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Preface

Welcome to the 22nd annual International Conference on Computational Science
(ICCS 2022 - https://www.iccs-meeting.org/iccs2022/), held during 21-23 June, 2022,
at Brunel University London, UK. After more than two years of a pandemic that has
changed so much of our world and daily lives, this edition marks our return to a —
partially — in-person event. Those who were not yet able to join us in London had the
option to participate online, as all conference sessions were streamed.

Although the challenges of such a hybrid format are manifold, we have tried our
best to keep the ICCS community as dynamic, creative, and productive as always. We
are proud to present the proceedings you are reading as a result of that.

Standing on the River Thames in southeast England, at the head of a 50-mile
(80 km) estuary down to the North Sea, London is the capital and largest city of England
and the UK. With a rich history spanning back to Roman times, modern London is
one of the world’s global cities, having a prominent role in areas ranging from arts
and entertainment to commerce, finance, and education. London is the biggest urban
economy in Europe and one of the major financial centres in the world. It also features
Europe’s largest concentration of higher education institutions.

ICCS 2022 was jointly organized by Brunel University London, the University of
Amsterdam, NTU Singapore, and the University of Tennessee.

Brunel University London is a public research university located in the Uxbridge
area of London. It was founded in 1966 and named after the Victorian engineer
Isambard Kingdom Brunel, who managed to design and build a 214m long suspension
bridge in Bristol back in 1831. Brunel is well-known for its excellent Engineering and
Computer Science Departments, and its campus houses a dedicated conference centre
(the Hamilton Centre) which was used to host ICCS. It is also one of the few universities
to host a full-length athletics track, which has been used both for practice purposes by
athletes such as Usain Bolt for the 2012 Olympics and for graduation ceremonies.

The International Conference on Computational Science is an annual conference
that brings together researchers and scientists from mathematics and computer science
as basic computing disciplines, as well as researchers from various application areas
who are pioneering computational methods in sciences such as physics, chemistry, life
sciences, engineering, arts, and humanitarian fields, to discuss problems and solutions
in the area, identify new issues, and shape future directions for research.

Since its inception in 2001, ICCS has attracted increasing numbers of attendees
and higher-quality papers, and this year — in spite of the ongoing pandemic—was
not an exception, with over 300 registered participants. The proceedings series has
become a primary intellectual resource for computational science researchers, defining
and advancing the state of the art in this field.

The theme for 2022, “The Computational Planet,” highlights the role of
computational science in tackling the current challenges of the all-important quest for
sustainable development. This conference aimed to be a unique event focusing on recent
developments in scalable scientific algorithms, advanced software tools, computational
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grids, advanced numerical methods, and novel application areas. These innovative novel
models, algorithms, and tools drive new science through efficient application in physical
systems, computational and systems biology, environmental systems, finance, and other
areas.

ICCS is well-known for its excellent lineup of keynote speakers. The keynotes for
2022 were as follows:

Robert Axtell, George Mason University, USA

Peter Coveney, University College London, UK

Thomas Engels, Technische Universitit Berlin, Germany

Neil Ferguson, Imperial College London, UK

Giulia Galli, University of Chicago, USA

Rebecca Wade, Heidelberg Institute for Theoretical Studies, Germany

This year we had 474 submissions (169 submissions to the main track and 305 to
the thematic tracks). In the main track, 55 full papers were accepted (32%), and in the
thematic tracks, 120 full papers (39%). A higher acceptance rate in the thematic tracks is
explained by the nature of these, where track organizers personally invite many experts
in a particular field to participate in their sessions.

ICCS relies strongly on our thematic track organizers’ vital contributions to attract
high-quality papers in many subject areas. We would like to thank all committee members
from the main and thematic tracks for their contribution to ensure a high standard for
the accepted papers. We would also like to thank Springer, Elsevier, and Intellegibilis
for their support. Finally, we appreciate all the local organizing committee members for
their hard work to prepare for this conference.

We are proud to note that ICCS is an A-rank conference in the CORE classification.

We wish you good health in these troubled times and look forward to meeting you
at the next conference, whether virtually or in-person.

June 2022 Derek Groen
Clélia de Mulatier

Maciej Paszynski

Valeria V. Krzhizhanovskaya

Jack J. Dongarra

Peter M. A. Sloot
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Abstract. Parallel three-dimensional (3D) cellular automaton models
of tumor growth can efficiently model tumor morphology over many
length and time scales. Here, we extended an existing two-dimensional
(2D) model of tumor growth to study how tumor morphology could
change over time and verified the 3D model with the initial 2D model
on a per-slice level. However, increasing the dimensionality of the model
imposes constraints on memory and time-to-solution that could quickly
become intractable when simulating long temporal durations. Paralleliz-
ing such models would enable larger tumors to be investigated and also
pave the way for coupling with treatment models. We parallelized the
3D growth model using N-body and lattice halo exchange schemes and
further optimized the implementation to adaptively exchange informa-
tion based on the state of cell expansion. We demonstrated a factor of
20x speedup compared to the serial model when running on 340 cores
of Stampede2’s Knight’s Landing compute nodes. This proof-of-concept
study highlighted that parallel 3D models could enable the exploration
of large problem and parameter spaces at tractable run times.

Keywords: Cellular automaton -+ Parallel computing + Tumor growth

1 Introduction

Three-dimensional (3D) models of tumor growth that leverage parallel comput-
ing can provide a means to explore 3D multiscale tumor morphology efficiently.
Understanding tumor growth dynamics is fundamental in cancer biology, and
parallelized 3D models can efficiently capture large-scale dynamics. Mathemat-
ical models of cancer biology are increasingly being used to understand tumori-
genesis, metastasis, and responses to treatment [1].

Cancer is fundamentally defined by the uninhibited growth of cells. Models
that capture cell-cell interactions that span from individual cells to emergent
tumors are needed to better understand different features that influence growth
dynamics. Cellular automaton models represent cells as dead or alive and interact
within a fixed local neighborhood. Agent-based models (ABMs) can have multi-
ple states and incorporate complex interaction networks beyond local neighbors.
Game of Life (GoL) constructs offer the capability to use simple rules that are
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Fig.1. 3D Tumor Growth Over Time. Tumor growth over 60, 90, and 120d dis-
playing proliferation potential (0-low, 9-high).

fundamentally rooted in single-cell kinetics to observe emergent dynamics that
could span from a few initial seed cells to millions of cells [2,3]. Dissimilar to
multi-agent systems - where agents are used to solve a specific problem, GoL. and
ABM models are used to study emergent behavior. However, implementations
of GoL: models have conventionally been restricted to 2D due to computational
complexity and associated burden [4-6].

The development of tumors resembles Darwinian evolution where cancer cells
would need to compete for resources and space. GoL models of cancer cell growth
are relevant in the pre-angiogenic phase when tumor growth is driven by cell-
cell interactions in small neighborhoods of cells. These GoL. models have been
shown to model tumor growth well despite simple rules and small parameter
spaces [4,7]. However, as these models are expanded from two-dimensional (2D)
to three-dimensional (3D) models, the computational space grows exponentially
and could become intractable to simulate [6]. Exploring certain applications,
such as studying how 3D morphology changes in response to treatment, is only
amenable for 3D models and inherently requires more memory than 2D models
such that simulations could become limited by the size or duration of tumor
growth. Here, we extended a 2D cellular automaton model from Poleszczuk-
Enderling [6] to recapitulate 2D tumor dynamics on a slice-level and output 3D
growth dynamics for tumor morphology studies. Furthermore, we parallelized
the model to realize larger problem sizes.

There are inherent limitations of 2D models. In vitro and in silico 2D mod-
els could reliably mimic in vivo tumor dynamics of a range of cancers, and as a
result, have been instrumental for understanding cancer cell physiology. However,
2D monolayer representations of tumor growth could fail to recapitulate in vivo
proliferation, morphology, and cell-cell and cell-matrix interactions. 2D cell cul-
ture models lack complex 3D architecture and extracellular-matrix interactions
that are pervasive in vivo. While there are sophisticated techniques for efficiently
capturing the 2D dynamics of tumor growth and proliferation, we found a lack
of computationally efficient, scalable methods to capture the 3D morphology.
Our study aims to bridge this gap by developing a parallel 3D model of tumor
growth. In this study, we developed a proof-of-concept multiscale 3D model that
can simulate from a few seed cells to millions of interacting cells (Fig. 1). Such a
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Fig.2. 3D Model Design. The Poleszczuk-Enderling 2D model used a 2D Moore
Neighborhood, where the center cell could interact with it’s immediate 8 neighbors.
Extending the model to 3D resulted in a 3D Moore Neighborhood with 26 neighbors.
Cells have a finite proliferation potential and could interact with the neighborhood via
migration, division, or death.

model could serve as a virtual 3D cell culture and enable low-cost investigation
of cell pathophysiology and drug discovery.

In this model, cell movement was based on a Monte Carlo implementation. An
ensemble of simulations must be completed to buffer randomness in the model,
which further highlights the overarching need to reduce time-to-simulation for
one individual simulation instance. The Poleszczuk-Enderling 2D tumor growth
model took 3-5h of runtime for 4 months of tumor growth, and running multiple
instances to get averaged results could scale quickly.

We demonstrated the ability to capture 3D dynamics and propose techniques
for efficient parallelization. As such, we made the following contributions: (1)
development of a 3D cellular automaton model, (2) parallelization of a 3D serial
model using MPI and optimizations to minimize memory transfer between pro-
cesses, and (3) performance evaluation of the proof-of-concept parallelization
scheme up to 340 tasks (or 5 nodes) on Stampede2 Knight’s Landing (KNL)
compute nodes. Our results demonstrated that the model could be most useful
for simulating dense tumors with a large cell count and long durations.

2 Related Work

3D cellular models can serve as virtual laboratories with fully tunable conditions
that enable the investigation of emergent tumor behavior. 3D cellular automa-
ton models have been used to study tumor microenvironments and treatment
paradigms, but are usually tuned to one cancer type of interest [1,8,9]. ABMs
have been used to explicitly model adhesive, locomotive, drag, and repulsive
forces between cells and have been applied to model cellular responses to hypoxia
in breast cancer. Such models have been shown to scale to millions of cells [10].
There are also works parallelizing the Poleszczuk-Enderling model, but are lim-
ited to thread-level parallelism on local machines [11]. The cellular automaton
model in this work is designed to be agile by relying on minimal input parameters
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and thereby easily be tuned to different types of cancers [6] to model single-cell
kinetics from a few initial cells to millions of cells. Even so, actions of the indi-
vidual cells rely on random sampling to drive their interactions. The inherent
stochasticity requires simulation of a large ensemble of potential interactions
to adequately capture the macroscopic behavior of the tumor. The computa-
tional burden of an individual instance is exacerbated by the need to complete
many simulations to account for the underlying stochasticity. Moreover, current
models are typically limited by the size of the tumor that can be simulated. We
addressed these challenges through a multi-level parallelization scheme targeting
3D tumor models.

3 Methods

3.1 Extension of 2D Cellular Automaton Model to 3D

The Poleszczuk-Enderling model introduced a 2D representation of tumor
growth relying on a cellular automaton representation of cancer cells [6]. Tumor
growth was captured via cellular interactions, where each cell was modeled as an
individual agent. The interactions characterizing cell growth included migration
to other discrete lattice points, proliferation via mitotic cell division, and cells
could finally die or become quiescent. As proliferation and migration require
moving to a different lattice point, communication was needed within a cell’s
neighborhood to determine if there were empty spaces for interaction. The
Poleszczuk-Enderling 2D model used a 2D Moore Neighborhood, where cells
could interact with 8 of it’s immediate neighbors (Fig.2). The model included
cancer stem cells and non-stem cancer cells. Stem cells were assumed to have
infinite proliferation potential, whereas the non-stem cells had a maximum prolif-
eration potential (pmaz ). Cells interacted in the lattice via discrete lattice-based
rules governed by probabilities of migration (p,,), proliferation (pg;), and death
(«). Each of these traits was kept as trait vectors for each cell such that there
were N-body cells. On the other hand, the number of free spots in each neighbor-
hood was stored on the lattice. N-body and lattice components of the simulation
were eventually parallelized separately.

Expansion from 2D to 3D consisted of transitioning the cell lattice, which
tracks the number of empty nearest neighbors for a given grid location, from a
2D array to a flattened 3D vector. Helper functions for cell death, proliferation,
and migration were adjusted to account for a 3D Moore’s Neighborhood of 26
neighbors rather than the initial 2D Moore’s neighborhood. We retained input
parameter values from the 2D model, but increased the cell division probability
(pa) by 30%. Though this was not a necessary adjustment, it provided the ben-
efit of creating tumors comparable in cross-sectional density to the Poleszczuk-
Enderling 2D code and allowed comparison of 2D slices across the center of
mass with 2D model outputs. Additionally, this process demonstrated the ease
of model tuning.

The time loop was iterated over a user-specified number of time steps (where
each step was a simulation of one hour). Within each time step, every cell in the
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population was iterated over. Random number generation was used to first check
if the cell should spontaneously die and be removed from the population. If the
cell did not die, a new random number was generated to determine if the cell
should proliferate. Only stem cells or cells that have not reached proliferative
exhaustion could divide. If the cell did not proliferate, the random number was
checked to determine if the cell should migrate. If the cell did not die, proliferate,
or migrate, then nothing would happen and the cell would be added back into
the population vector for the next time loop. For each cell, the lattice containing
the number of empty nearest neighbors at each grid point was updated based
on the cell’s actions. After iterating over all the cells, the vector holding the
population was refreshed to remove any dead cells and add any new ones.

3.2 N-body and Lattice Parallelization Schemes

Parallelization of the main simulation loop took two forms - an N-body scheme
for individual cells and halo exchanges for the underlying lattice. The cell lattice
domain was divided into approximately even blocks along the z axis, where
each rank was responsible for a local cell lattice of size {zjocqr * ly * [z (where
IT1ocqr Was the length of the z domain local to the rank, ly was the length of
the y domain, and Iz was the length of the z domain). We were limited to
communicating 2D packets of 3000 x 3000 points because of inherent limits to
the size of 2D C++ vectors. A potential future direction would be to optimize
these messages further.

Cell movement and cell lattices were parallelized separately. Cells were
allowed to move freely into empty neighbors until reaching the edge of their
domain, where we implemented a one layer overlap between each rank. This
overlap was used as a part of domain decomposition for parallelization and did
not influence the mechanics of tumor growth. Cells migrating outwards at the
edge of a task’s boundary would be transferred to neighboring tasks. This par-
ticular overlap allowed cells to move freely into empty spaces, only triggering
communication between ranks when a cell entered border regions where a full
Moore’s neighborhood could not be realized. MPI communication of the cells
between ranks occurred in two parts: all the integer properties associated with
the moved cells were sent, and then the characters associated with the cells were
sent. Communication was implemented using non-blocking sends and receives
with the receives posted at the start of each time step and the sends posted at
the end of each time step.

The cell lattice was represented as a flattened vector of integers denoting the
number of free spaces a cell at a given index had around it. When a cell died,
proliferated, or migrated, the lattice values of the surrounding Moore’s neigh-
borhood must be updated accordingly. Instead of one layer of overlap between
ranks (like that used in the N-body communication), we used an additional layer
of communication on each rank that would track a cell’s movement into and out
of the cell transfer zone. At the end of each time step, before the border cells
from neighboring ranks were transferred, the lattice values for these two layers
were communicated, compared, and reconciled such that when the data from the
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N-body-based communication were added into the rank population, they could
access values from an appropriately updated lattice.

Based on our division of ranks along the = axis, we placed the initial cell in
the simulation in the middle of the median rank. Verification of the parallelized
code with the serial code was performed using both odd and even number of
ranks.

3.3 Adaptive Communication Scheme to Reduce Overhead

The naive 3D parallelized model communicated cell and lattice data between
each rank in a point-to-point complete manner. Even ranks that contained no
cells participated in this communication, which unnecessarily increased memory
transfer and associated communication costs. To optimize the communication
scheme, before any lattice/cell communication, we gathered across every rank
an array of Boolean values indicating the ranks that contained cells and then
used this array to determine which ranks needed to communicate. Each rank that
had cells would send to both its nearest neighbors, and each rank would receive
from any nearest neighbor that contained cells. This optimization meant that
ranks still participated in point-to-point communication, but communication of
the entire size of the send buffer (up to 222 elements) only occurred when there
were actually cells on the rank that necessitated this communication. As a result,
the communication expanded adaptively as cells propagated across ranks over
time.

3.4 3D Serial and Parallel Verification Protocols

We verified our 3D model by comparing per-slice cell population sizes with the
2D simulation at 60days of simulation. The morphology was compared using
the dice similarity coefficient (DSC), which measures the spatial overlap of the
tumor. We verified our parallel code by comparing it to the serial code. To do
so, we needed to consider the inherent stochasticity of our simulation model
which used multiple randomly generated numbers per cell in the population
per time step. While the simulation was capable of being seeded to generate
the same tumor population for runs of the same world size, seeding each rank
individually would not yield the same results. Consequently, we verified the code
by defining 4 variables of interest - cell population size, the proportion of stem
cells, the distribution of cell proliferation potential across the population, and the
distribution of the number of empty nearest neighbors across the population. We
used world sizes of 1, 16, 17, 54, and 55 ranks when completing verification runs
and performed 5 different unseeded runs for each case. We calculated the mean
and standard error for the 4 variables of interest on the 80th day of simulation.

3.5 Performance Evaluation of the Parallelized 3D Model

The parallelized model was evaluated for performance through strong scaling,
throughput, and efficiency of using parallel resources. For all performance eval-
uation runs, we ran simulations of up to 120 days of tumor growth and up to
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2D 3D

Fig.3. 3D Model Verification. Per-slice population counts through the center of
mass at 60 days resulted in a mean DSC score of 0.94.

340 cores of Intel Xeon Phi cores (clock rate of 1.40 GHz) or 5 nodes on Stam-
pede2 KNL compute nodes with 100 Gb/s Intel Omni-Path network with fat
tree topology interconnect. All code were compiled using the -03 optimization
flag. These resources were accessed at TACC via an XSEDE allocation [12].
We simulated up to 120 days because this was a similar time scale used in the
Poleszczuk-Enderling 2D model [6].

Strong scaling curves were generated by computing the speedup with an
increasing number of ranks for 120 days simulations. However, we found that the
serial 3D code was inherently faster for the first 2-3 months of simulation time
through some initial testing. This was likely due to the low number of cells in
the initial stages of growth and that parallelization only became necessary once
the tumor size reached a threshold. To test this observation, we measured strong
scaling when neglecting the first 90 days of simulation time to illustrate that the
parallel implementation needed to ramp up before eventually outperforming the
serial 3D model. Ideal scaling was taken as the number of processors containing
cells, averaged over the strong scaling runs due to stochasticity in the model.

We also investigated the throughput of the model by computing the cellular
operations per second (CLOPs) for different core counts (up to 340 ranks) at
different points in time (i.e., 60, 90, and 120 days). Lastly, the efficiency - the
number of ranks containing cells relative to the total number of ranks used in
the simulation - was measured across all time points and averaged across all the
different runs with different number of ranks. This performance measure would
indicate the rate of uptake of ranks and the increase in efficiency over time. As
the simulations were inherently stochastic, we ran 5 unseeded simulations per
data point to compute for means and standard errors.
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4 Results

4.1 3D Model Preserves Per-Slice Tumor Morphology

The 3D model agreed with the 2D model on a per-slice basis through the center
of mass of the tumor (Fig. 3). The comparison was made at 60 days of simulation.
The DSC was 0.94, which demonstrated that the morphology was successfully
preserved after increasing the dimensionality of the model and changing input
parameters.

4.2 3D Parallel Model Matches 3D Serial Model

We first verified the final proportion of stem cells over varying world sizes
(Fig.4A). The ideal plot would be a horizontal line, indicating that the mean pro-
portion did not change with the number of ranks used. Though the experimental
values deviated slightly from a perfect horizontal line, the stem cell proportion
values for each world size were within each points’ standard error range. There
was a similarly horizontal trend for the final cell population size.

Next, we verified the distribution of empty neighbors and cell proliferation
potential. Figure 4B demonstrates that the shapes of the distributions for each
world size were all similar. The distribution of cell proliferation potential also
resulted in similar trends. Therefore, we have verified the parallelized 3D model
using the proportion of stem cells, final cell population size, distribution of empty
neighbors, and the distribution of cell proliferation potential.

4.3 Strong Scaling Indicates When to Launch the Parallel Model

The parallelized 3D model had relatively modest strong scaling results (Fig. 5).
At 120days of simulation time, there was a factor of 10 speedup compared to
the serial model which was roughly equivalent to a parallel efficiency of 20%.
Parallel efficiency was taken to be relative to the number of ranks used over the
total number of ranks allocated.

Such performance was because the serial model was inherently faster at the
beginning of the simulation due to communication overhead. In the early steps
of the simulation, the tumor was in the initiation phase going from only a few
cells to many and favored the serial code because there were no communication
overheads. As the tumor grew and expanded in domain to neighboring ranks, the
parallel code would eventually become more efficient than the serial model. The
workload demand didn’t necessitate use of multiple cores at small tumor sizes.
We quantified the speedup when the simulation had surpassed this initiation
threshold to test these observations. We assumed a priori that 90 days would
exceed the initial growth stage. Using this offset, we achieved a factor of 20x
speedup with a parallel efficiency of 40% at 120 days. This result demonstrated
a trade-off between the serial and parallel code, and that there would be an
optimum point of switching between the two models. The strong scaling curves
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Fig. 4. Verification of Parallelized Model. 80-day simulations of varying world
sizes, from 1 to 55 ranks, had consistent (A) stem cell proportion of population and
(B) distributions of empty nearest neighbors. Results were averaged over 5 unseeded
runs: (A) average = dotted line, standard error = background area; (B) only averages
were presented as standard error bounds were too small to visualize.

had not reached the point of diminishing returns, indicating that running for
longer durations could result in better performance.

The serial model was shown to be more efficient for the first few months
of simulation until reaching larger cell counts and longer simulation durations,
where the parallel model would eventually become more efficient. To quantify a
global, world size-invariant cut-off at which this transition occurs, we computed
speedup (relative to the serial model) over all time points across all simulations
with different world sizes (Fig.6). The results indicated that the global cut-off
occurred at 68 days, which suggested that the parallel code would provide gains
for simulations with durations exceeding this cut-off.
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Fig.5. Strong Scaling. Neglecting initial parts of the simulated duration resulted
in improved scaling. Ideal scaling was taken as the number of ranks containing cells,
averaged over 5 runs. Average = dotted line, standard error = background area.

4.4 Throughput and Efficiency Increases over Time

We defined CLOPs as a measure of the parallel model’s throughput. The
CLOPs increased as the number of ranks and the number of simulation days
was increased (Fig?7). The parallel code revealed that the model was capable
of over 2 million CLOPs at 120 days of simulation. From the serial model, the
results at 60 days demonstrated some loss in performance, which might indicate
that the serial code was more efficient than the parallel code at this point of the
simulation. On the other hand, the 90 days simulation exceeded the serial run,
but similarly also plateaued in CLOPs when the number of ranks increased.
The 120 days simulation indicated an increasing trend even at the highest num-
ber of ranks, which suggests that the parallel model is more amenable for larger
problem sizes over long simulation periods.

We also investigated the efficiency of the number of ranks used relative to all
the ranks assigned over time (Fig. 8). In spite of stochasticity at the 120 days time
point, the change in percentage rank utilization (or efficiency) was consistent
across simulations of different world sizes. At best, the efficiency was just under
20% after 120 days of simulation. The rise in efficiency has not reached the point
of diminishing returns and serves as a lower limit of performance.
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over time. Efficiency was the number of ranks that contained cells relative to the total
number of ranks allocated. Average = dotted line, standard error = background area.

5 Discussion and Conclusion

3D models have the potential to inform cancer research, however, there is a hard
limit to both the domain sizes and runtimes that serial implementations can
capture. This proof-of-concept study extended a 2D model of cellular automa-
ton of dense tumor growth to 3D and parallelized the model in one direction.
The results indicated tangible speedup gains that enable larger and longer sim-
ulations. The 3D parallel model verified well with the serial 3D model regarding
cell population size, proportion of stem cells, proliferation potential distribution,
and neighboring spaces distribution. The parallelized model was verified with an
even and odd number of ranks and demonstrated that the variability between
the two models was within the margin of error due to stochasticity. Moreover,
the per-slice cell population size and morphology between the 2D and 3D models
were comparable.

The parallelized model was evaluated for performance up to 340 tasks on
Stampede2 and could result in a 202 speedup. It was evident that the 3D model
needed to ramp up in terms of rank utilization until it would eventually overtake
the serial model. We tested this observation by comparing speedup gains with
and without a time delay. We found that the global cut-off point at which the
parallel model would provide speedup over the serial model was at 68 days
of simulation time. Parallelization increased the lattice size that could fit in
memory, from 23! to around 23* elements - a factor of 27 increase. Although
scaling results have not generally plateaued, we chose to simulate comparable
time scales with the Poleszczuk-Enderling model [6] and show a lower limit of
strong scaling, throughput, and efficiency results.

There are future paths for additional parallelization and model development.
Although we enabled larger domains to be simulated, we only parallelized along



Developing a Scalable Cellular Automaton Model of 3D Tumor Growth 15

the x dimension. Parallelizing over additional axes would decrease the grid sizes
allocated per rank and the size of buffers to be communicated between ranks.
Though more communication would be required per rank, the size of buffers
would be smaller and would provide speedup over the current implementation. In
terms of biology, allowing cells to occupy multiple lattice points to model cellular
volume expansion could provide a more detailed representation of tumor growth.
Speedup could improve with such an implementation as cells may expand over
the domain quicker to achieve better rank utilization. This work does not intend
to provide an optimal parallel tumor growth model, but offers an evaluation of
strategies that warrant further investigation.

The results indicated that the serial model was more efficient for the first
68 days of simulation, but that the model became exponentially slower from
that cut-off point onward. This was likely the point at which the cells were
starting to expand to a sufficient proportion of ranks that resulted in enough
speedup to overcome inherent MPI communication overheads. Therefore, some
speedup could be gained by restricting simulations to use the serial code until
the cut-off point to avoid unnecessary communication. Checkpointing could be
implemented where the serial code could stop at the cut-off and use its outputs
to launch parallel tasks.

The performance evaluation also revealed that less than 20% of ranks were
actually engaging in the simulation for up to 120 days. This was a clear bottle-
neck, and ramping up the uptake of ranks faster would likely improve results.
Although highly stochastic, the results demonstrated that even across simula-
tions with a different number of tasks, the uptake in ranks were largely consistent.
For this particular problem, it could be useful to change the thickness (or pro-
portion of the lattice domain) handled by each rank. Instead of having relatively
uniform allocation, it would be useful to allocate as many ranks as possible to
the middle 20% of the lattice (i.e., allocate as small of a lattice as possible) and
allocate as few ranks as possible (i.e., allocate as much of the lattice as possible)
to the edge ranks where cells were unlikely to reach.

Ultimately, the 3D parallelized code verified well with the 3D serial code.
The multi-level parallelization scheme of combining N-Body and halo paradigms
alongside adaptive communication enabled efficient simulation of 3D tumor
growth. This pilot study exemplified that even with parallelization across just one
direction, there were clear gains that could enable larger studies and questions
to be explored. We have additionally outlined some directions that could pro-
vide more significant speedups and allow for even longer simulations. This work
could lay the groundwork for future studies of cellular automaton tumor growth
models and parallelization methods of computational N-body and lattice-based
models.
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Abstract. This paper examines potential applicability and efficacy
of Artificial Intelligence (AI) methods in automatic music generation.
Specifically, we propose an Evolutionary Algorithm (EA) capable of
constructing melodic line harmonization with given harmonic functions,
based on the rules of music composing which are applied in the fitness
function. It is expected that harmonizations constructed in accordance to
these rules would be formally correct in terms of music theory and, addi-
tionally, would follow less-formalised aesthetic requirements and expec-
tations. The fitness function is composed of several modules, with each
module consisting of smaller parts. This design allows for its flexible
modification and extension. The way the fitness function is constructed
and tuned towards better quality harmonizations is discussed in the con-
text of music theory and technical EA implementation. In particular,
we show how could generated harmonizations be modelled by means of
adjusting the relevance of particular fitness function components. The
proposed method generates solutions which are technically correct (i.e.
in line with music harmonization theory) and also “nice to listen to” (i.e.
aesthetically plausible) as assessed by an expert - a harmony teacher.

Keywords: Evolutionary algorithm + Harmonization - Music
generation

1 Introduction

For centuries, the fine arts have been developed by people and, invariably, a
major aspect of this process has been creativity of an artist. For this reason,
Artificial Intelligence (AI) researchers attempt to implement computational cre-
ativity [19] to mimic creative behaviors of Al agents. One of the fields in which Al
creativity has been intensively developed is music [9]. Al methods are applied to
create new compositions [4] or complement/expand existing pieces [18]. In both
tasks they managed to demonstrate human-level performance. Another line of
research is imitation of a style of a particular composer, e.g. F. Chopin [10,11].
One of the basic problems in music is the enrichment of a given melodic line
by adding chords — the so-called harmonization of the melodic line. Adding new
notes is based on the relationship between the notes, both vertically (simultane-
ous sound) and horizontally (time sequence).
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Harmonization is a creative process in which the main role is played by intu-
ition, talent and experience of a musician [14]. The process is constrained by
various rules resulting from music theory and centuries of musical practice. The
algorithm proposed in this work applies AI methods to create suitable harmo-
nization and is based on harmonization rules defined in music theory. In general,
creating music (or other forms of Art) is considered a challenge for AT agents,
as mastery in this field requires special gifts that are rare even among humans.

1.1 Contribution

The main contribution of this paper is the following: (1) we propose a novel
Evolutionary Algorithm (EA) approach capable of creating melodic line har-
monizations that are formally correct, i.e. fulfil music harmonization rules; (2)
to this end we design a specific fitness function that corresponds to theoretical
rules of harmonization and can be easily extended or tuned to reflect the desired
aspects of the resulting harmonizations; (3) the proposed fitness function covers
not only harmonic but also melodic aspects (voices leading) of created harmo-
nizations; (4) through modification of the weights of individual components of
the fitness function, solutions can be tuned to meet the desired requirements; (5)
the resulting harmonizations are evaluated by an (human) expert and assessed
as both technically correct and possessing human-like characteristics.

2 Problem Definition

Harmonization is a process of creating an accompaniment for a given melody line.
Created accompaniment consists of three new melodic lines (voices). Usually, the
highest voice (soprano) is the base for a harmonization and the other three voices
(alto, tenor and bass) are to be created. Four notes, one from each voice, form a
chord. Creating harmonization is mostly based on musician’s experience and intu-
ition. However, throughout the years many theoretical rules that harmonization
has to fulfill were developed [2,5]. These rules do not specify how harmonization
is to be constructed, only whether or not the harmonization is correct.

The aim of the proposed algorithm is to create harmonization fulfilling
selected theoretical rules. The harmonization is generated not for the raw melody,
but for the melody extended with harmonic functions assigned to each note. The
harmonic functions determine which notes (pitches) should constitute a chord.
However, they do not specify the number of these notes or the voices in which
they should be placed.

3 Related Literature

The melodic line harmonization problem has been addressed in the literature
using various Al methods. Popular approaches use neural networks [8] or hidden
Markov models [12]. Both papers address the task of harmonization of chorales
based on J.S. Bach’s style and the resulting harmonizations occasionally do not
follow theoretical musical rules.
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The algorithm described in this paper relies on a different method, the
evolutionary algorithm, in which the required harmonization rules are directly
imposed by means of a fitness function. Moreover, unlike neural networks, EA
does not require training, which makes this approach independent of the com-
poser’s style implicitly present in the training set.

Another approach which uses Markov Decision Processes is presented in [20]
and evaluates connections between two consecutive chords. The evaluation rules
are based on music theory. Yet another work [6] hybridizes heuristic rules with
dynamic programming method.

The use of EAs in the melody harmonization problem has been considered
in a few recent works [7,13,15], however each of them addresses a slightly differ-
ent problem formulation rendering a direct comparison impossible. In [7] mul-
tiobjective genetic algorithm is proposed which for a given melody generates a
set of suitable harmonic functions, however, without adding new melodic lines.
Similarly, in [13], only chords are created, not entire melodic lines. In [15], the
algorithm solves a broader problem, i.e. not only adds new melodic lines to a
given melody, but also complements the melody with harmonic functions. Fur-
thermore, the method uses a wider range of harmonic functions and fewer theo-
retical rules than in our approach. The fitness function consists of two parts, the
first one evaluates the created harmonic functions and the other one evaluates
the melodic lines added.

Each of the above-mentioned works considers a slightly different formula-
tion of the harmonization problem what renders a direct comparison impossible.
Hence, the assessment of the resulting melody lines proposed in the paper is
two-fold: (1) by means of a numerical fitness value assigned by the algorithm,
and (2) by a human expert - a harmony teacher.

4 Proposed Method

To address the harmonization problem we propose the EA that maintains a
population of individuals (candidate solutions). In each generation, the current
candidate solutions undergo mutation and crossover operations. Subsequent gen-
erations are composed of individuals with gradually higher fitness values, i.e.
achieve higher evaluations, on average. The core element of the algorithm is the
fitness function that evaluates candidate solutions, which is based on theoretical
rules of music harmonization.

The algorithm is run for a predefined number of n generations. Afterwards,
the best individual in the last population is returned as the final result.

4.1 Problem Search Space - Admissible Chords

The input data is a soprano melodic line (the highest voice) with a particular
harmonic function assigned to each note. This function indicates at least three
and at most five pitches, which have to be used in a chord. If the function
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indicates only three pitches, one must be doubled, and if five of them, one must
be omitted.

In each created chord, the highest note is fixed and derived from the given
melodic line (soprano). In addition, an ambitus (the lowest and highest possible
pitch of a voice) is defined for each voice, derived from the theory. Thus, for
each harmonic function it is possible to define a set of all admissible chords cor-
responding to this function. The evolutionary operators (mutation, crossover), as
well as the construction of the initial population are based on these pre-defined
sets of admissible chords associated with particular harmonic functions.

4.2 Population Generation Process

Each initial candidate harmonization is in the form of a sequence of admissible
chords. Each chord in a sequence must satisfy the two basic conditions:

(i) the chord corresponds to the function assigned to the completed note,
(ii) the note given in the input voice is located in the chord in the same voice
(soprano).

Observe that construction of a solution is performed by manipulating the whole
chords, not single notes.

The first population is generated randomly. Every individual consists of ran-
domly chosen chords, which fulfill conditions (i)—(ii). In each subsequent gen-
eration, first s. elite (i.e. currently best) individuals are promoted from the
previous generation without any adjustments, so as to ensure that the best indi-
viduals found in the entire run of the algorithm will not be lost. The rest of the
population is generated by means of selection procedure and genetic operators
(mutation and crossover), according to Algorithm 1.

1 GenerateNewPopulation (P)

2 CalculateFitnessValues(P) // calculates fitness of each individual
3 Prew < GetElite(P, se) // population of new individuals

4 while |Ppew| < |P| do

5 c1 < Selection(P)

6 if rand([0,1]) < p. then // crossover

7 ¢2 «— Selection(P)

8 Cnew = Crossover(ci, cz)

9

else
10 ‘ Cnew < C1
11 end
12 Cnew < Mutation(cnew)
13 Prew = Prew U {Cnew}
14 end
15 return Prew

Algorithm 1: Next generation population procedure.
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4.3 Selection Method

The selection of individuals is performed in a tournament of size t5 with a roulette
element added. In the first step, ts individuals are drawn uniformly with replace-
ment from the population and their fitness is calculated. Let’s define by z; the
i-th individual of the tournament according to the fitness value ranking. Its
probability of winning the tournament p(x;) is calculated according to (1):

bs if i=1
plas) = § (=50 play) pe i 1<i<ty (1)
(L=Y5p(ay) i i=t

where p; > 0.5 is the so-called selection pressure.

4.4 Mutation and Crossover

Each individual, before being added to a new generation, undergoes mutation.
Each chord in a given harmonization is mutated with probability #=, where [
is the length of harmonization and p,, is the mutation coefficient (algorithm’s
parameter). Mutating a chord consists in its replacement by another chord uni-
formly sampled among those that meet requirements (i)-(ii). An example of

mutation is shown in Fig. 1.
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Fig. 1. Example of mutation. Second chord has changed.

The algorithm uses a one-point crossover which happens with probability p..
In the crossings of the two sampled individuals the whole chords are considered,
not the single notes. Let us define by c[i],i = 1,...,1 the chord located at the
i-th position of harmonization c¢. One-point crossover combines the initial part
of one harmonization with the subsequent part of the other harmonization. The
crossover method and its example application are presented in Fig. 2.

4.5 Fitness Function

The fitness function is used to evaluate individuals with respect to fulfilling har-
monization rules (referring to chord building) and certain music theory rules
(e.g. voice leading or fluidity of the melodic line). The set of considered harmo-
nization rules includes those that are taught at music schools in the first years of
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1 Crossover: (c1,c2)
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Fig. 2. One-point crossover: left - pseudocode, right - example with k = 2.

harmonization classes. All of them come from a harmony textbook [17]. Similar
rules can be found, for instance, in [3,16].

As demonstrated in Sect. 5 the selected set of rules allows achieving effective
harmonizations, highly graded by the human expert in terms of both formal and
aesthetic aspects. Additionally, a modular design of the fitness function allows
its easy extension by means of adding new rules, if required.

Each rule used in the construction of the fitness function is assigned a value
that affects the final score of the generated harmonization. These values indicate
the importance of particular rules. Although in musical practice there is a certain
level of subjectivity in evaluating the quality of the constructed harmonization,
the essential evaluation based on a general position of the music community is
usually unequivocal. The base values associated with particular rules included
in the fitness function have been chosen so as to assure their compatibility with
the evaluation used in musical practice. The fitness function can be divided into
3 main modules, each referring to specific rules.

1. Strong constraints Cs (high penalty terms) - constraints stemming from the
rules, that must absolutely be satisfied in the created harmonization for it to
be considered as correct.

2. Weak constraints C,, (lower penalty terms) - constraints derived from rules
that do not have to be satisfied in the created harmonization, but their non-
fulfillment lowers the harmonization assessment.

3. Added value V,, (reward terms) - the rules that specify chord arrangements
or connections between chords that improve the sound of the harmonization.

The fitness function f; for a given individual X has the following form:

fit(X) =Va+Cy + (C-1)Cs,

My

CS:E¢Z(X)’ Cw:ZXj(X), Va:iwk(X)v (2)
i=1 j=1 k=1

where ¢;(X) < 0is the penalty for not fulfilling strong constraint ¢,i = 1, ..., ms,
x;(X) < 0 is the penalty for not fulfilling weak constraint j,7 = 1,...,my,
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(X)) > 0 is the reward associated with the rule k,k = 1,...,mg, t < n is the
generation number, C' is a constant parameter, mgs = 9, m,, = 9, m, = 4. Please
consult the publicly-available source code [1] for a detailed implementation of
the above 22 fitness sub-functions.

Strong Constraints. Strong constraints define harmonization in terms of
acceptability. If any of these constraints is not fulfilled then harmonization
cannot be considered correct. The following strong constraints are considered
(selected examples are presented in Fig. 3).

i) Doubled prime in the first and last chord — The first and last chord occur-
ring in a harmonization usually is a tonic, so as to emphasize the key in
which the harmonization is created.

ii) Voices are not crossing — The voices in the chords must not cross, that is,
the highest note must be in the soprano, the lower one in the alto, yet the
lower one in the tenor, and the lowest one in the bass.

iii) Limited distances between voices — The distance between the three highest
voices should not exceed an octave interval. The distance could be up to
two octaves between the two lowest voices.

iv) No quint in the bass on strong downbeat — Downbeats for the meter are
given. Chords on the first given downbeat cannot have quint in bass.

v) Correct notes resolutions — Some rules are specified for note resolution in
chords: (a) a sixth must be resolved up by a second, (b) a septim must be
resolved down by a second, (¢) a ninth must be resolved down by a second,
(d) if chord is dominant third must be resolved up by minor second.

vi) No parallel (or antiparallel) quints, octaves or primes — If there is a fifth
interval between two voices in a chord, there cannot be a fifth interval
between the same voices in the following chord. An analogous rule applies
to octave and prime intervals.

vii) Voices must move in different directions — The voices, moving from one
chord to the next, should move in different directions. The movement of all
voices in one direction, up or down between consecutive chords is forbidden.

viii) Penultimate chord bass note — The penultimate chord in harmonization
is usually a dominant or subdominant. It is important to emphasize the
sound of the chord by doubling the prime (if possible) and not using a fifth
in the bass.

ix) No augmented interval moves — There cannot be an augmented interval
between two consecutive notes in one voice.

Weak Constraints. Weak constraints do not have to be strictly satisfied, i.e.
violating them does not make a harmonization unacceptable. However, violation
of any such constraint lowers the harmonization evaluation. The following strong
constraints are considered (selected examples are presented in Fig. 4).

i) Doubled quint in bass — When the quint is doubled in a chord, one of these
quints should be in bass.
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Fig. 3. Examples of strong constraints violation. From left to right: ii) crossed alto and
tenor, iii) distance between soprano and alto exceeds an octave, v) incorrect resolution
of thirds, vi) antiparallel quints between soprano and bass, ix) augmented jump in bass.

ii) No quint in bass on on-beats — On-beats are sorted by their importance.
Quint in bass on on-beat is not preferable.

iii) No tripled prime in tonic function — It is permissible to triple prime in the
last chord. However, this is not preferable.

iv) No consecutive chords on quint — In harmonization chords that have a fifth
in the bass can occur. However, two such chords should not follow each
other directly.

v) Bass movement — The lowest voice (bass) is one of the most significant
voices in a harmonization, hence its movement is preferred in chords con-
nections.

vi) Movement of at least two voices — A movement of at least two voices
between two following chords is preferred, so that the harmonization does
not sound static.

vii) No septim interval — There should not be a septim interval between two
consecutive notes in one voice or between three consecutive notes in total
in one voice.

viii) Melodic line smoothness — The middle melodic lines, alto and tenor, should
be conducted smoothly.

ix) Restricting bass movement — For the bass voice a maximum interval it can
take in two consecutive moves is tenth.
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Fig. 4. Examples of weak constraints violation. From left to right: i) Doubled quint
but not in bass, iii) A chord in tripled prime, iv) Two consecutive chords with quint
in bass, v) No bass movement, vi) Only one voice moved.

Added Value. Certain features of a harmonization improve its quality and,
therefore, their occurrence positively contributes to the evaluation score.

i) Parallel sixths — If there is a sixth interval between two voices in a chord
and a sixth interval between the same voices in the following chord.

ii) Opposite movement of soprano and bass — Soprano and bass are the two most
prominent voices in harmonization. For this reason, the opposite movement
of these voices is preferred.
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iii) Opposite movement on a perfect interval — Perfect intervals are octaves and
quints. The opposite move on such intervals is preferred.

iv) Chord position — Every chord can be in the closed or open position. The
preferred position is open.

5 Experimental Setup and Results

The examples used to tune and test the algorithm come from a harmony text-
book [17]. Similar examples can be found in other harmony textbooks, as well.
18 examples (melodic lines with harmonic functions) were selected and divided
into three groups:

1. long examples (about 20 chords), using only basic functions (7 examples),

2. short examples (about 10 chords), using basic and side functions and added
pitches (4 examples),

3. long examples (about 20 chords), using basic and side functions and added
pitches (7 examples).

Out of these 18 examples, 3 were used for parameter tuning (one from each
group) and 15 in the final tests. All tests were run on a PC with IntelCore
i7-9750H (2.6 GHz) processor and 24 GB RAM.

5.1 Parameterization

The algorithm parameters were chosen experimentally based on preliminary
tests. For each parameter several values were tested (with the remaining parame-
ters frozen at their basic values) on the 3 examples devoted for parameter tuning.
Each test was run five times (with different random seeds) and returned values
were averaged.

The following selections/ranges of parameters were tested (the finally selected
values are bolded):

— sp—(population size)—[10, 100, 500, 1000, 1750, 2500, 3500, 5000];
— se—(elite size)—[0, 3, 5, 10];

— pe—/(crossover probability)—I[from 0 to 1 with step 0.1], 0.8;

— pm—(mutation coefficient)—I[from 0 to ! with step 1], 1 or 2;

— D (fine tuned)—{from 1 to 2 with step 0.1], 1.1;

— ps—(selection pressure)—Ifrom 0.5 to 1 with step 0.1], 0.7;

— n—(number of generations)—[1000, 3000, 5000, 10000];

— ts—(tournament size)—[2, 4, 8, 10].

5.2 Efficacy of the Algorithm - Formal Aspects

The efficacy of the algorithm was checked on 15 samples which were harmonized
by the algorithm. Table 1 shows the time required to find the first correct and
the finally returned (best found) solutions, resp. In each run the algorithm found
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the correct harmonization (satisfying all strong constraints) within the first 86
generations (usually much faster).

The number of generations needed to find the correct solution varies between
groups. Shorter problems, with fewer chords, were solved faster (cf. group 1 vs
group 2). Likewise easier problems, using fewer functions, turned out to be easier
to solve (cf. group 1 vs group 3). Similar relationships can be observed among
the finally returned solutions.

Table 1. The number of generations required to find a solution.

Group no. | Example no. | Generation number in which the result was found
Correct Returned
Mean | Min | Max | Mean | Min | Max
1 1 16.6 |14 |22 208.2 86 | 343
2 16.8 |13 |22 |268.2 129 | 744
3 14.8 |12 |18 2184 109 | 397
4 16.6 |14 |19 390 90 | 803
5 154 |14 |17 |1414.5| 145|3914
6 11.2 7 114 1 909.6 105 | 2477
2 7 8.2 6 |10 |177.6 27| 593
8 3.2 1 5 |24 13| 36
9 6.8 5 8 826.2 7513200
3 10 33.6 |19 |86 [1933.6| 963576
11 19.2 |17 |22 1699.8 | 2491224
12 21 18 |25 |3098.6 2179 | 3838
13 20.2 19 |21 ]926.6 732507
14 19.6 |17 |25 |890.8 130 | 3334
15 16.2 |15 |19 |1411.6| 1982500

5.3 Human Expert Evaluation Including Aesthetic Aspects

Every created harmonization has its score assigned as a result of the fitness
function evaluation. However, this score only indicates how well a harmonization
satisfies the formal fitness function requirements and does not indicate directly
how good is the harmonization in strictly musical terms (how well does it sound).
For this reason, all 15 generated samples were additionally evaluated by a human
expert - a harmony teacher. Harmonizations were evaluated in a 5-point scale,
from 1 (the lowest score) to 5 (the highest score).

On the one hand, the expert evaluated theoretical correctness of the con-
structed solutions, but on the other hand, based on many years of practical expe-
rience he/she also evaluated aesthetic and creative elements. In other words, the
expert’s evaluation was comprehensive and concerned both major harmonization
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(c) Long example, from the third group, graded 5.

Fig. 5. Example harmonizations created by the algorithm.

aspects: its construction and sound. Figure5 presents three examples of gener-
ated harmonizations rated 5, 4.5 and 5, resp. Out of all created samples, eight
were graded 5, six 4.5, and one 4. Two types of problems were distinguished
in downgraded harmonizations. One was the lack of adherence to certain the-
oretical rules. The most common problem was reaching a fifth in the bass of
a chord other than a movement by a second. However, none of the violated
rules identified by the experts were included in the fitness function,
which means that their fulfillment was not directly imposed, and the algorithm
could only meet them by chance. In contrast, the rules indicated in the fitness
function as strong constraints were strictly observed. This means that extending
the fitness function with additional rules should potentially solve this problem.
The remaining expert’s remarks, formulated in a few cases, were related to
minor sound issues, mainly to chords combinations (most often D7 and Ty ).
Requirements of this type are hard to be formally expressed in the fitness func-
tion which makes their enforcement in the resulting harmonizations difficult.
From the presented examples two were rated 5 (examples Figs. ba, 5¢), and
one 4.5 (example Fig.5b). The indicated place that could be harmonized dif-
ferently in example Fig.5b are chords fifth and sixth (D7, Ty ). The created
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solution is not incorrect, although a better sound would be achieved by placing
the prime of D7 chord in the lowest voice.

To summarize, high grades given by the harmony teacher support the claim
that the vast majority of created harmonizations are not only theoretically but
also sonically correct. The seven harmonizations contain minor imperfections,
some of which should be easily resolved by extending the fitness function. It is
also worth mentioning that according to the expert’s opinion, the generated
solutions do not expose any features of automatic origin and fully
correspond to the products of human harmonization.

5.4 Running Time

The running times of the algorithm are summarized in Table2, separately for
each group. It can be observed from the table that the running time does not
depend on the complexity of the example, but only on its length. Furthermore,
a rough comparison of time relationship between groups 1, 2 and 4 suggests its
quasi-linear dependence on the harmonization length.

Table 2. The average algorithm’s running time in seconds (harmonization time). Group
4 was generated artificially by multiplying 10 times examples from groups 1 and 3.

Group 1 Group 2 Group 3 Group 4
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min Max
531.9 | 485.5 | 567.0 | 225.8 | 180.7 | 252.1 | 536.2 | 508.7 | 582.4 | 5633.2 | 5126.5 | 6357.8

5.5 Modeling the Solution

The fitness function consists of 22 smaller functions, each of which addresses
and evaluates one particular aspect of harmonization. Each of these evaluations
is multiplied by a respective weight (negative for a penalty and positive for a
reward). Modifying these weights allows for modeling the solution by increas-
ing/decreasing the relevance of a given aspect with respect to the others.

As an example, Figs.6a and b present two harmonizations of the same
melodic line with different emphasis put on the reward for chords in the open
position. In the first case the base fitness function (the one used throughout the
paper) was applied and in the second one the respective coefficient was 3 times
bigger, so as to reinforce the relevance of this feature. In both figures chords in
open position are marked in green. Indeed, the number of chords in the open
position in Fig. 6b is clearly greater than in Fig. 6a.

The above example confirms the possibility of modeling harmonization so as
to focus on specific aspects. However, it is important to note that too strong
reinforcement of specific features may result in others not being met, despite the
overall increase of the fitness value.
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(b) Harmonization created with enhanced reward for open position.

Fig. 6. Modeling the solution. Chords in open positions are marked in green. (Color
figure online)

6 Conclusions and Future Work

The problem of melodic line harmonization considered in this paper is part of
the music composition process and as such requires creativity. The outcome (a
melody) is generally hard to assess due to its subjective nature. With the above
caution, this article points out that it is possible to achieve human-level perfor-
mance in this task (melody harmonization) using evolutionary computation.

The proposed evolutionary algorithm creates harmonizations by means of
carefully designed evolutionary operators and the fitness function that reflects
music theory rules. The fitness function is composed of three general terms: (1)
the rules that must be fulfilled if harmonization is to be considered correct,
(2) the rules that should be fulfilled, otherwise the score of harmonization is
lowered, (3) rules whose fulfillment improves harmonization. The design of the
fitness function makes it easily extendable with other music rules and allows
to emphasize various aspects in the resulting harmonization. Furthermore, the
proposed algorithm does not require any training, which makes it independent
from the styles/biases implicitly present in the training data.

Harmonizations generated by the algorithm are correct not only in terms
of music theory but also sonically. According to the expert’s opinion, obtained
solutions do not exhibit any features of artificial origin and fully correspond to
the products of human harmonization. Additionally, as presented in Table 2, the
process of computationally generating harmonizations is relatively fast.

Our future plans involve removing harmonic functions added to the notes
and performing harmonization of the melodic line itself, so as to enable creation
of choral adaptations in small ensembles or provide harmonization assistance for
less advanced musicians.
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Abstract. In our work, we consider the classification methods based on
the model of logistic regression for positive and unlabeled data. We exam-
ine the following four methods of the posterior probability estimation,
where the risk of logistic loss function is optimized, namely: the naive
approach, the weighted likelihood approach, as well as the quite recently
proposed methods - the joint approach, and the LassoJoint method. The
objective of our study is to evaluate the accuracy, the recall, the pre-
cision and the Fl-score of the considered classification methods. The
corresponding assessments have been carried out on 13 machine learning
model schemes by conducting some numerical experiments on selected
real datasets.

Keywords: Positive unlabeled learning - Logistic regression -
Empirical risk minimization - Thresholded lasso

1 Introduction

Learning from positive and unlabeled data, i.e. the so-called PU learning, is
an approach where the only information the researcher has consists of positive
examples and unlabeled data. In the PU setting, the training data contains
positive and unlabeled examples, which means that the true labels Y € {0,1}
are not observed directly in the data and we only observe the surrogate variable
S € {0,1}, which indicates whether an example is labeled (and consequently
positive, S = 1 then) or not (S = 0 in this case). The history of PU learning dates
back to the early 2000s (see, e.g., [10]) and this idea has gained much attention
throughout recent years. The main reason for such a rapid development of the
PU learning scheme is that this setting is very useful in numerous important
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applications. In particular, the PU learning method can be applied in the case
when under-reporting is present in survey data (see [1]). It is quite common
while analyzing some records from medical surveys, when we wish to predict
the presence of a specific disease. Namely, it often happens that, although some
respondents openly admit to suffering from a disease (the surrogate variable
S =1 and consequently, the true label Y = 1 in this case), there also exists a
group of respondents who do not report such a disease (we put S = 0 then).
This second group includes both the respondents who in fact have an examined
disease, but do not admit to it (we have ¥ = 1 and S = 0 in this case) and
the respondents who actually do not suffer from it (we have Y = 0 and S =0
then). Such the under-reporting phenomenon is frequently justified by the fact
that individuals suffering from some diseases (e.g. - from HIV or alcoholism)
are often negatively perceived and treated by the rest of society. Some other
interesting examples where the under-reporting is present may be found in the
papers by Bekker and Davis [1] and Teisseyre et al. [15].

Now, suppose that X is a feature vector and, as previously, Y € {0,1}
stands for a true class label and S € {0,1} denotes the surrogate variable that
indicates, whether an example is labeled (S = 1 in this case) or not (S = 0
then). We consider a single sample scenario, where it is assumed that, there is a
certain unknown distribution P, of (Y, X, S), such that (Y;, X;, S:),i =1,...,n,
form an iid sample obtained from this distribution, and that only empirical
data (X;,S;),4 = 1,...,n, are observed. Thus, we do not have a traditional
sample (X;,Y;), which is considered in standard classification problems, and
we only observe a sample (X;,S;), where S; are the observations of variable
S € {0, 1} (since S is a surrogate of the true label Y, then each S; depends on
(X;,Y;)). In the considered concept only positive examples (i.e., examples for
which ¥ = 1) may be labeled, which means that P(S = 1|X,Y = 0) = 0. It
should be emphasized that in the PU design, the true class labels Y are only
partially observed, which means that if S = 1, then we know that Y = 1, but if
S =0, then Y may be either 1 or 0.

The following constraint, called the Selected Completely At Random (SCAR)
condition, is assumed

P(S=1Y =1,X) = P(S = 1Y = 1).

The SCAR assumption implies that X and S are independent given Y, since
PS=1Y =0,X) =P(S=1Y =0) =0. Let ¢ = P(S = 1]Y = 1). The
parameter c is called the label frequency and plays a key role in the PU learning
scheme.

The main objective of our study is to apply the PU learning concept in
order to estimate the posterior probability f(x) = P(Y = 1|X = x), where, as
previously, Y € {0,1} denotes a true class label and X stands for the feature
vector. Based on logistic model, three basic methods of this estimation have



Classification Methods for PU 33

been proposed so far. They consist in minimizing the empirical risk of logistic
loss function and are known as the naive method, the weighted method and the
joint method (the latter has been quite recently introduced in Teisseyre et al.
[15)).

Now, let us briefly describe the above mentioned methods.
First, we aim to present the naive method. In this case, having the empirical
data (X;, S;), we minimize the empirical risk of the form

n

Ra(b) = —% Y [Silog(a(XT0)) + (1 = Si)log(1 — o (X[))]

i=1

where o(s) = 1/(14+exp(—s)). Then, the corresponding estimate of the posterior
probability f(z) is determined as

_10-<xT/b\nai'ue>7

fnaive (-'E) =c
where ¢ stands for the label frequency (i.e., ¢ = P(S = 1|Y = 1)) and Dpaive =
argming Ry (b).
Using the weighted likelihood method (the weighted method in short, see
[1]), we minimize the weighted empirical risk given by

=—= Z [ M og(o(XTb)) + (1 — ¢ Hlog(1 — o(XTb))]
zS—l

+ Z log(1 — a(XFD)).
2:5;=0

Then, the corresponding estimator of the posterior probability f(x) is expressed
as

o~

fweighted(x) = 0($waeighted);

where gweighted = argminb}/%\g(b).

The joint method from Teisseyre et al. [15] consists in minimizing - with
respect to both the parameter vector b and the label frequency c - the following
empirical risk

n

Rafb,c) =~ 3 [Silogleo(XT1) + (1~ 5)log(1 — co(XB))].

i=1

Then, the corresponding estimator of the posterior probability f(x) is stated as
follows R R
fjoint(x) = U(I‘Tbjoint);

o~

where {bjoint7cjoint} = argminy R3(b, c).
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In order to optimize ]/%;,(b, ¢), the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm has been applied in Teisseyre et al. [15]. This algorithm enables to
determine the formula for partial derivatives of ]/%;,(b, ¢). It is worth mention-
ing in this place that the Minorisation-Maximisation (MM) algorithm has been
considered for the purpose of optimization by Lazecka et al. [11].
In the most recent time, Furmariczyk et al. [5] proposed the LassoJoint proce-
dure. It derives its name from the fact that it combines the thresholded Lasso
procedure with the joint method from Teisseyre et al. [15]. It is a three-step
procedure. Namely, in its two first steps, we perform - for some prespecified level
- the thresholded Lasso procedure, in order to obtain the support for coefficients
of a feature vector X, while in the third step, we apply - on the previously
determined support - the joint method proposed by Teisseyre et al. [15]. More
precisely, the LassoJoint method may be described as follows:

(1) For available PU dataset (S;, X;), ¢ = 1,...,n, we perform the ordinary
Lasso procedure (see Tibshirani [18]) for some tuning parameter A > 0, i.e.
we compute the following Lasso estimator of 3*

P
3 — R A ,
A =arg min R(B) + Zlﬁgl,

where

R(B) = %Z Silog (o(X]B)) + (1= S;)log (1 — o(X]3))]
i=1

and subsequently, we obtain the corresponding support Supp™ = {1 < j <
3L £ o
(2) We perform the thresholded Lasso for some prespecified level § and obtain
the support Supp!™) = {1 <j <p: ‘@(-L)‘ > 6};
(3) We apply the joint method from Teisseyre et al. [15] for the predictors from
SuppTE).

It should be stressed that under some mild regularity conditions, the Las-
soJoint procedure obeys the screening property (all significant predictors of the
model are chosen, with high probability, in the first two steps, see Theorem 1(b)
in [5]).

Apart from the works where different learning methods - based on applica-
tion of the logistic regression model for PU data - have been proposed, there
are also some other interesting articles where various machine learning tools are
used in the PU learning problems. In this context, it is worthwhile to mention:
the papers of Hou [8] and Guo [6] - where the generative adversial networks
(GAN) for the PU problem have been employed, the work of Mordelet and Vert
[13] - where the bagging Support Vector Machine (SVM) approach for the PU
data has been applied. Most relevant methods regarding the learning from PU
data may be found in Lee and Liu [10] and Sansone et al. [14].
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There are two essential objectives of our research. Its first goal is to verify and
compare the accuracy, the recall, the precision and the F1-score of classifications
obtained by the so far introduced primary methods of the posterior probability
estimation, providing that Y is governed by the logistic regression model and PU
data are available. For the corresponding comparisons, we aim to use AdaSam-
pling methods (see [20]). In turn, our second goal is to give a recommendation for
the method that seems the most stable and efficient. The details regarding our
study have been given in further parts of our work. The remainder of our paper
is structured as follows. In Sect. 1, we present the ideas and concepts used in our
investigations, especially the methods that enable attaining the set objectives.
Furthermore - in Sect. 2 we introduce the applied models, in Sect.3 we present
our numerical experiments together with the obtained results, while Sect. 4 sum-
marizes our study. In order to carry out our simulations, we used the RStudio
server module from the ICM UW Topola server!. We implemented the following
libraries: AdaSampling [21], 1071 [12], glmnet [4], and some additional libraries
available from two selected GitHub repositories: PUlogistic [16], PU_class_prior
[17].

2 Objectives and Methods

The first goal of our study is to check and compare the accuracy, the recall,
the precision and the F1-score of classifications obtained with use of the recently
proposed methods - the joint method from Teisseyre et al. [15] and the LassoJoint
approach from Furmanczyk et al. [5], as well as with use of the earlier established
estimation methods consisting in fitting the logistic model, i.e. by additional
application of the naive method, the weighted method and the oracle method
for the case when the vector of coefficients is known.
The accuracy, recall, precision and F1-score metrics are defined as follows:

4 B TP+TN
Y = TP FP+FN + TN’
TP
Recall = m,
Precision — __TT
recision = s oyl

9. Precision -
1o recision - Recall

Precision + Recall ’

where TP, FN, TN and FP stand for: the number of true positives, false neg-
atives, true negatives and false positives, respectively.

The assessments of the mentioned metrics have been gained by conducting
some numerical studies on nine real datasets from the UCI Machine Learning

! This research was carried out with the support of the Interdisciplinary Centre for
Mathematical and Computational Modelling (ICM) at the University of Warsaw,
under computational allocation No. g88-1185.
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Repository [2] and the ‘caret’ package [9]. The second purpose of our research is
to recommend the most reliable and efficient estimation method for the poste-
rior probability f(z) = P(Y = 1|X = x) assessment, where - as in the previous
procedures - it is assumed that Y is governed by the logistic model and the
PU data are available. Our study was constructed on 13 machine learning (ML)
model schemes. We applied the LassoJoint method from [5] by considering the
joint method for two scenarios - with the BFGS or the MM algorithm. The Las-
soJoint approach is a three-step procedure. In its first step, the initial selection
of predictors is carried out by employing the Lasso method, for which the tuning
parameter A is either obtained by using the 10-fold cross-validation technique or
is fixed. In turn, in the second step, the thresholded Lasso is performed, whereas
in the last step, the joint method is employed for the variables selected in the
second step. The naive logistic regression approach, the joint method, the Lasso-
Joint approach and the weighted method for ¢ estimated from the joint method
(for the BFGS or the MM algorithm) have been employed and the corresponding
results have been compared with the results obtained by implementing the oracle
method when the true label variable Y is known. Moreover, in order to compare
the classification methods based on fitting the logistic regression model, the two
machine learning methods - namely, the Support Vector Machine (SVM) app-
roach and the k-nearest neighbors algorithm (KNN) have been used - both in the
AdaSampling scheme (see Yang et al. [19] and Yang et al. [20]). An application
of the AdaSampling design results in constructing an adaptive sampling-based
noise reduction method, which enables dealing with noisy data. We have also
performed the min-max transformation of our features, which - compared to the
original data - greatly improved the accuracy of all of the obtained results.

3 Numerical Experiments

3.1 Datasets

We consider nine datasets from the UCI Machine Learning Repository [2] and
the ‘caret’ package [9]. In Table 1, we present basic characteristics of each dataset
(from left to right: the number of features, the number of observations, the num-
ber of binary and continuous variables, the number of negative and positive cases,
the percentage of positive cases). The values of these characteristics are obtained
through fundamental preprocessing, including the one-hot encoding and remov-
ing the missing values. In our simulations, we set 1-class as a larger class for
each dataset. The selection of datasets was conducted by taking into account
various types of potential difficulties that may appear while applying the ML
methods. Thus, we tested both a strict low-dimensional datasets (‘Banknote’)
and datasets with many predictors (‘Dhfr’). In addition to that, we also con-
sidered the sets with only binominal (‘ Vote’) or continuous predictors (‘ Wdbc’,
‘Spambase’) and mixed instances.
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Table 1. Basic characteristics of the datasets. (from left to right: dataset name, no. of
features, no. of observations, no. of binary variables, no. of continuous variables, no. of
negative instances, no. of positive instances, percentage of positive instances)

Dataset |p | n nbin_variables | ncon_variables | ng | n1 % of 1-class
Banknote | 4 |1372| 0 4 610 762 |55.5%
Breastc 9 | 683 0 9 239 | 444 65.0%
Credit_a 37| 65331 6 296 | 357 |54.7%
Credit_g 241000 | 12 12 300 | 700 |70.0%
Dhfr 228 | 325 |11 217 122 | 203|62.5%
Diabetes | 8 | 768| 0 8 268 | 500 | 65.1%
Spambase | 574601 | 0 57 1813 | 2788 | 60.6%
Vote 32| 43532 0 168 | 267 |61%
Wdbc 30| 569| 0 30 212 | 357|62.7%

The naive logistic regression approach, the joint method, the LassoJoint app-
roach and the weighted method for ¢ estimated with use of the joint method have
been employed. The corresponding results have been compared with the results
obtained by implementing the oracle method. We deal with the problem of PU
data classification. From the above, completely labeled datasets, we randomly
select ¢% of the labeled observations S, for ¢ = 0.1;0.3;0.5;0.7;0.9, and then,
we randomly split these datasets into the training sample (80%) and the test
sample (20%). By applying the LassoJoint method in its first step, we use the
Lasso method with tuning parameters A, chosen either on the basis of the 10-
fold cross-validation scheme - in the first scenario (where lambda.min gives the
minimum mean cross-validated error, while lambda.lse stands for the largest
value of A such that an error is within 1 standard error of the cross-validated
errors for lambda.min.) or by putting the fixed A of the form A = ((logp)/n)/3
- in the second scenario, as in [5]. In the second step, we apply the thresholded
Lasso design for 6 = 0.5\, with X selected in the first step. Next, we determine
the classification metric by simulating from 100 Monte Carlo replications of
our experiment. Subsequently, in order to compare the logistic regression-based
classification methods, the tools of machine learning, such as an AdaSampling
(see Yang et al. [19] and Yang et al. [20]) together with the Support Vector
Machine (SVM) concept and the k-nearest neighbors algorithm (KNN) have
been employed.
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3.2 Results

We conducted our simulation study on 13 ML model schemes based on the
four methods described in Introduction. In our work, we applied four measures
based on the confusion matrix: the accuracy, the recall, the precision, the F1-
score. All of our metrics are the averages of the obtained values of metrics on
a test subset after 100 repetitions. We decided to set a cut-off point at the
level of 0.5. This level is typical in cases when the logistic or the logistic-based
models are fitted. In the examples from the AdaSampling package documentation
[21] the level of 0.5 is commonly used. The average values of the accuracy and
the recall are given in Fig.1 and Fig.2. Additionally, we provide a dedicated
visualization for comparison between the joint-wise models with and without
the Lasso component (see Fig. 3 and Fig. 4). Tables presenting the precise values
of some metrics and the charts depicting the values of the remaining measures
are available in our Supplementary Materials?. These Supplementary Materials
also include all of our codes in R.

Banknote I Breastc I Credit_a I

Accuracy

~o~ AdaS_knn —+ Joint MM — - LassoJoint_BFGS_lambda.min — LassoJoint_MM_lambda.min — Weighted BFGS
4. AdaS_svm @ LassoJoint_BFGS -~ LassoJoint_MM — Naive
= JointBFGS -#: LassoJoint BFGS_lambda.1se — LassoJoint_MM_lambda.1se ~ — Oracle

Fig. 1. The accuracy for the test datasets

2 http://github.com /kfurmanczyk/ICCS22.
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Banknote I Breastc I Credit_a I

Credit_g | dhfr |

Recall

0.75
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0.25

0.1 0.3 0.5 0.7 0.9

0.3 0.5 0.7 0.9

~+- AdaS_knn ~+= Joint MM — - LassoJoint_BFGS_lambda.min —— LassoJoint_MM_lambda.min —— Weighted BFGS
-4 AdaS_svm -®- LassoJoint_BFGS ==+ LassoJoint_MM —— Naive
~=- Joint BFGS ‘% LassoJoint_ BFGS_lambda.1se —— LassoJoint_MM_lambda.1se —— Oracle

Fig. 2. The recall for the test datasets

It is clear that in the considered scenarios, performance of the oracle method
may be perceived as a natural top (‘the best’) benchmark. On the other hand,
in many scenarios the bottom (‘the worst’) benchmark is connected with per-
formance of the naive method, but it may not always be treated as a strict
rule.

Apart from obtaining appropriate metric values, we have also developed,
for each value of ¢, the corresponding ranking methods. The ranking has been
obtained on the basis of calculating the average values of ranks in a single sce-
nario (the greater rank value is, the worse a given method is in our ranking). The
ranking results are collected in Tables2, 3, 4 and 5. The best methods (except
the oracle approach) are underlined in the columns. Some additional comments
and remarks regarding the obtained results are contained in the next section.
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Fig. 3. The accuracy for the test datasets - the joint-wise models
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Fig. 4. The recall for the test datasets - the joint-wise models
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Table 2. Avg.rank method based on the accuracy

Method c=10.1]0.3 0.5 0.7 10.9
Oracle 1.00 1.00 12.00 |1.11|1.56
LassoJoint_BFGS_lambda.min | 4.11 5.33 |5.00 |7.22/9.11
LassoJoint_ MM _lambda.min | 7.22 8.22 |5.56 |6.33|5.22
LassoJoint_MM _lambda.1se 11.22 1 6.67 |5.44 |5.56 | 4.44
LassoJoint_MM 7.67 8.78 |6.89 |6.33|4.56
LassoJoint_BFGS 4.44 4.89 |7.11 |8.56|10.00
Joint MM 7.11 8.22 |6.56 | 7.56|5.67
Joint BFGS 5.44 6.00 |7.00 |7.7810.22
AdaS_svm 7.78 8.67 |8.67 |6.56|5.44
LassoJoint_BFGS_lambda.1se | 9.00 5.22 | 6.78 |7.56|8.56
AdaS_knn 6.11 8.22 |8.78 8.44|8.56
Weighted BFGS 8.11 7.56 9.00 |8.11/10.33
Naive 11.78 |12.22]12.229.89 | 7.33
Table 3. Avg.rank method based on the recall

Method c=0.1/03 0.5 0.7 109
Oracle 1.89 1.44 |1.67 |1.78 |1.00
LassoJoint_BFGS_lambda.min | 3.67 5.56 |5.22 |6.44 |8.44
LassoJoint_BFGS 4.78 4.89 |6.22 |6.67 |8.89
LassoJoint_BFGS_lambda.lse |8.11 4.78 |5.89 |6.56 |7.56
LassoJoint_MM _lambda.lse 11.56 |6.44 |5.33 |5.44 |5.11
Joint BFGS 5.78 6.33 |6.33 |5.89 |9.89
Joint MM 7.33 8.22 |6.56 |7.11 |6.00
AdaS_knn 5.78 7.44 811 |8.11 |6.89
LassoJoint_MM _lambda.min | 7.44 8.44 |6.78 | 7.44 |6.33
LassoJoint_ MM 7.89 9.33 |7.67 |7.67 |5.67
Weighted BFGS 7.11 6.78 |8.67 |8.22 |10.33
AdaS_svm 7.89 9.11 |10.22|8.67 |6.11
Naive 11.78 12.22|12.33|11.00 | 8.78

41
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Table 4. Avg.rank method based on the precision

Method c=01/03 |05 0.7 |09

AdaS_svm 5.44 3.89 2.89 |3.22/5.00
Oracle 3.00 5.67 | 5.67 |6.00|5.56
LassoJoint_MM _lambda.min | 3.00 5.11 |6.11 | 7.22|8.00
LassoJoint .MM 5.33 4.67 |7.22 6.56|7.56
LassoJoint_BFGS_lambda.min | 6.78 7.67 | 7.78 16.56|6.11
Naive 10.22 | 7.78 |5.00 |4.00|8.11
LassoJoint_BFGS 5.56 7.56 |9.00 |8.56 4.67
Joint BFGS 8.22 7.67 | 7.33 |7.44/4.78
Joint MM 5.89 6.56 |6.89 |8.44|8.89
LassoJoint_-MM_lambda.1se 10.11 | 7.33 |6.33 8.00|8.22
AdaS _knn 7.22 8.00 |6.78 |8.7810.56
LassoJoint_BFGS_lambda.1lse |10.22 |9.11 | 9.67 |6.78|8.00
Weighted BFGS 10.00 | 10.00{10.33|9.44 | 5.56

Table 5. Avg.rank method based on the Fl-score

Method c=0.1/03 (0.5 |07 |09

Oracle 1.00 1.00 [2.00 |1.11|1.56
LassoJoint_BFGS_lambda.min | 4.56 5.44 |5.33 |7.56|9.11
LassoJoint_MM _lambda.1se 10.33 1 6.67 |5.78 |5.44 4.11
LassoJoint_BFGS_lambda.lse | 7.89 4.00 |6.00 |7.008.11
LassoJoint_ MM _lambda.min | 7.89 8.56 |6.22 |6.44|5.56

LassoJoint _BFGS 4.22 5.11 |7.11 |8.56|10.00
Joint BFGS 5.33 6.33 |6.00 | 7.8910.56
Joint MM 7.22 8.44 |7.00 |7.78|5.89
LassoJoint_MM 8.33 9.44 |7.44 |6.78|5.22
AdaS_svm 8.44 8.11 [9.22 |6.67|5.56
AdaS _knn 6.44 8.33 | 8.33 |8.00|7.78
Weighted BFGS 7.56 7.22 822 |7.899.89
Naive 11.78 1 12.33|12.339.89 | 7.67

4 Conclusions

The primary purpose of our study was to conduct a comprehensive evaluation of
13 ML model schemes, including the methods from literature and the methods
obtained as a result of some modifications we implemented in some other proce-
dures (such that conducting the MM optimization in the LassoJoint procedure).
We decided to apply a few measures in our research, in order to get a guarantee
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of a proper complexity of our assessments. In a typical approach to PU prob-
lems, the main attention is focus on calculating the AUC and Accuracy metrics,
whereas in our work we provide additional analysis regarding different assess-
ment measures. This extension enables to evaluate fractions of the true ‘1-class’
and fractions of the predicted ‘1-class’, among the real positive instances, which
may be very useful in many applications regarding popular PU problems. For
instance, in the credit risk management, we want to detect all frauds, even if we
label too many observations (equivalently - we agree for a larger type I error).
In this case we need to control the recall measure with a greater emphasis. On
the other hand, in various marketing campaigns related models (e.g., such as
uplifting models), we wish to focus our attention on customers who actually
want to buy certain products. In this case we prefer to control the precision
measure. The results of our numerical experiments show that if ¢ increases, then
the percentage of correct classifications increases as well in most cases. Usu-
ally, the LassoJoint procedure helps to improve the classification metrics and
prevails over other methods (see Tables2, 3, 4 and 5 and Tables 1-35 in the
Supplementary Materials). The LassoJoint method has been constructed for the
high-dimensional cases (i.e., when p > n), but it has to be stressed that it may
be also so in the low-dimensional cases (i.e., when p < n), as we observe that the
joint method performance improves while applying the basic metrics on most
of the tested datasets, except for the Credit_g, Diabetes, and Spambase. Only
in few cases, the method based on the BFGS optimization performs worse for
large values of ¢, but the corresponding accuracy is still acceptable for small val-
ues of c. We may also observe that the classifications obtained by applying the
LassoJoint method with the MM algorithm result in smaller classification errors
(and thus in better classification accuracy) for larger labeling levels c. More-
over, the methods with tuning values A, obtained by using the cross-validation
scheme, display better accuracy than the methods with fixed values. Based on
the obtained accuracy, recall and F1-score, we recommend using the LassoJoint
method with: (a) the BFGS variant - for small values of ¢, (b) the MM variant
for the values of ¢ above 0.5 (for comparison - see Fig.3). Furthermore, it is
worth mentioning that considering the selected cases with small values of ¢, we
do not observe classification instances from the ‘l-class’. Most of this cases are
connected with the naive method for ¢ = 0.1, 0.3, which can be seen in Fig. 2 and
therefore, using more complex methods is highly recommended in these cases.
However, it is not easy to point out a general winning method by taking into
account all of considered measures. For example, an application of AdaSampling
with the SVM kernel provides the classification results of the highest precision
for almost every dataset scenarios. This high level of precision assures greater
certainty that the predicted positives are real positives. On the other hand, the
values of the accuracy, the recall and the Fl-score are not satisfactory in most
cases. In addition to that, the obtained simulations show that the labels noising
can boost the precision metrics, since some methods provide better values of
precision measures than the oracle approach (see Table4). It is important to
remember that all of the methods based on fitting the logistic regression model
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assume the celebrated SCAR condition. It is a common approach to impose this
assumption in majority of methods dealing with PU learning and only in very
few approaches the researchers try to omit this constraint (see [1]). In further
investigations, it would be interesting to introduce some new methods which
will not require the SCAR assumption. It would also be interesting to check
robustness of existing methods under some disturbances of the SCAR condition.
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Abstract. The expansion of modern supply chains constantly triggers the need of
maintaining resilience and agility for higher profit. There is a need to change the
standard methods of inventory control to new approaches that are highly adapt-
able to uncertainties that emerged as a result of supply chains globalization. In
this paper, a novel approach based on neural network, state-space control and
robust optimization is proposed to support the perishable inventory replenishment
decisions subject to uncertain lead times. We develop an approach based on the
Wald criterion to compute optimal robust (i.e. “best of the worst” case) controller
parameters. We incorporate lead-time specific perturbations through plausible sce-
narios using several lead times sets. Based on extensive numerical experiments, the
obtained solutions highlight that the approach provides stable and robust solutions
even for high lead times.

Keywords: Inventory control - Simulation - Optimization - Uncertain lead time -
Neural networks - Genetic algorithm

1 Introduction

Over the last decade, the inventory systems have expanded significantly. Nowadays, they
are exposed to the highly changeable environment. Not only the uncertainty of market
demand can contribute to rising costs, but also the uncertainty of perishability process,
variable lead-time, delays. Nowadays, one of the utmost important goals of modern
supply chains with growing uncertainty is to build and maintain agility [1]. Fullfilling
orders can be challenging tasks in case of variable environment where customers expect
more flexibility than ever. Increasing the efficiency of order management systems in
terms of automating many steps that requires manual involvement can enhance the
goods flow, increase profitability and prevent shortages.

There is a lot of work with optimal inventory policies dedicated to the system with
demand uncertainty while including no uncertainties connected to the production and
distribution processes instabilities [2]. For example in [3], the effect of time value of
money and inflation on optimal ordering policy is investigated but in the case of zero
lead-time. Many policies have been proposed for inventory problems under stochastic
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demand and constant lead time, for example, the basestock policy (also called “order-
up-to” policy) and is widely implemented in industry, but the existed methods are not
sufficient to keep the modern supply chain at optimal levels because of constant lead-
time assumption. For example, in [4] the optimal basestock levels are calculated in
the subject of uncertain demand. Therefore, there is a need to develop methods that
cope also with uncertainty in the supply chains in terms of lead times. Lead time in
inventory management is the time between placing an order to replenish inventory and
order receiving. Lead-time uncertainty is usually concerned with unexpected shipment
(or production) delays [2]. Lead time is one of the utmost important factors that affect the
stock level at any point in time. The areas which are affected by this kind of uncertainty
are the agri-food, electrical, medicine (e.g. blood supply chains) and many more. With
a view to the above matters, a lot of practitioners and researchers are active in this area
of study. In [5] a model to minimize the total cost of an integrated vendor-buyer supply
chain when the lead time is stochastic is proposed with constant demand rate assumption.
Another example is study [6] in which an inventory model with the randomly variable
lead time is developed also under constant demand assumption. In real supply chains
constant demand is not often encountered, hence some more advanced methods based
on robust optimization started to be implemented in industry.

Robust optimization is considered as a promising approach to deal with uncertainties
[7]. The robust optimization has been widely studied in supply chains problems showing
promising computational results for problems under demand uncertainty (e.g., see [4,
8-11]).

In the above papers involving demand uncertainty, the supply-side is assumed to be
deterministic and order lead times are assumed to be either zero or fixed. There are a few
papers that deal with supply and demand uncertainty. An inventory control model under
demand and lead time uncertainty is studied in [ 12] where the tri-level optimization-based
approach is used, but without considering the perishable products. Furthermore, there
is a work that includes lead-time uncertainty and uses a robust optimization approach
[13] — there is an approach based on Benders’ decomposition to calculate optimal robust
policy parameters. The work proposes the approach for robust optimization and applies
it to the basestock problem. We want to extend this study to the case with perishable
products and developing also a controller based on neural networks in the proposed
approach, not only an optimization method.

In this paper, we proposed a method to reduce the influence of lead-time uncertainty
on the robustness of the inventory system with perishable products. The presented app-
roach for inventory control uses the combination of artificial neural networks and genetic
algorithm optimization. For method validation, the nonlinear, discrete-time model of
inventory system is implemented in Matlab environment together with neural network
and applied to the problem of control the perishable goods flow. The proposed method
is tested with the use of the set of initial conditions, different lead times, a variety of
lead-times uncertainties, and two fixed shelf-lives. For developed controllers, the testing
errors are calculated and the analysis of lead-time uncertainty on testing error, stock
level and order quantity is presented.
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2 Problem Definition and Assumptions

In this paper, we focus on the problem of inventory system control with lead-time uncer-
tainty and perishable products. The problem considers the calculation of order quantity
while balancing two conflicting goals: deliver a sufficient number of products on time
and keep inventory levels down. The purpose of such an inventory control system is to
determine when and how much to order. This decision should be based on the current
inventory state, the expected demand, the lead-time, possible delays, and other cost fac-
tors. In this paper, we propose the approach, which includes the solution steps for the
problem of inventory system optimization in case of uncertain lead-time. For the offline
testing of the control approach the nonlinear, discrete-time perishable inventory with
fixed lifetime products, proposed in [14], is implemented in Matlab environment. The
considered class of inventory system assumes that stored products have a fixed shelf-
life. The following assumptions are used for formulating the model and the investigated
problem:

The review period is constant and equals one day.

The products are sold according to FIFO policy.

The inventory contains a single type of product.

Lead-time s may be uncertain.

Shortages are allowed but are not backlogged. Excess demand is lost.

There is one stocking point in each period.

Demand is a time-varying function.

Deterioration occurs as soon as the items are received into inventory.

The shelf-life / is fixed and known a priori. After / days all items from the same
batch are expired and became unsellable waste. Lost units are not replaced.

O XA B W=

The applied notation of applied inventory model is presented in the Table 1.

Table 1. The model parameters and variables — applied notation

Symbol Definition

N Length of the simulation horizon
ke{l2,...,N} Discrete-time

l The shelf-life of a product
ie{l.2,..,0} Index of state variables

s Lead time

SA Uncertain lead time

S0 Nominal lead time

A Lead time perturbation

dmax The maximum demand in one period k&

(continued)
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Table 1. (continued)

Symbol Definition

x(k) Vector of state variables

y(k) Inventory level (on-hand stock)

u(k) Order quantity

d(k) Aggregated demand

di(k) Demand for products of age i

h(k) Aggregated amount of sold products
hi(k) Sold products of age i

n Number of neurons in the hidden layer
v The vector of network weights

a; Activation function in the first layer

e Activation function in the second layer
cj Transformation function in the second layer

In the applied inventory model, the demand is modelled as an unknown a priori,
bounded function of discrete-time: 0 < h(k) < d(k) < djqx. There is full demand sat-
isfaction when the number of sold products: i(k) € R> is equal to the current demand
d(k) € Rxsg, h(k) = d(k). The maximum value of imposed demand for products per
k period is constrained by dy,,x € R-¢. The orders are calculated in regular inter-
vals on the basis of the expected demand d (k) and the inventory state x;(k) € Rxo.
The inventory state can be divided into two parts: (a) the on-hand stock per age i
Xs4+1(k), x542(k), ..., x;(k); (b) work-in-progress deliveries xj (k), xa(k), ..., xs(k). In
this model, i represents the age of products, e.g. ds41 (k) is the demand for the freshest
products available in the inventory. The total amount of the sold products is given by:
h(k) = Zlehi(k), where: h;(k) € R>¢ — sold products of age i.

In general we assume that lead-time s may be not known exactly. In such case the
uncertain lead-time is denoted as sa, and takes the following additive form:

SA =50+ A (D)

where: so is a nominal value of lead-time and A is unknown, but bounded perturbation
such that |A| < 8.

As inventory systems become more complex, representing them with differential
equations or state-space models becomes highly advanced. Considering that, for efficient
implementation in Matlab, the model is formulated using a state-space approach. State-
space representation of this system is given by / equations:

x1(k + 1) = u(k)
Xtk + 1) = x1(k) — hi (k)
) 2

xj(k + 1) = x—1 (k) — hy—1 (k)
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State variable x; (k) € R>( keeps the information about products quantity of age i.
Order quantity u(k) is a nonnegative and real number. A more profound explanation of
inventory model fundamentals is presented in [14].

3 Proposed Approach

The main purpose of the proposed approach is to calculate order quantities and their
frequency for the inventory system under lead-time uncertainty while obtaining optimal
performance in terms of shortage and holding costs minimization. The proposed app-
roach uses two main tools: (a) genetic algorithm (GA) which is used for the learning
stage; (b) neural network (NN) which is designed for the goods flow control in the perish-
able inventory system with lead-time uncertainty. In Table 2, there are main parameters
that are assumed in the proposed approach.

We adopted the artificial neural network as a controller to control the flow of per-
ishable products in case of lead-time uncertainty. Furthermore, the proposed approach
includes also genetic algorithm application for the learning process of neural networks. A
genetic algorithm is used as an optimization tool for calculating neural network weights.
The proposed approach can be represented by diagram in Fig. 1.

> Learning using Customer Lead-time R:::r;cllf();;ki)r:‘i;ial
optimization demand uncertainty sets p
generation
De[-5.5] Xo

e i il Ry Bl el R il 1

1

1

1

1 1J(K,Xo)

1 1

: x(k) | Neural network | u(k) Inventory :

1 controller model '

! 1

1 1

1 1

1

1 OPTIMIZATION MODEL :

Fig. 1. The diagram of proposed approach.

The proposed approach can be explained as follows: the first step is to generate the
random initial conditions of inventory state in range (0, 2). Next step is the optimization
process. The goal of the optimization process is to tune the weights of neural networks
that minimize the quality cost for the worst-case scenario of lead-time uncertainty. The
quality cost is represented as a weighted sum of lost sales and holding cost with the
assumption that the cost of lost sales is 3 times higher than the cost of holding cost.
Finally, testing process of the obtained results is performed using a set of different
initial conditions of inventory and different lead-times uncertainties (from the selected
uncertainty range).
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Table 2. Parameters of GA and NN.

Approach part Parameter Value
GA The number of variables n(l +2)
The maximum number of generation 4000
Population size 2000
Parallel computing True
NN ANN model Multi-layered perceptron
The number of neurons in hidden layer 3
The number of input node 1
The number of output node 1
The number of hidden layer 1
The number of hidden node 3
Activation function on the hidden layer Satlin
Activation function on the output layer Poslin

The developed neural network controller consists of three layers: input, hidden and
output layer. The applied structure of the neural network is depicted in Fig. 2. The input
of the neural network controller is the state vector x(k) € R>o which is the number
of products on every shelf — shelf represents the age of the product. The products are
picked from the shelf to fullfill the current orders. The output of the neural network is the
control u(k) € R>¢ which is the order quantity generated in order to satisfy the demand
d(k) € Rxp. The applied structure is a feed-forward network, in which the activation
functions: saturating linear transfer function g;, positive linear transfer function e; and

transformations ¢j and u occur. The controller on the basis of current stock age and
work-in-progress deliveries is able to generate the optimal order quantity for each day
k. The weights are the elements of vector v.

The learning process is formulated as an optimization problem of a perishable inven-
tory system with uncertainty with the use of the genetic algorithm. The objective of the
considered optimization problem is to establish weights of the neural network (Fig. 2) so
that the inventory system may satisfy the customers’ needs (3) and minimize the holding
cost (4) at the same time. The first criterion is describing the number of lost sales due to
stock shortages:

N
Jh=Y_ (d(k)—h(k) 3)

k=s+1
As a second criterion for optimization, the surplus of stock over demand is
considered:

N

Jy= Y mk) ©)

k=s+1
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Fig. 2. The applied structure of the neural network controller.

where:

y(k) — d (k) for y(k) = d(k) A y(k) < d(k)

m(k) = .
0 for otherwise

®)

The inequalities in above relationship (5) eliminate the penalty for the stock which
results only from the initial conditions xg, where y(k) is free response of the system.
Formulated criteria can be written as the weighted cost function:

J=30y+ 1, (©6)
Formally, the optimization problem may be stated as follows:
min maxJ (v, A)
VoA
st. —8§<A<$ (7

The optimization is performed for assumed set of initial inventory states Xg. As a
result of the optimization process, the vector of weights v is obtained. In this way, the
inventory controller can be optimized with a view to uncertain demand, perishability
and the state vector x(k). This approach provides flexibility and resilience, making the
inventory system being more robust for uncertain changes of lead-time. In the further
part of the work, the proposed approach is called robust neural network controller (in
short: RNN controller).
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4 Simulation Results

In this section, we apply the proposed approach to control the perishable inventory system
with uncertain delay. The simulation research is divided into five parts. The first one is
focused on analyzing the performance of the proposed controllers in terms of lead-time
influence on testing error. In the second part, the effect of the lead-time perturbation
on stock level and cost function is investigated. In order to present the performance of
proposed approach, we prepare the numerical example with the data extracted from one
of the retail outlet [15]. The data contains the daily demand for milk in one month. In the
next part, we extend the simulation research by applying larger lead-time uncertainty. In
order to show the numerical example of the performance of RNN controllers, the fourth
part contains the time responses of the perishable inventory control system. The fifth
part of the simulation study is devoted to the analysis of testing error using different
sizes of test sets in case of different lead-time perturbations.

For simulation purposes, the learning set contains 180 different inventory states. The
initial conditions of the state vector are generated using random numbers in the range:
(0, 2). Single inventory state represents a different level of initial stock level of product
of different shelf-life. The general simulation parameters take the following values: the
review period is one day, simulation horizon equals month (31 days), shelf-life / is fixed,
adopted issuing policy: FIFO. The parameters of the main parts of the approach are listed
in Table 2 (previous section).

4.1 Lead-Time Influence on Testing Error

In this subsection, the results of the testing process for the following nominal lead-times
so € {2, 3,4, 5}, lead-time perturbation of one day and shelf-life of 9 days are presented.
The size of the test set is 1000 different initial inventory states. The obtained results are
listed in Table 3.

Table 3. Cost function value and testing error for different lead-times.

so (days) J Testing error (%)
2 1.4686 1.69%
3 1.3408 2.23%
4 1.4584 1.98%
5 24153 2.66%

The results show that testing error is the smallest for sy = 2 among considered cases
and the biggest for the highest considered lead-time sp = 5. Nevertheless, the testing
error is not exceeded about 3% in all considered cases. The cost function value J takes
the highest value for the highest considered nominal lead-time.
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4.2 Lead-Time Perturbation Influence on the Learning Process

This subsection is devoted to the investigation of lead-time perturbation and its influence
on the learning process. In Table 4 the results of the learning process for the lead-time
perturbation bounds: 8 € {0, 1, 2, 3}, the nominal lead-time value of 5 days and products
with the shelf-life of 12 days are presented. The lowest value corresponds to the no
perturbation scenario and the highest to the high lead time uncertainty scenario. The
estimated learning time increase with the perturbation bound used for the controller
tuning. Learning time was approximately in the range 50-100 min on computer with
Ryzen 5950X CPU.

Table 4. Cost function for worst-case scenario for different lead-time perturbation bounds.

d (days) J Cost increase
0 0.8287 0

1 1.2011 0.37

2 1.7234 0.89

3 24317 1.60

In the analyzed case, a threefold increase in lead-time perturbation bound leads to
about 2 times higher costs in terms of holding space and lost sales. In the assumed
scenario, the inventory system without uncertainty in the lead-time is able to generate
about 31% less cost J in comparison to the smallest assumed lead-time perturbation
bound (8 = 1).

4.3 Robustness of Proposed Approach

For the purpose of robustness analysis the simulation with different lead-time uncertainty
is performed. The simulation scenario is prepared as follows: the demand for milk product
is extracted from the retail outlet; the simulation scenario starts with a sufficient level of
stock in the inventory — it means that inventory initial states are adopted to the lead-time in
the analyzed case; the assumed expiration date equals 12 days; the weights of the design
RNN are optimized for different perturbation bounds 8 € {0, 1, 2, 3} and the nominal
lead-time of 5 days, whereas the simulation is conducted for the perturbated lead-times
ranging from 1 to 9 days. In Fig. 3, the surface of the cost function is presented.

Figure 3 visualizes the cost function values of optimized robust neural controllers
for the different variants of lead-time uncertainty. It can be seen that the smallest cost
function is achieved for perturbations A smaller than 0. The most interesting situation
is for the A > 0. As it can be seen in Fig. 3 the controller, which does not include the
uncertainty during the learning process 8 = 0, obtains high cost function values for A >
0. This is because the controller was not able to be prepared for unknown uncertainties
and it causes a lot of shortages in the inventory. On the other hand, the most robust
behaviour for the highest lead-time is achieved by the controller of perturbation bound
d = 3. In this case, other controllers (8§ < 3) obtain worse control quality.
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Fig. 3. Cost function values for controllers optimized for different values of perturbation bound
d and simulated using different lead-time perturbations A.

Moreover, in order to analyze the effect of lead-time influence on the level of stock
the surface with the stock level is also generated (see Fig. 4).

Sum of stock

Fig. 4. Sum of stock for controllers optimized for different values of perturbation bound 8 and
simulated using different lead-time perturbations A.

It can be seen that for A < 0 the stock level is similar for all optimized controllers.
The change starts to be visible for A > 0 where the stock level decreases. It can be
observed that for A = 4 the following relationship is satisfied: the higher 3 the more
stock is stored in the inventory. It means that controller optimized using the highest

perturbation bound (8 = 3) is more accurate in determining a sufficient amount of stock
to minimize shortages.
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4.4 Time Responses of the Obtained NNC Controllers for Long-Lead-Time
Scenario

In this subsection, the time responses are investigated. The case with the high lead-time
is selected (sp = 8) and the same parameters of the simulation are assumed as in point 4.3
with the only difference in the initial inventory state. In this subsection, we assumed zero
initial inventory state, which means that inventory is completely empty at the beginning

of the simulation. To start with, the monthly demand is plotted in Fig. 5 and lost sales
are illustrated in Fig. 6.
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Fig. 5. Demand scenario for milk products.
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Fig. 6. Lost sales for controllers optimized using different perturbation bounds 8.

It is clearly visible that least lost sales are for 8§ = 3. This observation implies that
variable demand is satisfied with the highest level of service for § = 3 among considered
controllers. It is important to highlight that the significant shortages characterize the
non-robust controller (8§ = 0). The next time response is the order (Fig. 7).

In Fig. 7, it can be seen that the controller tuned for the perturbation 8 = 3 calculates
the orders that follows the changes in demand without oscillations and overshoots. The
other controllers generate the highly oscillating order quantities which result in higher
shortages which can be seen in Fig. 6.
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Fig. 7. Orders for controllers optimized using different perturbation bounds 3.

4.5 Test Size Influence on Testing Error

The next section is focused on the analysis of investigating the test size influence on the
testing error. Figure 8 illustrates the obtained testing errors during the testing phase of
RNN controllers.

Test set size
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Fig. 8. Learning error for different lead-time perturbation bounds and test set sizes.

In Fig. 8 can be observed that testing error, for the highest perturbation bound for all
test set sizes, is the smallest among the considered cases. On the contrary, the highest
learning errors occur for the controller that controls the inventory system without con-
sidering any uncertainty. It can be noted that the testing error for all considered cases is
in the range from 2.3% to 4.5%.

5 Conclusions

In brief, we developed a robust neural network controller to manage the perishable items
in case of uncertain lead times. In order to optimize the developed model, we adopted
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the robust optimization approach based on Wald criterion. Simulation research was
conducted to illustrate the proposed approach performance with the use of a real demand.
Our numerical results demonstrate that controllers learned using greater uncertainty
bounds are more prone to outperform the controllers learned using smaller perturbation
bounds in case of high lead-time. It is evident that neglecting the uncertain nature of the
lead-time has serious consequences. For example, for controllers which are learned using
smaller perturbation bound, the inventory level dropped below the sufficient minimum
of full demand satisfaction in case of high lead-time values. What is more, learning using
an evolutionary algorithm in the case of a perishable inventory system with uncertainty
provides testing error not greater than 3.8%. On the basis of conducted research it can
be noted that the RNN controllers are able to order the proper amount of products in an
exact time for a given uncertainty set. The order quantity calculated by the controllers
is nonnegative and bounded which is of utmost importance in the case of practical
implementation goals. Moreover, the stock level smoothly follows the reference demand
value and do not cause any unnecessary overstocks. All these advantages are achieved
in the environment of uncertain lead-time. Looking also at the limitations, our proposed
approach can be extended in considering demand uncertainty and lead-time uncertainty
at the same time. It is one of the main topics for our further researches.
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Abstract. QR factorization of dense matrices is a ubiquitous tool in
high performance computing (HPC). From solving linear systems and
least squares problems to eigenvalue problems, and singular value decom-
positions, the impact of a high performance QR factorization is funda-
mental to computer simulations and many applications. More impor-
tantly, the QR factorization on a batch of relatively small matrices has
acquired a lot of attention in sparse direct solvers and low-rank approxi-
mations for Hierarchical matrices. To address this interest and demand,
we developed and present a high performance batch QR factorization for
Graphics Processing Units (GPUs). We present a multi-level blocking
strategy that adjusts various algorithmic designs to the size of the input
matrices. We also show that following the LAPACK QR design conven-
tion, while still useful, is significantly outperformed by unconventional
code structures that increase data reuse. The performance results show
multi-fold speedups against the state of the art libraries on the latest
GPU architectures from both NVIDIA and AMD.

Keywords: Batch linear algebra - QR factorization - GPU computing

1 Introduction and Related Work

In the context of dense linear algebra, a batch routine performs a standard linear
algebra algorithm on a batch of relatively small matrices. This kind of workload
is quite different from operating on one large matrix. Many software packages,
from both the industry and the research community, have been serving the latter
form of workloads for many years. Examples include LAPACK [1], PLASMA [13],
MAGMA [12], BLIS [19], and Intel’s MKL [14]. Batch workloads, however, are
relatively recent, and gained a lot of attention in many scientific communities.
Applications include quantum chemistry [8], sparse direct solvers [21], astro-
physics [16], and signal processing [6]. Vendor software libraries such as Intel’s
MKL [14], NVIDIA’s cuBLAS [17], and AMD’s hipBLAS [5] now provide many
batch routines for several BLAS and LAPACK operations.

Batch routines often require a different mindset for performance optimiza-
tion, especially on GPUs. Since we are dealing with small matrices, it is crucial
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D. Groen et al. (Eds.): ICCS 2022, LNCS 13350, pp. 60-74, 2022.
https://doi.org/10.1007/978-3-031-08751-6_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08751-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs: Design, Optimization, and Tuning 61

to save as much memory traffic as possible. As an example, for very small matri-
ces that fit in the register file of the GPU, fully unrolled and unblocked kernels
can achieve a performance that is superior to any other approach [3]. For rela-
tively larger matrices, however, different assumptions must be made in order to
maintain a high performance across the size spectrum.

In this paper, we take the batch QR factorization as a case study for opti-
mization on GPUs. We show that there is not a single design strategy that can
serve all sizes efficiently. Each design strategy assumes a number of building
blocks (e.g., GPU kernels) of the factorization, which might differ from the con-
ventional LAPACK structure. This work is considered an improvement over the
work by Haidar et al. [10], which is available in the MAGMA library.

2 Algorithmic Background

The QR factorization decomposes a dense matrix A,, ., into the product @, .. X
R, ., where @ is an orthogonal matrix, and R is upper triangular. Throughout
the paper, we assume m > n. The standard LAPACK implementation does not
compute @ explicitly. Upon completion, the matrix A is overwritten by the two
matrices V and R, as shown in Fig. 1la. The matrix V is lower triangular with
unit diagonals (not stored), such that each column v; represents an elementary
Householder reflector H; = I — Tﬂ}ﬂ} , where 7 is a scalar (stored separately).
The @ factor is computed as @ =[]} Hl.

) iﬁ'ﬂﬁ | DLARFT J§ DLARFB

A v N H >
= >
2 a 8 B8 a |a B A
(a) QR factorization output (b) Building blocks

Fig. 1. The LAPACK convention of the QR factorization

Assuming double precision, the standard LAPACK implementation is avail-
able in the dgeqrf routine, which has the building blocks shown in Fig. 1b. Both
the dgeqr2 and dgeqrf routines perform the QR factorization. However, dgeqr2
is an unblocked design, meaning that it proceeds one column at a time, building
the corresponding elementary reflector (dlarfg), and applying it to the rest of
the matrix (dlarf). Therefore, dgeqr2 is limited by the memory bandwidth of
the hardware, since it relies on vector or matrix-vector operations only (BLAS
level 1 and 2). On the other hand, dgeqrf is a blocked design. It uses dgeqr2 to
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factorize a rectangular panel. The corresponding block of reflectors are applied
to the trailing matrix using matrix-matrix (L3 BLAS) operations. The use of L3
BLAS enables dgeqrf to be compute-bound. The application of the block reflec-
tors contains a preparatory stage (dlarft), during which a triangular factor T
is computed from the V' matrix and the scalars 7;,i € {1,2,--- ,n}, such that
Q =1-V xTxVT. The last equation takes advantage of matrix multiplication
(GEMM) when implicitly applying @ to the trailing matrix.

2.1 Nested Blocking

A standard QR factorization directly calls the unblocked panel factorization
(dgeqr2). For a batch of relatively small matrices, the panel is thin, typically
4-8 in most cases. Thin panels lead to rank-k updates (batch GEMM) that are
memory-bound. On the other hand, passing relatively wide panels directly to
the memory-bound dgeqr2 also hinders the performance. The solution to this
tradeoft is to use nested blocking, which is a well-known approach in LAPACK’s
blocked algorithms, despite not being used in the standard QR implementation.
Figure 2 shows the general idea of nested blocking, where a wide panel is inter-
nally split during its factorization. Nested blocking increases the reliance on L3
BLAS operations (batch GEMM).

~ ~
~ N

N S |
i

Fig. 2. Nested blocking in the QR panel factorization. The horizontal rectangles refer
to parts of the matrix that are touched solely by the update step.

I
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2.2 Computing the Triangular Factor T

The original implementation of the dlarft routine relies on two memory-bound
operations, the matrix-vector product (dgemv), and the triangular matrix-vector
product (dtrmv). For a block-reflector V' of width nb, the factor T,,., can be
computed recursively as in Algorithm 1, where lines 2 and 3 update the same
column of 7" using dgemv and dtrmv operations, respectively. However, previous
work [11] has shown that all the calls to dgemv can be aggregated into one dgemm
call, while the dtrmv calls remain roughly unchanged. While Algorithm 2 clearly
shows a performance advantage over Algorithm 1, it needs preprocessing stages
that may be costly for small matrices. In order to call dgemm, the matrix V' must
be separated from the R factor (refer to Fig. 1a). This requires (1) copying the
R matrix into a workspace (dlacpy), (2) setting the upper triangular part of
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V to zeros, with units on the diagonal (dlaset), and (3) another copy to bring
R back on top of V' (dlacpy). In addition to the overhead of these calls, there
is also workspace management overhead. Note that there are other methods for
computing the block Householder transformations [18,20], which are beyond the
scope of this paper.

Algorithm 1: Classical dlarft Algorithm 2: Improved dlarft

T
1 Tl:nb,l:nb = Vl;n,l:n

1 for j=1 to nb do X Vi, 1in

) — T ) 2 for j=1 to nb do
2 Tij—1,5=—TjViin1:5-1 X Vinj s jT o
_ 1:i—1,5 =
3 Trj—1,5 =Trj—1,1:5-1 X Trj—15
2 A 7 —7i T 1,151 X Tij-1,
.3 = Ti a T .= r
33 =T
5 end
5 end

3 Experimental Setup

Throughout the paper, we show the incremental performance improvements on
a system equipped with an NVIDIA Tesla A100-SXM4 GPU, which is clocked at
1.41 GHz and has 80 GB of memory. The GPU is hosted by an AMD EPYC 7742
64-Core Processor, clocked at 2.25 GHz. The CUDA version is 11.2. The final
performance results are collected on this system as well as on another system
equipped with an AMD Instinct MI100 GPU, which has 32 GB of memory, and
clocked at 1.5 GHz. The ROCM version is 4.5.0. The host CPU is an AMD
EPYC 7662 64-Core Processor, running at 3.25 Ghz. All the developments are
lined up to be released in the MAGMA library. Our solution will be referenced as
“MAGMA?” in all the performance results. For NVIDIA GPUs, the performance
results are compared against the batch QR factorization in the cuBLAS library,
as well as against the open source KBLAS library [9]. For AMD GPUs, the
performance is compared against the hipBLAS library.

4 LAPACK-Style Design

Our goal is to maximize the batch QR factorization performance on any matrix
size and shape. A straightforward approach is to extend the primitive building
blocks in Fig. 1b to support a batch of matrices. There are two advantages to
this approach. First, it uses some of the existing batch BLAS routines, like batch
GEMM, which are often highly optimized by the vendor libraries, or by open
source libraries [2]. For the batch QR factorization in particular, the reliance on
an optimized batch GEMM routine guarantees performance portability across
different GPU architectures. Second, since the building blocks are assumed to
be LAPACK-compliant, the final implementation would support any matrix size
and shape. This is unlike some previous efforts that target application-specific
range of sizes [7,15].

Our first implementation of batching the building blocks is based on the
efforts by Haidar et al. [10]. It is improved by taking into account some of
the new features in the vendor libraries, especially the more optimized batch
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Fig. 3. Batch QR performance in double precision. The MAGMA design is based on
batching the building blocks of Fig. 1b. Results are shown for square matrices (left)
and tall-skinny matrices (right), using a Tesla A100 GPU.

GEMM kernels. Figure 3 shows the performance results on square and tall-skinny
matrices. For square sizes, KBLAS outperforms the original MAGMA design for
sizes less than 192. Otherwise, MAGMA has the best performance. Our profiling
results show that only MAGMA calls batch GEMM underneath, which explains
why its performance scales well, while cuBLAS and KBLAS stagnate.

Table 1. Time breakdown (%) for the original MAGMA design. Results are shown for
double precision on the A100 GPU, with 1000 matrices per batch.

Category Matrix size (m, n)

(128,16) | (64,64) | (128,128) | (256,256)
dgeqr2 kernels 64.4 55.09 | 45.86 30.28
dgemm 12.47 24.68 |35.4 56.23
Auxiliary (dlacpy, dlaset, etc.) | 21.28 15.93 | 14.48 10.48
trmv (for dlarft) 1.85 4.29 4.26 3.01

For tall-skinny matrices, both cuBLAS and KBLAS have a clear advantage
over MAGMA. Our conclusion is that the MAGMA design favors wide matrices,
where the trailing matrix update is rich in batch GEMM calls. For tall-skinny
matrices, such an advantage is absent. In addition, the current panel implemen-
tation in MAGMA lacks optimizations for tall-skinny matrices. To emphasize
this point, Table 1 shows the percentage of time spent in different parts of the
MAGMA design for four selected sizes. It shows that the panel kernels con-
tribute significantly to the total execution time. Therefore, we cannot rely on
batch DGEMM alone in order to achieve high performance. The QR panel must
undergo an extensive optimization. Since the dgeqr2 kernels are memory-bound,
it is imperative to save memory traffic as much as possible. This can be achieved
by merging multiple building blocks into a single execution context, which is
often called kernel fusion. We use a multi-level kernel fusion, in which different
parts of the algorithm are fused based on the matrix size.
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5 Panel Optimization

We begin by designing a new GPU kernel for the panel factorization. The kernel
caches a panel of size m X nb in the register file of the GPU and implements the
unblocked factorization (dgeqr2). In a thread block, each thread possesses one
row of the panel, so at least m threads are required for each thread block. There
are two occasions where we perform a reduction operation across the columns of
the panel. The first is during the generation of the Householder reflector, where
the norm of the current column is computed. The second is when applying the
reflector to the trailing matrix, i.e., A = (I—7vv”)x A. The product v” A requires
a reduction operation across the columns of A. Since these reductions contradict
with the thread-per-row assignment, a shared memory workspace is allocated
to perform tree reductions. Note that the vT A product involves a multi-column
reduction, for which we re-organize the threads into independent groups, and
each group collaboratively reduces the assigned column. A key design aspect of
this kernel is the use of compile-time constants. For example, the width of the
panel nb must be known at compile time in order to avoid register spilling. It
also helps the compiler unroll most of the loops inside the kernel. The kernel is
instantiated for 1 < nb < nb,,qz, where nb,, .. depends on the GPU resources
as well as the compute precision.

The performance of this kernel is dependent on the height of the panel, since
it requires one thread per row. For example, a panel of size 512 x nb needs 512
threads. Assuming that all other resources are not a bottleneck, we can schedule
four thread blocks at maximum per SM, due to a hardware limitation. Panels
taller than 512 would cause at least 25% drop in the thread occupancy per SM.
Depending on the width of the panel, other resources could be underutilized as
well. The remedy to such a behavior is to relax the constraint on the number
of threads. We propose a second kernel that stores the panel in shared memory
instead. This enables us use any number of threads to factorize the panel. The
proposed kernel assumes nb <#threads< m. The tree reductions mentioned
above are redesigned to work with any number of threads in that range. To
prove our point, Fig.4 shows the performance of the two kernels for a panel of
width 4. For the shared memory kernel, we use 32, 64, and 128 threads. The
figure shows that there is no clear winner, and that two decisions should be
made before the panel factorization: (1) which kernel should be used (register
vs. shared memory), and (2) if the shared memory kernel is used, how many
threads should be used? All performance graphs in this figure have a staircase-
like behavior. As the panel becomes taller, more resources are required, leading
to drops in occupancy. In order to select the best performing kernel, we collect
offline tuning data based on panel width, precision, and GPU architecture. These
data are used to select such a kernel at run time.

Figure 5 shows the updated performance after incorporating the fused dgeqr2
kernels. For square matrices, the performance of MAGMA is improved by 12.9%—
57.1%, while the speedups for the tall-skinny case are in the range 11.9%-41.4%.
We generally observe that the smaller the matrix, the larger the speedup. This is
expected, since the savings in memory traffic should be more critical for smaller
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Fig. 4. Comparing different kernels for the fused dgeqr2 step. Results are shown for
double precision using a Tesla A100 GPU, with 1000 per batch.

problems. However, the general behavior against cuBLAS and KBLAS remains
the same, except for the slightly earlier intersection points with the MAGMA
performance graphs.
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Fig. 5. Batch QR performance in double precision, with the fused panel kernels incor-
porated into the MAGMA design. Results are shown for square matrices (left) and
tall-skinny matrices (right), using a Tesla A100 GPU.

In order to decide where the next optimization should be, we repeat the time
breakdown experiment after using the fused panel kernels, which is shown in
Table 2. The table shows that the panel kernels are no longer dominant in any
of the four sizes. Another positive sign is the increased percentage of the dgemm
kernel. However, the auxiliary kernels now contribute a noticeable amount of
time, and even dominate the execution time for size 128 x 16. Recall that these
auxiliary kernels are mostly called in a setup phase for computing the T factor
(Sect. 2.2). In addition, if the size of T is small, calling batch GEMM multiple
times on small matrices might be inefficient. We need to avoid these auxiliary
kernels as much as possible, especially for tall-skinny sizes.
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Table 2. Time breakdown (%) for the MAGMA design with fused geqr2. Results are
shown for double precision on the A100 GPU, with 1000 matrices per batch.

Category Matrix size (m, n)

(128,16) | (64,64) | (128,128) | (256,256)
dgeqr2 kernels 24.37 11.37 | 10.26 7.81
dgemm 26.39 48.66 | 58.78 74.41
Auxiliary (dlacpy, dlaset, etc.) |45.29 |31.53 |23.89 13.81
trmv (for dlarft) 3.95 8.44 7.07 3.96

6 Optimizing the Trailing Matrix Update

We acknowledge that we cannot use the batch dgemm kernel to compute the T
factor for relatively thin matrices. At the same time, using the memory bound
dgemv and dtrmv kernels is not expected to be a faster solution. Since this
improvement is critical mostly for tall-skinny sizes, a candidate solution is to
merge the dlarft and the dlarfb operations into one GPU kernel. However,
since the fused kernels operate on the fastest memory levels of the GPU, the
implementation can be simplified into applying the elementary reflectors directly
to the trailing matrix (without forming the T factor). This strategy is partially
similar to cuBLAS and KBLAS in the sense that they don’t use the batch GEMM
for the trailing matrix update. However, we limit its use for a certain width, as
we discuss later in the paper. Algorithm 3 shows a pseudo code of the proposed
kernel. It reads the output of dgeqr2 into shared memory, setting its upper
triangular part to zeros, and its diagonal to ones. The factorized panel remains
cached for the lifetime of the kernel. Assuming that the trailing matrix has a
width 7, we loop over this width in a small step ib, so that the sub-trailing
panel (tA[]) is cacheable in either the shared memory or the register file. We
use a device routine implementation of the dlarf routine to apply each reflector
in the panel. The dlarf routine has an optimized multi-column tree reduction
and a parallel rank-1 update, which are the two main components required for
the update. Finally, the tA[] buffer is written into the main memory, and a
new sub-trailing panel is loaded. Similar to the fused panel kernel, there are
two implementations of the update kernel, one that uses the register file for
storing tA[] and uses a restricted number of threads, while the other uses shared
memory only, and has a tunable number of threads.

An important point is that the fused panel and update kernels can be used
to factorize the entire matrix, without utilizing the batch dgemm kernel. This
decision is dependent on so many parameters, like the dimensions (m, n) of the
matrix, the compute precision, and the GPU architecture. To achieve the best
performance, we conducted a set of offline tuning sweeps that discover the cut-off
width, below which we should use the fused panel/update kernels. The results
from the tuning sweeps are stored in lookup tables. While we originally tuned
the performance for the A100 GPU, it is straightforward to add lookup tables to
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Algorithm 3: Pseudo code for the fused trailing panel update

1 pA[] < read factorized panel in shared memory
2 pA[] < dlaset(pA[]l, ‘upper’, 0, ‘diag’, 1) //device-routine
3 for =1 to n step ib do
tA[] < read the next block of columns from the trailing panel
for j=1 to b do
‘ tA « dlarf(pA(:,j), tA[]l) //device-routine
end
write tA[] back into memory

© WO G

end

other GPUs. During the run time, the correct lookup table is used for deciding
the best code path to execute. Figure 6 shows the performance of the MAGMA
design after incorporating the new update kernel, where MAGMA is now able
to outperform both cuBLAS and KBLAS across almost all sizes.

2800 =
{-|magma
gigg b
2000 H cublas
2000 [~
© 1800
3 1600
& 1400(
& 1200
1000 -
800 [
600 [~
400}
200 | g g
0 L L ds ‘5 1 1 L L L 1 L £ L L L 0 1 1 1 1 1 1 1 1 L 1 1 1 1 1 L 1
SHISSSITESIEIITSS  SIISIEITFISFIITL
Matrix size (m =n) Matrix size (n f xed at 16)

Fig. 6. Batch QR performance in double precision, with both the fused panel and
fused update kernels incorporated into the MAGMA design. Results are shown for
square matrices (left) and tall-skinny matrices (right), using a Tesla A100 GPU. Batch
size = 1k.

7 Optimizations for Sub-warp Dimensions

A final optimization is possible when the entire matrix can be cached in the regis-
ter file or in the shared memory. At this point, a fully fused and unrolled dgeqr2
is used. We have addressed this case in a previous work [4], but we discuss it here
to complete the scope of the paper. The kernel has some similarities with the one
described in Sect. 5, but it has some unique features. First, it uses a serial reduc-
tion for computing the norm of a column, and for the v7 x A product. For sub-
warp dimensions, we found out that a serial reduction is often faster than a parallel
reduction with repetitive synchronizations. Second, one warp can be involved in
factorizing more than one matrix simultaneously. For example, a single warp can
factorize four 8 x 8 matrices at the same time. Third, the code template is instan-
tiated for every possible size. Without the loss of generality, we discuss square
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sizes up to 32 only. The obvious drawbacks to this approach is its applicability
to a restricted range of sizes. It should also be instantiated for every possible (m,
n) combination. However, its advantage is clear as shown in Fig. 7. Despite all the
optimizations mentioned in the previous sections and in other libraries, the Figure
shows significant speedups, up to 3.22x against the best competition.
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Fig. 7. Batch QR performance in double precision for tiny square matrices. Results
are shown for a Tesla A100 GPU. Batch size = 10k. The speedup labels of the fully-
fused design are calculated with respect to the best performance of the other three
approaches.

8 The Big Picture

The optimized GPU kernels described in Sects. 4 through 7 are now put together
into one solution. The factorization begins by a check for tiny matrices, for which
the fully unrolled kernel (Sect. 7) can be used. Otherwise, it moves to a decision-
making layer that determines whether to use a fused panel/update kernels for
the entire factorization (Sects.5 and 6).

— If true, another decision-maker determines which version of the panel /update
to be used (in registers or in shared memory). The decision-maker also deter-
mines the number of threads in case the shared memory version is preferred.

— If false, the factorization proceeds with a LAPACK-style factorization uti-
lizing batch GEMM.

The LAPACK-like implementation has a panel factorization step, during
which it checks agains for the feasibility fused panel/update kernel. If they can-
not be used (e.g. panel is too large), we fall back to a generic non-fused panel
implementation. In either case, the factorization proceeds with computing the T’
factor and then calling batch GEMM to apply the block reflector to the trailing
matrix. All the decision-making layers use a comprehensive set of offline perfor-
mance benchmark results. The offline data resulting from these benchmarks are
tabulated per GPU and per compute precision.
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9 Final Performance Results

This section shows the final performance results on both NVIDIA and AMD
GPUs. All results are shown for single and double precisions. We show the per-
formance of the host CPU using OpenBLAS, which is called inside an OpenMP
for loop using 64 threads.

Figure8 shows the performance on the A100 GPU for square matrices.
MAGMA has a clear asymptotic advantage thanks to the careful utilization of the
batch GEMM kernel (from both cuBLAS and MAGMA’s own kernel). As men-
tioned before, the performance graph of MAGMA is the marriage of three dif-
ferent factorization strategies. The first is the fully fused factorization for sizes
<32, the second is performing the factorization using the fused panel/update ker-
nel only, and the third is the LAPACK style strategy utilizing batch GEMM.
For single/double precision, MAGMA is up to 2.3x/3.3x faster than KBLAS,
up to 16.2x/25.4x faster than cuBLAS, and up to 21.9x/14.8x against Open-
BLAS+OpenMP.
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Fig. 8. Final performance of the batch QR factorization in single/double precision
(left /right). Results are shown for square matrices using a Tesla A100 GPU. Batch
size = 1k.

Figure9 shows the final performance for tall-skinny matrices with exactly
16 columns. This test case represents problems that require the solution of
least square systems. This test case corresponds to one factorization strategy in
MAGMA, which is the fused panel and update kernels. But recall that MAGMA
has two different kernels for each of the panel and update steps, and invokes
the faster of the two depending on the matrix size. Similar to square sizes,
both cuBLAS and the OpenBLAS with OpenMP are underperforming. Both
MAGMA and KBLAS have the staircase-like behavior, which means that they
both try to take advantage of the fast memory levels on the GPU, but face
gradual degradation due to increased occupancy. However, MAGMA has an
asymptotic advantage for single precision, and an overall advantage for double
precision. This means that our solution has a better use of the available resources
on the GPU. For single/double precision, MAGMA is up to 1.6x/1.7x faster
than KBLAS, up to 5.8x/7.4x faster than cuBLAS, and up to 36.3x/65.9x
against OpenBLAS+OpenMP.
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Fig.9. Final performance of the batch QR factorization in single/double precision
(left/right). Results are shown for tall-skinny matrices (n = 16) using a Tesla A100
GPU. Batch size = 1k.

Figures 10 and 11 show the corresponding results on the AMD MI100 GPU,
where we compare the MAGMA performance against hipBLAS as well as Open-
BLAS + OpenMP. To the best of our knowledge, KBLAS does not support AMD
GPUs. We observe that the performance is lower than the A100 performance
numbers. This is due to multiple reasons. First, the batch GEMM kernel on the
A100 is better tuned for the use cases we need than on the MI100 GPU. Second,
we notice that the fused kernels for performing the panel and the updates are
also slower than on the A100. Our experience with porting our solution to AMD
GPUs indicates that performing computations in the Local Data Share (LDS)
memory is slower than the shared memory on NVIDIA GPUs. This is crucial to
both the panel and the update kernels, since we perform many tree reduction
in shared memory. MAGMA still outperforms hipBLAS for square sizes. The
speedups range between 2.6x and 11.5x for single precision, and between 3.8
and 10.1x for double precision.
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Fig. 10. Final performance of the batch QR factorization in single/double precision
(left /right). Results are shown for square matrices using an AMD MI100 GPU. Batch
size = 1k.

Another bottleneck on the MI100 GPU is the amount of the LDS mem-
ory available for one thread-block, which has a maximum of 64KB. This is
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nearly half the amount that we can allocate dynamically on the A100 GPU.
This limits the ability of MAGMA to cache relatively large panels, and forces it
to switch to either use thinner panels or to use the LAPACK-style factorization.
Both situations hinder the performance due to the increased memory traffic.
We also observe that the staircase shape in Fig. 11 are more frequent and more
severe, which can also be explained by the relatively limited opportunities of
data reuse. MAGMA still outperforms hipBLAS for tall-skinny matrices. The
speedups range between 3.0x and 14.5x for single precision, and between 1.13x
and 12.6x for double precision.

900 T T T T T T T T 450 T T T T T T T T

magma - magma -
800 || hipblas — A 400 | hipblas — -
openblas + openmp — openblas + openmp ——
700 q 350 b
600 300
@ o
5 500 3 250
<] <]
5] 400 1G] 200

300
200
100

150
100
50

oO

Fig. 11. Final performance of the batch QR factorization in single/double precision
(left /right). Results are shown for tall-skinny matrices (n = 16) using an AMD MI100
GPU. Batch size = 1k.

In general, the asymptotic performance is not close to the GPU theoretical
peak performances. This is mainly due to the focus on relatively small sizes,
which limits the batch GEMM performance on both the A100 and the MI100
GPUs. The rank-updates use relatively small widths that are not enough to
saturate the GPU compute power. Note that the batch DGEMM kernel from
cuBLAS uses the Tensor Cores units, and the batch SGEMM kernel from hip-
BLAS uses the Matrix Core units. A possible performance improvement is to
incorporate these accelerators in MAGMA'’s own batch GEMM kernel, and tune
them specifically for these rank updates.

10 Conclusion and Future Work

This paper shows the underlying complexity of optimizing batch linear algebra
operations on GPUs, taking the dense batch QR factorization as an example.
We show that, depending on the problem size, there could be different strategies
of performing the factorization. Since memory traffic is often critical to batch
routines, fused kernels are used to efficiently utilize the memory bandwidth.
However, kernel fusion increases the complexity of the overall solution, since
it introduces new non-standard routines not found in BLAS or LAPACK. Our
final solution for the batch QR factorization has three different strategies for
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execution, and within each strategy, there are multiple run-time decisions to
select the best performing kernel. Future directions include investigating the
performance regression on AMD GPUs, extension to variable-size batches, and
considering more efficient algorithms for very tall and skinny matrices.
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Abstract. Modeling of turbulent combustion system requires model-
ing the underlying chemistry and the turbulent flow. Solving both sys-
tems simultaneously is computationally prohibitive. Instead, given the
difference in scales at which the two sub—systems evolve, the two sub—
systems are typically (re)solved separately. Popular approaches such as
the Flamelet Generated Manifolds (FGM) use a two—step strategy where
the governing reaction kinetics are pre-computed and mapped to a low—
dimensional manifold, characterized by a few reaction progress variables
(model reduction) and the manifold is then “looked—up” during the run—
time to estimate the high—dimensional system state by the flow system.
While existing works have focused on these two steps independently, we
show that joint learning of the progress variables and the look—up model,
can yield more accurate results. We propose ChemTab an architecture
that learns jointly and demonstrate its superiority.

Keywords: Physics guided neural networks - DNN

1 Introduction

Modeling of turbulent flow combustion is central in the development of new com-
bustion technologies in aviation, automotive and power generation [6]. Turbulent
flow combustion combines two nonlinear and multi—scale phenomena: turbulent
flow and chemical reactions. This coupling of the kinetic chemical reaction equa-
tions with the set of Navier-Stokes flow equations results in a problem that is too
complex to be solved, at full resolution, by the current computational means.
Even for a simple fuel such as methane, the combustion chemistry mechanism
involves 53 species and 325 chemical reactions [19], and the numbers increase
with increasing fuel complexity. Solving the details of such mechanisms during
the flow simulation can consume up to 75% of the solution time [4].

In most cases, the large scale separation between the combustion chem-
istry/flame (typically sub millimeter/microsecond scale) and the characteristic
turbulent flow (typically centimeter or meter/minute or hour scale) allows sim-
plifying assumptions to be made that enable increased computational efficiency
by (re)solving chemistry and flow separately [16]. In this paper, we focus on
approximate methods that deal with handling the chemistry, and in particular,
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the methods based on laminar flames [15]. Here the 1-D or single-species flame

reactions are solved a priori and stored. During the flow simulation, these reac-
tions are looked—up to estimate the high—dimensional thermochemical state of

the system, as shown in Fig. 1.
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Fig. 1. (Re)solving systems separately

Most models developed for increased computational efficiency rely on the
existence of a theoretical low—dimensional thermochemical state-space manifold
to which the combustion chemistry can be mapped [11]. The central question
then is, how to efficiently model low—dimensional thermochemical manifolds that
capture the relevant physics of the problem; and parametrize and approximate
these manifolds which can then be accessed during turbulent flow simulations?

While existing approaches (collectively referred to as state—space parametriza-
tion [16,17]) have been successful, they have primarily solved the two sub-—
problems — progress variable generation to characterize the manifold, and mani-
fold approximation to perform the lookup during run—time, independently. This
can result in sub—optimal solutions because the progress variables, learnt using
methods such as Principal Component Analysis (PCA) [2,20], are not necessar-
ily optimized to perform the run—time lookup. Similarly, while the traditional
lookup approaches that use tabulation, or the recently proposed neural net-
work based data—driven alternatives [1], facilitate efficient look—ups, the con-
struction of the underlying data—structure or machine learning based model is
not informed by the learning of the progress variables.

Our main hypothesis is that by simultaneously learning the progress variables
and the manifold approximation (lookup model), we can achieve higher accuracy
in terms of the estimation of the thermochemical state at run—time. But how
does one combine the progress variable learning, an inherently linear mapping
task, with a highly non-linear lookup model, while ensuring that the compo-
nents influence each other during the learning phase? To that end, we propose
a framework called ChemTab, in which the learning of these two components is
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formulated as a joint optimization task. An implementation of ChemTab, using
a novel deep learning architecture, is proposed. The joint optimization includes
a set of mathematical constraints that ensure that the progress variable learn-
ing is approximately similar to a PCA—type linear reduction, and, at the same
time, can also predict the thermochemical state using a non-linear predictive
component.

The deep learning implementation of ChemTab is shown to reduce the error
by 73%, when compared to an existing tabulation based framework, in predicting
one of the key thermochemical term, source energy, when applied to flames data
for a Methane—Air fuel-oxidizer combination generated using the GRI-Mech
3.0 simulator. Moreover, the proposed architecture of ChemTab is shown to
outperform a recently proposed state-of-art decoupled PCA+neural network
based solution by 24%.

2 Related Work

In this section we provide a brief overview of existing in low—dimensional ther-
mochemical manifold modeling, focusing more on data—driven methods. We note
that there have been works that use physics—driven machine learning models for
solving other physics problems [10,23], however, these methods generally focus
on simpler physics and are not necessarily applicable in the domain of turbulent
combustion.

Common approaches to low—dimensional thermochemical manifold modeling
are combustion chemistry mechanism reduction and thermochemical state-space
parametrization [18,20]. Chemistry mechanism reduction approach cannot be
generalized and in the recent past state—space parametrization approach has
been the most dominant method comprising of two phases progress variable gen-
eration and manifold approximation. For progress variable generation, existing
methods have either used domain models or numerical methods.

Domain models like steady Laminar Flamelet Method (SLFM) [15],
Flamelet—Generated Manifold (FGM) [21,22], Flamelet Progress Variable app-
roach (FPVA) [7,17] and Flamelet—Prolongation of ILDM model (FPI) [5] the-
orize that a multi-dimensional flame can be considered as an ensemble of mul-
tiple one-dimensional locally laminar flames (flamelets). These flamelets are
patametrized by a combination of conserved and reactive scalars [3,17,21,22].
A lot of research in this area builds on the principles laid out in [9] for progress
variables regularization however the fundamental problem of generating ade-
quate number of progress variables that capture the underlying physics is still
open.

Numerical methods, like PCA, have shown significant promise for
parametrization of the thermochemical state. PCA provides a method of generat-
ing reaction progress variables using the flamelet solutions, the state—space vari-
ables are still nonlinear functions of the reaction progress variables, and a nonlin-
ear regression is learned to approximate the state-space manifold [2,12,13,20].
This purely numerical parametrization lack interpretability and may also not
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be generalizable enough due to variation capture maximization that may over-
learn the numerical errors in the data. Linear Autoencoders have also been sug-
gested [14] however this definition lacks incorporation of a principled approach
to progress variable generation and thus may not be generalizable.

While domain based model have traditionally relied on tabular lookup, these
are not scalable. Tabulated data occupies a larger portion of the available mem-
ory on every node where the flow simulation is computing. Also the searching
and retrieval of this pre-tabulated data becomes increasingly expensive in a
higher-dimensional space. For example, assuming a standard 3 progress variable
discretization (200, 100, 50) with say 15 tabulated thermochemical state vari-
ables, we obtain a pre-computed combustion table of 120 Mb. The addition of
a variable such as enthalpy with a very coarse discretization of 20 points, brings
the size of the table to 2.4 Gb. To address the tabulation problem researchers
like [1,24] build on the work of [8] to investigate the use of a neural networks for
manifold approximation which replaces the Tabulation. The mapping between
the progress variables (reduced dimensionality) and thermochemical state vari-
ables obtained using the flamelets solutions is learnt using a neural network.
However, due to the highly non-linear, knotted and discontinuous nature of the
lower dimensional manifolds formed by the progress variables generated a priori
the accuracy gained by a neural network is not satisfactory.

3 ChemTab: Joint Learning Progress Variables and
Manifold Approximation

To reduce the computational effort in coupled simulations, state—space
parametrization approaches follow a two—phase strategy. First, parametrize and
tabulate a priori the scalar evolution of a reactive turbulent environment by few
progress variables that govern the scalar evolution in a laminar flame. Second, use
a tabular lookup at run—time to determine the high—dimensional chemical state
required by the CFD solver. For instance, the FGM approach replaces all species
and temperature by a mizture—fraction and a single reaction progress variable or
reaction progress parameter. In this study, we focus on state-space parametriza-
tion using Unsteady Flamelet Generated Manifolds or Unsteady FGMs [3]. We
modify this approach in three ways: the progress variable generation is different,
the manifold is not tabulated and lastly, the progress variables and manifold
approximation are done jointly.

3.1 Background: Unsteady FGM

FGM is a widely used tabulated chemistry method and can deal with a range
of complicated conditions. FGM model shares the same theoretical basis with
flamelet approaches [15], in which a multi-dimensional flame can be considered
as an ensemble of multiple one-dimensional flames. Generally FGM model used
for combustion modeling follows three steps as shown below:

1. Calculation of the representative 1-D flamelets.



ChemTab: A Physics Guided Chemistry Modeling Framework

79

2. Transformation of 1-D flamelets solutions to progress variables space.
3. Retrieval of thermo—chemical variables from the FGM tables according to
FGM control variables from CFD simulations.

Table 1. Definitions for terms used in Sect. 3.1

Description Description
Zmiz | Mixture fraction T | Temperature of the mixture
Cpv | Progress variable S |Reactive scalars source terms
Y Species mass fraction ¢ |Non—linear function of Y and miz
S Species source terms k No. of species used to generate progress variables
p Density of the mixture |p |Number of progress variables
% Reactive scalars n | Number of data points
Le Lewis number S; |Source term of the it" species
I Viscosities h?; Heat of formation of the it" species
D; Diffusivity of it" species|h | Total enthalpy
K Thermal conductivity |s Total no. of species in mechanism
Pr | Prandtl number ¢ |Non-linear function of Y
Sc Schmidt number Non-linear function of ¥

Governing Equations. Conservation equations for mass, species, momentum
and energy for the 1-D, fully compressible, and viscous flames, are given by:
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where the different terms are defined in Table 1.

We simplify the above equations making some well known assumptions. In
1D cartesian coordinates, the steady state solution to (1)—(4) is obtained only
when the total mass flux is zero, i.e., velocity field is zero (u, = 0) and so the
four equations reduce to:

5 (PDi%E) +5i =0 (5)
z+Zle%§h)—ZSiho7i: ) (6)

o (M55
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In (6), the final term in the energy equation is represented by the total sum
of the product of all the source species and their respective heat of formation
and is collectively called the source energy. Source energy is one of the crucial
parameters in the combustion simulation and accurate chemistry description
is required to define it. Prediction error of this term is used as the basis of
comparison of our method against the other state of the art methods.

Flamelet Solutions. The data is generated by solving 1-D Steady State
Flamelets differential equations in (6) using a finite volume PDE solver. The
species Y and thermochemical state variables S are generated using the solver.

Yll e Yls . Sll . 515 mel
Y= v |, S=| . i il, Zonw=1 - (7)
Vi oo o Vs St e o Shs Zmia,,

3.2 ChemTab

In ChemTab, the unsteady FGM approach is replaced with the following three
steps:

1. Calculation of the representative 1D flamelets (data generation)

2. Using the data generated jointly generate Progress Variables (encoder) and
Manifold Approximation (regressor) using ChemTab

3. Retrieval of thermo—chemical variables from the ChemTab-regressor accord-
ing to progress variables from CFD simulations.

Formulation. The generated data described in (7) is then used by ChemTab.
Conceptually the following equations summarize the relationships:

S=¢(Y) (®)
Zh%*s (9)

The two sub—problems of state—space parametrization are formulated as a
joint optimization problems as follows:

kE n
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(?@&m@T(?@me:I (16)
§~ = Y, Zuniz) (17)
Senergy ~ Senergy - (Y Zm’LZE) (18)

The formulation described in Eq.10 learns the optimal reactive scalars Cp,s
(described by the embedding Y x W) that along with Z,,;, form the progress
variables. This is a linear dimensionality reduction problem such that the new
basis retains the inherent physics in higher dimensions described by the non—
linear relation between Y and S. To facilitate the development of transport
equations using the progress variables it is necessary that the embedding of the
variables in the low—dimensional space be linear. The constraints on the linear
embedding are inspired by the work of [9] and the key ideas from PCA.

Implementation. The joint optimization problem is solved using a Deep Neu-
ral Architecture. ChemTab jointly optimizes two neural networks for the tasks
of reaction progress variable generation (encoder) and manifold approximation
(regressor). The encoder network focuses on linear dimensionality reduction and
creates a linear embedding for the input. The regressor network focuses on learn-
ing the manifold approximation: a regression function whose input is the lin-
ear embedding and the output are the desired thermo—chemical state variables

High Dimensional Physics Constraints

g
ooo -

Source Terms

_ T
State Variables

Manifold Approximate
Leaming

Fig. 2. ChemTab architecture

Table 2. Symbols used in Sect. 3.2

Description Description
fo | Prediction function in |sxXn
y | Input/output matrix s Total no. of species in mechanism
W | Weight matrix out | No. of thermo—chemical variables
b | Bias matrix d;p, | Input dimensions s
S | Themochemical state variables | L No. of layers
o | scalar/activation function dout | Output dimensions s + 1
o | Entry—wise operation m Number of neurons
n | Number of data points
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(Fig.2 and Table 2).
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(19)

As described by (19) a Deep Neural Network can be conceptualized as a series
of operations. The input of the network is the data for each of the species for
each flame at each axial coordinate.
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As described by (20) the network is a layer—wise composition. The input of
the network is reduced at the first layer linearly: this creates the linear embed-
ding/reacting scalars (Cp,s). The next layer concatenates the conserved scalar
Zmiz With the reacting scalars. These progress variables are then fed to the next
layer. The subsequent layers together make up the regressor that learns a non—
linear function between the progress variables and the thermo—chemical state
variables.

argmin  |foy) = S|
st. whitwl =1
W =1
W W) =1
As described by (21), ChemTab minimizes the Mean Absolute Error in pre-

dicting the thermo—chemical state variables (Source Energy in the current work)
while ensuring that the linear embedding conforms to the following constraints:

1. Embedding Weights w learnt are unit norm (UN)

2. Embedding Weights w learned for the species mass fractions Y;s are uncorre-
lated/orthogonal (WO)

3. The reaction progress variables are uncorrelated/orthogonal (AR)

The constraints in (21) will be also added to the objective in addition to the
predictions of key source terms, corresponding to a few important species, which
serve as the physics constraints.
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Extensions. The current framework and implementation can be very easily
extended to include the prediction of additional thermochemical state variables
and the projection of the embedding to get back the high dimensional mass
fractions. These can be implemented as two other neural networks and their
respective prediction errors can be added to the objective function.

4 Experimentation and Results

In this section we explain the specifics of the data set used, the training strat-
egy, impact of the number of C,,, comparison with the existing framework and
relevant machine learning methods and the performance of the best model in
the context of the multiple objectives.

4.1 Dataset

The training data was generated by solving 1-D Steady State Flamelets differ-
ential equations using a finite volume PDE solver. GRI-Mech 3.0 is one of the
widely used Methane mechanism to model the reaction kinetics. This mechanism
consists of 53 chemical species and 325 reactions.

The Flamelet solver discretizes the domain into 200 grid points (200 obser-
vations on the axial coordinate) in between the fuel and the air boundary and
100 flame are solved to steady—state. To train the model 20,000 data points (100
flames and 200 grid points) for a single pressure setting are used. Some of the
generated data that represent extinguished flames were discarded, which led to
exclusion of approximately 3,500 data points.

We experiment the model training and evaluation using two strategies:

1. 50% Flamelets — Train using data from 50% of flamelets selected randomly
and test using data from the remaining 50% of the flamelets, and,

2. 50% Data points — Train using 50% data points selected randomly, and test
on remaining 50% data.

4.2 Evaluation

We use the Mean Absolute Error of the Source Energy across the entire dataset
as the metric to compare the performance as described in Eq. (21).

4.3 Implementation and Settings

We implemented ChemTab using Tensorflow 2.3.0, Keras and Adam optimizer.
Models were trained on a server with Nvidia Quadro RTX 5000 GPU and cuDNN
8.0 and CUDA 11.0. We performed a coarse grid search on the hyperparameters
(dropouts, learning rate, early stopping, batch size) & standard model architec-
ture (number of layers, number of nodes in the layers, activation functions). After
the initial model architecture and hyper—parameter search, all subsequent mod-
els in the subsequent studies were trained for 500 epochs. Results are reported
as average over 10 runs (Table 3).
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Table 3. Model parameters

Parameter Value | Parameter Value

Learning rate |0.001 | Number of layers 11

Momentum 0.5 |Layer shapes 32|64/128|256|512

Dropout 5% | Activation Functions ReLU

Early stopping|Yes |Number of epochs 500 (short run) | 20000 (long run)
Batch size 32 Network weight initialization | Uniform distribution

Table 4. ChemTab architectural variants

Abbreviation | Description

UN Unit norm constraint on weights of the linear embedding

WO Orthogonality constraint on weights of the linear embedding

AR Orthogonality constraint on linear embedding concatenated with
Zmiac

UN + WO Unit norm constraint and orthogonality constraint on weights of the
linear embedding

UN + AR Unit norm constraint on the weights and orthogonality constraint on
linear embedding concatenated with Z,,;s

WO + AR | Orthogonality constraint on the weights and linear embedding
concatenated with Ziz

All Unit norm and orthogonality constraint on the weights and linear
embedding concatenated with Z,,i

4.4 Compared Methods

We compare the 7 variants of ChemTab with the relevant constraints on the
Linear Embedding and the Progress Variables with a series of state—of-the—art
baselines for Source Energy prediction Sect. 2.

4.5 Results

Current Framework Comparison. The current framework uses FGM based
progress variables and Conformal Mapping based Tabulation and Lagrange Poly-
nomial Interpolation based lookup. The tabulation was generated by using the
entire data—set. The best MAE that the framework generated on the data—set
was 2.243 E+09. The best ChemTab model trained on 50% of the data showed
a 73% reduction in error. This reduction although high comes from the limita-
tion of the current framework to include more than 2 progress variables and the
realization of that through conformal mapping. We present a more principled
comparison with the state—of-the—art methods in the next section.

Other Baseline Comparisons. We include DNN-PVG(NL)-DNN as refer-
ence although it cannot be used due to non-linear embedding. Similarly we
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Table 5. Current state of the art methods and ChemTab variants

Method abbreviation Progress variable generation

FGM-CPVG-DNN FGM Constrained

PCA-PVG-DNN PCA

DNN-PVG(NL)-DNN Non-linear encoder

DNN-PVG(UL)-DNN Unconstrained linear encoder

CT-PVG(ALL)-DNN Physics constrained linear encoder Table 4
CT-PVG(UN)-DNN Physics constrained (UN) linear encoder Table 4
CT-PVG(WO)-DNN Physics constrained (WO) linear encoder Table 4
CT-PVG(AR)-DNN Physics constrained (AR) linear encoder Table 4
CT-PVG(UN+WO)-DNN | Physics constrained (UN+WO) linear encoder Table 4
CT-PVG(UN+AR)-DNN | Physics constrained (UN+AR) linear encoder Table 4
CT-PVG(WO+AR)-DNN | Physics constrained (WO-+AR) linear encoder Table 4

did not consider Gaussian Processes as there are several challenges with opera-
tionalization of Gaussian Process in our context and so we focus more on bench—
marking against the relevant DNN based approaches (Table5).

-

CT-PVG(ALL)-DNN 304010 )
CT-PVG(WO+AR)-DNN —ml 3.96 - 10°
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Fig. 3. MAE for source energy: data set split strategy

Figure 3 shows the results of an ablation study for both types of sampling
strategies. When the trained using the sampled points, all models consistently
do better than when trained using sampled flamelets. Essentially the flame is
considered as an ensemble of multiple one-dimensional flamelets, each of which
captures some of the highly nonlinear state—space and hence almost all models
struggle in this training regime. ChemTab models still perform better and our
assertions are that our constraints help in the generalization process. Our dataset
is limited and so we limit ourselves to use only 50% of the data for training.

As we increase the number of Cp, the computational time of the flow simula-
tion goes up, so we want to use the least number of Cp, while still capturing the
essential physics. Figure 4 shows the MAE decreases with increase in the number
of Cy, and then starts to increase again. As we add more (), the embedding
has too many degrees of freedom and hence may start diverging.
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Table 6. Constraints — best model

UN WO
w1 w2 ws w4
‘wl P, ws ws wi | 1.004 |-0.003 |-0.002 | 0.005
‘1.004 1,005 1.001 | 0.998 ws | -0.003 | 1.004 |-0.003 | 0.002
ws | -0.002 | -0.003 | 1.001 | 0.001
wy | -0.005 | 0.002 | 0.001 |0.99
AR

Zimiz | Cpv1 | Cpvz | Cpvs | Cpos

Zmiz | 0.004]0.00 [0.00 |0.00 |0.00

Cpvy  0.00 |0.008 [-0.001|0.001 |0.00

Cpvs2 | 0.00 |-0.001|0.008 |0.00 |0.00

Cpvs [ 0.00 |0.001 |0.00 |0.007 [-0.001

Cpvs  0.00 |0.00 |0.00 |-0.001)0.067
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Best Model Performance. Table6 shows the conformity of the constraints
of Eq. 10. The first tabulation shows the (14) constraint conformity. The second
tabulation shows the (15) constraint conformity and the third (16) constraint
conformity. The (16) is also adequately satisfied as the constraint conformity is
measured through covariance (Fig.5).

Best Model Long Run Performance. We trained best model architecture
on a 50% Data Points strategy for a long run of 20000 epochs and generated a
MAE of 1.80E-+08.

5 Conclusion

We propose ChemTab, a novel framework for jointly learning the progress vari-
ables and the manifold approximation. ChemTab follows the principle of physics
guided neural networks [10], however no solutions exist that can directly benefit
the combustion community. ChemTab outperforms the state—of-the—art state—
space parametrization in combustion. Crucially, ChemTab generated reaction
progress variables can be interpreted by examining the weight matrix, W, and
thus, allow for physical insights into the systems being modeled. Incorporation
of ChemTab into a flow simulation will be explored as part of future work.
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Abstract. Simulations of the microvasculature can elucidate the effects
of various blood flow parameters on micro-scale cellular and fluid phe-
nomena. At this scale, the non-Newtonian behavior of blood requires
the use of explicit cell models, which are necessary for capturing the
full dynamics of cell motion and interactions. Over the last few decades,
fluid-structure interaction models have emerged as a method to accu-
rately capture the behavior of deformable cells in the blood. However, as
computational power increases and systems with millions of red blood
cells can be simulated, it is important to note that varying spatial distri-
butions of cells may affect simulation outcomes. Since a single simulation
may not represent the ensemble behavior, many different configurations
may need to be sampled to adequately assess the entire collection of
potential cell arrangements. In order to determine both the number of
distributions needed and which ones to run, we must first establish meth-
ods to identify well-generated, randomly-placed cell distributions and to
quantify distinct cell configurations. In this work, we utilize metrics to
assess 1) the presence of any underlying structure to the initial cell dis-
tribution and 2) similarity between cell configurations. We propose the
use of the radial distribution function to identify long-range structure in
a cell configuration and apply it to a randomly-distributed and struc-
tured set of red blood cells. To quantify spatial similarity between two
configurations, we make use of the Jaccard index, and characterize sets
of red blood cell and sphere initializations.

Keywords: Red blood cells + Microvascular simulation - Cell packing

1 Introduction

Computational blood flow models are a powerful tool for answering biomedical
questions. For microvessel simulations, where individual cell diameters are on
the same order of magnitude as vessel size, the presence of cells plays a sig-
nificant role in the non-Newtonian behavior of blood. In this regime, velocity
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profile blunting has been observed due to the motion of cells towards the ves-
sel centerline [1] and blood viscosity has been shown to be dependent on vessel
diameter and hematocrit (volume percentage of cells in the blood) [2]. Addition-
ally, cell-to-cell [3] and cell-to-vessel interactions [4] have been shown to affect
the underlying blood flow profile. Therefore in small vessel simulations, blood
must be modeled as a suspension of cells rather than a continuum fluid. Fluid-
structure interaction (FSI) models, such as the immersed boundary method [5]
or dissipative particle dynamics [6], which fully couple deformable particles with
a background fluid, have been shown to accurately model cells in microfluidic
[7] and microcirculatory systems [8]. Blood flow simulations using FSI models
provide a wealth of information, as both microscopic and macroscopic quantities,
such as individual cell position and deformation, and fluid pressure and velocity
profiles, can be precisely tracked and studied over time [9,10]. More importantly,
these models allow for the isolation and controlled variation of specific param-
eters such as cell size or stiffness, enabling researchers to probe the effects of
individual parameters on the quantity of interest. Much of the in silico work in
microvessels with cell FST models has been focused on red blood cells (RBCs),
including studies on the effects of cell deformability and shape [7,11,12], parti-
tioning at junctions in the vasculature [13,14], aggregation mechanics [15], and
development of a cell-depleted layer [16,17]. Simulation has also been used to
study the motion of other particles in the presence of RBCs such as platelets
[18,19], leukocytes [20,21], and circulating tumor cells [10,22-25].

While FSI models of cells in complex geometries are not new, advances in
computational efficiency and capability [26-29] have only recently made this
approach practical for comprehensive studies of realistic systems. The inclusion
of explicit particles in particular introduces several new obstacles. The main
challenge is simply one of statistics: the motion of particles diffusing through
a vessel is an inherently stochastic process, thus trajectories must be sampled
a sufficient number of times to capture average behavior. For example, when
tracking cancer cells in silico, the distance to a vessel wall directly influences
the cell’s likelihood of adhesion [30] and subsequent escape into nearby tissue.
We previously demonstrated the effects of varying cell positions while studying
combinations of hemodynamic parameters and the motion of a tumor cell [22].
Even when all bulk fluid parameters were held constant, the trajectory of the
tumor cell was found to vary significantly based on the relative configurations
of neighboring cells.

In addition to increasing the overall computational cost, the need for a rep-
resentative ensemble of starting configurations introduces new potential sources
of error that must be managed. This challenge is particularly acute for systems
with higher hematocrit values, where random coordinate generation must be
done carefully to avoid artificial structure that would bias the observed dynam-
ics. Similar to the well-known equilibration problem in molecular dynamics [31],
flow simulations through tortuous vascular geometries have the added compli-
cation that one can not easily gather equilibrated statistics simply by running
a closed system longer in time. Instead, one must generate a number of distinct
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sets of equilibrated starting points to be run independently [32]. To this end, we
propose a method to generate many cell configurations and the use of the radial
distribution function to characterize the structure in a particular configuration.
The final challenge is to define quantitative metrics to rigorously compare indi-
vidual cell configurations and to characterize the complete set as a whole. For
this purpose, we propose the use of the Jaccard index to quantify spatial simi-
larity between individual configurations as an appropriate metric for describing
and comparing sets of cell configurations.

2 Methods and Metrics
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Fig. 1. Workflow for determining the best set of cell configurations to describe the
ensemble. (1) The radial distribution function g(r) is used to assess randomness in
a distribution of cells. (2) The Jaccard index J is used to quantify spatial similarity
between two configurations. (3) A set of pairwise J values are used to numerically
describe a large set of cell configurations and presented as a distribution.

Our proposed workflow and associated metrics are shown in Fig.1. In this
section, we will describe both the methods we use to generate cell configura-
tions as well as the associated metrics used to characterize them.
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2.1 Generating Initial Configurations of Red Blood Cells
in a Microvessel

Dense packing of non-overlapping shapes is a long-standing research problem of
active interest [33-35]. Here we describe a procedure for generating and charac-
terizing packed configurations of RBCs in arbitrary vessels at a set hematocrit.
Rather than generating individual configurations on demand, we instead start
with a large system of packed cells from which we can fill vessels of arbitrary
size and shape. This technique has the advantage of letting us generate a packed
domain in the simplest possible geometry prior to simulation while avoiding the
code complexity an on-the-fly implementation would require. The source domain
is created to be several times larger than the vessel of interest. The standalone
implementation provided by Birgin et al. [36] is used to pack ellipsoids that
tightly encompass the RBC’s biconcave shape, returning a set of non-overlapping
positions and orientations. Although the fully enclosed RBC represents approxi-
mately 70% of the encompassing ellipsoid volume, a distribution with a packing
fraction of up to 60% is enough to reach the high end of microvascular hemat-
ocrit levels. An example of this packing and a corresponding cell initialization
is shown in Fig. 2. Testing vessels ranging in diameter from 20 to 50 pm shows
the ability to reach realistic hematocrits from 20% to 35% consistently.

NV NS e N5
SOTIRTAA 060

SO rel

Fig. 2. An example of a cell initialization taken by submerging the vessel within a
large, pre-generated packing domain. Only cells that fit completely inside the vessel
are returned and used as the starting point for a simulation.

This approach of separately generating a packed source domain has the
advantage of easily allowing for rigorous a priori analysis before performing
expensive high performance computing (HPC) simulations. To avoid initializing
FSI runs with non-physical starting configurations, the source bulk system must
not have any long-range order consistent with crystalline packing. The radial
distribution function g(r) is a well-established metric in the simulation of fluids
[37] used for confirming liquid structure, defined as:

dn,

9(r) = 4dmrdrp

(1)
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where dn. returns the number of cells within a shell of thickness dr and p is the
bulk density. Long-range structure is reflected in the form of multiple peaks well
beyond the average particle spacing. RBCs are assumed to start from a fully
disordered liquid state, reflected by a g(r) that quickly converges to a constant
value of unity.

Once the bulk source geometry has been generated, individual configurations
can be created by submerging the target vessel in the source domain at different
locations and selecting all cells contained within. This process remains the same
for both simple and complex geometries, establishing a straightforward method
for generating many different configurations prior to running HPC simulations.

2.2 Quantifying Spatial Similarity Between Cell Configurations

After generating a set of multiple cell configurations, the next step is to verify
that each of these packings are distinct by quantifying their spatial similarity
to each other; specifically, the fraction of volume shared by two configurations.
However, due to the irregular biconcave disk shape of RBCs, a simple analytical
algorithm for overlap check given cell positions and orientation angles does not
exist. Therefore in this calculation, a numerical method is utilized, where each
configuration of RBCs is mapped to a 3-D grid, and overlap is calculated by the
number of grid points shared. The Jaccard index, or intersection over union, is
used to measure the similarity between two discrete sample sets, defined as:

_|Gin Gy
RTeAVTeN 2)

where C; and C}; are independent samples of the same space. We propose the use
of the Jaccard index to quantify the volume overlap between sets of RBCS by
comparing the interior grid points. This is similar in approach to the algorithms
used by the image segmentation community [38], such as the Dice similarity
index.

Since J(C;, C;) represents the percentage of overlapping cell volume between
C; and Cj, J(C;, Cj) = 100% if two arrangements are identical and zero if there
is no shared cell volume in space. A threshold value ¢ is chosen to label whether
or not two configurations are correlated; if J(C;,C;) > ¢, the pair is marked
similar. For example, two test configurations that contained the same group of
cells shifted by a few tenths of a microns led to J over 90%, and would be
marked as a similar pair. Because the likelihood of two configurations of cells
both occupying a certain space increases with hematocrit, ¢ is not a static value,
and is chosen on a per hematocrit basis.

A two-dimensional example for calculating J using RBCs is provided in Fig. 3.
Each initialization contains a single cell marked red for configuration 1 and blue
for configuration 2. The corresponding lattice points are marked with the color
of containing cell. Once these two lattices are overlaid, the shared points are
marked in yellow.

J(C;, Cy)



94 S. Roychowdhury et al.

EEE EEEEEEER mEEEERRR
o 3
R . o am HE EEEEERN
aEm .. EE OO ENEENHN
HEE | | [ ] | ] | , A B 0 B E NN ..18
EEm EEEEEEER EEEEEEETSR o
[ W] EEEEEEERN EEEEEEEN
EEE EE EEEEERN
EEEEEEER EEEEEEER SEEREEERRE J=16.7%
. HE E B EEEER
Configuration 1 Configuration 2

Fig. 3. A 2-D example for the calculation of Jaccard index J between two configurations
of RBCs. After the RBCs are mapped to their corresponding lattices, there are 18 total
points which contain a cell, of which 3 are shared in both configurations. J = 3/18 =
16.7% in this example. (Color figure online)

Another two-dimensional visual example is shown in Fig. 4, displaying dis-
tinct configurations of circles with significantly different J values. Compared to
the base configuration, there is a clear difference in overlap, which can be iden-
tified visually and captured quantitatively through an analytical computation
of J.
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Fig.4. A 2-D example of differing Jaccard indices compared to a base configuration
(left) using circular particles. Two other distinct configurations are generated and over-
laid on the base configuration (middle and right). The middle configuration is less
similar to the base case than the right configuration and can be confirmed visually
by identifying by the overlapping violet regions and computed using J. Although the
overlap is easier to visualize in 2-D, it is much easier to numerically identify similarity
in 3-D space by using J.

Although these examples are displayed in two dimensions for clarity, our RBC
configurations and future simulations are performed in three-dimensional space.
The Jaccard index provides a numerical method to identify spatial similarity
rather than a qualitative comparison.



Establishing Metrics to Quantify Underlying Structure in RBC Distributions 95

Since the Jaccard index is applied between two particular configurations, J
needs to be calculated on a pairwise basis before it can be used to quantify the
entire distribution of configurations. For a set of configurations S = {C1, ...,Cy },
we define Jg, the set of Jaccard similarity scores, as:

JS = {J(CZ,CJ) i,j = 1...n,i 75 j} (3)

To quantify the similarity of a particular configuration C; with respect to all
the others, the mean Jaccard index J(C;) is calculated as:

J(Cy) = J(Ci, Cy), 5 # 1 (4)

1

1
n—14%

]:
for a set of n configurations. Given two similar configurations C' and C’
such that J(C,C") > ¢, and mean Jaccard indices such that J(C) < J(C'),

configuration C” would be considered first for removal from the set.

3 Results and Discussion

3.1 Applying the Radial Distribution Function to Quantify
Structure in a Single Packing

To test for the presence of long-range structure, the radial distribution function
g(r) is applied to two large, dense packings of RBCs. Both source arrangements
are generated in a cubic domain of side length 200 pm with over 35,000 cells.
A random distribution X,,,4 is created by packing the cube and then applying
an external force to perturb the initial arrangement of cells, while a structured
set of cells Xgtryuet is produced by tessellating a small set of RBCs across the
space. The radial distribution function is then applied to each set of cell centers
splitting dr into 0.25 pm buckets, and the cell configurations and corresponding
g(r) functions are shown in Fig. 5.

Within X,.n4, g(r) contains a single peak near the lengthwise diameter of
the RBC that quickly trails off to unity, indicative of a liquid-like, random dis-
tribution of particles. In the case of X ¢, multiple discrete peaks are visible,
signifying the presence of long-range structure in the distribution of cells. A qual-
itative comparison between the two source domains can be performed visually,
but the use of the radial distribution functions provide a quantitative confirma-
tion for the presence of ordered structure.
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Since the procedure to generate many cell configurations in a microvessel
utilizes a subset of the cells in the large domain, it is important to confirm the
randomness of the initial cell arrangements. The packing found in X4y is non-
physiological, and would generate many structured cell initializations as inputs
to HPC simulations. Moving forward, we sample configurations from X, after
confirming the lack of long-range structure in its distribution of cells.
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Fig. 5. A random distribution X,qn4 (top) and ordered distribution Xiruee (bottom)
of cells packed within a cube of side length 200 wm. The corresponding radial distri-
bution functions are shown to the right. X,qna’s g(r) shows a single peak and trails off
to 1 quickly, analogous to a random liquid-like state, while Xiruet’s g(r) displays sev-
eral peaks, indicating that the distribution contains a repetitive structure. Sampling
cells from the random distribution provides a better initial set of the positions and
orientations of red blood cells for running HPC simulations.
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3.2 Utilizing Jaccard Index to Quantify Distributions of Cell

Configurations
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Fig. 6. There are 72 different non-overlapping initializations for a cylinder of diameter
30 wm and length 100 wm pulled from a packing domain of 200% wm?. Cells within this
region are used to generate RBC configurations of initial positions and orientations at
a target hematocrit of 25%. A subset of the cutouts are shown in each xy and yz planes

for this set of initializations.

Non-overlapping cutouts representing an ideal microvessel geometry with diam-
eter 30 wm and length 100 wm are created from X,.,,q. The dimensions of the
source geometry allow for 72 independent configurations to be generated: 6 from
the y- and z-planes, and 2 in the x-plane, as shown in Fig.6. All configurations
have a hematocrit of 25% with N = 160 RBCs on average. The Jaccard index is
calculated using a grid spacing of 0.25 wm. A histogram of all pairwise Jaccard
similarity index values is presented in Fig. 7a. For comparison, random configu-
rations of 160 spheres were numerically generated at a 25% packing density in a
cylinder with the same aspect ratio (see Fig. 7Tb—d). We note that increasing the
number of configurations for better statistics gave smoother distributions but

did not fundamentally change the shape.

As expected, the overlap index of configurations of randomly-placed spheres
follows a normal distribution. The distribution of RBCs, on the other hand,
is clearly skewed away from normal. This may be an artifact of the packing
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algorithm used to populate the source distribution X,.,,qs or may be a funda-
mental difference in how biconcave disks pack into a confined geometry; more
work will be needed to elucidate the underlying cause. The magnitude of the
average overlap differs significantly between the shapes as well despite all sys-
tems having the same volume packing fraction. It should be noted that the RBC
geometry likely has a systematic underestimation of the overlap due to discretiza-
tion error, though this is not expected to be large. The spherical overlap was
computed analytically as a function of distance between sphere centers. Figure 8
shows .J, the average pair overlap of a configuration with all other configurations.
This provides a method to compare individual configurations’ spatial coverage
against the full set. We expect that both Jg and J distributions will change
based on vessel geometry and hematocrit. However, this study establishes that
a pairwise Jaccard index distribution can be used as a quantitative metric to
describe a set of cell configurations, generated with the same packing fraction.
We posit that selecting configurations with low J could be used to sample the
configurational phase space more efficiently; this will be the topic of a follow-up
study.
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Fig. 7. The distribution Js of pairwise J values for (a) RBC and (b-d) sphere config-
urations. N =160 objects.
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4 Conclusion

In the microvessel regime, FSI models are used to perform simulations with
explicit RBCs to account for non-Newtonian effects. Now that recent computa-
tional advances have enabled the rise of large-scale FSI simulation studies, it is
important to sufficiently sample the ensemble of potential cell arrangements to
capture a macroscopic behavior. In order to select the minimum set of config-
urations that spans the parameter space, certain quantitative metrics must be
established which (1) indicate that a particular configuration is a good starting
point and (2) show that two separate arrangements are distinct and spatially
uncorrelated. These parameters can then be used to define the space of possible
configurations and determine which set of arrangements best span the space.
In this study, we apply the radial distribution function to particular config-
urations of RBCs to qualify whether a structured arrangement of cells exists
in the distribution. We choose two large distributions of cells, one randomly
placed and one structured, analogous to atoms in liquid- and solid-like materi-
als, and show that this function is able to quantify the presence of long-range
structure in cell positions. We also use the Jaccard index J to capture a quanti-
tative representation of shared cell volume between two configurations. Taking
the irregular shape of RBCs into account, we devise a numerical method that
maps cells on to a 3-D lattice which is used to compute .J. We then produce a set
of 72 RBC configurations in a 30 pm diameter and 100 pm length microvessel
from the randomly-distributed group of RBCs. For comparison, we also generate
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sets of 72, 200, and 1000 configurations of spheres at the same packing fraction.
Finally, we perform pairwise J calculations and plot the distribution of Jaccard
index values, showing that this metric can be used to define the space of particle
configurations.

This study sets the groundwork for identifying the optimal set of initial
cell arrangements for a specific group of simulation parameters. Next steps for
this work include performing simulation studies with sets of spatially uncorre-
lated RBC configurations to determine how these affect certain outputs, such
as motion of individual cells. Future work will also study the effect of different
vessel sizes, shapes, and hematocrit on distributions of the Jaccard similarity
index.
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Abstract. The paper introduces a novel coevolutionary approach
(CoEvoSQG) for solving Sequential Stackelberg Security Games. CoEvoSG
maintains two competing populations of players’ strategies. In the pro-
cess inspired by biological evolution both populations are developed
simultaneously in order to approximate Stackelberg Equilibrium. The
comprehensive experimental study based on over 500 test instances of two
game types proved CoEvoSG’s ability to repetitively find optimal or close
to optimal solutions. The main strength of the proposed method is its
time scalability which is highly competitive to the state-of-the-art algo-
rithms and allows to calculate bigger and more complicated games than
ever before. Due to the generic and knowledge-free design of CoEvoSG,
the method can be applied to diverse real-life security scenarios.

Keywords: Coevolution - Security games - Cybersecurity

1 Introduction

New technologies bring new challenges. One of them is cybersecurity. In recent
years, this topic has gained more and more importance [14] since more and more
critical systems are connected to the Internet and increasingly many aspects
of people’s lives depend on reliable computer infrastructure. We are facing a
constant arms race between defenders and attackers. One of the approaches
to the issue of cybersecurity attacks is to model them as a non-cooperative
game. This approach was applied, for instance, in intrusion detection problem
in mobile ad-hoc networks [7], security-aware distributed job scheduling in cloud
computing [5], detecting vulnerabilities in interbank network [6], planning deep
packet inspections [29], and other. In particular, the Stackelberg Security Games
(SSGs) recently gained lots of popularity due to a bunch of successful practical
applications [19].

SSGs were successfully deployed not only in cybersecurity domain [20,26]
but also in a wide range of real-world scenarios, e.g. scheduling Los Angeles
International Airport canine patrols [8], protecting US Coast Guard’s resources
in Boston harbor [18], or preventing poaching in the Queen Elizabeth National
Park in Uganda [4].
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In SSG there are two asymmetrical players: the Defender and the Attacker.
The Defender commits to their strategy first. Then, the Attacker, knowing
the Defender’s commitment, decides on their own strategy. The above order
of strategy-related decisions favors the Attacker and mimics real-world scenarios
in which the Attacker can observe the opponent’s strategy (e.g. patrol schedules)
and plan their attack accordingly.

The strategy chosen by the Defender is a mized one, i.e. a probability dis-
tribution over all possible pure (i.e. simple deterministic) strategies [3]. The
Attacker is aware of this distribution but has no knowledge about its specific
materialization (the sequence of actions that will actually be played). The goal
of SSG is to find Stackelberg Equilibrium (SE), i.e. the pair of players’ strategies
that fulfills the following assumption: changing strategy by any player will lead
to his/her result deterioration.

In this paper, we consider sequential SSGs which means that each player’s
strategy consists of a sequence of actions to be executed (played) in consecutive
time steps. In such SSGs, finding SE is an NP-hard problem [3]. For this reason,
exact methods have limited applicability and are rarely implemented in real-
world scenarios. Instead, a number of heuristics approaches were proposed in the
literature, including the use of Evolutionary Algorithms (EAs) [12,28,29]. EAs
are inspired by the process of biological evolution and consists in maintaining
a population of potential solutions, which is iteratively modified by applying
evolutionary operators: mutation, crossover and selection.

In this paper, we extend the previous EA approaches and propose the coevo-
lutionary algorithm for solving SSGs (CoEvoSG). The method not only main-
tains a population of Defender’s strategies (as EA-based approaches) but also a
population of Attacker’s strategies. Both populations compete with each other
in the process of coevolution. In effect, the convergence to the near-optimal solu-
tion is much faster than in the state-of-the-art methods, which allows to solve
larger and more complex games than ever before.

Contribution. The contribution of this paper is three-fold: (i) a novel coevolu-
tionary algorithm (CoEvoSG) for Sequential Stackelberg Security Games, capa-
ble of finding optimal or near-optimal solutions is proposed, (ii) a comprehensive
experimental study proves the efficacy of CoEvoSG and its ability to solve games
of sizes and complexity that are beyond the capability of state-of-the-art meth-
ods, (iii) to our knowledge, application of coevolutionary algorithms to solving
sequential SSGs, has never been considered before in the related literature.

2 Problem Definition

A sequential SSG is played by two players: the Defender (D) and the Attacker
(A), and is composed of m time steps (moves). In each time step both players
simultaneously choose their action to be performed. A pure strategy op of player
P (P € {D,A}) is a list of his/her actions in consecutive time steps: op =
(a1,az2,...,am). If by Xp we denote a set of all possible pure strategies of P,
then a probability distribution 7p € II), over X'p is the mized strategy of P, where
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IT, is set of all his/her mixed strategies. For any pair of strategies (mp,m4) the
expected payoffs for the players are defined and denoted by Up(wp,74) and
Ua(mp,ma). Stackelberg Equilibrium is a pair of strategies (mp,m4) satisfying
the following conditions:

mp = argmax Ux(Tp, BR(7p)), BR(np) = argmaxUa(mp, 7).
ap€llp TAEI 4

The first equation chooses the best Defender’s strategy mp under the assumption
that the Attacker always selects the best response strategy (BR(wp)) to the
Defender’s committed strategy.

Furthermore, if there exists more than one optimal Attacker’s response (with
the same highest Attacker’s payoff), the Attacker selects the one with the high-
est corresponding Defender’s payoff, i.e. breaks ties in favor of the Defender.
While this assumption may seem counterintuitive, the opposite way of breaking
ties may lead to situations when equilibrium doesn’t exist [24]. The above SE
extension is known as Strong Stackelberg Equilibrium [1] and is adopted in this
paper (as well as in the vast majority of SSG publications).

Both players choose their strategy at the beginning of the game (first the
Defender and then the Attacker) and they cannot change it during the gameplay,
i.e. in consecutive steps they follow actions encoded in the selected strategy
irrespective of the opponent’s moves (they are not aware of opponent’s current
and past actions). Conitzer et al. [3] proved that for each Defender’s mixed
strategy there exists at least one Attacker’s pure strategy which maximizes their
payoff. This property is commonly utilized by solutions proposed in the literature
since it narrows the Attacker’s response search space to only pure strategies.

3 Related Work

The methods of solving SSGs can be divided into two main groups: exact and
approximate. Exact approaches are based on Mixed-Integer Linear Programming
(MILP), which formulates SSG as an optimization problem with a specific target
function and a set of linear integer constraints that must be fulfilled. MILP
programs are usually computed by specially optimized software engines - solvers.

C2016. One of the most popular exact method is C2016 [23], which also bases on
MILP but instead of directly computing SE, utilizes the Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). In SEFCE, the Defender can send sig-
nals to the Attacker who has to follow them in their choice of strategy. C2016
uses a linear program for computing SEFCE and then modifies it by iteratively
restricting the signals the Defender can send to the Attacker and converging to
SE. In this article C2016 was used to calculate the reference optimal solutions.

O2UCT. Thee above-mentioned MILP approaches returns exact (optimal) solu-
tions but suffer from exponential computation time and poor memory scala-
bility, which makes them inefficient for large games. Thus, some approximate
approaches have been recently proposed, e.g. O2UCT [10,11] which utilizes
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an Upper Confidence Bounds applied to Trees (UCT) algorithm [13] (a vari-
ant of Monte Carlo Tree search [21]). O2UCT is based on guided sampling
of the Attacker’s strategy space and optimizes the Defender’s strategy under
the assumption that the sampled Attacker’s strategy is the optimal response.
O2UCT scales visibly better than exact MILP-based solutions and returns close-
to-optimal solutions for various types of games.

EASG. Another heuristic method, which is the most related to the app-
roach presented in the paper, is Evolutionary Algorithm for Stackelberg Games
(EASG) [27,28], which optimizes the Defender’s payoff by evolving a population
of candidate strategies. EASG starts off with a population that contains randomly
selected pure Defender’s strategies. Then, until the stop condition is not fulfilled,
the population evolves in consecutive generations. In each generation, the follow-
ing four operations are applied: crossover, mutation, evaluation, and selection.

Crossover combines two individuals randomly selected from a population
by merging their pure strategies and halving their probabilities. Afterwards,
the resultant chromosome is shortened (simplified) by deleting some of its pure
strategies with a chance inversely proportional to their probabilities. The muta-
tion operator changes one of the pure strategies encoded in the chromosome
starting from a randomly selected time step. New actions are drawn from all
feasible actions in a corresponding game state. The role of mutation is to boost
exploration of the strategy space.

Next, each individual is assigned a fitness value which is the expected
Defender’s payoff. This step requires finding the optimal Attacker’s response to
the mixed Defender’s strategy encoded in the chromosome. To this end, EASG
iterates over all possible Attacker’s pure strategies and selects the one with the
highest Attacker’s payoff. Due to the potentially large space of Attacker’s pure
strategies, the evaluation phase is the most time-consuming step of EASG.

Finally, in the selection phase, individuals with higher Defender’s payoff are
more likely to be selected to the next generation. The above evolutionary app-
roach was successfully applied to various types of SSGs including games with
moving targets [12] or games assuming Attacker’s bounded rationality [29].

4 Coevolutionary Approach

Motivation. As we mentioned in the previous section, EASG evaluation process
requires iterating over all possible Attacker’s pure strategies in order to find the
best one and calculate the expected Defender’s payoff. This evaluation procedure
is performed thousands of times (for each individual in each generation) which
is infeasible (too time-consuming), except for small games.

Furthermore, in many SSG instances there exists a relatively small subset
of Attacker’s strategies that need actually to be considered when looking for
the optimal response. Many of the Attacker’s strategies can either be trivially
qualified as weak (e.g. an attack at a well-protected target with low reward or
a sequence of actions which does not lead to a target), or there are subsets
of similar strategies and only one representative from each of them needs to
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be examined in order to find the best Attacker’s response. However, for more
complex games it is not possible to determine - within a reasonable time - which
of the Attacker’s strategies could be omitted, nor to define a representative
subset of these strategies, due to the high dependence of this selection on the
game topology (structure) and payoff distribution.

In order to address the issue of time-consuming evaluation process in EASG,
we propose a novel coevolutionary approach which maintains two populations:
one composed of the Defender’s mixed strategies (as in EASG) and the other
consisting of the Attacker’s pure strategies. Strategies from the Attacker’s pop-
ulation are used to evaluate the Defender’s strategies. Instead of calculating
the Defender’s payoff against all possible Attacker’s pure strategies, it is now
calculated only versus a subset of the Attacker’s strategies represented in the
population. Both populations compete with each other, i.e. the Attacker’s pop-
ulation attempts to find the best possible response to the strategies from the
Defender’s population and vice versa - the Defender’s population tries to evolve
the most effective strategies with respect to the response strategies encoded in
the Attacker’s population.

System Overview. A general overview of the CoEvoSG algorithm is presented
in Fig. 1. Both populations are initialized with random pure strategies and then
developed alternately. First, the Attacker’s population is modified by evolution-
ary operators (crossover, mutation, and selection) through g, generations. Then,
the Defender’s population is evolved through the same number of g, generations.
The above loop is repeated until the stop condition is not satisfied.

Defender Attacker
r A r A
Population
1 Crossover initialization Crossover
] ]
Y ; Y
Mutation | Mutacja
|
|
! !
Defender's Defender Attacker's
population evaluation [+~ — " pspir:at?;r? ***** I~ — | population evaluation
|
| [ - ]
! L — !
|
Selection L L | Atackers |« — — — I Selection
population
Y Y
. Return .
Is internal the best Is internal
-NO-_generations limit >—YES Defenders |<YES condition < YE generations limit
reached? strategy fulfilled? reached?
NO
J

Fig. 1. A high-level overview of the CoEvoSG algorithm.
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All evolutionary operators applied to the Defender’s population are imple-
mented in the same way as in EASG and briefly described in Sect. 3. Additional
details can be found in [28]. The novel operators applied to the Attacker’s pop-
ulation are described below.

Initialization. The Attacker’s population contains V4 individuals. Each indi-
vidual k represents a randomly selected pure Attacker’s strategy, encoded as a

list of actions in consecutive time steps: 0% = (a¥, a%, ..., ak)). In each time step
t € {1,...,m} af is drawn uniformly from all feasible actions in a given state.

Crossover. Each individual from the Attacker’s population is selected for a
crossover with probability p.. Selected individuals are paired randomly and for

each pair, one-point crossover is performed, i.e. for strategies o’y = (a7, ab, ..., al,)

and 0% = (af,as,...,as,) the following two child individuals are created: ¢’y =
T T S S s __ S S T T T _ S 3

(af,...aj,ai,q,...,a;,)and o’y = (af,...ai,ai,,,...,a;,), where aj = aj is the

first common action (in the same time step) in the parent strategies. If such an
action does not exist, the crossover has no effect. For example, if an action is to
choose a vertex in a game graph the player moves to, then a] = aj would be the
first common vertex on the paths defined by the parent strategies.

Mutation. Each individual is mutated with probability p,,. Mutation oper-
ator, starting from a randomly selected step, modifies all subsequent actions
encoded in the chromosome. Each subsequent action is chosen randomly from
all available actions in the current state. The result of mutation of strategy
oy = (aj,a5,...a") is o'y = (a¥,ab,...,al_q, af/, af;l, e a%), where i is the
chosen time step. The role of mutation is to boost exploration of new areas in
the search space by means of an introduction of random perturbations.

Evaluation. The evaluation procedure is the most important component of
the proposed solution. Individuals from the Defender’s population are evaluated
against all strategies from the Attacker’s population. For each Defender’s strat-
egy (mp) the outcome (players’ payoffs) of the gameplays against all strategies
from the Attacker’s population are computed. Then, the best Attacker’s response
is chosen: Uﬁfs’f = argmax,, Ua(mp,o 4). Finally, the expected Defender’s payoff
against this Attacker’s response (Up(mp,ob®!) is assigned as the fitness value
of the evaluated Defender’s strategy mp. There is a chance that the above fit-
ness value is not the true expected Defender’s payoff because of the lack of the
(overall) optimal Attacker’s response in the Attacker’s population. However, the
expected algorithm’s behavior is to evolve such a strategy (optimal response) in
the coevolution process in subsequent generations.

The evaluation procedure of the individuals from the Attacker’s population
is more complicated. Usually, there is no single optimal Attacker’s response for
all Defender’s strategies. Depending on the particular Defender’s commitment
(Defender’s mixed strategy), the best Attacker’s response may change.

It is generally desired that the Attacker’s population is composed of optimal
responses for all possible Defender’s strategies. Assigning the average Attacker’s
payoff against all strategies from the Defender’s population (or part of it) as
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fitness value may be a weak approach because a given Attacker’s strategy is usu-
ally strong (optimal) only against specific Defender’s strategies. Such Attacker’s
strategy needs to be preserved but averaging the payoffs will decrease the fitness
of such a strategy posing a risk of omitting it in the selection process.

Hence, a better idea is to use the maximum metric. However, in Defender’s pop-
ulation (in order to preserve its diversity) there exist also some weaker strategies.
For those strategies most of the Attacker’s strategies will lead to high Attacker’s
payoff and such an approach wouldn’t allow distinguishing good Attacker’s strate-
gies from the bad ones (because all of them will get high fitness as a maximum pay-
off against one of the weak Defender’s strategies). This observation discredits cal-
culating maximum payoff against all Defender’s strategies. On the other extreme,
the Attacker’s fitness value could be computed only against the best strategy from
the Defender’s population, but this would lead to degeneration (premature con-
vergence) of the Attacker’s population. All Attacker’s strategies would tend to be
an optimal response for a particular Defender’s strategy, becoming vulnerable to
other strategies from the Defender’s population.

Consequently, an intermediate option was implemented, i.e. the Attacker’s
strategy fitness is the maximum of Attacker’s payoffs against the Ny, highest
fitted individuals from the Defender’s population (N, is CoEvoSG parameter).

Selection. The selection process decides which individuals from the current pop-
ulation will be promoted to the next generation. At the beginning, e individuals
with the highest fitness value are unconditionally transferred to the next genera-
tion. They are called elite and preserve the best-fitted solutions. Then, a binary
tournament is repeatedly executed until the next generation population is filled
with N4 individuals. For each tournament, two individuals are sampled (with
replacement) from the current population (including those affected by crossover
and/or mutation). The higher fitted chromosome wins (and is promoted to the
next generation) with probability ps (so-called selection pressure parameter).
Otherwise, the lower-fitted one is promoted.

Stop Condition. The algorithm ends when at least one of the following condi-
tions is satisfied: (a) CoEvoSG attained the maximum number of [, generations,
(b) no improvement of the best-found solution (Defender’s payoff) was observed
in consecutive [. generations. Only generations referring to the Defender’s pop-
ulation are considered when verifying the above conditions.

5 Experimental Setup

5.1 Benchmark Games

CoEvoSG was tested on two popular SSG benchmarks: Fliplt and Warehouse
Games, previously used for testing state-of-the-art methods, e.g. in [11,17,23].

FlipIt Games. Fliplt Games (FIGs) [22] reflect certain cybersecurity scenarios.
The Attacker attempts to gain control over some elements of network infrastruc-
ture (e.g. computers, routers, mobile devices) and the Defender can take actions
to regain control of the infected units.
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FIGs are played on directed graphs with n vertices, for a fixed number of m
time steps. In each time step, players simultaneously select one vertex which they
want to take control of (to flip the node). At the beginning, only some subset
of vertices (entry nodes) is available for the Attacker. This mimics the scenario
in which some part of the network infrastructure is publicly accessible from the
outside (e.g. Internet). The Attacker starts penetrating the network from one of
those entry nodes. Taking control over the vertex (flip action) is successful only
if the two following conditions are fulfilled: (1) the player controls at least one
of predecessor vertices (unless it is an entry node), (2) the current owner of this
vertex does not take the flip action on it in the same time step.

At the beginning of the game, all vertices are controlled by the Defender. Each
node has assigned two values: a reward (> 0) for controlling it, and a cost (< 0)
of taking a flip attempt. The final player’s payoff is calculated by summing the
rewards in all nodes controlled by that player after each time step and the costs of
all flip attempts (either successful or not). Figure 2 presents a sample FIG scenario.

0.2;-0.2 j 0.6;-0.5
—>
S -

0.2;-0.3 0.7;-04
0302 |:]i 0605
—>
01--02 T
0.1;-0.2 EE 0.7;-0.4

0.9;-0.8

Fig. 2. Example FIG scenario with two entry nodes (routers) on the left. Numbers
below each component denote a reward for controlling the node (left) and the cost of
a flip attempt (right).

In the experiments, 280 FIG instances were generated randomly with the fol-
lowing parameters: m € {3,4,5,6,8,10, 15,20}, n € {5, 10, 15, 20, 25, 30,40}. For
each pair (m,n) 5 games were created with random payoffs (rewards drawn from
(0,1), costs from (—1,0)) and random graph structures (generated according to
Watts-Strogatz model [25] with an average vertex degree dg.q = 3).

The experiments were performed in No-Info variant [2] which means that the
players were not aware of whether their flip action succeeded or failed.

Warehouse Games. Warehouse Games (WHGs) [9] are inspired by real estate
(warehouses or residential buildings) protection scenarios. The games are played
on undirected graphs with n vertices, for m time steps. A subset of special
vertices are called targets (T'). Graph edges represent corridors and vertices
symbolize rooms. At the beginning, the Defender and the Attacker are placed
in the predetermined starting vertices. In each time step, each player’s action
consists in moving to one of the neighbor vertices (connected with an edge) or
staying in the current vertex.
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The game ends in one of the following circumstances: (a) both players are
located in the same vertex v in the same time step - then, the Attacker is
“caught” and the players are given payoffs associated with that vertex: Up, > 0
(Defender) and U%_ < 0 (Attacker); (b) the Attacker reaches one of the targets
t € T and is not caught (there is no Defender in this target) - in this case,
the attack is successful and the players receive payoffs U, < 0 (Defender) and
Uly, > 0 (Attacker); (c) none of above conditions is satisfied - both players
receive a payoff of 0. Figure 3 presents a sample WHG scenario.
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Fig. 3. An example WHG scenario: warehouse layout (left) and the corresponding
graph (right) with payoffs of the players in the respective game outcomes. Green rect-

angular vertices are targets, a red triangle vertex and a blue circle vertex are the
Attacker’s and the Defender’s starting points, respectively (Color figure online)
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For CoEvoSG evaluation 240 WHG instances were generated with m €
{3,4,5,6,8,10,15,20} and n € {15,20,25,30,40,50} (5 games per each (m,n)
pair). Players’ payoffs were drawn from [—1;1]. The number of targets depended
on a graph size: |T'| = {%1 Graphs were generated according to Watts-Strogatz
random graphs model [25] with an average vertex degree dg,g = 3.

5.2 Parameterization

All common EASG and CoEvoSG parameters were set according to the rec-
ommendations proposed for EASG [28]. Namely, the Defender’s population size
Np = 200, crossover probability p. = 0.8, mutation probability p,, = 0.5, selec-
tion pressure p, = 0.9, elite size e = 2, maximal number of generations /, = 1000,
maximal number of generations with no improvement /. = 20. The parameters
of evolutionary operators (mutation, crossover, selection) for the Attacker’s pop-
ulation were assigned the same values as for the Defender’s population, however,
CoEvoSG requires several new parameters which need to be tuned. In order to
find their recommended values, a set of parameter tuning experiments with 50
random games, different from the test WHG instances, were performed. FIGs
have similar game structure and do not require separate parametrization.

The first tested parameter was the Attacker’s population size (N4). The
following values were considered: {10, 20, 100,200,500, 1000, 2000, 5000}. The
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results (average Defender’s payoff and computation time) are presented in
Fig. 4a. Clearly, the bigger the Attacker’s population size the better the results as
the Defender’s payoff is calculated more accurately. If the Attacker’s population
contained all possible Attacker’s pure strategies, then the Defender’s individuals
evaluation would be an exact value (not an approximation) since the optimal
Attacker’s response would always be present in the Attacker’s population. How-
ever, as stated previously one of the motivations for introducing coevolution is
to speed up the Defender’s strategies evaluation by checking them only against
a representative subset of all Attacker’s strategies. Thus, based on the presented
results, Ny = Np = 200 was set.

Another tested parameter was the number of consecutive generations for each
player - g,,. Please recall that in CoEvoSG Defender’s and Attacker’s populations
are evolved alternately in the batches of g, generations. The results of tuning
this parameter are presented in Fig. 4b. Small values (g, < 5 - frequent switching
between populations), as well as big ones (g, > 50) result in performance dete-
rioration. Infrequent switching makes one population dominant - the other one
stagnates over a long time with no chances to response to the evolved individuals
from the other population. At the same time, for all tested values computation
time is similar. Hence, g, = 20 was adopted as a recommended value.

The last tuned parameter was Nyop, i.e. the number of the best individuals
from the Defender’s population involved in the Attacker’s strategies evaluation.
The result for Ny, € {1,3,5,10,20,50,100,200} presented in Fig.4c confirm
our previous conjecture formulated in in Sect. 4 about the harmfulness of using
the whole Defender’s population (N, = 200). Also, small values of this param-
eter (Nyop < 5) lead to weaker results due to the presence of some oscillations
within the population. In the extreme case of Ny, = 1 (evaluation of a given
Attacker’s strategy is based on the best Defender’s strategy only), we observed
that the Attacker’s population quickly losses diversity/degenerates. Individuals
in the population become similar to one another because they are optimized
with respect to only one Defender’s strategy. As a result the Attacker’s popula-
tion returns a good response only to this one specific Defender’s strategy, and in
the next coevolution phase the Defender’s population is able to find with ease
another strategy for which there is no good response in the Attacker’s popula-
tion. Afterwards, the whole Attacker’s population again adapts to the new best
Defender’s strategy and “forgets” the previous ones. Ny, = 10 appeared to be
the best compromise between these two extremes (Fig. 4c).
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Fig. 4. Comparison of the average Defender’s payoffs and computation times for
CoEvoSG specific parameters: Na, gp, Ntop.

Table 1. Average defender’s payoffs with respect to the number of graph nodes.

FIG WHG

n | C2016 | O2UCT | EASG | CoEvoSG n | C2016 | O2UCT | EASG | CoEvoSG
5| 0.890 0.887 0.886 0.886 15| 0.052 0.051 0.051 0.050

10| 0.854 0.851 0.847 0.845 20| 0.054 0.053 0.052 0.050

15| 0.811 0.807 0.802 0.798 25| 0.048 0.046 0.045 0.043
20 - 0.784 0.780 0.772 30 - 0.044 0.042 0.039
25 - - 0.754 0.746 40 - - 0.040 0.036

30 - - - 0.730 50 - - - 0.029
40 - - - 0.722

6 Results and Discussion

Payoffs. Tables1 and 2 present average Defender’s payoffs with respect to the
number of graph nodes and time steps, resp., for the methods described in Sect. 3.
Dashes mean that a particular algorithm was not able to compute some of the
test instances within the limit of 100h per game. The results are averaged over
20 independent runs per game.

Presented outcomes show only minor differences between the evolutionary
approach (EASG) and proposed coevolutionary algorithm (CoEvoSG). The aver-
age differences equal 0.0032 and 0.0020 for FIG and WHG instances, resp.
Please note that EASG is a natural reference point for CoEvoSG since CoEvoSG
approximates the Defender’s payoff (in the evaluation procedure) while EASG
computes it thoroughly. A relatively small difference in Defender’s payoffs
between the methods is a consequence of frequent existence (in over 84% of
the cases) of the optimal Attacker’s response in their population. The fitness
function in such cases returns the same evaluation in both methods.

O2UCT slightly outperforms EASG and CoEvoSG but the differences are
not statistically significant - p-values are 0.34 and 0.12, respectively (according
to one-tailed t-test). For 23% of games, CoEvoSG returned better result than
O2UCT whereas O2UCT was superior in 39% cases (for the remaining 38% of
games the outcomes of both methods were the same).
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Table 2. Average defender’s payoffs with respect to the number of time steps.

FIG WHG

m | C2016 | O2UCT EASG | CoEvoSG m | C2016 | O2UCT  EASG | CoEvoSG
3 0.823 0.821 0.820 0.817 3 0.043 0.043 0.043 0.043
4 0817 0.812 0.808 0.805 4| 0.052 0.050 0.050 0.049
5 0.810 0.801 0.798 0.791 5 0.055 0.054 0.053 0.052
6 - 0.794 0.792 0.791 6 | 0.058 0.056 0.054 0.051
8 - 0.789 0.784 0.781 8 - 0.053 0.051 0.048
10 - - 0.780 0.778 10 - - 0.048 0.044
15 - - - 0.774 15 - - - 0.040
20 - - - 0.761 20 - - - 0.038

The exact MILP method (C2016) was able to solve 45 FIG and 60 WHG
test instances within the allotted time. For these games, CoEvoSG returned the
optimal strategy (a difference in Defender’s payoff less than ¢ = 0.0001) in 29/45
(64%) and 38/60 (68%) cases, resp. The average differences between optimal
results and CoEvoSG outcomes equaled 0.0137 (FIGs) and 0.0023 (WHGS).

Overall, CoEvoSG was able to solve much bigger games than any of the
competitive methods, while returning only slightly weaker Defender’s payoffs
(whenever comparable).

Computation Scalability. Figure5 illustrates computation time of tested
methods with respect to the number of graph nodes and time steps. In all cases,
the advantage of CoEvoSG is clear. The method preserves near-constant compu-
tation time irrespective of game size, while other methods scale approximately
linearly (O2UCT and EASG) or exponentially (C2016). Computational com-
plexity of CoEvoSG is approximately constant with respect to the graph size
or the number of steps because the algorithm maintains the Defender’s and the
Attacker’s populations of fixed size, independently of other game parameters.
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Fig. 5. Comparison of computation time (logarithmic scale) with respect to number of
graph nodes and time steps for FIG (left) and WHG (right) games.

In summary, presented results demonstrate that despite slightly worse aver-
age Defender’s payoffs the proposed coevolutionary approach, thanks to excellent
time scalability, offers a viable alternative to both exact and approximate state-
of-the-art methods, especially in the case of larger games which are beyond the
capacity of the existing algorithms.
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7 Conclusions

The paper proposes a novel coevolutionary algorithm for solving sequential
Stackelberg Security Games. The method develops two competing populations
of players’ strategies by specially designed evolutionary operators.

Experimental evaluation performed on two well-established game types with
more than 500 test instances have proven the efficacy of the proposed method - in
the majority of test cases optimal solutions were found. The results are is on par
with other approximate methods - O2UCT and EASG. However, the true strength
of CoEvoSG lies in its time efficiency. It scales visibly better than all state-of-the-
art methods and stands out with near-constant computation time irrespective of
the game size. Thanks to this property CoEvoSG can be employed to solve arbi-
trarily large games which are beyond the capacity of the methods proposed hith-
erto. Moreover, the method is generic and can be easily adapted to other genres of
Security Games. What’s more, CoEvoSG is an anytime algorithm, i.e. is capable
of returning a valid solution at any time of the execution process.

CoEvoSG can be directly applied to various real-life cybersecurity problems
modelled by Fliplt Games, such as password reset policies, cloud auditing, or
supervisory control and data acquisition in industrial internet of things [15].

Our future plans concentrate on extending CoEvoSG to games with multiple
Defenders and/or Attackers [16] with the corresponding increase of the number
of populations.

Acknowledgement. The project was funded by POB Research Centre Cybersecurity
and Data Science of Warsaw University of Technology within the Excellence Initiative
Program - Research University (ID-UB).
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Solving partial differential equations (PDEs) numerically on a large scale involves
a compromise between highly optimized code exploiting details of the problem or
hardware, and extensible code that can be easily adapted to variations. Rapidly
evolving technology and a shift to heterogeneous systems places a higher value
on the latter, prompting a move away from hand-written code made by experts
in high performance computing, to generated code produced through a high-
level domain specific language (DSL). Another motivating factor is the realm of
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Abstract. We introduce FINCH, a Julia-based domain specific language
(DSL) for solving partial differential equations in a discretization agnos-
tic way, currently including finite element and finite volume methods.
A key focus is code generation for various internal or external software
targets. Internal targets use a modular set of tools in Julia providing a
direct solution within the framework. In contrast, external code gener-
ation produces a set of code files to be compiled and run with external
libraries or frameworks. Examples include a matlab target, for smaller
problems or prototyping, or C++/MPI based targets for larger problems
needing scalability. This allows us to take advantage of their capabilities
without needlessly duplicating them, and provides options tailored to the
needs of the domain scientist. The modular design of FINCH allows ongo-
ing development of these target modules resulting in a more extensible
framework and a broader set of applications. The support for multiple
discretizations, including finite element and finite volume methods, also
contributes to this goal. Another focus of this project is complex sys-
tems containing a large set of coupled PDEs that could be challenging
to efficiently code and optimize by hand, but that are relatively simple
to specify using the DSL. In this paper we present the key features of
FINCH that set it apart from many other DSL options, and demonstrate
the basic usage and current capabilities through examples.
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medium-scale problems where good performance is needed, but the cost of devel-
oping optimal code may not be justified. At this scale it is up to domain scientists
to develop their own software or piece it together from more general-purpose
libraries. Finally, the choice of discretization method, like finite element(FE) or
finite volume(FV), is significant in multiphysics systems where different aspects
of the system are better handled by different methods.

In response, numerous DSLs for solving PDEs have been developed. On one
end of the spectrum are high-level options such as Matlab Toolboxes and Comsol.
They are general-purpose and don’t require a high level of programming skill.
As a trade-off, they lack customizability. The low-level code is often, by design,
hidden from the user and difficult to modify.

At the opposite end are lower-level libraries such as Nektar++ [4] and deal.IT
[3] providing customizable components optimized for a specific purpose. They
require more programming input and skill from the user. This also makes it
harder to modify the code for variations, resulting in many of the limitations of
hand-written code.

This work aims for a middle-ground, where most of the programming input is
handled within the scope of a moderately high-level DSL while allowing low-level
customization and in some cases direct code modification. Some options in this
realm include Fenics [2] and Firedrake [25] for finite element methods, Open-
FOAM [10] for finite volume methods, Devito [20] for finite difference methods,
and many others focused on a specific type of problem or technique. There are
also tools in Julia including DifferentialEquations.jl [24] which provides a broad
environment of ordinary differential equation solvers with a Julia interface.

This work introduces FINCH, a DSL for solving PDEs. The framework aims
to be discretization agnostic, and currently supports finite element and finite
volume methods. The goal is to enable a domain scientist to create efficient
code for problems ranging from small scale simulations on a laptop computer, to
larger systems requiring scalability on modern supercomputers. Two key ideas
to achieving this goal are a modular software design and generation for external
software frameworks.

Rather than depending on a single, general-purpose code, a set of modules
are used to grant the flexibility to adapt to problem requirements or resources.
Some examples include various discretization methods such as FE, both CG and
DG variants, and FV, as well as numerical tools such as PETSc’s linear solvers,
GPU based options, or matrix-free methods. The development of new modules
opens up possibilities for optimization and new types of problems

Another strategy is the generation of code for various external software tar-
gets. This allows it to leverage the capabilities of existing software frameworks
that are well suited to a type of problem. For example, the DENDRO library
[8,9,26] provides an adaptive octree framework that is suitable for very large
scale problems using distributed memory parallel techniques. Manually writing
code for this framework requires high programming proficiency and familiarity
with the software. FINCH provides a simpler interface to this resource while pre-
senting the generated code to the user for modification or inspection. Another
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target is C++ using the AMAT [27] library which handles the mesh and data struc-
ture creation in Julia then utilizes a library of efficient parallel sparse matrix
operations to compute the solution in an independent C++ program. The diver-
sity of code generation targets allows constructing a set of tools suiting a user’s
needs.

FINCH is written completely in Julia, which is easy to use and has speed
comparable to low-level languages such as C [16]. Julia is growing in popular-
ity as a serious scientific computing language. It allows a simplified, intuitive
interface without resorting to external C/C++/Fortran libraries as is common
with Python-based DSLs. The metaprogramming features and wide selection of
libraries also make Julia a convenient choice for FINCH.

2 Related Work

DSLs can be found in some form for countless mathematical and computational
tasks. Some examples with a similar purpose and interface include the Unified
Form Language(UFL) [1] and FreeFEM [12] used to write variational forms of
PDEs. Components corresponding to test functions, trial functions, and other
values are combined in expressions representing volume or facet integrals of
elements. Since FINCH was originally developed for FE, a similar design was
chosen. The internal representation involves categorizing terms of the expression
depending on type of integral and linear vs. bilinear forms. The Julia-based FE
DSL MetaFEM [29] also involves writing a variational form expression, though
with a very different grammar.

In contrast, FINCH is designed to accommodate more general types of expres-
sions and does not assume a variational form. It also allows custom operator
definitions that act on the symbolic tensor arrays of entities in the expression.
For example, when using a FV method, specialized flux operators can be defined
and included in the PDE expression.

A relevant FV DSL is used by OpenFOAM [21], which again involves compo-
nents such as variables and coefficients in an expression resembling the mathe-
matical notation. This works with a predefined set of operations and is designed
specifically for types of problems that commonly use F'V methods. There is no
notion of variational forms.

It is worth noting some modules of Dune [6], such as Dune-fem are designed
for both FE and FV methods, but these are low-level interfaces that are difficult
to compare to the higher-level DSLs described here.

The other aspect is code generation where the internal representation
becomes numerical code. There are many code generation techniques for FE.
Some exploit tensor product construction for high order FE [15,22,28]. Others
use the independent nature of Discontinuous Galerkin methods to utilize GPUs
[5] or vectorization [17]. The FE software FEniCS utilizes the set of tools FFC
[18] and Dolfin [19]. There are also options for FV [23] and FD [21], though
perhaps less common than for FE.

The code generation modules used by FINCH are specific to their target, and
employ a variety of techniques accordingly. The modular design allows selection
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of ideal techniques either by the user or automatically depending on the target
software, hardware, or problem details.

3 Domain Specific Language

The goal of a mathematical DSL is to provide an interface that closely resembles
the notation used by domain scientists while reducing extraneous details and syn-
tax needed by the underlying programming language. Many DSLs accomplish
this in an object-oriented way by creating classes representing mathematical
objects with a set of intuitive operations. We have adopted a similar strategy
in which the basic components of the equations, such as unknown variables,
coefficients and test functions, are very basic objects that include an array of
symbolic components. For example, a 3-dimensional vector quantity u would cor-
respond to the array [u, us, us]. Common arithmetic and differential operations
are defined for these objects, and users can define their own custom operators
that act on these symbolic arrays. It is also possible to use these basic operations
to build packages of specialized operators for a class of problems.

As an example, the following code creates a vector-valued unknown variable
u, a known scalar coefficient k defined by a function of coordinates (z,y, z,t),
and a vector test function v which belongs to the same function space as wu.

u = variable("u", type=VECTOR)
coefficient("k", "sin(pi*x)*y*z")
testSymbol("v", type=VECTOR)

The differential equations are written in terms of these objects. When using
FE, this is done by writing the weak form of the equation in residual form.
Note that integration over the volume is implied, and surface integrals can be
specified by wrapping those terms in surf (. . .). Here is an example of specifying
a Poisson equation.

Original PDE|V - (aVu) — f =0

Weak form|—(aVu, Vo) — (f,v) =0
FINCH input|-a*dot (grad(u) ,grad(v)) - fxv

When using FV, it is assumed that the equations are in a conservation
form. The source and flux terms are given as input, and the time derivative
of the variables is implied as shown in the following advection-reaction equation

PDE| [}, %4dx = [, g(u,z)dz — [, f(u,z) - nds
Source|g(u, x) = ku
Flux|f(u, z) = ub
FINCH input|source (k*u)
flux (uxb)

In addition to the standard operators such as *, —, dot and grad used above,
a user can define new operators to put in these expressions. For example, the flux
shown will result in a central flux approximation. To use a custom flux, one could
define the operator myFlux(u,b), and substitute that for u*b in the expression
above. Note that this definition could be either a symbolic manipulation of the
array for uw* b or a numerical callback function when needed.
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3.1 User Input

Typically a Julia script will be written for a particular problem, but it is also
possible to work interactively. A set of functions or macros are used to a) Set up
the configuration, b) Specify the mesh, entities and equations, and c) Process
data for output. A variety of example scripts are in the repository [13].

As an example, the following commands will configure a 2D unstructured grid
using a fourth-order polynomial function space based on Lobatto-Gauss nodes,
and generate code for a target specified in the external_target_module. jl file.

generateFor ("external _target_module.jl")
domain(2, grid=UNSTRUCTURED)
functionSpace (space=LEGENDRE, order=4)
nodeType (LOBATTO)

In contrast to this, a user who is content with the defaults could provide as little
as domain(2).

Problem specification should start with a mesh. There are some simple mesh
generation options built in. For example, to construct a uniform 50 x 20 grid of
quadrilateral elements in a unit square domain with a separate boundary ID for
each face, use the command: mesh (QUADMESH, elsperdim=[50,20] ,bids=4)

For more practical problems, external mesh generating software can be
used to create a mesh file that is then imported into FINCH. Currently the
GMSH(.msh) and MEDIT(.mesh) formats are supported.

Separating boundary regions for additional boundary conditions is done
with the command addBoundaryID(BID, onBdry) where BID is a number to
be assigned to that region, and onBdry is a function or expression of (z,y, z)
that is true within the desired region.

For distributed memory parallelism it is necessary to partition the mesh.
This is done internally using METIS via the Julia library METIS jll. This will
be done automatically according to the number of processes available through
MPI, but can be configured as desired.

After setting up the scenario, entities such as variables and coeflicients are
defined and expressions for the equations are input as described above. Using the
command solve(u) will then either generate the code files for external targets
or run the internal solver to produce a solution. Considering the internal route,
the solution will now be found in the u.values array, and is available for post-
processing, visualizing, or output in a number of formats such as binary data or
VTK files.

Indexed Entities - Some problems involve a set of several quantities that share
the same type of equation with different parameters. Similarly, one may try to
solve an equation over a range of parameters. In these cases indexed variables
and coeflicients greatly simplify the way the problem is specified and present
an opportunity to reorganize the code in a more optimal way. As an example,
consider a set of unknown quantities u; ; and a corresponding set of coefficients k;
belonging to the same type of diffusion equation. For brevity the dependence on j
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is omitted, but could correspond, for example, to different boundary conditions.

d
dt 9, I
It is cumbersome to individually write out the equations if there are many values

of 4 and j. Rather, we can write one equation using indexed entities.

I = index("I", range=[1,20])

J = index("J", range=[1,40])

u = variable("u", type=VAR_ARRAY, location=NODAL, index = [I,J])
k = coefficient("k",k_array,type=VAR_ARRAY,location=NODAL, index=I)
weakForm(u, "Dt(ulI,JI*v) + k[I]*dot(grad(ulI,J]),grad(v))")
assemblyLoops(u, [I, J, "elements"])

The last line describing assembly loops instructs the code generator to nest
the assembly loops in this order. In some cases it may be more efficient to
parallelize an outer index loop before the elemental loop. The user can arrange
this as desired.

3.2 Symbolic Representation

After entering the expressions for the equations, they are transformed into an
intermediate symbolic representation. The entity symbols are replaced with
arrays of corresponding tensor components, as discussed above, and the operators
are applied to ultimately create a set of symbolic expressions. These expressions
go through processing stages to separate known and unknown terms, simplify
them, and identify time dependent terms. The resulting symbolic terms are in
the form of computational graphs, based on Julia Expr trees, containing sym-
bolic entity objects. These graphs are what is eventually passed to the code
generation utilities.

This simple chart illustrates the process using the weak form input for a 2D
Poisson equation. The input expression starts at the top, symbols are substi-
tuted, operators are applied, the terms are partitioned into groups and compu-

tational graphs are built with symbolic entities.
-a*xdot(grad(u), grad(v)) - fxv

!
-[_a_1]*dot_op(grad_op([_u_11), grad_op([_v_11))-[_f_1]*[_v_1]
!
[-(_a_1*D_1__u_1*D_1__v_1 + _a_1*D_2__u_1%D_2__v_1)]+[-_f_1x_v_1]
!

bilinear: [-_a_1*D_1__u_1*D_1__v_1 - _a_1%D_2__u_1*D_2__v_1]

linear: [-_f_1 * _v_1]

entities: D_1__u_1 = %zu ,D_2__u_1= %ul , etc.

The entity is essentially a symbol, like _u_, along with it’s component index
on the right, 1, and a collection of flags on the left, D_1_. The flags can have any
value and will be interpreted by the relevant code generation module. For exam-
ple, the flags CELL1_ and CELL2_ would be interpreted as values on respective
sides of a face in a finite volume context.
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4 Code Generation

The code generation step is where the process diverges. The details are specific to
the generation target, but they essentially all perform the same two tasks. They
must interpret the computational graph containing symbolic entities described
above, generating their mathematical equivalent, and they must collect these
calculations in a functional piece of code that performs the overall computation.

When designing a new target module, there are only three functions that
must be provided. The first one, get_external_language_elements, provides
basic language-specific info such as comment characters to aid with formatting.
The second is generate_external_code_layer, which interprets the compu-
tational graph of the symbolic representation and generates code to perform
the elemental calculations. The third function, generate_external_files, is
responsible for creating all of the code files. It takes the elemental calculation
from the second function and wraps it in the rest of the code to create a complete
program including build files and instructions.

4.1 Elemental Computation

The elemental computation varies significantly with different targets, but to
illustrate the process the 2D Poisson example from above will used as input. This
type of problem will essentially need code for assembling elemental matrices and
vectors embedded in an elemental loop. The elemental matrix will correspond
to the bilinear terms,

-_a_1 *D_1__u 1 *D_1_v_1 - _a_1 *D_2__u_1x*xD_2__v_1

Note that this symbolizes

Ou 0 ou 0
/ a2 ) gk
K Oz Ox dy Oy
When discretized into polynomial basis functions at Gaussian integration points,
this becomes

Ay = uy Y widi (—a;i % Gij abine — i * Gijybiky)
j i

Where w; are quadrature weights, J; are geometric factors, ¢;; , are z-derivatives
of the jth basis functions at the ith quadrature points. The inner ¢ sum can be
arranged as a matrix expression.

QITWQ. +QTwQ,

With W being a diagonal matrix combining weights, geometric factors, and a;

for each quadrature point. ), combines geometric factors with precomputed

matrices Qg that essentially contain the basis function derivatives, g—;’%, at the
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quadrature points in a reference element, but in practice it will be more sophis-
ticated as it will include a transformation from a nodal basis into a modal one
to benefit from better properties. For details on this, please refer to [14].

When the code generator encounters a term like
_,a 1l * D_1__u_1 * D_1__v_1 it will recognize the three factors as coeffi-
cient, unknown, and test function respectively and make the associations
D_1__v_1—QT
D_1__u_1—Q,

_a_l—a,
and create code to perform those matrix operations. The way this calculation
is implemented is up to the code generator, which provides opportunities for
optimization. For example, when using uniform elements the Jacobian matrix
only needs to be computed for one element and @, can be fully precomputed.
Taking it one step further, if the coefficients in this term are also constant, the
entire QX' WQ, matrix can be precomputed.

Another opportunity for optimization depends on element type. For exam-
ple, the DENDRO target exclusively uses hexahedral elements and exploits their
symmetry by using the tensor product of one-dimensional operators. This saves
on both arithmetic and memory costs.

When designing a new target or when taking advantage of some new hard-
ware, these elemental calculations can be optimized in a modular way that makes
the transition easy.

4.2 Global Computation

After handling the elemental computation, the next task is to combine these
results into a global system. This is mainly where parallel strategies come into
play. Since this typically involves looping over elements to assemble and solve
a global linear system, the process can be parallelized using multithreading,
distributed memory multiprocessing, and GPU techniques. Again, the details of
this task may look completely different depending on the target and in many
cases it is handled by the external software framework.

Note that when using FV the mathematics will be substantially different,
but the overall structure of the computation is similar.

4.3 Modifying Generated Code

Advanced users may wish to inspect the generated code and make modifica-
tions by hand. In many cases there may be features of the problem that can be
exploited for better performance that are not automatically included. For this
purpose the elemental assembly code can be exported to a code file, modified
as desired, and imported again to either run the calculation or generate the full
code package for external targets. The commands for this are exportCode and
importCode. Naturally, exporting should happen after the equations have been
entered, and importing is done on a later run before solving.
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Note that this code typically only contains the elemental assembly function.
For even more control it is possible to also export and import the full assem-
bly loop code for internal targets, but a good familiarity with the FINCH data
structures is needed to take advantage of this. Similarly, since external targets
are fully accessible as code files they can be modified as desired depending on
the user’s knowledge of the target software.

5 Performance Opportunities

Since one of the goals of FINCH is to take advantage of the capabilities of special-
ized external software, there are various strategies for parallelization, adaptivity,
and efficient data structures available to achieve high performance. One exam-
ple of this is the DENDRO target which offers distributed memory parallelism
through MPI, adaptive mesh refinement, and proven large-scale scalability. It is
ideal for problems that can benefit from very fine grained adaptive meshing, but
is limiting in the possible domain geometry.

Another target is AMAT which is essentially a specialized linear algebra
library providing very efficient algorithms for sparse linear systems. It also sup-
ports an assortment of parallelization strategies based on MPI, OpenMP, and GPU
options.

The performance of both of these targets is explored in the Demonstrations
section below.

5.1 Performance Within FINCH

The performance focus is not limited to external tools. The internal Julia tar-
gets can also make use of distributed and shared memory parallelism as well as
efficient data organization options. When solving linear systems, the user can
select a variety of tools beyond the defaults provided by Julia’s LinearAlgebra
package.

The simplest way to take advantage of these tools is with multithread-
ing. FINCH automatically detects how many threads are available to the Julia
instance and uses the native Julia package Threads to take advantage of this
throughout the computation. To enable this feature a user simply needs to spec-
ify the number of threads when launching Julia. This is done with the argument
-t n or --threads n to use n threads, or substitute auto in place of n to use
the number of local CPU threads.

Distributed memory parallelism is provided by the Julia package MPI.jl
which makes use of the system’s available MPI implementation. Again, this
is specified at launch using the system’s MPI execution command. FINCH
will detect how many processes are available and arrange the computation
accordingly.
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Partitioning is needed when using a distributed parallel strategy, and the
most straightforward method is to partition the mesh evenly among the pro-
cesses. This is accomplished using Metis through the METIS_j11 package.

When using FV with higher order flux reconstructions several neighboring
elements may be needed. This could potentially complicate the partitioning pro-
cess because an irregular number of ghost elements would need to be main-
tained. To address this issue, partitioning is done on the initial course mesh
with only nearest neighbor ghosts. Then the elements are refined in a consistent
way depending on the flux order desired. The resulting finer mesh will include
the needed number of ghosts in an efficient and reliable way. The refinement
should be considered when planning a mesh utilizing this feature.

There are several choices when it comes to solving large, sparse linear sys-
tems. The default in FINCH is provided by the LinearAlgebra package which
utilizes BLAS and LAPACK. Another option is PETSc, interfaced through
PETSC. j1, which provides better performance in distributed parallel environ-
ments as demonstrated below. There is also a matrix-free option for certain
targets that is particularly useful for large-scale problems where the cost of
assembling a global matrix is prohibitive.

5.2 Cache Optimization

In addition to parallel techniques, the organization of data structures and the
elemental loop ordering can improve performance through more efficient cache
use. A number of data organization options are available in FINCHFor example,
a mesh from the built-in mesh generation utility provides elements that are
ordered lexicographically. In order to improve spatial locality, the elements can
be rearranged either into a space-filling curve, such as a Hilbert or Morton curve,
or into tiles.

To aid with this development and potentially provide a means for automated
tuning, FINCH employs a cache simulator. Pycachesim [11] was chosen for this
because it is light-weight and although it was developed for use in Python, the
backend is written in C. The C library can be utilized directly by FINCH to
roughly characterize the cache performance of a particular problem setup on a
specified cache hierarchy.

The cache simulator is essentially another target for code generation. Rather
than performing the mathematical computation, the approximate sequence of
memory accesses is fed into the simulator. At the end of the computation the
cache statistics are recorded and analyzed. This presents FINCH with a tool for
tuning and measuring the effectiveness of changes in configuration.

6 Demonstration

The following example applications demonstrate some of the capabilities of
FINCH and illustrate the performance aspects of the various tools and code
generation targets. Since external targets rely on the performance capabilities of
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the target framework, please refer to their respective documentation for a more
rigorous analysis. For example, the DENDRO framework has shown competitive
scalability for large scale simulations [7,8§].

6.1 Steady-State Advection-Diffusion-Reaction Equation

The following Eq. (1) is used to demonstrate a FE problem. We use several
different sets of tools and compare them in terms of performance.

V- (DVu)+s-Vu—cu=f (1)

u(lr €002) =0
?2=1[0,13,D=1.1,c=0.1,s = (0.1,0.1,0.1)

Here all of the coefficients are given constant value, but we have intentionally
generated them as functions of (z,y,2) to increase computational complexity.
The motivation for this is to demonstrate the performance for a more practical
problem while simplifying analysis with an exact solution. The function f was
constructed such that u satisfies (2).

u(z,y, z) = sin(3nz) sin(27y) sin(wz) (2)
The weak form expression provided to FINCH is

weakForm(u,
"-Dxdot (grad(u), grad(v)) + dot(s, grad(u))*v - ckuxv - f*v")

The discretization is continuous Galerkin with quadratic hexahedral elements.

Internal Target. With appropriate choice of mesh this is suitable for running on
a typical computer, but for these tests we are using the Frontera supercomputer
with dual socket Intel Xeon Platinum 8280 nodes having 56 cores. The execution
time of different code generation targets and linear solvers were compared for a
range of processor counts as shown in Fig. 1. For smaller problems running on
only a few cores, the default Julia tools are an easy and viable option, though
PETSc may be more efficient. The default method does not scale well in a
distributed memory parallel context. For larger problems and many processors,
PETSc and matrix-free are both good options. The figure shows that the matrix-
free method is better when many processors are available. On the other hand,
PETSc performed better for small process counts.

AMAT Target. The same problem was solved using the AMAT target. Code
files, partitioned mesh data, reference element, and geometric factors were set
up and exported from Julia. The code was compiled and run with the AMAT
library using the precomputed data. AMAT provides options for assembling and
solving the system including a direct PETSc solve or a hybrid matrix technique.
MPI, OpenMP, and GPU tools are available. Figure 1(bottom left) compares
the PETSc and hybrid versions based on MPI with the same hardware as above.
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Fig. 1. Top row: internal target execution time on a coarse(top left) and fine mesh(top
right) with different options. “Setup only” excludes assembly/solve time. Bottom left:
AMAT’s time on the fine mesh using PETSc and hybrid methods. Only assembly and
solve time is included as setup is done separately within FINCH. Bottom right: Dendro’s
execution time for several mesh sizes. Black dashed lines show interpolated weak scaling
contours. The blue dotted line is an ideal scaling based on the blue curve. (Color figure
online)

Note that this execution time does not include the mesh creation and other setup.
A comprehensive total would also include the compilation and file management
time when using an external target, but they are omitted here.

DENDRO Target. Finally, the same problem was solved using the DENDRO
target. Code files were generated in Julia then compiled using the DENDRO
library. The resulting adaptively refined mesh produced by DENDRO contained
between 0.21 million and 10.6 million nodes depending on input parameters.
It was tested on the Notchpeak cluster at the University of Utah using two-
socket Intel XeonSP Skylake nodes with 32 cores each. Figure 1(bottom right)
demonstrates that the computation scales well for this problem on a fine mesh
up to 256 processes.
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This ability to quickly test a model in Julia before seamlessly transitioning to
a more specialized external target is a key feature of FINCH that can significantly
speed up development time for complex multiphysics problems.

7 Conclusion

This paper presents FINCH, a new DSL and code generation framework for PDEs.
The modular design and support for external code generation targets provides
versatility and allows the user to take advantage of evolving technology in terms
of high performance software packages such as DENDRO, and hardware resources
supporting multithreading, MPI, and GPUs. The discretization agnostic concept,
currently including finite element and finite volume techniques, further expands
the range of applications for which it is well suited. We demonstrate and compare
the performance capability of several code generation targets and configurations.
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Abstract. Anomaly detection for time series data is often aimed at
identifying extreme behaviors within an individual time series. However,
identifying extreme trends relative to a collection of other time series
is of significant interest, like in the fields of public health policy, social
justice and pandemic propagation. We propose an algorithm that can
scale to large collections of time series data using the concepts from
the theory of large deviations. Exploiting the ability of the algorithm
to scale to high-dimensional data, we propose an online anomaly detec-
tion method to identify anomalies in a collection of multivariate time
series. We demonstrate the applicability of the proposed Large Devia-
tions Anomaly Detection (LAD) algorithm in identifying counties in the
United States with anomalous trends in terms of COVID-19 related cases
and deaths. Several of the identified anomalous counties correlate with
counties with documented poor response to the COVID pandemic.

Keywords: Large deviations + Anomaly detection + High-dimensional
data - Multivariate time series - Time series database

1 Introduction

Anomaly detection has been extensively studied over many decades across many
domains [5] but remains difficult for comparisons across time series. This prob-
lem is critical to study policy responses in pandemic propagation, economics,
social justice, climate change adaptation to name a few e.g. studying anoma-
lous COVID-19 infection data trends across various countries, states or counties
could identify successful public policies. Usual approaches to monitoring individ-
ual time series [16] and identifying sudden outbreaks or significant causal events

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Groen et al. (Eds.): ICCS 2022, LNCS 13350, pp. 133-149, 2022.
https://doi.org/10.1007/978-3-031-08751-6_10
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cannot be used to detect gradual divergence or drift. In this paper, we propose a
new anomaly detection algorithm Large deviations Anomaly Detection (LAD),
for large/high-dimensional data and multivariate time series data. LAD uses the
rate function from large deviations theory (LDT) [24] to deduce anomaly scores
for identifying anomalies. Core ideas for the algorithm are inspired from an LDT
projection theorem that allows better handling of high dimensional data. Unlike
most high dimensional anomaly detection models, LAD does not use feature
selection or dimensionality reduction, which makes it ideal to study multiple
time series in an online mode. LAD model naturally segregates the anomalies at
each time step while enabling comparison of multiple multivariate time series.
Key advances of the novel LAD algorithm reported here are:!

1. Large deviations Anomaly Detection (LAD) algorithm is a scalable LDP based
method, for scoring based anomaly detection.

2. LAD model can analyze large and high dimensional datasets without addi-
tional dimensionality reduction increasing accuracy and reducing cost.

3. Online extension of LAD can detect anomalies across many multivariate time
series using an evolving anomaly score for each tracking developing behavior.

4. An empirical study of publicly available anomaly detection benchmark
datasets to analyze robustness and performance on high dimensional and
large datasets.

5. A detailed analysis of COVID-19 trends for US counties where we identify
counties with anomalous behavior (See Fig. 1 for an illustration).
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Fig. 1. Top 5 anomalous counties in USA identified by the LAD algorithm based on
time-series data consisting of cumulative COVID-19 per-capita infections and deaths.
The time-series for the non-anomalous counties are plotted (light-gray) in the back-
ground for reference. For the counties in New York, significant rise during early 2021 in
confirmed cases (left) and high death rates, is detected. Washington and Linn County
in Oregon are anomalous primarily due to steady low rates of infection.

2 Related Work

A large body of research exists on studying anomalies in high dimensional data
[3]. Many anomaly detection algorithms use dimensionality reduction techniques

! An introductory pre-print version available as Guggilam et al. [11].
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as a pre-processing step to anomaly detection. However, many high dimensional
anomalies can only be detected in high dimensional problem settings and dimen-
sionality reduction in such settings can lead to false negatives. Many meth-
ods exist that identify anomalies on high-dimensional data without dimensional
reduction or feature selection, e.g. by using distance metrics. Elliptic Envelope
(EE) [21] fits an ellipse around data centers by fitting a robust covariance esti-
mates. Isolation Forest (I-Forest) [15] uses recursive partitioning by random
feature selection and isolating outlier observations. k nearest neighbor outlier
detection (kNN) [18] uses distance from nearest neighbor to get anomaly scores.
local outlier factor (LOF) [4] uses deviation in local densities with respect to its
neighbors to detect anomalies. k-means-- [7] method uses distance from nearest
cluster centers to jointly perform clustering and anomaly detection. Concen-
tration Free Outlier Factor (CFOF) [2] uses a “reverse nearest neighbor-based
score” which measures the number of nearest neighbors required for a point to
have a set proportion of data within its envelope. In particular, methods like
I-Forest and CFOF are targeted towards anomaly detection in high dimensional
datasets. However, they are not tailored for evolving data.

Many score based anomaly detection algorithms have been designed to clas-
sify anomalies within individual time series. For instance, Twitter Ad Vec [14]
are unsupervised study deviations from the data. Numenta [1] uses prediction
errors to classify anomalies. Relative Entropy [25] compares entropy to identify
anomalous observations. However, these algorithms are limited to studying only
individual time series and not easily extended to an entire database of time
series. Recently, large deviations theory has been widely applied in the fields of
climate models [8], statistical mechanics [23], among others. Specially for analysis
of time series, the theory of large deviations has proven to be of great interest
over recent decades [17]. However, these methods are data specific, and often
study individual time series. In most settings, real time detection of anomalies
is needed to dispatch necessary preventive measures for damage control. Such
problem formulation requires collectively monitoring a high dimensional time
series database to identify anomalies in real time. While, the task of detect-
ing anomalous time series in a collection of time series has been studied in the
past [13], most of these works have focused on univariate time series and have
not shown to scale to long time series data or provide limited explanation on
why the identified trends are anomalous. Our proposed method addresses this.

3 Large Deviation Principle

Large deviations theory provides techniques to derive the probability of rare
events? that have an asymptotically exact exponential approximation [9,24]. The
key concept of this theory is the Large Deviations Principle (LDP). The principle
describes the exponential decay of the probabilities for the mean of random
variables. To implement LDP on data with known distributions, it is important

2 In our context, these rare events include outlier/anomalous behaviors.
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to decipher the rate function Z. Cramer’s Theorem provides the relation between
T and the logarithmic moment generating function A3.

Theorem 1 (Cramer’s Theorem). Let X1, Xo,...X,, be a sequence of iid
real random variables with finite logarithmic moment generating function, e.q.
A(t) < oo for allt € R. Then the law for the empirical average satisfies the
large deviations principle with rate e = 1/n and rate function given by I(x) :=
sup,cp (tx — A(t)) VteR.

Thus, we get, lim, o 2 log (P (31, X; > nx)) = —I(z), Vo > E[Xy].
For more complex distributions, identifying the rate function using logarithmic
moment generating function can be challenging. Many methods like contraction
principle and exponential tilting exist that extend rate functions from one topo-
logical space that satisfies LDP to the topological spaces of interest [9]. For our
work, we are interested in the Dawson-Géartner Projective LDP, that generates
the rate function using nested family of projections.

Theorem 2. Dawson-Girtner Projective LDP: Let {mN} yen be a nested fam-
ily of projections acting on X s.t. Uyent? is the identity. Let XN = 7VX
and p = poo (7N)"L,N € N. If YN € N, the family {ul}cso satisfies
the LDP on XN with rate function IV, then {uc}eso satisfies the LDP with
rate function I given by, I(x) = supyenZ™ (mN2) = € X. Since TN (y) =
infloex|aN (@)=} L(T), y € Y, the supremum defining I is monotone in N
because projections are nested.

The theorem allows extending the rate function from a lower to higher pro-
jection space. The implementation of this theorem in LAD model is seen in
Sect. 4.

4 Methodology

Consider the case of multivariate time series data. Let {t, }N_; be a set of multi-
variate time series datasets where ty, = (tn,1,...,tn,T) is a time series of length
T and each ty, ¢ has d attributes. The motivation is to identify anomalous t,, that
diverge significantly from the non-anomalous counter parts at a given or multi-
ple time steps. The main challenge is to design a score for individual time series
that evolves in a temporal setting as well as enables tracking the initial time
of deviation as well as the scale of deviation from the normal trend. As shown
in following sections, our model addresses the problem through the use of rate
functions derived from large deviations principle. We use the Dawson-Gértner
Projective LDP (See Sect. 4.2) for projecting the rate function to a low dimen-
sional setting while preserving anomalous instances. The extension to temporal
data (See Sect.4.3) is done by collectively studying each time series data as one
observation.

3 The logarithmic moment generating function of a random variable X is defined as
A(t) = log Elexp(tX)].
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4.1 Large Deviations for Anomaly Detection

Our approach uses a direct implementation of LDP to derive the rate function
values for each observation. As the theory focuses on extremely rare events, the
raw probabilities associated with them are usually very small [9,24]. However,
the LDP provides a rate function that is used as a scoring metric for LAD.
Consider a dataset X of size n. Let a = {ay,...,ap} and I = {Iy,...,I,} be
anomaly score and anomaly label vectors for the observations respectively such
that a; € [0,1] and I; € {0,1} Vi € {1,2,...,n}. By large deviations principle, we
know that for a given dataset X of size n, P(X = p) ~ ¢ "Z(P), Assuming that
the underlying data is standard Gaussian distribution with mean 0 and variance

2
1, we can use the rate function for Gaussian data where Z(p) = &-. Then the
2

resulting probability that the sample mean is p is given by P(X = p) ~ e T,

Now, in presence of an anomalous observation x,, the sample mean is shifted

by approximately x,/n for large n. Thus, the probability of the shifted mean
2

being the true mean is given by P(X = z,/n) ~ e~ However, for large n
and |z,| << 1, the above probabilities decay exponentially which significantly
2

reduces their effectiveness for anomaly detection. Thus, we use ;—:L as anomaly
score for our model. Thus generalizing this, the anomaly score for each individual

observation is given by a; = nZ(x;) Vi€ {1,2,...,n}.

4.2 LDP for High Dimensional Data

High dimensional data pose significant challenges to anomaly detection. Presence
of redundant or irrelevant features act as noise making anomaly detection dif-
ficult. However, dimensionality reduction can impact anomalies that arise from
less significant features of the datasets. To address this, we use the Dawson-
Gartner Projective theorem in LAD model to compute the rate function for
high dimensional data. The theorem records the maximum value across all pro-
jections which preserves the anomaly score making it optimal to detect anomalies
in high dimensional data. The model algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm 1: LAD Model

Input: Dataset X of size (n,d), number for each s — 1 to Njter do

of iterations Njer, threshold th. 1. Subset Xgup = X[[; == 0]
Output: Anomaly score a 2. Xnormalize({[:’ d;] =
Initialization: Set initial anomaly score W’Vdi e{1,...,d}

and labels a aimd I to zero vectors and, . Eli, ] i"i}(;orma”zed [i]2 /2n, Vi

entropy matrix E' = 0, q) where 0(, q is a; = —maz(Eli, )

a zero matrix of size (n,d). a— _ a-min()
~ max(a)—min(a)

th = min(th, quantile(a, 0.95)
Ii = 1if a; > th, Vi

NS oUW
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4.3 LAD for Time Series Data

Broadly, time series anomalies can be categorized to two groups [6]: (1) Diver-
gent trends/Process anomalies: Time series with divergent trends that last
for significant time periods fall into this group. Here, one can argue that gen-
erative process of such time series could be different from the rest of the non-
anomalous counterparts, and (2) Subsequence anomalies: Such time series
have temporally sudden fluctuations or deviations from expected behavior which
can be deemed as anomalous. These anomalies occur as a subsequence of sudden
spikes or fatigues in a time series of relatively non-anomalous trend. The online
extension of the LAD model is designed to capture anomalous behavior at each
time step. Based on the mode of analysis of the temporal anomaly scores, one
can identify both divergent trends and subsequence anomalies. In this paper,
we focus on the divergent trends (or process anomalies). In particular, we try
to look at the anomalous trends in COVID-19 cases and deaths in US counties.
Studies to collectively identify divergent trends and subsequence anomalies is
being considered as a prospective future work.

In this section, we present an extension of the LAD model to multivariate
time series data where we preserve the dependency temporal and across different
features of the time series. Thus, as shown in Algorithm 2, a horizontal stacking
of the data is performed. This allows collective study of temporal and non-
temporal features. To preserve temporal dependency, the anomaly scores and
labels are carried on to next time step where the labels are then re-evaluated.

As long term anomalies are of interest, time series with temporally longer
anomalous behaviors are ranked more anomalous. The overall time series

. . I[n,t
anomaly score A,, for each time series t, can be computed as A, = w

Algorithm 2: Algorithm 2: LAD for Time series anomaly detection

Input: Time series dataset g . cacht — 1 to T do

N . , _

{tn}n=y of size (N,T.d), X = hstack(t, ) where tns = {tni—w,...tns}
number of iterations Njier, I[i, 8] = I[i,t — 1]

threshold th, window w. al;,t] = a[:,t — 1]

Output: An array of tem-
poral anomaly scores a, an

for each s — 1 to Njter do

array of temporal anomaly 1. Subset non-anomalous time series
labels 1 Koup = { X1, :]|I[¢,t] == 0,Vi}
itialization: initi e ] = Xdil =X )
Initialization: Set initial 2. Xnormatized|s di] = m’de c
anomaly score and labels {1,2,....d*w}
a and I to zero matrices E[; .’] —7—X y d[i]2/2n Vi
. vy — normaltize b
of size (N,T) and, entropy ali,t] = —max(E[i, )
matrix E to a zero matrix al:,t] = a[:,t]—min(a[:,t])

max(a[:,t])—min(a[:,t])
th = min(th, quantile(a[:, t], 0.95)
1[i,t] = 1if afi, t] > th, Vi

of size (N, T,d).

N ot W
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Vn. For a database of time series with varying lengths, the time series anomaly
score is computed by normalizing with respective lengths. Similarly, the method
can be extended to studying anomalies within an individual time series by break-
ing the series into a database of sub-sequences of a time series extracted via a
sliding window. It must be noted that this approach allows for a retrospective
classification of anomalies.

5 Experiments

In this section, we evaluate the performance of the LAD algorithm on multi-
aspect datasets. The following experiments have been conducted to study the
model: 1) Anomaly Detection Performance: LAD’s ability to detect real-world
anomalies as compared to state-of-the-art anomaly detection models is evaluated
using the ground truth labels. 2) Handling Large Data: Scalability of the LAD
model on large datasets (high observation count or high dimensionality) are
studied. 3) COVID-19 Time Series Data.

5.1 Datasets

We consider a variety of publicly available benchmark data sets from Outlier
Detection DataSets ODDS [19] (See Table 1) for the experimental evaluation.
For anomaly detection within individual time series, we study univariate time
series data from Numenta Benchmark Datasets?. Additionally, for the time series
data, we use COVID-19 deaths and confirmed cases for US counties from John
Hopkins COIVD-19 Data Repository [10]. The country level global data for
COVID-19 trends was taken from the Our World in Data Repository [20].

5.2 Baseline Methods and Parameter Initialization

As described in Sect. 4, LAD falls under unsupervised learning regime targeted
for high dimensional data, we do not compare with supervised algorithms. For
this we consider Elliptic Envelope (EE) [21], Isolation Forest (I-Forest) [15]°,
local outlier factor (LOF) [4], and Concentration Free Outlier Factor CFOF [2].
The CFOF and LOF models assign an anomaly score for each observation, while
remaining methods provide an anomaly label. As above mentioned methods are
parametric, we investigated a range of values for each parameter, and report the
best results. For Isolation Forest, Elliptic Envelope and CFOF, the contamina-
tion value is set to the true proportion of anomalies in the dataset. To study
anomaly detection in time series, the LAD model is compared with other score
based time series anomaly detection algorithms like Twitter AD Vec (TAV) [14],

4 http://numenta.com /press/numenta-anomaly-benchmark-nab-evaluates-anomaly-
detection-techniques.htm.

5 I-Forest model returns both anomaly scores and anomaly labels though we only
present classification model since they outperforms score based schemes.
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Table 1. Description of the benchmark data used for evaluation of the anomaly
detection for high dimensional/large sample datasets and time series. N - number
of instances, d - number of attributes and a - fraction of known anomalies in the data
set.

| Dataset | N | a |

|Name | N | d]| a | EC2 CPU UTILIZATION 825CC2 4032 0.09%
- - EC2 NETWORK IN 257A54 4032 | 0.1%

i‘/g{f;r 5%:‘]38 5 90-2309;@ EC2 CPU UTILIZATION 5F5533 4032 | 0.1%
s Pl e IR EC2 CPU UTILIZATION AC20CD 4032 | 0.1%
rrhythmia 5 -602% EC2 CPU UTILIZATION 24AESD 4032 | 0.1%
Shuttle 49097 | 9 | 7.151% SPEED 7578 1127 | 010
Letter 1600 | 32| 6.25% SPRBD 6005 2500 | 019

. s :
Musk 3062 1166| 3.168% OCCUPANCY 6005 2380 | 0.1%
Optdigits 5216 | 64 | 2.876% SPRED T4013 2195 | 0,192
gatellite Img. | 0430 | 56 31.639% ART LOAD BALANCER SPIKES 4032 | 0.1%
Sheee] 3688 113°0| o055 EXCHANGE-3 CPM RESULTS 1538 | 0.1%
> 95156 1 3 | 0.032% EXCHANGE-4 CPM RESULTS 1643 | 0.1%
Satellite Img.-2| 5803 | 36 | 1.224% TWITTER VOLUME KO 15851] 0 1%
: o

f{‘gegggcm’” ?gfgg: ;g 25-361?“0/ TWITTER VOLUME CVS 15853 0.1%
6200¢ 177 TWITTER VOLUME CRM 15902| 0.1%

MACHINE TEMP. SYS. FAILURE  |22695| 0.1%

EC2 REQ. LATENCY SYS. FAILURE| 4032 |0.09%

(a) High Dimensional and Large CPU UTIL. ASG MISCONFIG. 18050(0.08%

Sample Datasets
(b) Benchmark Time Series

Skyline [22], Earthgecko Skyline (E.Skyline)®, Numenta [1], Relative Entropy
(RE) [25], Random Cut Forest (RCF) [12], Windowed Gaussian (WG). The
LAD model relies on a threshold value to classify observations with scores the
value as strictly anomalous. Though this value is iteratively updated, an initial
value is required by the algorithm. In this paper, the initial threshold value for
the experiment is set to 0.95 for all datasets. All the methods for anomaly detec-
tion benchmark datasets are implemented in Python and all experiments were
conducted on a 2.7 GHz Quad-Core Intel Core i7 processor with a 16 GB.

5.3 Evaluation Metrics

As LAD is a score based algorithm, we study the ROC curves by comparing
the True Positive Rate (TPR) and False Positive Rate (FPR), across various
thresholds. The final ROC-AUC (Area under the ROC curve) is reported for
evaluation. For anomaly detection within individual time series, we use the F-
measure as the evaluation metric to study the overall performance of the model.
Since all the models return anomaly scores, thresholds were used to classify
observations as anomalous vs non-anomalous. Threshold was set to be the maxi-
mum score in the truly non-anomalous data for each model and the observations
with scores higher than set threshold were labelled anomalous. This is to ensure
that the model is able to distinguish anomalies from the rest of the data. For
time series database anomaly detection, we present the final outliers and study
their deviations from normal baselines under different model settings.

5 https://github.com /earthgecko/skylin.
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5.4 Anomaly Detection Performance

Table2 shows the performance of LOF, I-Forest, EE, CFOF and LAD on
anomaly detection benchmark datasets. Due to relatively large run-time”, CFOF
results are shown for datasets with samples less than 10k. For all the listed
algorithms, results for best parameter settings are reported. The proposed LAD
model outperforms other methods on most data sets. For larger and high dimen-
sional datasets, it can be seen from Table 2 that the LAD model outperforms all
the models in most settings.® It was interesting to note that the LAD model,
despite being non-parametric (for a non-temporal setting), had a comparable if
not better performance as compared to the LOF, EE, I-Forest and CFOF where
multiple parameter setting were tested to derive the best fitting model. To study
the LAD model’s computational effectiveness, we study the computation time
and scaling of LAD model on large and high dimensional datasets. Figure 2a
shows the scalability of LAD with respect to the number of records against the
time needed to run on the first k records of the KDD-99 dataset. Fach record
has 29 dimensions. Figure 2b shows the scalability of LAD with respect to the
number of dimensions (linear-scale). We plot the time needed to run on the first
1, 2, ..., 29 dimensions of the KDD-99 dataset. The results confirm the linear
scalability of LAD with number of records as well as number of dimensions.

Table 2. Comparing LAD with existing
anomaly detection algorithms for large/high
dimensional datasets using ROC-AUC as the o bt

evaluation metric. © i Rodats nhousance)

(a) LAD scales linearly with the number
of records for KDD-99 data

5

Time (Secs)
Ny

Data LOF | I-Forest | EE CFOF | LAD
SHUTTLE 0.52 | 0.98 0.96 | — 0.99 -
SATIMAGE-2 | 0.57 | 0.95 0.96 | 0.70 0.99 B0 et
SATIMAGE 0.51 | 0.64 0.65 | 0.55 | 0.6 2ot 10 0
# Dimensions
KDD99 0.51 | 0.85 0.54 | — 1.0 1) LAD scales i v with th b
mear 1 num T
ARRHYTHMIA| 0.61 | 0.67 0.7 | 0.56 0.71 ( )_ scales Incarly w ¢ humbe
of dimensions in KDD-99 data.
OPTDIGITS | 0.51 | 0.52 - 0.49 0.48
LETTER 0.54 | 0.54 0.6 | 0.90 |06 . .
Fig. 2. LAD model scaling on large
MUSK 0.5 | 0.96 0.96 | 0.49 0.96 d hich di ional dat
HTTP 0.47 | 0.95 0.95 | — 1.0 ondlugh dimensional data
MNIST 0.5 | 0.61 0.65 | 0.75 0.87
COVER 0.51 | 0.63 0.52 0.96
SMTP 0.84 | 0.83 0.83 | — 0.82
SPEECH 0.5 | 0.53 0.51 | 0.47 | 0.47

” The CFOF model is computationally expensive and its use is primarily for high-
dimensional data. We restrict results to datasets with <10K observations.

8 Lowest AUC values for the LAD model are observed for Speech and Optdigits data
where multiple true clusters are noted.
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5.5 Anomaly Detection in Individual Time Series

In Table3, we compare the performance of the LAD model as compared to
other score-based algorithms. In particular, it can be seen that LAD model with
window length of 100 has the best anomaly detection performance as compared
other methods in most datasets.

Table 3. Comparing LAD with existing anomaly detection algorithms for time series
datasets using F-measure as the evaluation metric.

Data WL = 10 | WL = 50 | WL = 100 | TAV | Skyline | B.Skyline | Numenta | RE | RCF | WG
EC2 CPU UTIL. 825CC2 0.0 0.1 0.37 0.16 |0.45 | 0.16 0.03 0.05/0.13 0.19
EC2 NETWORK IN 257A54 0.14 0.25 0.33 0.03 |0.04 |0.18 0.02 0.01]0.03|0.02
EC2 CPU UTIL. 5F5533 0.14 0.36 0.57 0.18 {0.03 |0.18 0.01 0.03]0.04 /0.0

EC2 CPU UTIL. AC20CD 0.0 0.31 0.33 0.03 {0.02 |0.01 0.01 0.03/0.0 |0.11
EC2 CPU UTIL. 24AESD 0.09 0.12 0.59 0.01 |0.01 |0.0 0.0 0.0 |0.0 |0.01
SPEED 7578 0.26 0.29 0.54 0.19 {0.08 |0.05 0.05 0.0810.02 | 0.17
SPEED 6005 0.15 0.59 |0.59 0.04 |0.11 |0.11 0.03 0.04]0.04 | 0.01
OCCUPANCY 6005 0.08 0.29 0.5 0.01 {0.01 |0.01 0.01 0.01]0.01 /0.0

SPEED T4013 0.27 0.88 [0.45 0.15 |0.16 |0.02 0.04 0.03]0.13 0.14

ART LOAD BALANCER sPIkEs | 0.08 0.16 |0.15 0.02 |0.01 |0.0 0.0 0.01]/0.0 |0.08
EXCHANGE-3 cPM REsurLTs | 0.0 0.4 0.77 0.01 |0.01 |0.01 0.01 0.03/0.01/0.01
EXCHANGE-4 CPM RESULTS 0.21 0.21 0.17 0.02 10.04 |0.04 0.05 0.19]0.05 | 0.05

TWITTER VOL. KO 0.01 0.06 0.11 0.01 |0.01 |0.0 0.01 0.0 0.0 |0.03
TWITTER VOL. CVS 0.04 0.06 0.12 0.03 |0.01 |0.01 0.01 0.01]0.01|0.03
TWITTER VOL. CRM 0.01 0.06 0.11 0.03 |0.01 0.0 0.0 0.01]0.01|0.01

MACHINE TEMP SYS. FAIL. 0.02 0.04 0.08 0.18 |0.03 |0.01 0.0 0.0210.03 /0.0
EC2 REQ LATENCY svs. FAIL. | 0.2 0.62 0.35 0.15 [0.04 |0.15 0.02 0.15]0.03{0.02
CPU UTIL ASG MISCONFIG. 0.03 0.24 0.83 0.04 /0.0 0.0 0.0 0.02/0.0 |0.0

5.6 Anomaly Detection in Time Series Data

This section presents the results of LAD model on COVID-19 time series data
at the US county level. Multiple settings were used to understand the data: 1.
Deaths and confirmed case trends were considered for analysis. 2. Daily New
vs Total Counts: Both total cases as well daily new cases were analyzed. 3.
Complete history vs One Time Step: Two versions of the model were studied
where data from previous time steps were and were not considered. By this, we
tried to distinguish the impact of the history of the time series on identifying
anomalous trends. 4. Univariate vs Multivariate Time Series data: To further
understand the LAD model, the deaths and case trends were studied individually
as a univariate time series as well as collectively in a multivariate time series data
setting. 5. Time Series of Uniform vs Varying Lengths: Finally, all the above
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analyses were conducted on time series data with varying lengths. Here, for each
county level time series, the time of first event was considered as initial time
step to objectively study the relative temporal changes in trends. To bring all
the counts to a baseline, the total counts in each time series were scaled to the
respective county population. Missing information was replaced with zeros and
counties with population less than 50k were eliminated from the study.

5.7 Discoveries: US COVID-19 Trends

In this section, we look at the daily new case and deaths in US counties trends in
start of 2021. To rank the counties, anomaly scores between Jan 1-Mar 1 2021
were considered.

Complete history vs One Time Step. The full history setting considers the com-
plete history of the time series and is aimed to capture most deviant trends over
time. The one time step (or any smaller window) setting is more suitable to
study deviations within the specific window. As we target long term deviating
trends, the one time step setting returns trends that have stayed most deviant
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throughout the entire time range. This can be seen in Figs.3 and 4 where the
one time step setting returns trends that have stayed deviant almost throughout
the duration while the full history setting is able to capture significantly higher
overall deviations from normal trends and therefore higher anomaly score. For
instance, counties like Mercer (NJ), Union (NJ), that had extensive testing con-
ducted” were captured in the one time step model as seen in Fig.3c and 3d.
Similarly, counties in NY observed a peak in early 2021'°, which was not cap-
tured as anomalous in the one time step model as seen in Figs. 1a and 1b.
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Univariate vs Multivariate Time Series. In Figs. 3, 4, 5 and 6 we see the anoma-
lous trends in multivariate time series, where total confirmed cases and deaths
were collectively evaluated for anomaly detection. For instance, despite the near-
normal trends in confirmed cases, Kings, Queens and Bronx (NY)!! in Figs. 3c-

9 https://www.nj.com/coronavirus/2021/12/more-covid- testing-sites-opening-as-
cases-climb-here-are-9-places-to-go.html.
10 https: //www.newsday.com/news/health/coronavirus/coronavirus-long-island-
deaths-vaccinations-1.50200404.
1 https: //www.nbenewyork.com/news/coronavirus/nyc-mask-mandate-indoors-an-
option-if-needed-mayor-says-as-23-nations-report-omicron/3428102/.
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3d, were identified anomalous due to their the deviant death trends which sig-
nificantly contributed to the anomaly scores. Figures. 7 and 8 show the use of
univariate time series for detection of deviation in one feature.
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Daily New vs Total Counts. Figures4 and 6, show anomalous trends in multi-
variate time series for total and daily new counts respectively. It can be seen that
the anomaly score is relatively more erratic for new case trends as the data for
new case and death counts is more erratic leading to fluctuating normal average
and non-smooth anomaly scores. Similar behavior can be seen across Figs. 3 and
5. The LAD model on the daily new counts data was able to capture the esca-
lation in Racine, Wisconsin in Fig.6a and 6b during late 2020 when multiple

meatpacking were tied to COVID-19 cases'2.

2 https://www.jsonline.com /story /news/2020/11/25 /meatpacking- plants-tied-more-
covid-19-cases-than-known-new-bussiness-outbreak-data-shows /6376197002 /.
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Uniform Length vs Varying Length Time Series. The US county cases and
deaths data consists of time series of uniform lengths. However, not all counties
have events recorded in the early stages. Thus, studying the non-synchronized
database creates a bias against counties with early reported cases. Also, counties
with longer reporting on trends or earlier outbreaks tend to be associated with
higher anomaly scores towards the most recent data due to lack of equally long
time series. This can be seen in Figs.4 where counties like Lane, Oregon that
was flagged anomalous due to distinctively low cases due to later outbreak of
the pandemic much after many counties in NY, unlike in Figs.3 which reports
counties in NY with an early start as highly anomalous in the later stages'?.

5.8 Global Trends and Emergence of Other COVID-19 Variants

Coronavirus Pandemic (COVID-19) Data from Our World in Data [20] for coun-
tries with population more than 5 million was used for the analysis. Trends in
the daily new deaths per million and confirmed cases per million (7 day rolling
average, right-aligned), biweekly growth rates in deaths and confirmed cases and
case fatality rates were considered collectively as multivariate time series. Two
end dates were studied to analyze the onset of the Delta and Omicron variants.

Delta Variant. To rank the trends post the incidence of the Delta variant (See
Figs.9a-9c), we considered behaviors during the 90day period May 1 2021-
July 29 2021. China, Egypt, Mexico, Tanzania and Columbia were found most
anomalous. In particular, China and Mexico had low per capita weekly average
deaths and confirmed cases. However, the case fatality rates were consistently
high'* indicating need for additional investigation to understand the root cause
which may be under-reporting or reporting issues or presence of a new variant.

Omicron Variant. To study the Omicron variant, we looked at the 90 day period
data September 23 2021 - December 21 2021 (See Figs. 9d-9f). UK, China have
the most anomalous trends. Egypt, UK and Russia also have high anomaly
scores'®. However, in Egypt and Russia, the surge in cases was not due to the
Omicron variant but due to earlier COVID wave that coincides with the it!S.

'3 https://time.com /5812569 /covid- 19-new-york-morgues,/ .

' https://www.marketwatch.com/story /new-daily-covid-19-cases-and-deaths-spike-
to-6-week-highs-as-delta-variant-spreads-rapidly-11625673956.

5 https://www.cnn.com/2021/12/13 /uk /uk-omicron-infections-tidal-wave-gbr-int1/
index.html.

16 https://www.egyptindependent.com/egypt-has-not-passed-the-peak-of-the-covid-
19-fourth-wave/, https://tass.com/society/1370957.
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6 Conclusion

In this paper, we propose LAD, a novel scoring algorithm for anomaly detec-
tion in large/high-dimensional data. The algorithm successfully handles high
dimensions by implementing large deviation theory. Our contributions include
reestablishing the advantages of large deviations theory to large and high dimen-
sional datasets. We present an online extension of the model aimed to identify
anomalous time series in a multivariate time series data. The model shows vast
potential in scalability and performance against baseline methods. The online
LAD returns a temporally evolving score for each time series that allows us to
study the deviations in trends relative to the complete time series database.

A potential extension to the model could include anomalous event detection
for each individual time series. Another possible future work could be extending
the model to enable anomaly detection in multi-modal datasets. Additionally,
the online LAD model could be enhanced to use temporally weighted scores
prioritizing recent events.
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Abstract. B-spline models are a powerful way to represent scientific
data sets with a functional approximation. However, these models can
suffer from spurious oscillations when the data to be approximated are
not uniformly distributed. Model regularization (i.e., smoothing) has tra-
ditionally been used to minimize these oscillations; unfortunately, it is
sometimes impossible to sufficiently remove unwanted artifacts without
smoothing away key features of the data set. In this article, we present
a method of model regularization that preserves significant features of
a data set while minimizing artificial oscillations. Our method varies
the strength of a smoothing parameter throughout the domain auto-
matically, removing artifacts in poorly-constrained regions while leaving
other regions unchanged. The behavior of our method is validated on a
collection of two- and three-dimensional data sets produced by scientific
simulations.

Keywords: B-Spline + Regularization + Functional approximation

1 Introduction

Data sets assembled from scientific simulations or experimental readings are
often defined as a list of position-value pairs, where each data point consists of a
measurement and the corresponding location of that measurement. These point
locations can form structured grids, unstructured meshes, or unconnected point
clouds, depending on the application. Methods for analyzing these data often
apply only to particular layouts; usually, numerical analysis techniques become
more complex as the geometry of the point locations becomes more general (e.g.
point clouds). Even seemingly straightforward tasks such as interpolation can
be computationally burdensome on unstructured point clouds and numerically
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inaccurate on highly nonuniform meshes. One way to avoid these challenges is
by representing a data set with a mathematical function and then analyzing
the function instead of the original data. This can substantially streamline the
process of interpolation and differentiation away from data points, simplify visu-
alization tasks, and make resampling the data almost trivial.

The focus of this article is the approximation of scientific data sets by (tensor-
product) B-splines. B-splines are a family of smooth functions used ubiquitously
throughout geometric modeling [14] and form the underpinnings of isogeometric
analysis (IGA) [11]. Recent study has shown that large, complex data sets pro-
duced by scientific simulations at extreme scale can be effectively modeled by
B-splines [16]. Similar results have also been obtained for nonuniform rational
B-splines, or NURBS, which are a generalization of B-splines [15].

B-splines have a number of properties that make them useful as a functional
representation of data. B-splines are high-order approximants, and evaluating,
differentiating, and integrating a B-spline model is fast and numerically stable [3].
Crucially, differentiation and integration can be computed in closed-form and
incur no additional loss of accuracy, unlike finite differences or Riemann sums.
Thus, once a sufficiently accurate spline has been computed to represent the data,
it is often more productive to analyze the functional model than the original data.

However, computing a best-fit B-spline requires solving a linear system which
may be ill-conditioned or rank-deficient. A common cause of this ill-conditioning
is an input data set that contains both sparse and dense patches of points in
proximity to each other. Without additional effort, solving this system can pro-
duce a function that oscillates strongly between data points or even diverges in
regions where input data are very sparse. This problem can be hard to detect
automatically, since error metrics are usually defined in terms of the pointwise
error between the original data and the model. Spurious oscillations occurring
away from the input data will not be captured by these metrics.

To address these challenges, we developed a new method for fitting B-splines
to unstructured data that reduces or eliminates oscillations while leaving criti-
cal features of the data set unchanged. Our method regularizes the solution to
the B-spline fitting problem by adding a variable-strength smoothing param-
eter that automatically adapts based on characteristics of the input data set.
This additional term smooths out spike artifacts in regions where the data set
is very sparse but does not do any smoothing where data points are densely
packed, thereby preserving accuracy in these regions. In addition, our method
creates well-defined spline models even for data sets with irregular boundaries.
No knowledge of the boundary is required; the method automatically handles
areas outside the boundary that contain no data points.

The remainder of this paper is organized as follows. A review of related
ideas and methods is given in Sect.2. In Sect.3, we provide a primer on the
mathematical details used to describe B-splines throughout the paper. Our main
result, a method for adaptive regularization of B-spline models, is described in
Sect. 4. We then exhibit the performance of this method in Sect.5 with a series
of numerical examples. We summarize directions for further research in Sect. 6
and present conclusions in Sect. 7.
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2 Related Work

Creating B-spline models to represent unstructured data sets is a particular
example of scattered data approximation (SDA), a broad area of study concerned
with defining continuous functions that interpolate or approximate spatially scat-
tered inputs. SDA is often applied to image reconstruction problems, where an
experimental or physical constraint prohibits the collection of uniformly-spaced
samples, such as medical [1], seismic [5], or astronomical [18] imaging. An intro-
ductory comparison of SDA methods was compiled by Francis et al. [8].

Ill-conditioned numerical methods are a persistent challenge throughout the
SDA literature, and a number of techniques have been proposed to increase
numerical stability. Our approach is most similar to the variational methods
of SDA, in which the magnitude of the approximating function’s derivative (or
“roughness”) is minimized. The early work of Duchon [4] is a canonical exam-
ple. Historically, roughness minimization has been achieved through the use of
smoothing splines; a thorough exposition of smoothing splines can be found in
the book by Gu [10]. The application of smoothing splines requires a trade-
off between accuracy and roughness minimization, since aggressively penalizing
roughness tends to degrade accuracy. Therefore, much work has been devoted
to parametrizing this trade-off appropriately. Craven and Wahba [2] developed
the influential “cross-validation” approach, which is expanded upon by Gu [9].

The functional approximation used in this article is based on global tensor-
product B-splines, but a number of other spline-based regression methods have
been proposed. Truncated thin-plate splines were used by Wood [19] to improve
the efficiency of thin-plate regression splines while maintaining their character-
istic stability. Lee et al. [13] utilized hierarchies of B-splines to fit unstructured
data points, but the instability arising from sparse point distributions was not
treated explicitly. Francis et al. [8] consider a two-step process for resampling
unstructured point clouds with variable point density onto unstructured grids.
While this method does not construct a functional approximation, it does show
good performance as a resampling methodology.

Our novel adaptive regularization procedure was first explored in the dis-
sertation of the second author [20]. The method is also directly inspired by
the work of El-Rushaidat et al. [6], in which a two-level regularization process
was introduced in the context of resampling unstructured data onto structured
meshes. However, their method requires an ad-hoc selection of the criteria to
switch between high and low regularization strengths, as well as an application-
dependent overall level of smoothing. A notable contribution in our work is
a continuously varying regularization strength (not two-level) that is adapted
automatically.

3 Background on B-Splines

In this section, we provide a brief overview of the basic definitions and con-
structions necessary to describe B-spline models for scientific data. A thorough
presentation on the fundamental theory of B-splines can be found in the books
by de Boor [3] and by Piegl and Tiller [17].
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3.1 B-Spline Curves

A one-dimensional B-spline curve of degree p in R? is a parameterized curve

w) =Y Njp(u)Fj, (1)

=0

where each IV; , is a piecewise-polynomial function of degree p, and each P; € RP
is a “control point” in D-dimensional space.

The B-spline basis functions, denoted IV;,, are defined on the parameter
space [0,1] C R, which is divided by a nondecreasing sequence of “knots” ¢y <
t1 <...<tpqp €[0,1]. Each basis function N ,, is a bump function in [¢;, ;4 pt1]
and zero elsewhere.! In this paper, we will assume that the degree of the B-spline
is fixed and drop the p subscript, instead denoting the j** function as N;.

In order to simplify notation when describing high-dimensional tensor prod-
uct splines, we use multi-indices to index quantities in multiple dimensions simul-
taneously. A multi-index o = (a?,...,a?) is a d-tuple of nonnegative indices,
where the sum of components of « is denoted |a| = )", ax.

We will often consider index sets for our multi-indices in the form of

A:{allaeNdsuchthat()gak<nk for 1 <k <d}, (2)

where nj are previously defined positive numbers. We impose a lexicographic
ordering on these sets, and denote by [, the index of « in the lexicographic
ordering of A. In the following sections, we consider matrices in which each
column corresponds to a multi-index. In this scenario, we list multi-indices in
lexicographic order; thus, the multi-index a corresponding to the j** column
satisfies [a] , = J.

3.2 Tensor Product B-Splines

Tensor product B-splines are a natural extension of B-spline curves to higher-
dimensional manifolds, such as surfaces, volumes, and hypervolumes. Here, we
denote by d the dimension of the tensor product volume and D the dimension of
the ambient space (for instance, a 2D surface in 3D space would correspond to
d =2, D = 3). The parameter space for a d-dimensional tensor product B-spline

is [0,1]%, which is divided by d different knot vectors ty = {t;, }7’“3”, k=1,...,d

Given a tuple u = (ul,...,u?) € [0,1]%, the tensor product basis functlons

are defined as
H NE (ub). (3)

where « is a multi-index as described above and N (’jk is the (o) basis function
with respect to the knot vector t;. With ni +p-+1 total knots in each dimension,

1 'We consider only “clamped” knot sequences in this paper; thus, the first p+ 1 knots
are always 0 and the last p 4+ 1 knots are always 1.
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there are ny, basis functions in each dimension.? Therefore, the total number of
tensor product basis functions is nyo; = HZ:1 ng, which is also the total number
of control points for the tensor product spline.

A d-dimensional tensor product B-spline in R” is a function of the form

C(u) =Y Na(u)Pa, (4)

acA

where A is the set of all basis functions and P, € RP for each o.

3.3 Optimal Control Points

Given a collection of knot vectors and polynomial degree, the best-fit B-spline to
a given data set is determined by a linear least-squares minimization problem.
Let {Qi}ﬁ_ol be the list of points in R to be approximated with a d-dimensional
tensor product spline. For each 0 < i < m, let v; € [0,1]? be the parameter tuple
corresponding to the point ;. The optimal control points are determined by
the least-squares minimization problem:

m—1

(P} = axgmin 3 Q= C(wi) | )

3 i=0

This minimization problem can be rewritten in normal form by differentiating
the objective function in Eq. (5) with respect to each of the control points. The
normal system reduces to the matrix equation NTNP = N7 Q, where

Nij = Na(’Uz) where [OL]A = j, Pij = Pgé, where [Oé]A = i, Qij = ng)

6
The superscripts in the above equations index the components of the vectors P,
and @;. N is a m X ng; matrix, often called the “B-spline collocation matrix,”
P is an nyp: X D matrix with each row containing a control point, and Q is a
m X D matrix with each row containing an input point.

Typically, the matrix N is very sparse, and this system may be solved with
an iterative method or sparse direct solver. However, as we show in the following
section, this system is ill-conditioned when the sample density of the input points
P; varies from region to region.

4 Adaptive Regularization

A significant challenge when modeling unstructured data with tensor product
B-splines is the (ill-)conditioning of the fitting procedure. Generally speaking,
tensor product B-spline models can oscillate strongly due to overfitting in regions
where input data is sparse (see Fig.1). Our method of adaptive regularization

2 Here we assume for simplicity that the degree of the B-spline is the same in each
dimension, but the degree can vary in practice if desired.
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produces a unique solution to systems which would otherwise be rank-deficient
and improves the overall conditioning of the system. In practice, the adaptively
regularized models possess fewer oscillatory artifacts and do not exhibit any
divergent behavior in our testing. In contrast to standard regularization tech-
niques, our method does not smooth out the model indiscriminately — instead,
it regularizes only those regions that require smoothing.

Fig. 1. Left: A data set with nonuniform point density. Center: Best-fit B-spline model
without regularization. Right: B-spline model with adaptive regularization. The center
image is cropped; spike artifacts in this model extend well outside the frame.

This technique employs a spatially-varying regularization strength that is
computed automatically as a function of the relative positioning of input data
points to the B-spline knots. In general, the regularization strength increases
in regions with little to no input data and decreases (potentially to zero) in
regions “saturated” with input points. When the regularization strength is zero
throughout a region of the domain, no smoothing is performed in that region;
therefore, any sharp features present in densely sampled regions of the domain
will be preserved by the adaptive regularization procedure.

Standard roughness minimization can be formulated as a penalized least-
squares minimization problem, similar to Eq. (5). The penalty term weights the
size of the second derivative at each point with a new parameter, which we
denote as A > 0. The control points of the regularized spline are defined by:

(£} = argmin (Z_ 1@ — Clwn) |2 + X2 S<c>> , (7)
J =0

where S(C) approximates the size of the second derivatives of C.

Let w, € [0,1]¢ be the parameter that maximizes the value of N,. Let 9°
denote the partial derivative where the order of derivative in each dimension is
given by the components of multi-index 6.> We define S(C) to be

S =Y Y 0 Cwa)|”. (8)
a€A |§]=2

Note that the summation above is a sum over all derivatives of order 2, including
mixed partial derivatives.

3 For example, 929 f = 0% f/0x3, and 90§ = D2 f/0x3, while Y £
82f/(6$1(9$2)
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Equation (7) can be converted into a system of equations in the same way
as Eq. (5). The only additional step is computing the derivative of S(C) with
respect to the control points. In matrix form, the system is

M,

) P=N"Q, whereM=] : (9)
Ms,

N

(NT AMT) ( N

and (Ms);; = 9°Ng(wa), [a] 4 = i, [8], = j. Intuitively, each column of M
describes the 0° partial derivative of an individual B-spline basis function. The
matrix M is the concatenation of all the individual M matrices, where 6| = 2.
N, P, and Q are defined as in Sect. 3.

The novel improvement of our adaptive regularization scheme is to modify
the above system of equations by varying the size of A for each column of M.
Since each column of this matrix corresponds to a B-spline basis function and
control point, variation in the size of A provides a mechanism to modify the
smoothing conditions on each control point of the spline individually. Due to
the local support property of B-splines, setting A\; = 0 for control points in a
given region “disables” the regularization in that region, while still allowing for
smoothing to be applied elsewhere. Algebraically, we replace the scalar parameter
A by a diagonal matrix A = diag(Aq,. .., An,,,), where each \; > 0, and consider
the new linear system

(NT (MA)T) (MNA> P =NTQ. (10)

The value of each \; is computed automatically as a function of the relative
positioning between input data points and B-spline knots.

To better control this function, we introduce a user-specified parameter called
the “regularization threshold,” denoted s*. Changing the regularization thresh-
old adjusts the criterion by which some regions of the domain are smoothed and
others are not. As s* increases, smoothing constraints will be applied to larger
and larger regions in the domain.

Let s; denote the 4t column sum of N and s; the jt" column sum of M.
Given s* > 0, we define

N = max(sif S5, 0). (11)
8j
Thus, A is defined such that every column sum of (MNA) is no less than s*.

Adapting the regularization strengths A; this way has a number of important
results. If s* = 0, then A = 0 and the minimization becomes the usual least-
squares problem. When s* is small, \; will be zero unless the 4t column sum of
N is small, which is indicative of an ill-conditioned system. Here, adaptive reg-
ularization smooths out only those control points which are poorly constrained.

This formulation also explains why the adaptive regularization method pre-
serves sharp, densely sampled features while smoothing out oscillatory artifacts.
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In regions of the domain that are densely sampled, control points will be con-
strained by many data points and thus the corresponding column sum in N will
be relatively large. By choosing s* to be sufficiently small, all control points in
this region will have a regularization strength of zero; i.e. A; = 0. Therefore, the
best-fit spline in this region will not be artificially smoothed.

Finally, we remark that the adaptive regularization framework, while defined
above in terms of second derivatives, can easily be extended to other derivatives.
We find that constraining first and second derivatives simultaneously is partic-
ularly helpful when modeling data sets with no points at all in certain regions.
This typically happens when the data represent an object with an interior hole
or irregular boundary. To consider both first and second derivatives, the only
change is to matrix M in Eq. (10). Originally, M is the concatenation of all
matrices My, where 0 describes a second derivative. To minimize first deriva-
tives as well, we change this to the concatenation of all M such that § describes
a first or second derivative. Both versions of the method are described in Sect. 5.

5 Results

We demonstrate the effectiveness of our method with a series of numerical experi-
ments. First, we compare adaptive regularization to uniform regularization where
the smoothing parameter has been chosen manually. Next, we study the recon-
struction of an analytical signal from sparse samples with varying levels of spar-
sity. For each sparsity level, we report the error and condition number for and
unregularized and adaptively regularized model. We then test the performance
of adaptive regularization on data sets with no data in certain regions. In these
problems, we construct a B-spline model that extrapolates into regions with no
pointwise constraints, and check that the adaptive regularization method pro-
duces a reasonable result.

5.1 Data Sets

The performance of the adaptive regularization method was studied on a col-
lection of two- and three-dimensional point clouds with different characteristics.
Some data sets were sampled from analytical functions so that we could compute
pointwise errors relative to a ground truth, while other data sets were generated
by scientific experiments and simulations.

2D Polysinc. The polysinc data set is a two-dimensional point cloud sampling
the function f(z,y) = sinc (22 + y?) sinc (2(z — 2)* + (y + 2)?).* 360,000 point
locations are uniformly sampled from the box domain [—4m,4w] x [—47,47],
except at four disk-shaped regions where the sample rate is 50x lower.

XGC Fusion. The XGC fusion data set represents a normalized derivative of
electrostatic potential in a single poloidal plane of a Tokamak fusion simula-
tion. The data set contains 56,980 points with an irregular boundary and was
produced by the XGC code [12] in a simulation of the gyrokinetic equations.

* We consider the unnormalized sinc function: sinc(z) = sin(z)/z, with sinc(0) = 1.
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CMIP6 Climate. The CMIP6 climate data set represents ocean surface tem-
perature in a projected box region around Antarctica. The data set contains
585,765 points with a large hole (representing Antarctica) in the center and was
produced by a Coupled Model Intercomparison Project (CMIP6) [7] simulation.

saher Nuclear. The sahex nuclear data set is derived from a simulation of a
single nuclear reactor component, produced with the SHARP toolkit [21]. The
three-dimensional data are bounded by a hexagonal prism and point density is
coarser in the z dimension than x and y. The data set contains 63,048 points.

5.2 Comparison of Adaptive Versus Uniform Regularization

Applying a uniform regularization strength to an entire model can produce
unsatisfactory results, because sufficiently smoothing oscillatory artifacts can
also smooth out sharp features. Figure2 compares our adaptive regularization
scheme (with s* = 6) against three strengths of uniform regularization. The
data in Fig. 2 is the XGC fusion data set, which contains sharp peaks in a ring
but is flat inside the ring. Data are sparse or nonexistent outside the ring. The
two images at right show a model with uniform regularization that is too weak,
causing artifacts (top), or too strong, dampening the features (bottom). The
best uniform regularization strength we could find is given at bottom-left, but
even in this example the characteristic peaks in the data are smoothed down.

—00

- -0.10

-0.20

Fig. 2. Comparison of uniform vs adaptive regularization. Clockwise from top-left:
Adaptive regularization, uniform regularization with A = 10~°, uniform regularization
with A = 10™*, uniform regularization with A = 1075.

5.3 Accuracy on Analytical Signals

To quantify the accuracy of B-spline models with adaptive regularization, we
consider the oscillatory polysinc function with a highly nonuniform input data
set (Fig. 3). We illustrate two B-spline models, one fit without regularization and
one with our adaptive regularization (s* = 1). Both models are degree four with
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a 300 x 300 grid of control points. Without regularization, the model diverges
in the regions of low sample density; with adaptive regularization, the model
produces an accurate representation even where sample density is low. A top-
down view of the error profiles is given in the second row of Fig.3. A close
comparison of the ground-truth (top left) and adaptively-regularized spline (top
right) shows that the spline model is not artificially smoothed in dense regions,
even though the sparse regions are smoothed. In particular, our regularization
procedure preserves the distinctive oscillations and peaks in the signal.

Fig. 3. Top row: Synthetic polysinc signal (left), model with no regularization (center),
model with adaptive regularization (right). Bottom row: Top down view of input dis-
tribution (left), error profile with no regularization (center), error profile with adaptive
regularization (right). Area of interest for error calculation is in red at bottom-left.

The degree of sparsity in the input data strongly influences the accuracy
of a B-spline model. Table1 lists the errors in each model for varying levels of
sparsity in the voids. The errors are measured in a box around two voids (see
Fig. 3) in order to pinpoint the behavior of the models in this region. When the
point density is equal inside and outside of the voids (sparsity = 1.0), error for
both models is low. As the voids become more sparse, the error in the unregular-
ized model increases by four orders of magnitude while error in the adaptively
regularized model stays essentially flat.

Data sparsity also affects the condition number of the least-squares mini-
mization. Table1 gives the condition number of the matrices N (‘noreg’) and
(ma) (‘reg’) for each sparsity level. As sparsity is increased, the condition num-
ber of (yya) remains lower and steady but the condition number of N starts
higher and eventually becomes infinite. Condition numbers were computed with
the Matlab routine svds.
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Table 1. Model errors as a function of sparseness. Maximum and L? (average) errors
are computed for both adaptively regularized and unregularized models in the vicin-
ity of two voids (see Fig. 3). Condition numbers for both minimization problems are
reported at bottom.

Sparsity 0.02 0.08 0.16 0.32 0.64 1.00
Max Error (reg) 3.25e—2|2.89¢—2|2.71le—2| 2.39e—2 | 1.20e—2 | 1.16e—2
Max Error (no reg) |1.29e2 |6.27e2 |2.36e—1|3.65e—2|1.20e—2|1.16e—2
L? Error (reg) 1.93e—3|1.53e—3 | 1.13e—3 | 7.04e—4 | 5.56e—4 | 5.44e—4
L? Error (no reg) 2.17e0 |4.68e0 |3.42e—3|7.35e—4 | 5.56e—4 | 5.44e—4
Condition # (reg) 177 980 289 198 121 189
Condition # (noreg) | inf inf 6.97e4 |2.58e3 | 1.57e3 |3.74e3

5.4 Extrapolation into Unconstrained Regions

When a large region of the domain does not contain any data points to con-
strain the best-fit B-spline problem, the least-squares minimization will be ill-
posed and the resulting model can exhibit extreme oscillations. However, data
sets with empty regions or “holes” are very common in scientific and industrial
applications. For example, some climate models measure ocean temperatures
or land temperatures, but not both simultaneously. Industrial simulations often
model objects with irregular boundaries, and data from physics simulations are
shaped by the locations of detectors.

Although empty regions are usually omitted in subsequent analysis, it is
still important to understand and control the behavior of a B-spline model in
empty regions. Extreme oscillations near the boundary of a hole can distort the
derivative of the model away from this boundary. In addition, attempting to
compute simple statistics about the model (minimum, maximum, mean) can be
biased if the model exhibits unpredictable behavior in empty regions.

Figure 4 shows a scenario from a simulation of ocean temperatures. The data
set is centered around the continent of Antarctica, for which no temperature
values are given. Exhibited in the figure are two models, both of degree 2 with
a 400 x 400 grid of control points. The unregularized model at center oscillates
between +£10% along the coast (while the input data range from —2 to 10). In
contrast, the regularized model (with s* = 5) smoothly transitions at the coast
to a near-constant value over the landmass. Regularization was performed with
constraints on first and second derivatives, as described at the end of Sect. 4.

We next consider a three-dimensional data set representing power produced
in a component of a nuclear reactor (Fig.5). The data are contained inside a
hexagonal prism, but the B-spline model is defined on the bounding box of this
prism. Hence the corners of this box are devoid of any data. Without regular-
ization, the least-squares minimization does not converge, so we exhibit only
our regularized model (with s* = 10) in Fig.5. The adaptive regularization
method (Fig. 5, center and right) produces an accurate model of the six interior
“pins” and is well defined in the corner regions. Some artifacts are observed
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Fig. 4. Ocean temperature simulation around Antarctica. Top row: Input data on a
hexagonal mesh (left), B-spline model without regularization (center), B-spline model
with adaptive regularization (right). Bottom row: Detail view from the top row.

10

in the corners, but they are not significant enough to affect the interior of the
model. Without regularization, the condition number of the system is infinite;
with adaptive regularization, the condition number is 2.18 x 10°. The model was
produced by constraining first and second derivatives simultaneously.

Te+13
8e+12
be+12
—4de+12

—2e+12

Fig. 5. Power production in a nuclear reactor simulation. Input data (left), spline model
(center), spline model top view (right).

6 Future Work

In the construction of our method, we imposed constraints on the first and
second derivatives of the B-spline in regions where the density of input data was
low or vanishing. However, these additional constraints could have been based
on different orders of derivative or been unrelated to derivatives altogether. For
instance, a different type of constraint would be one that penalizes deviation
from a known baseline value. Another option would be to penalize B-spline values
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that exceed a given range (for example, the original bounds of the input data).
We remark that our procedure for adaptive regularization of tensor product B-
splines is separate from the type of artificial constraint imposed. Depending on
the application, different constraints may be more useful, and our method allows
for those to be used instead.

Another direction for future research is an investigation of the parameter s*.
While our method automatically varies regularization strength throughout the
domain, these strengths are all relative to the parameter s*. Choosing a value of
s* too large can lead to overly-smoothed models. Further research into heuristics
or iterative schemes to select s* automatically would allow this method to be
applied with no user interaction at all.

7 Conclusions

Modeling unstructured data sets with tensor product B-splines can be difficult
due to the ill-conditioning of the fitting problem. In general, data sets with large
variations in point density or regions without data exacerbate this problem to
the point that artificial smoothing is necessary. However, smoothing an entire
model can wash out sharp features in the data.

We introduced a regularization procedure for B-spline models that preserves
features by adapting the regularization strength throughout the domain. Our
method automatically varies the smoothing intensity as a function of input point
density and relies on a single user-specified parameter, which we call the reg-
ularization threshold. We observe that adaptive regularization performs better
than typical uniform regularization schemes that may over-smooth some regions
while under-smoothing others. We also showed that our method can fit B-spline
models to data sets with regions of extremely sparse point density and remain
well-defined even in areas without data points. Overall, adaptive regularization
of B-spline models produces smooth and accurate models for data sets which
would otherwise be difficult to fit.
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Abstract. Recently, deep learning-based recommender systems have received
increasing attention of researchers and demonstrate excellent results at solving
various tasks in various areas. One of the last growing trends is learning the
compatibility of items in a set and predicting the next item or several ones by
input ones. Fashion compatibility modeling is one of the areas in which this task
is being actively researched. Classical solutions are training on existing sets and
are learning to recommend items that have been combined with each other before.
This severely limits the number of possible combinations. GAN models proved
to be the most effective for decreasing the impact of this problem and generating
unseen combinations of items, but they also have several limitations. They use a
fixed number of input and output items. However, real outfits contain a variable
number of items. Also, they use unimodal or multimodal data to generate only
visual features. However, this approach is not guaranteed to save content attributes
of items during generation. We propose a multimodal transformer-based GAN
with cross-modal attention to simultaneously explore visual features and textual
attributes. We also propose to represent a set of items as a sequence of items to
allow the model to decide how many items should be in the set. Experimenting on
FOTOS dataset at the fill-in-the-blank task is showed that our method outperforms
such strong baselines as Bi-LSTM-VSE, MGCM, HFGN, and others. Our model
has reached 0.878 accuracy versus 0.724 of Bi-LSTM-VSE, 0.822 of MGCM,
0.826 of HFGN.

Keywords: Outfit recommendations - Set recommendations - Multimodal
recommendations - Generative Adversarial Networks (GAN) - Transformers -
Recommender systems

1 Introduction

In recent years e-commerce has spread widely, especially under the influence of COVID-
19 and related restrictions. A lot of people turned to online shopping over personal visits
to shops, which led to an unbound variety of items to compare and combine during the
shopping process. The fashion industry and online fashion marketplaces are one of the
areas largely affected by this. Fashion compatibility modeling is of increasing interest for
researchers and becomes a popular but challenging and contentious topic. There are a lot
of downstream applications such as the outfit recommendation [1-11], the personalized
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fashion design [12—16], personal wardrobe creation [17, 18], fashion-oriented dialogue
systems [19, 20], try-on [19, 20], and others. In this paper, we combined the task of
personalized fashion design generation with an outfit recommendations task. We used
a generative model to generate new personalized item representations but used them to
find real equivalents to build outfit recommendations.

The rapid development of technologies and the increased computational power in
the last decade allowed recommender systems to integrate into various areas of our
life, including the fashion industry and e-commerce. Modern shopping apps assist and
influence customer decisions. Therefore, this is becoming increasingly important to
develop personalized and efficient recommender systems for choosing a set of clothes.
The main aim of these systems is to automatically assess the compatibility of items and
predict missing items of outfits. This area is actively researched, and there is impressive
progress, but there are still has some unsolved problems, which limits the efficiency and
the flexible usage of these systems.

Classical recommender systems learn to recommend items that have been already
combined with input ones before, but it severely limits the compatibility of items and the
variety of outfits. Several approaches tried to decrease the impact of this problem. Some
of them applied noise to vector representations of input items. Others used variational
autoencoders as a base of a model. They showed the effectiveness of recommendations
but did not inspect the ability of the model to recommend items that had not been
previously combined with the input ones. They only reduced the discontinuity of the
latent space of the model, but it is not a complete solution, and the model is still fitted
to recommend existing outfits but not to generate the most compatible items.

Generative adversarial network (GAN) based models are used to overcome this
problem [12—-16] but they also have some limitations. In particular, they use a fixed
number of input and output items (primarily, one or two input items and a single output
item) [12—16]. The main reason is that they frequently use noise as a placeholder for
blanked items. A large amount of input noise makes the model unpredictable and reduces
the influence of the input items to newly generated ones. Moreover, to the best of our
knowledge, the presented GAN-based solutions aim to synthesize images of new items
[12—-16], but in the case of e-commerce, online shops, and recommending existing items
that users can buy, there is no need to generate images directly.

Consequently, in this paper, we have focused on the compatibility modeling sets
with a variable number of items by data of multiple modalities. Despite the fact that the
data from several modalities are used in many approaches, to the best of our knowledge,
most of these explore modalities separately in the field of recommending sets of items,
including in the field of fashion. On the contrary, in our scheme, we have focused on
capturing compatibility features between modalities simultaneously.

In this paper, we propose the following contributions to solve described problems:

e Different from the existing GAN-based methods which have a fixed number of input
and output items, we propose to use a transformer-based GAN and represent a set of
items as a sequence of items with start and end tags, similar to a sentence of words.
This allows the model not only to generate a complete set of items but also to decide
how many items should be in the set.
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e To simultaneously explore multimodal features, we propose to use a cross-modal
attention module in our transformer. Transformer architecture with self-attention and
cross-modal attention allows GAN to jointly generate vectors of visual and textual
features depending on multimodal input ones.

The rest of the paper is organized as follows. First, we described and discussed
several related recommender-based and GAN-based studies. Second, we formulated a
problem and described our proposed model and its parts. Then, we described conducted
experiments, used dataset, compared with our model baselines, and comparison results.
Finally, we summarized the contributions of this paper and obtained results.

2 Related Works

2.1 Recommender-Based Solutions

Plummer et al. (2018) proposed the method that embeds compatible items and outfits
close to each other for searching similar items to the input ones and replacing items if
necessary [21]. Tangsend et al. (2018) also embedded items and used a binary classifier
to predict the compatibility of items within a set and to rank sets by compatibility [4].
Lu et al. (2019) used CNN to extract visual features from images of all types of items,
and type-specific embeddings (each item type is associated with its own embedding) to
project feature vectors depending on the type of item [7]. The authors proposed a fashion
hashing network (FHN) which uses HashNet and BPR to assess the compatibility of
computed feature vectors of a set. They personalize recommendations by adding a vector
of user features. The problem with such approaches is that they only use visual features
of items and ignore content attributes and descriptions. However, content information
is very important and is near-always available in real conditions. For example, in the
outfit recommendation task, black jeans and black leggings are close to each other in
embedding space, but they are very different, and such content attribute as a material
can help to separate them.

To overcome this problem, Xintong et al. (2017) proposed multimodal Bi-LSTM
to sequentially predict the next item conditioned on previous ones to learn their com-
patibility relationships [1]. They also proposed a method to explore visual and textual
together by projecting visual features to the space of textual attributes.

Cui et al. (2019) proposed multimodal graph-based neural network that optimizes
Fashion Graph and uses the attention layer to compute the compatibility score [8]. The
authors used deep convolutional neural network to extract visual features from images
and one-hot-encoding to represent titles as boolean vector. They described a strategy to
train the multimodal node-wise graph neural network (NGNN) and showed that their
approach outperforms such baselines as unimodal GGNN, Bi-LSTM, and others.

Li et al. (2020) also proposed multi-model graph-based neural network [6] and uni-
fied two tasks: fashion compatibility modeling and personalized outfit recommendation.
They proposed Hierarchical Fashion Graph Network (HFGN) to model relationships
among users, items and outfits simultaneously. They also proposed an R-view atten-
tion map, which can capture the potential compatibility knowledge better. The authors
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demonstrated that their model outperforms such state-of-the-art methods as NGNN and
FHN.

Cardoso et al. (2018) proposed multimodal embedding that takes item images, type,
description and some content characteristics and projects them to interpreted categorical
embedding [9]. The authors also introduced a hybrid architecture to compare and rank
items that combines content-based and collaborative inputs as well as an embedding to
project them. Elaine M.B. et al. (2019) proposed a method to assess the compatibility of
items that use this embedding [22]. They showed how to recommend a highly scored set
of items to a user by several input items. Their approach uses embeddings and applies
dot product and softmax operations to calculate the compatibility score.

Sagar et al. (2020) proposed a multi-model method to personalized outfit recommen-
dations with attribute-wise interpretability [ 10]. Their method is based on BPR and ranks
triplets of items. The obtained vectors of features are integrated with the embedded user
preferences vector and used by BPR to compute the compatibility score. The authors
showed that their method outperforms such baselines as Bi-LSTM, VTBPR, GP-BPR,
and others.

Yuan et al. (2018) proposed simple convolutional generative network for next item
recommendation based on dilated CNN architecture [11]. The authors tried to implement
the idea of learning short- and long-range dependencies between items using CNN. They
stacked holed convolutional layers and used residual block structure. Results showed
that the proposed generative model attains state-of-the-art accuracy.

2.2 GAN-Based Solutions

The main problem with the approaches proposed above is that they are trained to rec-
ommend items that were encountered in existed sets along with the items received as
input. This severely limits the possible variety of combinations of items. Some authors
tried to solve this problem by applying noise to the input items or using a variational
autoencoder as the base of their model, but it does not solve the problem completely, but
makes the latent space of the model less sparse. Compatible items that are not presented
in the existing sets will still not be recommended together. To overcome this problem, it
is proposed to use generative adversarial neural networks (GAN) that explore the items
and the compatibility of items and learn to generate new items from noise. In order to
offer real items to the user, the generated items are compared with the real ones from
the target dataset.

Kang et al. (2017) proposed a method based on Siamese CNNs approach and showed
how to use the proposed GAN model for outfit recommendations [13]. The model takes
a text query and a history of user outfits and generates personalized fashion recommen-
dations. The authors compared their method with some baselines and showed that it
outperforms such base methods as WARP, FM, BPR (and some variants), and others.

Sudhir and Mithun (2019) combined the encoder-decoder architecture with GAN
approach and proposed the model which takes a vector of features of input item image
and random noise to generate a new item [12]. The noise is used to diversify the generated
items.
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Yu et al. (2019) also used encoder-decoder-based GAN to explore compatibility of
items and generate compatible items for outfits [16]. An encoder-decoder-based genera-
tor was used to generate an item by an input one. Two same discriminators were used to
compute the compatibility score of the built outfit and evaluate whether a real item was
generated or not. The authors proposed to use the BPR-based method to compute com-
patibility by ranking a positive, a generated, a negative and a random compatible outfit.
They showed that their method is more accurate than directly assessing by classifying
or scoring the generated outfit.

Liuetal. (2019) proposed the Attribute-GAN model for clothing matching [14]. They
added the second discriminator to assess attributes of synthetic and negative images. To
extract attributes from the synthetic image, the model projects it to a vector of visual
features, splits the vector into parts, and uses several dense layers to project them to
attributes. Extracted one-hot encoded attributes and attributes of the negative item are
used to calculate the loss. The real-fake discriminator is used to calculate the second
part of the loss function.

Liu et al. (2020) proposed the multimodal method to generate an item by an input one
[15]. It combines the encoder-decoder-based GAN and TextCNN to generate a new item
by an input item. The encoder projects an input image to a vector of visual features as
TextCNN projects an input description to a vector of context features. Vectors of features
are concatenated and used by the decoder to generate a new item. The authors used a
loss function that combines four parts: BPR loss, pixel difference between generated
image and corresponding ground truth image from a dataset, compatibility of input and
ground truth images, and compatibility of their descriptions.

The first problem with all of the GAN-based methods is that they use a fixed number
of input and output items in the set. The models can only operate with the number
of items specified during the training, and changing this value will require to retrain
the model. The second problem is that the existing solutions either use only the visual
features and extract content attributes from generated images, or process text separately
from generation. However, such approaches do not guarantee keeping the attributes of
the input items and the reliability of the evaluation of the attributes of the received items.
We are trying to solve both problems mentioned above in this study.

3 Transformer-Based GAN for Outfit Recommendations

In this section, we describe the proposed method that tries to improve the compatibility
of set items, to solve the problem of a fixed number of input and output items and to
decrease the content features vanishing during generation. First, we define the problem
and introduce the method of representing a set of items as a sequence of items. Then we
describe our multimodal transformer block with cross-modal attention for simultaneous
exploration of the compatibility of items inside a modality and between modalities.
Finally, we present our multimodal transformer-based GAN with cross-modal attention.

3.1 Problem Formulation

Suppose we have some item domains D = {Dj, ..., Dy} and a domain S of sets of
items with a variable number of items. Each item /;; € D;,i € 1...N,j € 1...|D;]
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is associated with a visual image Visj,; and a textual description C, I (C as content).
Since sets of items have a variable number of items, we extend them to a pre-defined
maximum number of items M with a random normal noise N = (0, 1) as placeholders,

then an extended set of items S; = { <Vis1{<, C1k>’ (Vis,zk, C]")’ R (Vislk, C]k)} ,
l 2 n n

|Sk| = n can be described as S, = {Sk, <VisN}f+l, Cern{+I>’ R (WSNAI}, CN}@> }, where

Visf‘v, C;f, are randomly sampled vectors of visual and textual features. We focused on
devising an end-to-end multimodal generative compatibility modeling scheme Sch that
is able to learn the compatibility ¢ between a set of items and project an input noise to
synthetic items I, by introducing the network G as follows:

G(§k|®G) 5

Sk= {S"’<wsiﬁ+1’ci,f+l)""’ (Viﬁ,ciﬂ,(/[)}; (D)
o = Seh(,105),

where ©C and Og, are a set of parameters to be learned of generator G and scheme
Sch, ¢ — is a compatibility score of generated set S, .

3.2 Multimodal Transformer-Based GAN with Cross-Modal Attention

Multimodal Transformer Block. As the exploring of compatibility of items and the
generation of new compatible items are the main tasks of our scheme, we can use the
self-attention module, which is already presented in traditional transformer architecture
[23]. It allows exploring the compatibility of items inside a single modality, for example,
a visual or textual modality. However, each item is associated with data of multiple
modalities. The usage of multi-way scheme, which explores each modality separately
and then fuzes them, is not an optimal solution because the final vector contains features
of multiple modalities but features of each modality are explored without others and are
not connected with them.

To explore compatibility of items between the modalities, we propose to use a cross-
modal attention (CMA) module firstly described in Click or tap here to enter text. Similar
to the classical self-attention module, each sequence of items is represented as query
(0Q), key (K), value (V), however, K and V are swapped between modalities: Ky;; —
Kc,Kc — Kyis, Vvis = Ve, Ve — Vg, where Ky, and K¢ are keys of a visual
and textual modalities correspondingly, Vy;s and V¢ are values of a visual and textual
modalities correspondingly.

To exploit the advantages of self-attention and cross-modal attention modules simul-
taneously, we propose to stack these modules as shown in Fig. 1. First, we propose to
forward vectors to the cross-modal attention module and obtain vectors of features that
contain compatibility information between items of the same modality and between
modalities.
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Fig. 1. Multimodal transformer block architecture (left) with cross-modal attention (center) and

self-attention (right) modules.

Figure 1 shows the multimodal transformer block, which explores two modalities: a
visual and a textual, but it can be easy to extend the scheme with additional modalities.

Multimodal Transformer-Based GAN. The problem of fitting a model to recommend
items combined with input ones before is important in our opinion. It severely limits a
variety of compatible items and, as a result, a variety and a number of sets. The obvious
and efficient solution to smooth this problem is to use a GAN [12-16]. We propose to
stack several multimodal transformer blocks described above and use them as a body of
a generator of our GAN-based model, as shown in Fig. 2.

The generator G aims to translate the given sequence of items 3 aligned between
modalities, which contains a noise as a placeholder to the missed items, to a compatible
with non-noise items sequence of items S with compatibility score c;. The generator
also aims to predict a variable number of items in a target sequence.

The standard method to learn the GAN-based generator is to use a real-fake discrim-
inator. But, in fact, the traditional real-fake discriminator can only enforce the generator
to produce realistic vectors. These vectors can be incompatible with input ones. In our
context, we need not only to synthesize realistic vectors but also learn the compati-
bility of input vectors and synthesize new compatible vectors with them. To achieve
this, we propose to use (in addition to a real-fake discriminator Discr,s) a compatibility
discriminator Discrcomp as the guidance for compatibility modeling.

The body of discriminators is similar to the generator body. The real-fake discrimi-
nator takes a target sequence of items and projects it to a sequence of latent representa-
tions. Then, dense layer is used for each item of sequence to compute pre-item real-fake
scores. Finally, real-fake scores are summed to compute a complete real-fake score and
corresponding real-fake loss.

To overcome the problems of traditional GANS, [16, 25] proposed to use a combi-
nation of “relativistic discriminator” [25] and LSGAN [26] and described the following
in Eq. 2 losses for the real-fake discriminator and generator.

Lbisr _;Eo"[(s’f () = By (o) - 1)2}
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Fig. 2. Scheme of multimodal transformer. It is a base of generator and discriminators.
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where s, is a real-fake score, 0" ~ O, o ~ 0*, 0" is a domain of real sets, O* is a
domain of synthesized sets of items, @?.iscr is a set of parameters to be learned of the
real-fake discriminator. It can be seen that the discriminator keeps a margin between real
and fake data. The generator should eliminate this gap by minimizing:

Lgp :%Eor |:<srf (0") —Eyrsy <0f>>2]
1B, [(s,f (o)~ Eosy (or))z] o, 3

where ©Y is a set of parameters to be learned of the generator. As [16] uses a single item
as input, we re-defined the real-fake score function as a function to compute the real-fake
score of a set. It calculates a score of a set as a summation of a per-item real-fake score
of each item inside each modality as follows:

5| 5|
s (50) = 2 s ) = i:ZO(srf(Visb +0(CH) @

The compatibility discriminator similarly takes a target sequence and projects it into
latent space. To obtain the compatibility score of a set of items by the latent represen-
tation, we have modified the scheme of computing the compatibility score by ranking,
which is proposed in Click or tap here to enter text. We first take the element-wise prod-
uct of each pair of items inside each modality and sum them to obtain a latent space
representation z of the set:

(S) =D rtelitjitolf=(vfovi +cfoct) @)
i=0 j=0
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Then we fed the result into a metric network M, which consists of several dense
layers, to get the final compatibility score scomp (S’k> =M (z (S’k) |®M>, where ®)y is
a set of parameters to be learned of metric network M, scomp is a compatibility score.

To train the compatibility discriminator, we split our dataset into positive O and
negative O~ sets as described in [16]. The compatibility discriminator should be able to
distinguish positive sets from negative ones by assigning higher compatibility scores to
POSitives Scomp (0+) > Scomp (0_).

To achieve this, the compatibility discriminator should seek to reduce the loss:

1B = —E o [0[0 (seomp(07) = scamp(07))]] + 2oy |00 ()
o~ ~0~

where o is the sigmoid function, X is a regularization term, ®3"m is a set of parameters
to be learned of the compatibility discriminator, ©,, € @g’“’, ot ~0t, 00 ~0".To
achieve this by generator, it should synthesize a set S, ~ O™ with a similar compatibility
score as its positive set S Ij . As a result, it should seek to reduce the loss:

1
Ly =5F [scomp (0) = i scoms ()]
1
+ EE()* [Scomp (0*) E0+ (Scomp :I ‘@G (7

where 0* ~ O*.
The overall architectures of the real-fake and the compatibility discriminators are
shown in Fig. 3.

Real-Fake Discriminator Compatibility Discriminator
‘ Compatibility loss

. Real-Fake loss Compatibility score

! - I
Dataset h Dataset
Per-item \
real-fake pos.ave[: Positive
score _‘ 4 /\ /\ ﬁ ﬁ O H ? Negative' Rank ‘ Rank Negative

CLL-Um 00 -Lm  CCE-Cm O Ce

Multimodal Transformer Multimodal Transformer
Target Sequence of items Target Sequence of items

Fig. 3. Scheme of real-fake discriminator (left) and compatibility discriminator (right).

It should be noted that the multimodal transformers of discriminators have shared

Discr Discr Discr Discr Discr
parameters ®shared’ ®shared € ®}jf ’ ®shared € ®comp

The final objective of our generator is to minimize loss function as follows in Eq. 8,
and the final objective of our complete scheme is to minimize loss function as follows
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in Eq. 9:
LY = ML + ML, (8)
L=Lo0u, h) + MaLiP" + aaLimer ©)

where A1, A2, A3, A4 are model tradeoff parameters.

The training process can be described as follows. First, a step is made on the discrim-
inators, after which they are updated to estimate the generator. A result of forwarding
a batch to the generator is used to calculate losses of discriminators, but the losses are
backwarded only to corresponding discriminators. Then the step is made on the generator
with estimates from the discriminators. Similar to discriminators, the loss is backwarded
only to the generator. This process continues until the generator converges.

4 Experiments

4.1 Dataset

Most of the previous works for outfit recommendation have used either Amazon data
containing co-purchase information or Polyvore data containing outfits created by users.
Co-purchase does not always mean that items are compatible as items are typically not
bought with the intention of being worn together, but it is more likely to reflect a user’s
style preference [9, 22]. As a result, the estimate on this dataset is not reliable. Outfits
in datasets obtained from Polyvore are built by users which gives a stronger signal of
compatibility. They contain a variable number of items per outfit, visual and textual
modalities, and some other data. They are fully suitable for evaluation on them in terms
of the content, but they are outdated. Items from them are out of fashion and mostly
not available. We decided to use the public dataset FOTOS which contains outfits and
corresponding items [19, 20]. Each outfit and each item are associated with an image
and metadata. Outfits contain a variable number of items, and they are created by users,
similar to Polyvore. It consists of 10,988 compatible outfits and 20,318 items.

4.2 Baselines

To verify the effectiveness of proposed method, we compared it with the following
baseline methods. FHN uses only visual features. It encodes them with category encoders
and then learns one-hot encodings for item embeddings. The outfit score is the mean
of pairwise compatibility scores of outfit items. Bi-LSTM-VSE is interpreting an outfit
as a sequence of items and exploits the outfit compatibility by a bi-directional LSTM
and visual-semantic consistency. NGNN is a node-wise graph-based neural network
that optimizes a multimodal fashion graph to uncover the complex relationships among
items and assess the compatibility score. HFGN is a hierarchical graph neural network
to model relationships among users, items and outfits simultaneously. It uses message
propagation across items and attention to better capture compatibility between items.
The model contains two levels for exploring interactions between users and outfits, and
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between outfits and items correspondently. For our experiment, we have used only the
second one. MGCM is an autoencoder-based GAN model that uses deep CNN to extract
visual features from images and TextCNN to extract textual features from descriptions.
It explores the visual and textual features simultaneously.

Itis worth noting some implementations details. MGCM generates images by default,
but this is not necessary for this task. The model has been adapted to generating feature
vectors instead of images. It also takes one item as input and generates one item as
output. To generate one item by multiple ones, the encoded vectors of items have been
averaged and the obtained vector have been used as input for the generator. MGCM, and
our transformer-based GAN model are generating synthetic vectors of features. To assess
the accuracy of models, we are comparing generated vector with vectors of candidates
and choosing the closest one.

4.3 Evaluation and Results

The proposed method and baselines were compared on the fill-in-the-blank task. For
each outfit in the dataset, a random item was selected as the blank. Similarly, three
negative candidates were randomly selected for each outfit. The aim is to select the
correct answer from four candidates to fill in the blank in the outfit. The accuracy of
assessing the performance was proposed in Table 1. The best result is in bold, the second
score is underlined, and the third score is in italic.

Table 1. Performance comparison on fill-in-the-blank task.

Method FLTB (2 items) | FLTB (3 items) | FLTB (4 items)
FHN 0.697 0.669 0.669
Bi-LSTM-VSE | 0.724 0.776 0.753
NGNN 0.791 0.765 0.765
HFGN 0.826 0.801 0.800
MGCM 0.822 0.817 0.829
Our 0.878 0.863 0.911

The results show that our proposed model outperforms the baselines. They also
illustrate that GAN-based methods outperform the classical ones, despite the fact that
GAN learn to generate new items rather than choose from existing ones.

Figures 4. and 5. show some examples where our model predicts blanked items better
than others compared. Fashion and style are very complex concepts, and preferences can
differ from person to person. In our opinion, the figures show that HGFN and MGCM
models emphasized various aspects of the input items, while our model evaluated the
overall style of the received items and their attributes and generated the most appropriate
item for the set.
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Fig. 4. Example of fill-in-the-blank predictions of blanked “shoes” item by input “outer”,
“bottom” and “top” items.
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5 Conclusions

In this paper, we propose transform-based GAN methods for multimodal generation of
set of items by input ones. We have tried to solve some problems of existing GAN-
based solutions such as the problem of a fixed number of input and output items and the
problem of losing content attribute features during the generation process.

We have proposed to interpret a set of items as a sequence of items with starting and
ending tag. It allows a model to control a number of items which a set of items contains.

The multimodal transformer with cross-attention module have been proposed as a
body of our GAN-based model to overcome the problem of losing a content attribute
features during generation. It allows the model to explore and generate visual and textual
features simultaneously.

We have compared the proposed model with some strong baseline models and shown
that our proposed method outperforms baselines at the fill-in-the-blank task on the
FOTOS dataset. Our model has reached 0.878 accuracy in filling one blanked item
by one of four candidates (one is positive and three are negatives) by one input item.
Versus 0.724 of Bi-LSTM-VSE, 0.822 of MGCM, 0.826 of HFGN. Similarly, our model
outperforms other baseline models with a different number of input items.
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Abstract. Representation learning for graphs has attracted increasing
attention in recent years. In this paper, we define and study a new prob-
lem of learning attributed graph embeddings. Our setting considers how
to update existing node representations from structural graph embedding
methods when some additional node attributes are given. To this end, we
propose Graph Embedding RetroFitting (GERF), a method that deliv-
ers a compound node embedding that follows both the graph structure
and attribute space similarity. Unlike other attributed graph embedding
methods, GERF is a novel representation learning method that does
not require recalculation of the embedding from scratch but rather uses
existing ones and retrofits the embedding according to neighborhoods
defined by the graph structure and the node attributes space. Moreover,
our approach keeps the same embedding space all the time and allows
comparing the positions of embedding vectors and quantifying the impact
of attributes on the representation update. Our GERF method updates
embedding vectors by optimizing the invariance loss, graph neighbor
loss, and attribute the neighbor loss to obtain high-quality embeddings.
Experiments on WikiCS, Amazon-CS, Amazon-Photo, and Coauthor-
CS datasets demonstrate that our proposed algorithm receives similar
results compared to other state-of-the-art attributed graph embedding
models despite working in retrofitting manner.

Keywords: Graph embedding - Attributed graphs + Graph embedding
retrofitting

1 Introduction

Machine learning methods have been studied in a variety of applications and
data types, including images and video (computer vision), text (natural lan-
guage processing), audio or time-series data, among many others. Since most
downstream ML models expect a vector from a continuous space as input, rep-
resentation learning methods have been developed to create those representation
vectors (embeddings) automatically. While there are many embedding methods
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traditional data types, such as word2vec [11] and FastText [4] for text, or ResNet
[7] and EfficientNet [14] for images, this task is much more difficult for graph-
structured data. A simple concatenation of unimodal representations (graph
structure and node attributes) is often not sufficient, as it does not consider
the mutual relationships between modalities. Therefore, the main challenge for
such methods is discovering the interrelationship between multiple modalities to
create a coherent representation that will integrate the multimodal information.

Problem Statement. Consider a situation in which data changing over time
is analyzed on an ongoing basis. In the first case, the structure of the network
remains unchanged, but the attributes of the nodes are constantly changing — an
example may be a network of connected weather sensors. Conversely, the values
of the node attributes can be constant, but the structure of the graph changes,
e.g., in a telephone network, where the edge denotes the currently ongoing call.
In both situations, graph embedding models that consider both the network
structure and node attributes can be used, however, if one of these modalities
does not change over time, this may not be the best solution. Especially, in the
first of the above-mentioned situations, it may be more advantageous to generate
the structural graph embeddings once, and then use a method that would modi