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ARTICLE INFO ABSTRACT

Keywords: As computational power increases and systems with millions of red blood cells can be simulated, it is
Red blood cells important to note that varying spatial distributions of cells may affect simulation outcomes. Since a single
M11c1rovaicular simulation simulation may not represent the ensemble behavior, many different configurations may need to be sampled to
Cell packing

adequately assess the entire collection of potential cell arrangements. In order to determine both the number
of distributions needed and which ones to run, we must first establish methods to identify well-generated,
randomly placed cell distributions and to quantify distinct cell configurations. We utilize metrics to assess
(1) the presence of any underlying structure to the initial cell distribution and (2) similarity between cell
configurations. We propose the use of the radial distribution function to identify long-range structure in a
cell configuration and apply it to a randomly distributed and structured set of red blood cells. To quantify
spatial similarity between two configurations, we make use of the Jaccard index, and characterize sets of red
blood cell and sphere initializations. As an extension to our work submitted to the International Conference
on Computational Science (Roychowdhury et al., 2022), we significantly increase our data set size from 72
to 1048 cells, include a similar set of studies using spheres, compare the effects of varying sphere size, and
utilize the Jaccard index distribution to probe sets of extremely similar configurations. Our results show that
the radial distribution function can be used as a metric to determine long-range structure in both distributions
of spheres and RBCs. We determine that the ideal case of spheres within a cube versus bi-concave shaped cells
within a cylinder affects the shape of the Jaccard index distributions, as well as the range of Jaccard values,
showing that both the shape of particle and the domain may play a role. We also find that the distribution is
able to capture very similar configurations through Jaccard index values greater than 95% when appending
several nearly identical configurations into the data set.

1. Introduction fluid, have been shown to accurately model cells in microfluidic [7] and

microcirculatory systems [8]. Blood flow simulations using FSI models

Computational blood flow models are a powerful tool for answering
biomedical questions. For microvessel simulations, where individual
cell diameters are on the same order of magnitude as vessel size, the
presence of cells plays a significant role in the non-Newtonian behavior
of blood. In this regime, velocity profile blunting has been observed

provide a wealth of information, as both microscopic and macroscopic
quantities, such as individual cell position and deformation, and fluid
pressure and velocity profiles, can be precisely tracked and studied over
time [9,10]. More importantly, these models allow for the isolation and

due to the motion of cells towards the vessel centerline [1] and blood
viscosity has been shown to be dependent on vessel diameter and
hematocrit (volume percentage of cells in the blood) [2]. Additionally,
cell-to-cell [3] and cell-to-vessel interactions [4] have been shown
to affect the underlying blood flow profile. Therefore in small vessel
simulations, blood must be modeled as a suspension of cells rather
than a continuum fluid. Fluid-structure interaction (FSI) models, such
as the immersed boundary method [5] or dissipative particle dynam-
ics [6], which fully couple deformable particles with a background
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controlled variation of specific parameters such as cell size or stiffness,
enabling researchers to probe the effects of individual parameters on
the quantity of interest. Much of the in silico work in microvessels
with cell FSI models has been focused on red blood cells (RBCs),
including studies on the effects of cell deformability and shape [11-
13], partitioning at junctions in the vasculature [14,15], aggregation
mechanics [16], and development of a cell-depleted layer [17,18].
Simulation has also been used to study the motion of other particles
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in the presence of RBCs such as platelets [19,20], leukocytes [21,22],
and circulating tumor cells [10,23-26].

While FSI models of cells in complex geometries are not new,
advances in computational efficiency and capability [27-30] have only
recently made this approach practical for comprehensive studies of
realistic systems. The inclusion of explicit cells in particular introduces
several new obstacles. The main challenge is simply one of statistics:
the motion of microparticles diffusing through a vessel is an inher-
ently stochastic process, thus trajectories must be sampled a sufficient
number of times to capture average behavior.

The same problem holds when abstracting from cells to granular
materials, such as grains of sand or rice, or atomic particles. When in-
terested in the microscopic behavior at the level of individual particles,
a single simulation is unable to capture the range of possibilities. Using
a cellular example, when tracking cancer cells in silico, the distance to
a vessel wall directly influences the cell’s likelihood of adhesion [31]
and subsequent escape into nearby tissue. We previously demonstrated
the effects of varying cell positions while studying combinations of
hemodynamic parameters and the motion of a tumor cell [23]. Even
when all bulk fluid parameters were held constant, the trajectory of
the individual cell was found to vary significantly based on the relative
configurations of neighboring cells.

In addition to increasing the overall computational cost, the need
for a representative ensemble of starting configurations introduces new
potential sources of error that must be managed. This challenge is
particularly acute for systems with higher hematocrit values, where
random coordinate generation must be done carefully to avoid ar-
tificial structure that would bias the observed dynamics. Similar to
the well-known equilibration problem in molecular dynamics [32],
flow simulations through tortuous vascular geometries have the added
complication that one cannot easily gather equilibrated statistics simply
by running a closed system longer in time. Instead, one must generate
a number of distinct sets of equilibrated starting points to be run
independently [33]. To this end, we propose a method to generate
many cell configurations and the use of the radial distribution function
(RDF) to characterize the structure in a particular configuration. The
final challenge is to define quantitative metrics to rigorously compare
individual cell configurations and to characterize the complete set as
a whole. For this purpose, we propose the use of the Jaccard index
(J) to quantify spatial similarity between individual configurations
as an appropriate metric for describing and comparing sets of cell
configurations.

A comprehensive method for sampling the entire space of potential
configurations is to generate a large data set of starting configurations.
While this method is useful, it is important to establish that the data
set is truly representative of the entire space. For instance, it is possible
to generate hundreds of configurations, each with numerous cells, but
with only minor differences such as a single cell being slightly rotated.
In this scenario, despite the high number of configurations, they would
only be representative of a limited pool of possibilities. In order to
ensure that the data set is representative of the entire space, it is
crucial to have a systematic, quantitative approach for capturing the
volumetric similarity between configurations.

This is where J comes into play as a useful tool for quantifying
the volumetric similarity between configurations. By calculating the
Jaccard index between each pair of configurations, it is possible to
determine whether the data set is diverse and representative of the
entire space, or if it is confined to a local set of possibilities. This
approach can provide valuable insights into the breadth of the data set
and can help to improve the variety in starting conditions.

In our previous work [34], we described several of these methods,
including a procedure to quickly generate many configurations of
particles, an application of the RDF on individual configurations to
assess the long-range structure or randomness in particle placement,
and a lattice-based numerical method to calculate volumetric spatial
similarity between configurations using the Jaccard index between
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bi-concave shaped red blood cells. RBCs serve as a uniquely shaped
material, but since they are by far the most common type of cell in the
bloodstream, any type of microvascular simulation including cells will
require the packing of RBCs.

In this work, we extend our study as follows. First, we now apply
these metrics not just to RBCs, but also to ideal spheres. Spheres, which
are often used as an ideal model for many different particles, are used
as a baseline comparison to the irregularly-shaped RBCs. We compare
the volumetric spatial similarity between sphere configurations again
using the Jaccard index, but this time with an analytical method to
calculate sphere overlap. Both sets of particles are used to study how
the number of configurations affects the distribution of Jaccard index
values and in order to compare the two, we maintain similar levels
of volume fraction for both systems. Then, we significantly increase
the size of the data set used for volumetric comparison, from 72
individual configurations to over 1000. Within this data set, we also
break down the results by packing fraction in order to minimize the
effects of hematocrit variation. Next, we study the effects of changing
sphere size on the J index distributions. Finally, using the quantitative
J value distribution, we show that we can describe entire systems
of configurations to identify extremely similar cases by appending
minutely perturbed configurations to the data set. Thus, we make the
step towards choosing the most representative set of configurations that
can describe the entire space of possibilities.

2. Methods and metrics

First, we will describe the approach we use to generate many
cell configurations. Then we introduce the main methods employed
in this research to (1) assess these configurations are random, (2)
quantify spatial similarity, (3) characterize a set of configurations
through the distribution of their similarities. These three techniques are
summarized in Fig. 1.

2.1. Generating initial configurations of materials

Dense packing of non-overlapping shapes is a long-standing research
problem of active interest [35-37]. Although a maximally dense pack-
ing of same-size spheres can reach volume fractions of 63%, typical
values for RBCs are approximately 40%-45% in major vessels [38].
However at this scale, blood is typically treated as a whole continuous
fluid [39]. In the microvessel regime, the volume fraction can range
anywhere from 5 to 35% [40]. For this work, we chose a target volume
fraction of 25% within an idealized 30 pm diameter microvessel. While
the metrics we present should be generally-applicable and independent
of density, this regime is sufficiently dense to ensure significant overlap
in both correlated and uncorrelated distributions but dilute enough to
simplify random configuration generation. For spheres at these packing
fractions, a simple random distribution of cell centers along with a col-
lision check can quickly hit these values. However due to the irregular,
bi-concave shape of RBCs, packing many versions of configurations at
the same hematocrit is not as simple as the spherical case, especially in
microvessels. The unique RBC shape is not amenable to quick collision
checks, and the tight cylindrical domain can significantly limit the
hematocrit when randomly packing the vessel. A cursory packing is
unable to hit 25% hematocrit in this vessel, and longer computational
time would be required to iteratively fit more RBCs in. Multiplying this
by the number configurations, the computational time spent purely in
this pre-processing step quickly increases before any simulation work
has even begun.

Here we describe a better procedure for generating and character-
izing packed configurations of RBCs in arbitrary vessels. Rather than
generating individual configurations on demand, we instead start with
a large system of packed cells from which we can fill vessels of arbitrary
size and shape. This technique has the advantage of letting us generate
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Fig. 1. Summary of three techniques used to determine the best set of cell configurations to describe the ensemble. (1) The radial distribution function g(r) is used to assess
randomness in a distribution of cells. (2) The Jaccard index J is used to quantify spatial similarity between two configurations. (3) A set of pairwise J values are used to numerically

describe a large set of cell configurations and presented as a distribution.
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Fig. 2. An example of a cell initialization taken by submerging the vessel within a large, pre-generated packing domain. Only cells that fit completely inside the vessel are returned

and used as the starting point for a simulation.

a packed domain in the simplest possible geometry prior to simula-
tion while avoiding the code complexity an on-the-fly implementation
would require. The source domain is created to be several times larger
than the vessel of interest. The standalone implementation provided
by Birgin et al. [41] is used to pack ellipsoids that tightly encompass
the RBC’s biconcave shape, returning a set of non-overlapping positions
and orientations. Although the fully enclosed RBC represents approxi-
mately 70% of the encompassing ellipsoid volume, a distribution with
a packing fraction of up to 60% is enough to reach the high end
of microvascular hematocrit levels. An example of this packing and
a corresponding cell initialization is shown in Fig. 2. Testing vessels
ranging in diameter from 20 to 50 pm shows the ability to reach
realistic hematocrits from 20% to 35% consistently.

This approach of separately generating a packed source domain has
the advantage of easily allowing for rigorous a priori analysis before
performing expensive microvascular simulations.

Once the bulk source geometry has been generated, individual RBC
configurations can be created by submerging the target vessel in the
source domain at different locations and selecting all cells contained
within. This process remains the same for both simple and complex
geometries, establishing a straightforward method for generating many
different configurations prior to running HPC simulations.

2.2. Assessing randomness within an individual configuration

To avoid initializing FSI runs with non-physical starting configu-
rations, the source bulk system must not have any long-range order
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Fig. 3. A 2-D example of differing Jaccard indices compared to a base configuration (left) using circular particles. Two other distinct configurations are generated and overlaid
on the base configuration (middle and right). The middle configuration is less similar to the base case than the right configuration and can be confirmed visually by identifying

the overlapping violet regions and computed using J.

consistent with crystalline packing. The radial distribution function g(r)
is a well-established metric in the simulation of fluids [42] used for
confirming liquid structure, defined as:

dn,
" 4xr2drp
where dn, returns the number of cells within a shell of thickness dr and
p is the bulk density, and returning the probability of finding another
particle at a distance r. Long-range structure is reflected in the form of
multiple peaks well beyond the average particle spacing. Particles are
assumed to start from a fully disordered liquid state, reflected by a g(r)
that quickly converges to a constant value of unity.

g(r)

2.3. Quantifying spatial similarity between configurations

After generating a set of multiple material configurations, the next
step is to verify that each of these packings are distinct by quantifying
their spatial similarity to each other; specifically, the fraction of volume
shared by two configurations. The Jaccard index, or intersection over
union, is used to measure the similarity between two discrete sample
sets, defined as:

|C;nCl
J(C, C,') =T,
IC UGl
where C; and C; are independent samples of the same space. For a
configuration of spheres, the shared volume in space by spheres S| and
S, with radius r separated by distance d can be calculated by

1
Vsertap(S1»S2) = E7[(4r +d)2r —d)?

However, due to the irregular biconcave disk shape of RBCs, a
simple analytical algorithm for overlap check given cell positions and
orientation angles does not exist. We propose the use of the Jac-
card index to quantify the volume overlap between sets of RBCs by
comparing the interior grid points. This is similar in approach to the
algorithms used by the image segmentation community [43], such as
the Dice similarity index. Therefore in this calculation, a numerical
method is utilized, where each configuration of RBCs is mapped to a
3-D grid, and overlap is calculated by the number of grid points shared.
A grid resolution is chosen based on those of typical lattice-based
RBC simulations. If a lattice point is inside of a cell, it is marked as
occupied, and two sets of occupied points pertaining to two particular
configurations can be used to calculate J via

le,c,
A Ay ey
G G Ci.C;
where /¢, and IC/ refer to the number of grid points occupied by cells
in configuration i/ and j respectively while le,c, is the number of lattice
points occupied in both configurations.

While there are many potential metrics for comparing structural
similarity such as the Sorensen-Dice similarity score, overlap coeffi-
cient, and Salton’s cosine index, we choose to use the Jaccard index.
The Sorensen-Dice coefficient and Jaccard index are monotonically
related, but in order to treat the similarity score between two con-
figurations as “overlapping volume in space divided by total potential
volume occupied by cells”, we choose to use J. We expect that using
the Dice score would generate a similar distribution which can be
recovered from the Jaccard index using .S = 2J /(1 +J) and provide the
same level of information. The overlap coefficient only represents the
percentage of overlap related to the smaller set, which does not allow
fair comparison as the set sizes may change. Finally, Salton’s cosine
index is used to measure similarity between a sequence of numbers,
but in our case, where the data is simply a set of binary values (fluid
vs cell-occupied), Jaccard index is easier to implement.

2.4. Using the Jaccard index to cut correlated configurations and examples

Since J(C;, C;) represents the percentage of overlapping cell volume
between C; and C s J(C;, C;) = 100% if two arrangements are identical
and zero if there is no shared cell volume in space.

A threshold value ¢ is chosen to label whether or not two config-
urations are correlated; if J(C;,C;) > ¢, the pair is marked similar.
For example, two test configurations that contained the same group of
cells shifted a micron led to J over 90%, and would be marked as a
similar pair. Because the likelihood of two configurations of cells both
occupying a certain space increases with volume fraction occupied by
the material, we expect that ¢ is not a static value.

A two-dimensional visual example is shown in Fig. 3, displaying
distinct configurations of circles with significantly different J values.
This example uses spheres with a radius of 4 units in a 100 by 100
domain. Compared to the base configuration, there is a clear difference
in overlap, which can be identified visually and captured quantitatively
through an analytical computation of J.

Another two-dimensional example for calculating J using RBCs is
provided in Fig. 4. Each initialization contains a single cell marked red
for configuration 1 and blue for configuration 2. The corresponding
lattice points are marked with the color of containing cell. Once these
two lattices are overlaid, the shared points are marked in yellow. We
note that this is a purely hypothetical example where the lattice spacing
is enlarged for visual clarity.

Although these examples are visualized in two dimensions for
clarity, the sphere and RBC configurations are performed in three-
dimensional space. The Jaccard index provides a numerical method to
identify spatial similarity rather than a qualitative comparison.
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Fig. 4. A 2-D example for the calculation of Jaccard index J between two configurations of RBCs. After the RBCs are mapped to their corresponding lattices, there are 18 total
points which contain a cell, of which 3 are shared in both configurations which are marked by the larger grid points. J =3/18 = 16.7% in this example.
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r

(top right) of cells packed within a cube of side length 200 pm. The corresponding radial distribution

functions are shown below the two. X,,,,’s g(r) shows a single peak and trails off to 1 quickly, analogous to a random liquid-like state, while X,,,’s g(r) displays several peaks,

indicating that the distribution contains a repetitive structure.

2.5. Using Jaccard indices to describe an entire set of configurations

Since the Jaccard index is applied between two particular config-
urations, J needs to be calculated on a pairwise basis before it can
be used to quantify the entire distribution of configurations. For a set
of configurations § = {C,...,C,}, we define Jg, the set of Jaccard
similarity scores, as:

Jg = {J(q.,cj)|i,j =1l.ni#j}.

To quantify the similarity of a particular configuration C; with
respect to all the others, the mean Jaccard index J(C,;) is calculated
as:

- 1 L
J(C)=— Y IC.C.j #i
j=1

for a set of n configurations. Given two similar configurations C and
C’ such that J(C,C’) > ¢, and mean Jaccard indices such that J(C) <

J(C"), configuration C’ would be considered first for removal from the
set.

2.6. Computing details

Simulations are set up on the Summit supercomputer using HAR-
VEY, a massively parallel computational fluid dynamics solver [44,45].
After cells are created in the beginning of the simulation, lattice points
are iteratively marked as either occupied by fluid or cell. These re-
sulting positions and occupancies are saved into output files for each
initialization. A parallel python script is used to perform the calculation
of Jaccard index between every pair of samples.

2.7. Procedure

In this section, we present the methodology used to set up the study.
We first describe with the procedure to efficiently obtain numerous RBC
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Fig. 6. A numerical method to quickly generate many packings of RBCs is utilized in this work. Up to 200 different initializations for a cylinder of diameter 30 pm and length
100 pm pulled from a packing domain of 200° pm?. Cells within this region are used to generate RBC configurations of initial positions and orientations at a target hematocrit of
25%. A subset of the cutouts are shown in the x-y and y-z planes for this set of initializations. A histogram of the number of RBCs in each configuration is provided, showing

that there is variation in the cell count within each cutout.

configurations, establish randomness, and create a comparison with
spheres. Finally, we describe the method for using J to identify distinct
configurations.

2.7.1. Applying the RDF to quantify structure in the source domains

For RBCs, configurations are sourced from multiple large, dense
packings. Three source arrangements are generated in a cubic domain
of side length 200, 300, and 400 pm with over 3.5 x 10*, 1 x 10°, and
2.5x 10° cells, respectively. These random distributions are created by
packing the domain and then applying an external force to perturb the
initial arrangement of cells from Birgin et al. [41]. For comparison to
the randomly packed 200 pm side length cube’s cells, labeled X,,,;, a
structured set of cells X, is produced by tessellating a small set of
RBCs across the 200 pm side length cubic domain. Fig. 5 displays the
two examples of these cubic source domains. The radial distribution
function is then applied to each set of cell centers splitting dr into 0.5
pm buckets, and the corresponding g(r) functions are shown in the plot
in Fig. 5.

2.7.2. Utilizing jaccard index to quantify discrete distributions of RBC and
sphere configurations

Non-overlapping cutouts representing an ideal microvessel geome-
try with diameter 30 ym and length 100 pm are created from the three
source packing domains by aligning the cylinder lengths along the x-y
plane. Fig. 6 shows an example of cutouts from the 200 pm side length
cubic domain Xg,,;; there are 72 different configurations generated
from this particular domain: 6 from the y- and z-planes, and 2 in the
x-plane. In total, 1048 configurations are created with a hematocrit
spanning approximately 15%-25%, ranging from 125 to 160 RBCs,

shown in the histogram in Fig. 6, and are mapped on to a lattice with
grid spacing 0.25 pm. The most common cell count is around 150 RBCs.
The 1048 are sourced from all 3 packing domains while the 72 are a
subset from the 200 pum side length cube from the original work [34].

2.7.3. Assessing the effect of more samples and different sphere radius on
Jaccard index distributions

For a baseline comparison, multiple configurations of 160 spheres
are numerically generated at a 25% packing density in the same vessel
domain. To observe the evolution of the distribution’s shape with
respect to set size, we sample 72, 200, and 1000 configurations of 160
spheres, and an analytical calculation is used to compute J for each
pair of configurations.

2.7.4. Using Jaccard index to identify and remove duplicate configurations

The power of predetermining an entire J distribution lies in its
ability to detect extremely similar configurations. When preparing a
representative ensemble of simulations, it is important to start with a
distinct set of configurations for two reasons. First, including identical
groups in the data set may bias the outcome if there is an uneven
sample weighting, leading to a skewed set of results. Second, running a
group of duplicate simulations without randomness built into the sys-
tem would simply return the same result, effectively wasting compute
resources. By using this method of calculating the shared volume in
space to identify similar configurations, we can mitigate these effects.

To show that applying the J score can identify these repeated
configurations, we then append several nearly identical configurations
to the existing data set of randomly distributed spheres. Since none of
these J indices for the original 1000 sphere configurations fall near
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Fig. 7. The distribution Jg of pairwise J values for (a) 1048 and (b) 72 RBC configurations in the 30 pm diameter and 100 pm length cylinder. The respective average overlap

of a particular configuration to all of the others are shown in figures (c) and (d).

100%, none are extremely similar to one another. To test the method’s
ability to parse out these types of configurations, we choose one of
the already created configurations and slightly perturb the original
positions to generate 100 new configurations in addition to the previous
1000. After these are created, the pairwise J indices are calculated
again.

3. Results and discussion
3.1. Applying the RDF to quantify structure in the source domains

Within the three random packings, g(r) contains a single peak near
the lengthwise diameter of the RBC that quickly trails off to unity,
indicative of a liquid-like, random distribution of particles, as seen in
the plot in Fig. 6. For clarity, only X, for the 200 pm side length
domain is presented, but all three random domains display the same
behavior. In the case of X, multiple discrete peaks are visible,
signifying the presence of long-range structure in the distribution of
cells. The structure found in the large packing domain remains in the in-
dividual configurations generated from them. A qualitative comparison
between the two source domains can be performed visually, but the use
of the radial distribution functions provide a quantitative confirmation
for the presence of ordered structure. Sampling cells from the random
distribution provides a better initial set of the positions and orientations
of red blood cells for running HPC simulations.

In order to compare a potential correlation in the orientations, We
perform a numerical comparison between the angles of every RBC in
the each of the source domains. This angle is found by taking the dot
product of the normals and computing the angle between RBCs. We
find that there is a balanced distribution of angles in between each set
of RBCs.

Since the procedure to generate many cell configurations in a
microvessel utilizes a subset of the cells in the large domain, it is
important to confirm the randomness of the initial cell arrangements.
The packing found in X, is non-physiological, and would gener-
ate many structured cell initializations as inputs to HPC simulations.
Moving forward, we sample configurations from the three random

distributions for RBCs after confirming the lack of long-range structure
in its distribution of cells.

3.2. Utilizing jaccard index to quantify discrete distributions of RBC and
sphere configurations

The entire set of pairwise Jaccard similarity index values are pre-
sented in Fig. 7a, while a subset corresponding to the original 72
configurations’ pairwise J scores are shown in Fig. 7b [34]. There is a
range of J values from 15 to 24% for all of the pairwise combinations.
This shows that there is no significant overlap in any two config-
urations, likely because completely non-overlapping subdomains are
chosen. There is also a skew in the entire distribution towards higher
J values, with the most common J index lying around 21%. The 72-
configuration distribution also contains a skew in the distribution with
peaks between 21 and 22%. We expect the shape of this distribution to
stray from normal due to the variety in the number of cells, especially
due to the cases where a J index is calculated between two data points
with significantly different hematocrits. A skewed shape emerges in
both cases which is likely due to the variation in volume fraction
resulting from the cylindrical cutout approach, although the bi-concave
shape of RBCs may also have an effect on the distribution.

Fig. 7c and d show J, the average pair overlap of a configuration
with all other configurations. This provides a method to compare indi-
vidual configurations’ spatial coverage against the full set. We expect
that both Jg and J distributions will change based on vessel geometry
and hematocrit. However, this study establishes that a pairwise Jaccard
index distribution can be used as a quantitative metric to describe a
set of cell configurations. We posit that selecting configurations with
low J could be used to sample the configurational phase space more
efficiently.

To mitigate the effects of the variation in hematocrit or volume
fraction, the configurations are segmented into specific cell counts +1,
ranging from 135 to 160 cells, corresponding to hematocrits of approx-
imately 18% to 25% respectively. The resulting pairwise J scores for
each bucket are shown in Fig. 8. Additionally, the exact same number
of configurations for each bucket are generated with spheres occupying
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Fig. 8. The distribution Jg of pairwise J values filtered by the number of objects; 135 through 160 RBCs are plotted in red. The same domain is filled with sphere configurations
at an equivalent volume fraction and the corresponding Jg distributions are plotted along the same axes in blue.

the same volume fraction and the corresponding J data is plotted
alongside the RBC data. This allows for a close comparison of the effect
of the particle shapes on J distribution as the hematocrit changes.
The overlap index of configurations of randomly-placed spheres
generally follows a normal distribution. The distribution of RBCs, on
the other hand, is skewed away from normal in each case. This may
be an artifact of the packing algorithm used to populate the source
distribution or may be a fundamental difference in how biconcave
disks pack into a confined geometry; more work will be needed to
elucidate the underlying cause. The magnitude of the average overlap
differs significantly between the shapes as well despite all systems
having the same volume packing fraction. Additionally, we notice that
while the average J index remains roughly the same for the different
RBC counts, as the number of spheres increases, the average J shifts
higher. It should be noted that the RBC geometry likely has a systematic

underestimation of the overlap due to discretization error, though
this is not expected to be large. The spherical overlap was computed
analytically as a function of distance between sphere centers.

3.3. Assessing the effect of more samples and different sphere radius on
jaccard index distributions

Results for the sphere configurations are presented in Fig. 9a—c in
the left hand column. To study the effect of different sphere radii at the
same volume fraction, we then pack the ideal microvessel with spheres
half the diameter of previous. The resulting J¢ distributions at the same
number of configurations are presented in the right hand column of
Fig. 9.

We observe that as more samples of sphere configurations are
introduced, the Jg converges towards a normal distribution, spanning
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Fig. 9. The distribution J of pairwise J values for (a) 72 (b) 200 and (c) 1000 sphere configurations at a 25% volume fraction. The same number of configurations are created with
a set of spheres half the diameter of the original and the corresponding J distribution is plotted. Both sphere sizes tend to the same normal distribution. As more configurations
are added into each data set, from 72 up to 1000, the shape tends to a clear normal distribution.

a range from 22 to 34%. For both sets of sphere diameters, the distribu-
tions look extremely similar across all configuration counts. We expect
that as the sphere size is increased to larger diameters such that only
a handful of objects can be placed within the domain, there will only
be a finite set of possible configurations to place the spheres. There
will be sectioned off volumes of the domain that will always contain
a sphere, no matter the configuration, which could lead to changes in
the J distribution. For relevant simulations however, the domain will
typically be several times the size of the cell, as is the case with the
microvessel.

3.4. Using jaccard index to identify and remove duplicate configurations

Results for the J¢ and J distributions for the updated set are shown
in Fig. 10. In the J plot, in addition to the original normal distribution
around J = 30%, there is now a clear emergence of another set of peaks
to the far right of the plot. Since the new configurations are nearly
identical to their original counterparts, they cause the appearance of

several pairwise J scores greater than 98%. In the J plot, we find that
the average J per configuration has increased, but significantly more in
a subset of the 1100. One can iteratively remove configurations starting
with the highest J and see the effects on the J distribution. Once there
are no more J pair scores that reside in the region close to 100%,
the data set can be considered distinct. Applying this method to the
1100 sphere configuration set, the 100 additional configurations are
tagged for removal one at a time. Once all of the J pairs above 98%
are removed, the J distribution returns to one from the original 1000
configurations.

Typical qualitative comparison between configurations, especially
on larger scales is often impossible, thus making the use of the quan-
titative spatial similarity a strong metric for identifying which config-
urations are extremely similar and may be dropped from the test set.
With no prior knowledge of the similarity of this 1100 configurations
test case, the application of J indices leading to the plots of J¢ and J
can pinpoint similar pairs. Applying the J scores can help pre-process
the data set by identifying these identical configurations and removing



S. Roychowdhury et al.

a) Js: 1000 original + 100
similar sphere configurations
2000
20000 —
1500 —
L 15000 1000 |
5
500 —
S 10000
0 T T
5000 — 0.980 0.985 0.990 0.995 1.000
0 | T T
0.2 0.4 0.6
J index
b) J: 1000 original + 100
similar sphere configurations
0.48 — I
0.46 —
0.44 —
0.42 —
I~
0.40 —
0.38
0.36 —
0.34 - #
I I I I I I
0 200 400 600 800 1000

Configuration

Fig. 10. Distribution of (a) Jg and (b) J on a per configuration basis for sphere
configurations augmented with a set of 100 configurations with slightly perturbed
sphere positions. The Jg distribution now displays a group of J values over 98%,
corresponding to the extremely similar configurations. This is also reflected in the
values for J, as the average J significantly increases for a subset of configurations.

them from the initial set of configurations in order to minimize bias
and better sample the entire space.

4. Conclusion

In this study, we apply several metrics to spheres and red blood cells
within an idealized microvessel. The radial distribution function is used
to qualify structured arrangements of particles, while the Jaccard index
is utilized to capture shared cell volume between two configurations.
We create over 1000 RBC configurations and study pairwise J values,
comparing them to randomly generated groups of spheres. We also
vary the sphere diameter and add slightly perturbed configurations to
the sphere data set. In all of the sphere and RBC studies, we perform
pairwise J calculations and plot the distribution of Jaccard index
values, showing that this method can be used to define the space of
particle configurations.

This study sets the groundwork for identifying the optimal set of
initial particle arrangements for a specific group of simulation pa-
rameters for microvascular simulations. Without applying this type of
quantitative metric, it is nearly impossible to visually identify every
single configuration which is extremely similar, especially when the
data sets grow to massive sizes. This type of metric can be applied
to large sets of initial configurations, effectively pre-processing the
data set in order to minimize the number of similar conditions being
run. One of the limitations of this work is the dependence of Jg and

Journal of Computational Science 71 (2023) 102060

J on several factors, such as packing fraction, vessel geometry, and
discretization of the geometry. However, the focus of this work is to
introduce these methods as a quantitative metric, and further studies
can be performed to determine the effects of varying distributions. Next
steps for this work include performing simulation studies with sets of
spatially uncorrelated particles configurations to determine how these
affect certain outputs, such as motion of individual cells. Future work
will also study the effect of different vessel sizes, shapes, and hematocrit
on distributions of the Jaccard similarity index.

CRediT authorship contribution statement

Sayan Roychowdhury: Conceptualization, Methodology, Writing —
review & editing, Software, Formal analysis, Investigation, Validation,
Data curation, Visualization, Writing — original draft. Erik W. Draeger:
Conceptualization, Methodology, Writing — review & editing, Software,
Formal analysis, Investigation, Validation. Amanda Randles: Con-
ceptualization, Methodology, Writing — review & editing, Resources,
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

The authors would like to thank Daniel Puleri, Samreen Mahmud,
and Cyrus Tanade for their feedback and discussion. This work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. Computing support for this work came from the Lawrence
Livermore National Laboratory (LLNL) Institutional Computing Grand
Challenge program. The work of Sayan Roychowdhury and Amanda
Randles were supported by the National Science Foundation under
award number 1943036. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the NSF.

References

[11 G.J. Tangelder, D.W. Slaaf, A. Muijtjens, T. Arts, M. Oude Egbrink, R.S. Reneman,
Velocity profiles of blood platelets and red blood cells flowing in arterioles of
the rabbit mesentery, Circ. Res. 59 (5) (1986) 505-514.

[2] A.R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence
on diameter and hematocrit, Am. J. Physiol.-Heart Circ. Physiol. 263 (6) (1992)
H1770-H1778.

[3] J.J. Bishop, P.R. Nance, A.S. Popel, M. Intaglietta, P.C. Johnson, Effect of
erythrocyte aggregation on velocity profiles in venules, Am. J. Physiol.-Heart
Circ. Physiol. 280 (1) (2001) H222-H236.

[4] J. Panés, M. Perry, D.N. Granger, Leukocyte-endothelial cell adhesion: avenues
for therapeutic intervention, Br. J. Pharmacol. 126 (3) (1999) 537.

[5] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479-517.

[6] LV. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood
cells, Phys. Rev. Lett. 101 (11) (2008) 118105.

[7]1 T. Kriiger, D. Holmes, P.V. Coveney, Deformability-based red blood -cell
separation in deterministic lateral displacement devices—A simulation study,
Biomicrofluidics 8 (5) (2014) 054114.

[8] D.A. Fedosov, H. Noguchi, G. Gompper, Multiscale modeling of blood flow: from
single cells to blood rheology, Biomech. Model. Mechanobiol. 13 (2) (2014)
239-258.

[9] P. Bagchi, Mesoscale simulation of blood flow in small vessels, Biophys. J. 92
(6) (2007) 1858-1877.

[10] M. Pepona, P. Balogh, D.F. Puleri, W.F. Hynes, C. Robertson, K. Dubbin,
J. Alvarado, M.L. Moya, A. Randles, Investigating the interaction between
circulating tumor cells and local hydrodynamics via experiment and simulations,
Cell. Mol. Bioeng. 13 (5) (2020) 527-540.


http://refhub.elsevier.com/S1877-7503(23)00120-5/sb1
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb1
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb1
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb1
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb1
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb2
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb2
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb2
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb2
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb2
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb3
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb3
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb3
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb3
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb3
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb4
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb4
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb4
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb5
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb6
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb6
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb6
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb7
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb7
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb7
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb7
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb7
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb8
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb8
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb8
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb8
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb8
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb9
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb9
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb9
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb10

S. Roychowdhury et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

H. Lei, G.E. Karniadakis, Quantifying the rheological and hemodynamic
characteristics of sickle cell anemia, Biophys. J. 102 (2) (2012) 185-194.

B. Czaja, M. Gutierrez, G. Zavodszky, D. de Kanter, A. Hoekstra, O. Eniola-
Adefeso, The influence of red blood cell deformability on hematocrit profiles
and platelet margination, PLoS Comput. Biol. 16 (3) (2020) e1007716.

T. Kriiger, D. Holmes, P.V. Coveney, Deformability-based red blood cell
separation in deterministic lateral displacement devices—A simulation study,
Biomicrofluidics 8 (5) (2014) 054114.

P. Balogh, P. Bagchi, Analysis of red blood cell partitioning at bifurcations in
simulated microvascular networks, Phys. Fluids 30 (5) (2018) 051902.

J. Yang, S.S. Yoo, T.-R. Lee, Effect of fractional blood flow on plasma skimming
in the microvasculature, Phys. Rev. E 95 (4) (2017) 040401.

J. Zhang, P.C. Johnson, A.S. Popel, Red blood cell aggregation and dissociation
in shear flows simulated by lattice Boltzmann method, J. Biomech. 41 (1) (2008)
47-55.

D.A. Fedosov, B. Caswell, A.S. Popel, G.E. Karniadakis, Blood flow and cell-free
layer in microvessels, Microcirculation 17 (8) (2010) 615-628.

D. Katanov, G. Gompper, D.A. Fedosov, Microvascular blood flow resistance: role
of red blood cell migration and dispersion, Microvasc. Res. 99 (2015) 57-66.
K. Vahidkhah, S.L. Diamond, P. Bagchi, Platelet dynamics in three-dimensional
simulation of whole blood, Biophys. J. 106 (11) (2014) 2529-2540.

S. Fitzgibbon, A.P. Spann, Q.M. Qi, E.S. Shaqfeh, In vitro measurement of particle
margination in the microchannel flow: effect of varying hematocrit, Biophys. J.
108 (10) (2015) 2601-2608.

A. Jain, L.L. Munn, Determinants of leukocyte margination in rectangular
microchannels, PLoS One 4 (9) (2009) e7104.

J.B. Freund, Leukocyte margination in a model microvessel, Phys. Fluids 19 (2)
(2007) 023301.

S. Roychowdhury, J. Gounley, A. Randles, Evaluating the influence of hemorhe-
ological parameters on circulating tumor cell trajectory and simulation time,
in: Proceedings of the Platform for Advanced Scientific Computing Conference,
2020, pp. 1-10.

L. Xiao, C. Lin, S. Chen, Y. Liu, B. Fu, W. Yan, Effects of red blood cell
aggregation on the blood flow in a symmetrical stenosed microvessel, Biomech.
Model. Mechanobiol. 19 (1) (2020) 159-171.

J. Gounley, E-W. Draeger, A. Randles, Numerical simulation of a compound
capsule in a constricted microchannel, Procedia Comput. Sci. 108 (2017)
175-184.

P. Balogh, J. Gounley, S. Roychowdhury, A. Randles, A data-driven approach to
modeling cancer cell mechanics during microcirculatory transport, Sci. Rep. 11
(1) (2021) 1-18.

L. Grinberg, J.A. Insley, V. Morozov, M.E. Papka, G.E. Karniadakis, D. Fedosov, K.
Kumaran, A new computational paradigm in multiscale simulations: Application
to brain blood flow, in: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011, pp. 1-5.

J. Ames, D.F. Puleri, P. Balogh, J. Gounley, E.W. Draeger, A. Randles, Multi-
GPU immersed boundary method hemodynamics simulations, J. Comput. Sci. 44
(2020) 101-153.

L. Lu, M.J. Morse, A. Rahimian, G. Stadler, D. Zorin, Scalable simulation of
realistic volume fraction red blood cell flows through vascular networks, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1-30.

J. Gounley, E.W. Draeger, A. Randles, Immersed boundary method halo exchange
in a hemodynamics application, in: International Conference on Computational
Science, Springer, 2019, pp. 441-455.

L. Xiao, Y. Liu, S. Chen, B. Fu, Effects of flowing RBCs on adhesion of a
circulating tumor cell in microvessels, Biomech. Model. Mechanobiol. 16 (2)
(2017) 597-610.

L. Stella, S. Melchionna, Equilibration and sampling in molecular dynamics
simulations of biomolecules, J. Chem. Phys. 109 (23) (1998) 10115-10117.

K. Gordiz, D.J. Singh, A. Henry, Ensemble averaging vs. time averaging in
molecular dynamics simulations of thermal conductivity, J. Appl. Phys. 117 (4)
(2015) 045104.

S. Roychowdhury, E.W. Draeger, A. Randles, Establishing metrics to quantify
underlying structure in vascular red blood cell distributions, in: International
Conference on Computational Science, Springer, 2022, pp. 89-102.

A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S.
Torquato, P.M. Chaikin, Improving the density of jammed disordered packings
using ellipsoids, Science 303 (5660) (2004) 990-993.

H. Malmir, M. Sahimi, M. Tabar, Microstructural characterization of random
packings of cubic particles, Sci. Rep. 6 (1) (2016) 1-9.

K. Miskiewicz, R. Banasiak, M. Niedostatkiewicz, K. Grudzien, L. Babout, An
algorithm to generate high dense packing of particles with various shapes, in:
MATEC Web of Conferences, Vol. 219, EDP Sciences, 2018, p. 05004.

S. P.R., Red cell indices, in: H.K. Walker, W.D. Hall, J.W. Hurst (Eds.),
Clinical Methods: The History, Physical, and Laboratory Examinations, third ed.,
Butterworths, 1990, Ch. 152.

S.N. Doost, D. Ghista, B. Su, L. Zhong, Y.S. Morsi, Heart blood flow simulation:
a perspective review, Biomed. Eng. Online 15 (1) (2016) 1-28.

11

[40]

[41]

[42]

[43]

[44]

[45]

Journal of Computational Science 71 (2023) 102060

C. Desjardins, B.R. Duling, Microvessel hematocrit: measurement and implica-
tions for capillary oxygen transport, Am. J. Physiol.-Heart Circ. Physiol. 252 (3)
(1987) H494-H503.

E.G. Birgin, R.D. Lobato, A matheuristic approach with nonlinear subproblems for
large-scale packing of ellipsoids, European J. Oper. Res. 272 (2) (2019) 447-464.
M.P. Allen, D.J. Tildesley, Radial distribution function in a planar interface, in:
Computer Simulation of Liquids, Oxford University Press, 2017, pp. 453-470,
Ch. 14.

V. Yeghiazaryan, 1.D. Voiculescu, Family of boundary overlap metrics for the
evaluation of medical image segmentation, J. Med. Imaging 5 (1) (2018) 015006.
A. Randles, L.V. Kale, J. Hammond, W.D. Gropp, E. Kaxiras, Performance analysis
of the lattice Boltzmann model beyond Navier-Stokes, 2013, pp. 1063-1074.

A. Randles, E.W. Draeger, P.E. Bailey, Massively Parallel Simulations of Hemo-
dynamics in the Primary Large Arteries of the Human Vasculature, J. Comput.
Sci. 9 (2015) 70-75.

Sayan Roychowdhury is a Biomedical Engineering Ph.D.
candidate at Duke University in the Randles Lab. His
work leverages the power of supercomputers to perform
microscale bloow flow and microfluidic device simulations,
with a focus on fluid-structure interaction models to capture
cellular dynamics. He received his undergraduate degree
in Electrical Engineering and Computer Science from the
University of Illinois at UrbanaChampaign. Previously, he
worked as a graduate research assistant at Lawrence Berke-
ley National Laboratory in the computational materials
group, developing predictive models for inorganic solid
crystal materials.

Erik W. Draeger is the Director of the High Perfor-
mance Computing Innovation Center and RADIUSS project
at Lawrence Livermore National Laboratory as well as
the Scientific Computing group leader at the Center for
Applied Scientific Computing. He is also the Deputy Director
of Application Development for the Exascale Computing
Project, jointly overseeing a portfolio of 22 Office of Sci-
ence applications, 4 NNSA applications, and 7 co-design
projects. Erik earned a Bachelor’s degree in Physics from
the University of California, Berkeley in 1995 and received
a Ph.D. in theoretical condensed matter physics from the
University of Illinois, UrbanaChampaign in 2001. He has
over a decade of experience developing scientific applica-
tions to achieve maximum scalability and time to solution
on next-generation architectures. He has been a finalist for
the Gordon Bell Prize six times since 2005 and won the
prize in 2006.

Amanda Randles is the Alfred Winborne Mordecai and
Victoria Stover Mordecai Assistant Professor of Biomedical
Sciences and Biomedical Engineering at Duke University.
She has courtesy appointments in the departments of
Mechanical Engineering and Material Science, Computer Sci-
ence and Mathematics, and is a member of the Duke Cancer
Institute. Focusing on the intersection of high performance
computing, machine learning, and personalized modeling,
her group is developing new methods to aid in the diagnosis
and treatment of a diseases ranges from cardiovascular
disease to cancer. Amongst other recognitions, she has
received the NIH Pioneer Award, the NSF CAREER Award,
and the ACM Grace Hopper Award. She was named to the
World Economic Forum Young Scientist List and the MIT
Technology Review World’s Top 35 Innovators under the
Age of 35 list and is a Fellow of the National Academy of
Inventors. Amanda received her Ph.D. in Applied Physics
from Harvard University as a DOE Computational Grad-
uate Fellow and NSF Fellow. Before that, she received
her Master’s degree in Computer Science from Harvard
University and her Bachelor’s degree in Computer Science
and Physics from Duke University. Prior to graduate school,
she worked as a software engineer at IBM on the Blue Gene
supercomputing team. She has contributed to over 80 peer-
reviewed papers, over 100 granted US patents, and had over
100 pending patent applications.


http://refhub.elsevier.com/S1877-7503(23)00120-5/sb11
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb11
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb11
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb12
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb12
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb12
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb12
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb12
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb13
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb13
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb13
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb13
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb13
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb14
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb14
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb14
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb15
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb15
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb15
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb16
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb16
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb16
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb16
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb16
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb17
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb17
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb17
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb18
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb18
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb18
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb19
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb19
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb19
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb20
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb20
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb20
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb20
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb20
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb21
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb21
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb21
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb22
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb22
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb22
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb23
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb24
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb24
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb24
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb24
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb24
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb25
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb25
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb25
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb25
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb25
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb26
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb26
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb26
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb26
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb26
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb27
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb28
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb28
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb28
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb28
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb28
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb29
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb30
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb30
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb30
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb30
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb30
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb31
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb31
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb31
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb31
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb31
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb32
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb32
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb32
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb33
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb33
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb33
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb33
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb33
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb34
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb34
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb34
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb34
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb34
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb35
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb35
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb35
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb35
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb35
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb36
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb36
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb36
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb37
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb37
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb37
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb37
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb37
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb38
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb38
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb38
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb38
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb38
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb39
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb39
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb39
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb40
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb40
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb40
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb40
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb40
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb41
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb41
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb41
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb42
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb42
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb42
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb42
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb42
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb43
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb43
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb43
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb44
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb44
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb44
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb45
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb45
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb45
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb45
http://refhub.elsevier.com/S1877-7503(23)00120-5/sb45

	Establishing metrics to quantify spatial similarity in spherical and red blood cell distributions
	Introduction
	Methods and Metrics
	Generating initial configurations of materials
	Assessing randomness within an individual configuration
	Quantifying spatial similarity between configurations
	Using the Jaccard index to cut correlated configurations and examples
	Using Jaccard indices to describe an entire set of configurations
	Computing details
	Procedure
	Applying the RDF to quantify structure in the source domains
	Utilizing Jaccard index to quantify discrete distributions of RBC and sphere configurations
	Assessing the effect of more samples and different sphere radius on Jaccard index distributions
	Using Jaccard index to identify and remove duplicate configurations


	Results and Discussion
	Applying the RDF to quantify structure in the source domains
	Utilizing Jaccard index to quantify discrete distributions of RBC and sphere configurations
	Assessing the effect of more samples and different sphere radius on Jaccard index distributions
	Using Jaccard index to identify and remove duplicate configurations

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


