w) =1, then Lemma 7.6 tells us that there is some g €
0Sp(1]2) with g-eq =v. If x£0, we can choose w = (0, x"!|¢), and if y # 0, we can choose w = (—y~',0]¢). O

Remark 7.9. The image of Ai“ under the map s was called the “special light cone” Lg in [14], and the decorated super
Teichmdiller space of a polygon is the configuration space of tuples of points in this set, modulo the diagonal action of
0Sp(1]2). From the point of view described in this section, we instead consider configurations of points in Ai'], up to

diagonal action of OSp(1|2). Also, by Remark 7.2, we identify v = —v in .Aill, since s(v) =s(—v).

The following is a kind of standard form result (which can be seen in the argument used in the proof of Lemma 3.1 from
[14]). In order to state it, we first define the vectors u :=s(e;) and w = s(e) in A3,

Proposition 7.10. Let p, q € Lg be two points in the special light cone with A = L(p, q). There is some g € OSp(1|2) such that

g-p=u~k2 and g-q=w

Moreover, g is unique up to post-composition (i.e. left-multiplication) by p.

Proof. We will construct the inverse of the matrix g. Let vp, vq € A% be vectors such that s(vp) = p and s(vq) = q. Then

by Proposition 7.5, we know that w(v,, vq) = Z£A. Since A has positive body, it is invertible, and we may replace v, with
v;, =dvp- % so that a)(v;,, vg) = 1. Thus by Lemma 7.6, there is a matrix g € OSp(1]2) whose first two columns are v;
and vq. If eq, e2, € are the standard basis vectors of A2l then this matrix acts by g-e; = vg, and g - ez = vq. Proposition 7.1
says the map s is equivariant, so g-w=qand g-u=p - ;—2 Then clearly g~! is the matrix described in the proposition.

Finally, we remark that the choices of v, and v4 were not unique, since we may replace either (or both) by their
negatives (Remark 7.2). If we replace vq — —vg, then when we re-scale v, to get v/, it will also be negated. The overall
effect is that the first two columns of g will be negated (but the third column will remain the same). This is the same as

right-multiplication by p. Since the matrix from the statement is g1, it will be unique up to left-multiplication by p. O

Proposition 7.11. Let p,q € Lar be in the standard form guaranteed by Proposition 7.10. That is, if . = A(p, q), assume that ¢ = w and
p=u-A% Then E(1) and E(—x) = E(x)~! are the only matrices g € 0Sp(1|2) such that g- p=qand g - q = p.

Proof. By Proposition 7.10, such a matrix is unique up to p. Note that E(—1) = p E(A), so if we show that E()) satisfies the
conditions, then we are done.
If eq, e, € are the standard basis vectors of 421, then looking at the columns of E(A) shows that

EQ\)-e1=ep- 271 and E(L)-ep3=—e1-A

Re-arranging the first equation gives E(A) - (e1 - A) = e;. Applying s to these equations, remembering that s is equivariant,
and that s(v - &) =s(v) - «2, we get

EQ -w-2)=w and EQ)-w=u-2?* O
To prove the corresponding result about the A(h|0) matrices, we will use the following lemma.

Lemma 7.12. Let p1, p2, p3 € L, with A(p;, pj) = Aij, and p-invariant 6. Suppose the edge p1, p3 is in the standard form guaranteed
by Proposition 7.10. That is, assume that p1 = u -)\%3 and p3 = w. Then p = s(z), where
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e If p1, p2, p3 appear in clockwise order, then z = (kzg, 212

2
| £ V1,3>-

e If p1, p2, p3 appear in counter-clockwise order, then z = (A23, A1z

T3

2
+ %1 3).
In both cases, the sign of v% 3 cannot be determined from this information alone.

Proof. We will show the calculation for (a), and that of (b) is similar. Suppose that p1, p2, p3 are in clockwise order. This
means they are a “negative triple” (in the language of [14]). Let p; =s(z) for z = (x, y|a) € A%!1. Because this is a negative
triple, the signs of x and y must be the same. By Proposition 7.5, we can deduce that

M2 =AU - 235, p2) = tw(er - A13,2) =%y - A3
A23 =A(p2, W) = *w(z,€3) = £X

Since s(z) = s(—z), we may choose z so that x =13 and y = % In order to compare o with the p-invariant 8, we need
to put the triple pq, p2, p3 into the standard form described in Lemma 3.3 and Lemma 3.5 of [14]. This can be done with
the following matrix:

The effect on z is then

g-z:(l,l‘\/h?3oz>~\/%Z
+6

By the definition of w-invariant from [14], we see that o = T = :I:vfj. By Corollary 3.4 in [14], knowing the three points
13

P1, P2, p3 only determines 6 up to sign.
The proof of (b) is the same, except x and y have opposite signs, and there are some signs in the diagonal matrix g. O

The following proposition is essentially a restatement of what is called the “basic calculation” in section 4 of [14], but
phrased in a way that highlights the significance of the A-matrices we defined in Section 3.

Proposition 7.13. Let p;, p¢, px € Lg in clockwise order, as in Fig. 2, with A-lengths a, b, e and p-invariant 6, and suppose the edge
i, Pk is in the standard form guaranteed by Proposition 7.10. That is, p; = u - e* and py = w. Then there is a unique point pje Lg
such that

(a) The triangle p;, pj, px has the A-lengths and p-invariant as in Fig. 2.

(b) The point pj is defined by Affj “pj=u- c? (or Aifjp “pj=1u- c?), depending on the orientation of the edge (i, k). In other words,

A:fj (or Ai.‘j,o) puts the edge (j, k) into standard position.

Proof. Part (b) completely determines some point. We simply need to see that it satisfies the claim of part (a). Let us
consider the case pictured in Fig. 2, where the edge labeled “e” is directed p; — pg. If pj = s(v), then v must be (up to

sign) the first column of pAi.‘jf], multiplied by ¢, which gives

d j
V=76 5| 7 Vik

Now, it is straightforward to check, using Proposition 7.5, that
Aj=w(v,e1)-e=d and Arjy=w(v,e2)=c,

and by the same calculation done in Lemma 7.12, we see that the p-invariant iso. O

We conclude with a discussion of how the holonomy matrices H, from Definition 4.1 and Theorem 4.3 can be inter-
preted in this geometric context. The main point is that we may represent a polygon as a configuration of points in .A4%/1 or
A3 in such a way so that if the first edge (co, c1) of the canonical path is in standard position, then the matrix Hgp is the
transformation which puts the final edge (cn, cny+1) into standard position. Indeed, we can build this configuration of points
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inductively. Start by choosing three points for the first triangle using Proposition 7.10 and Lemma 7.12. Then Proposition 7.13
tells us how to choose the third point of the next triangle (which shares one side with the first one). Then we may use
some product of E or A matrices to put the appropriate edge in standard position and continually use Proposition 7.13 to
choose each subsequent point.
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