PHYSICAL REVIEW FLUIDS 7, 104602 (2022)

Model for the radial distribution function of polydisperse inertial spheres
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While particle inertia is widely known to cause substantial clustering of monodisperse
particles in turbulent flows, differential sedimentation of polydisperse particles can rapidly
decorrelate their relative positions and attenuate clustering. This paper presents a simple
analytical model for the radial distribution function (RDF) of inertial particles settling in
homogeneous, isotropic turbulence over a broad range of particle Stokes numbers, settling
parameters, size ratios, and interparticle separations. We first draw on previous theories and
direct-numerical simulations (DNS) to develop a simple comprehensive fit for the RDF of
monodisperse particles without sedimentation. Even in the absence of gravity, the relative
positions of polydisperse particles decorrelate as a result of turbulent accelerations, which
have been treated as an acceleration-driven relative diffusivity of unequal size particles
balancing the radial diffusion and drift resulting from turbulent shearing motions. We
develop a similar model to describe the orientational averaged pair distribution function or
RDF in the presence of differential sedimentation. The model is validated by comparison
with DNS results for polydisperse settling particles. Juxtaposition of the model predictions
with a variety of experimental measurements provides a perspective on current empirical
knowledge of the RDF of sedimenting particles in turbulence. A sample calculation is then
performed to illustrate the effect of preferential concentration in the presence of differential
sedimentation on the coalescence rate of cloud droplets.
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I. INTRODUCTION

Particle inertia causes a delay in the particle’s response to a background turbulent gas velocity
field. This leads to accumulation in certain regions of the flow causing a local enhancement in
particle concentration, a higher probability of other particles in the neighborhood of any particle,
and an increased probability of particle collisions. Thus, particle inertia, through concentration
enhancement, can significantly influence the evolution of the size distribution of coalescing drops
or coagulating particles even when its direct effect on collision dynamics is negligible. Particle
inertia is expected to cluster droplets with radii of O(10um) in clouds [1] and so cloud models
will require input concerning the degree of concentration enhancement. Differential sedimentation
resulting from polydispersity rapidly attenuates particle clustering [1]. Current analytical results are
inadequate to describe particle clustering across the relevant parameter space and very limited direct
numerical simulation (DNS) results are available. This paper presents a model that quantifies the
competing effects of differential sedimentation decorrelation and turbulence on particle clustering.

*dlk15@cornell.edu

2469-990X/2022/7(10)/104602(19) 104602-1 ©2022 American Physical Society


https://orcid.org/0000-0002-7148-9638
https://orcid.org/0000-0002-5474-879X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.104602&domain=pdf&date_stamp=2022-10-07
https://doi.org/10.1103/PhysRevFluids.7.104602

JOHNSON DHANASEKARAN AND DONALD L. KOCH

This result will directly inform evolution of micron-sized droplets in clouds, where both differential
sedimentation and turbulence are expected to be important. Inertial clustering is also expected to
play a role in protoplanetary disks increasing the probability of planetesimal formation [2]. The
accuracy of astrophysical models of this phenomenon could be improved using the outcome of
our study. Other potential applications include aggregation driven growth of commercially valuable
products in industrial reactors and agglomeration of pollutants in air.

We will begin by considering a monodisperse suspension in the absence of gravity. In this case,
the Stokes number is the most important factor influencing inertial clustering. The Stokes number
is defined as St = 7,/7,, the ratio of the particle response time to the fluid timescale. Here 7, =
2ppa®/(9) is the time for a particle of radius a and density p, to change its velocity in response
to changes in fluid velocity and u is the dynamic viscosity. The fluid timescale is typically chosen
to be the Kolmogorov timescale 7, = (v /€)'/2, where € is the turbulent dissipation rate, v = 1/p
is the kinematic viscosity and p is the density of the gas. In the low St limit, particles nearly follow
the fluid and increases in St above this limit lead to enhanced local particle concentration. In the
large St limit particles do not respond to the fluid and this leads to a random distribution of particles
and no enhancement of local concentration. Thus, monodisperse particles cluster most strongly at
an O(1) value of the Stokes number.

At the present time, the only means of accurately determining the radial distribution function
(RDF) g(r) of monodisperse particles over the full range of St and particle separations r is through
DNS studies. However, asymptotic results are available for r lying within certain length scale ranges
of turbulence [3,4]. In the small St limit, Chun et al. and Zaichik and Alipchenkov [3,5] derived an
analytical expression for inertial clustering in the dissipative range, » < 1, where n = v3/4/¢!/4
is the Kolmogorov length scale. In the inertial subrange, n < r < L, Bragg et al. [4] obtained
a result for small values of the scale dependent Stokes number, defined as the ratio of the particle
response time to the turnover time of an eddy of size r. Here, L is the integral length scale. The scale
dependent Stokes number is St, = St(n/7)~2/3 [6]. A result for inertial clustering across the full
parameter space can be obtained through the model for the probability distribution of pair relative
velocity [5,7,8]. However, Ireland er al. [9,10] showed that to accurately predict inertial clustering
some of the inputs for this model had to be obtained from DNS. Additionally closed form solutions
are available only in certain cases. Solutions of this model for St greater than 0.3 were also shown
to be inaccurate due to nonlocal effects [11], where particles are slingshot from one eddy to another.
To resolve all of these issues we will develop a closed form expression for g(r), when all the spheres
are of equal size, that incorporates many of the important asymptotic results and provides a good fit
to the DNS results reported at Re; , the Reynolds number based on the Taylor microscale, of 597 [9].
This value of Re;, is chosen to be as close as possible to the O(10*) Taylor-scale Reynolds numbers
typical in clouds and other real-world turbulent flows. Fortunately, it has been shown that clustering
is not very sensitive to Re; in the limit of large Re; [9]. Thus, our monodisperse inertial clustering
result is expected to be accurate over a large range of Re;, St, and r.

Multiple DNS studies have examined the role of gravity [10,12,13] in inertial clustering. Gravity
influences clustering in two ways: (1) it changes the manner in which the particles sample the
flow field; and (2) it induces relative motion between particles of different size decorrelating their
positions. A parameter describing the importance of gravitational sampling is the ratio of the particle
settling velocity (U = t,g8) to the Kolmogorov velocity (u,), S, = U/u,. Here g is the acceleration
due to gravity. A particle independent metric is the Froude number Fr = St/S, = €%/4/(v/*g)
capturing the relative importance of turbulent evolution and gravitational sampling. While asymptot-
ically large values of Fr should be required in principle to neglect the impact of settling on turbulence
sampling, Dhariwal and Bragg [12] found Fr = 0.3, representative of a high turbulence cloud with
€ = 107" m? /s, to be large enough that gravitational sampling induced distortions of the RDF are
negligible. Thus, the relative motion of particles due to differential sedimentation has a much larger
impact on the RDF for moderate or large Fr. For smaller Fr the paucity of DNS data and theoretical
insight prevents the development of a predictive model at this time. Hence, our model will focus on
the role of differential sedimentation in inertial clustering.
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Turbulent and gravitational accelerations induce relative motion of particle pairs of different size
limiting the degree of preferential concentration of polydisperse particles. The first DNS study to
illustrate the dramatic reduction in preferential concentration due to differential sedimentation was
presented by Ayala et al. [1]. In a follow up article, the same authors provided a fit to the results
without attempting to describe the underlying physics [14]. Dhariwal and Bragg [12] performed a
more extensive DNS study of inertial clustering of sedimenting bidisperse particles. A mechanistic
study of the effects of turbulent acceleration, without gravity, is available for low St particles with
separations in the dissipative range [3]. It contains an analytical result obtained by solving a drift-
diffusion equation in which turbulent acceleration contributed to the isotropic pair diffusivity. The
resulting RDF exhibited a cross-over pair separation above which the inertial clustering behavior
is similar to that of a monodisperse system and below which the RDF is insensitive to separation.
Lu et al. [15] incorporated an estimate of differential sedimentation into this cross-over length to
predict inertial clustering in the dissipative range. We improve on this analysis by developing a drift-
diffusion equation that is applicable over all the scales of turbulence. The pair diffusion contains a
single adjustable constant that is obtained from a comparison with the DNS results of Dhariwal
and Bragg [12]. To validate our model we compare against the DNS results of the RDF at particle
contact reported by Ayala et al. [1] and find good agreement.

Our inertial clustering model is compared with experimental data from multiple studies [16—18].
To account for polydispersity in experiments the RDF is averaged over the reported experimental
size distributions. The model predictions agree well with RDFs measured in these experiments and
the comparison provides a perspective on where the measurements lie within the range of clustering
behaviors one would expect to see based on the currently available theoretical and DNS results that
led to the model development. The model does not agree with experimental RDF’s measured by
Yavuz et al. [19] and we argue that these experiments do not exhibit consistent trends across the
parameter space that would be expected based on the current understanding of inertial clustering.

As a sample application, we apply the model to predict the coalescence rate of micron-sized water
droplets settling in clouds. We use results for the local collision rate that incorporate the competing
effects of turbulent shear, differential sedimentation and noncontinuum hydrodynamic interactions
derived by Dhanasekaran et al. [20] and incorporate inertial clustering by multiplying this rate by the
RDF predicted by the present model. We evaluate the resulting collision rate over a range of means
and standard deviations of the water droplet radii for typical conditions in a cloud, and report the
enhancement due to droplet inertia. We find a significant increase in the observed collision rate for
nearly monodisperse drops with a rapid decrease in the enhancement with increased polydispersity.
This reinforces the necessity for an accurate consideration of the effects of differential sedimentation
decorrelation on inertial clustering to accurately predict coalescence rates.

The paper is organized as follows. We first develop the model and validate it against DNS data in
Sec. II. Next we compare the predictions of our model with reported experimental data in Sec. III.
Then in Sec. IV we analyze the impact of size and size difference on the computed RDF. For this
purpose, we calculate the enhancement in collision rate due to inertial clustering of a polydisperse
distribution of micron-sized water droplets in clouds across the parameter space. Finally, in Sec. V
we summarize the important findings of our study.

II. INERTIAL CLUSTERING MODEL

The RDF g;;(r) measures the enhancement in the probability of finding particles of species i
and j separated by a distance r relative to a randomly distributed bulk. For the sake of convenience
whenever the two particles are indistinguishable, i.e., i = j, we will denote the RDF as g(r).

We first derive an expression for g(r) for separations r across all the scales of turbulence for the
monodisperse case without gravity. This expression will build on known results for particles with
separations in the dissipative range and inertial subrange. In the dissipative range, corresponding to
r < n, Reade and Collins [21] found a power law for g(#) which was later analytically derived for
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glr)= m(%) . (1)

Here ¢y and c; are constants depending only on St. Asymptotic analyses for St <« 1 demonstrate
that ¢; = ci‘St2 where c7 is independent of St [3]. DNS data over a larger range of St show that cg
and c; are independent of Re; [9]. The model of Zaichik and Alipchenkov [7] predicted that the
power law for inertial clustering accurately describes g(r) for r < n when St is below a critical
value. Above this critical value, g() is constant at small separations due to the ballistic motion of
heavy particles over small length and timescales. Their model predicted that g(r) flattens for St > 2.
However, DNS data indicates that g(r) plateaus in the r < n regime only when St > 10 [9]. The
plateau can be described by setting ¢; = 0 in Eq. (1).

The next important result was derived by Bragg et al. [4] for separations in the inertial subrange,
n K r < L. This is given as

St « 1 [3,5]. This is given as

g(r) = exp [e3r3]: )

Here c3 is a constant that depends on St and is set by the difference between the average strain rate
and rotation rate experienced by the particles. This result is valid for Re; — oo and St, « 1.

While these are closed-form expressions within the dissipative regime and inertial subrange there
is, to the best of our knowledge, no closed-form equation spanning all separation for which r < L
including the cross-over between dissipative and inertial ranges. Hence, we propose an expression
that incorporates the asymptotic behavior in the dissipative regime and inertial subrange and is
consistent with available DNS data [9]. This is given as

log co 7\
g(r) =exp (—4 <1 + =) 3)

(14 ssers)
The constants ¢y and ¢; depend only on St and can be obtained from DNS data. Data is available
spanning St from 0.05 to 30 and we have fitted the constants with this nondimensional number for
ease of use. The resulting expressions are given as

co = 1 + exp[0.0005 St” — 0.0042 St° — 0.0060 St + 0.0803 St*
+0.0030 St — 0.7018 St> + 0.4144 St + 1.8686], (4)

c1 = exp[—0.0230 St — 0.4411 St> — 0.2423 St — 0.3750]. 5)

Utilizing these constants, we compare the RDF predicted by Eq. (3) against the DNS results in Fig. 1
and excellent agreement is observed.

Equation (3) transitions from asymptote (1) in the dissipative range to asymptote (2) in the inertial
subrange. However, it does not incorporate any information about separations comparable to the
integral length scale. It is expected that g(r) will decay to 1 at these large separations. The inertial
subrange result in Eq. (2) naturally transitions to 1 for » — oo and hence so does Eq. (3). This
adequately describes DNS data for Re; as low as 398 for which there is large separation between
the length scales of turbulence. Hence, this result will be accurate for typical conditions in clouds,
where Re; is O(10*), and many other real-world systems. However, when the separation of scales
is not large and the inertial subrange is not fully developed, corresponding to low Re;, an explicit
reduction of inertial clustering at the integral scale is needed. The RDF g'(r) for the case of not very
large L /1 is given as

2
g;(r) = 1+ (gij(r) — Dexp [_<02L> } ”
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FIG. 1. g(r) is shown as a function of r/n for Re;, = 597 at St = 0.1, 2, and 20 with symbols denoting
DNS data [9] and solid lines our model shown in Eq. (3). There is good agreement between the model and
DNS results across the parameter space. For r < n, the highest values of g(r) are at the intermediate value of
St as expected.

Here, 0.6 is an order one factor that was used to fit the model with DNS data. This quantitatively
resolves the RDF for /1 greater than about 10% and the qualitative behavior for separations smaller
than that. We found this result to be robust even when the particles are not of equal size and it will
be applied to the bidisperse results that we derive later in this section. It can be seen that Eq. (6)
reduces to Eq. (3) in the limit of large Re,, corresponding to large L/15. For some typical values
of Re, the comparison of DNS data and g'(r) given by Eq. (6) is shown in Fig. 2. In the future
discussion, we will not explicitly use primes and will instead note whenever it is necessary to use
the expression given in Eq. (6).

The sedimentation of monodisperse particles affects their sampling of the turbulent flow and
influences inertial clustering at large values of S, or equivalently small values of Fr. Through
an asymptotic analysis for small St and small Fr, Rani er al. [13,22] showed that the RDF in
the dissipative range retains the form of Eq. (1) for rapidly setting particles with ¢; = cTSt2 and

1.2 x Re =88

ReA=224

« Re, =597
1.15

=

= 1.1
1.05

1 ‘

102 10°

r/n

FIG. 2. The RDF is shown as a function of r for St = 0.5 and Re; = 88, 224, 597 with symbols denoting
DNS data[9] and solid lines the RDF obtained from Eq. (6).
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FIG. 3. For monodisperse spheres with St = 0.1, 0.5, 1, 2, corresponding to S, of 1.9, 9.6, 19.2, 38.5,
experiencing gravity along with turbulence, corresponding to Fr of 0.052 and Re; = 398, g(r) is shown as a
function of r/n with symbols(circles) denoting DNS data[10] and solid lines our model shown in Eq. (3). There
is good agreement between the model and DNS results across the parameter space. For reference we include
the Re; =597, St =2, and S, = 0 DNS (“x”) data and our model’s prediction (dashed lines) which exhibit
only small deviations from the S, = 38.5 results.

a value of ¢} that is reduced in comparison to the Fr = co asymptote [3]. The DNS determi-
nation of the RDF of monodisperse particles at finite Fr is limited to a value of 0.052. The
effect of gravity on the RDF at this Froude number remains relatively modest and g(r) in the
dissipative range can be fit with Eq. (3) with constants ¢ and c¢;, computed over St from 0.05 to
3 given by

co = 1 +exp[—0.0282 St> — 0.2118 St? + 0.7936 St + 1.3664], (7)

c1 = exp[0.0121 St — 0.1729 St* 4+ 0.1915 St — 0.5860]. (8)

Figure 3 makes the comparison between the model prediction (3) and DNS results for g(r)
for Fr = 0.052 at St = 0.1, 0.5, 1, 2 across the full range of interparticle separations. The good
agreement observed indicates that the transition from dissipative to inertial-subrange behavior in
Eq. (3) may remain accurate independent of the nondimensional settling velocity and Fr. However,
at this time, DNS results are not available to indicate how ¢ and ¢; depend on St and Fr over a range
of Froude numbers. Comparing S, of 1.9, 9.6, 19.2, 38.5, with the S, = O results in Fig. 1 indicates
similar qualitative behavior and quantitative output. For ease of comparison and conciseness we
have included the St = 2 and S, = 0 DNS RDF and our model’s prediction of it in Fig. 3. Hence,
we will base the model on the Fr = oo results (4) and (5) in the rest of this study.

Our model for g(r) will be built on the balance of convection and diffusion of particles. The
drift-diffusion equation for low St monodisperse particles in turbulence is given as [3]

dg(r)
dr

Here, B is the diffusion tensor of the pair of particles due to turbulent shear, with || indicating the
component parallel to the line of centers of the particle pair. The relative velocity of the particle W

BH +Vg(l"):0. (9)

has its radial component defined as W, = —V and so V > 0 indicates a net inward drift along the
lines of centers. The turbulent shear diffusivity B}, can be expressed as [5]
B” = SH(V)TLr(V). (10)

Here S(7) is the Eulerian structure function, defined as the second moment of the relative velocity
of the fluid at two positions and one time. 7;,(r) is the Lagrangian timescale of an eddy of size r.
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For two particles of different size, an expression similar to Eq. (9) governs clustering and is given
as

dgii(r)
dr

By + Dy.ij) +Vgij(r)=0. (11)
Here the subscripts i and j denote the two species. D) ;; is the radial component of the diffusion due
to difference in the particles’ responses to accelerations. Turbulent acceleration was considered as
the source of this diffusion in the previous literature [3,23]. In our model, we extend this concept to
include a diffusive contribution due to differential sedimentation.

The drift velocity and turbulent shear diffusion occur even for equal size particles. We can
compute B}, from Eq. (10) with information on the turbulent flow properties S(r) and 7z, (r). These
have been calculated for separations across the different scales of turbulence and reported in the
literature [5,7]. A uniformly valid expression based on these results is also available [24,25] and
will be used in this study. The drift velocity depends on particle size through the Stokes number. In
line with a previous analysis [3] we estimate the drift velocity as that based on an average Stokes
number St = (St; + St;)/2 for the particle pair.

For a bidisperse system with low St in the absence of gravity turbulent acceleration induces a
relative velocity |t,; — 7, j|A, here A is the turbulent acceleration and 7, ; and 7, ; correspond to
characteristic timescales for particles of radii a; and a;. The fluctuating relative velocity resulting
from turbulent acceleration fluctuations leads to an effective diffusivity given as

t

Dcij = (pi — Tp,j)z/ (AA(t))dr'. 12)

—00

Here, D, ;; is isotropic and hence its component along the line of centers of the particles D) ¢ ;; can
be easily obtained.

Differential sedimentation due to gravitational acceleration, like turbulent acceleration, acts
to separate particle pairs with different response times and limit the degree of clustering for
nonmonodisperse cases. It will be seen that the effect of this decorrelation on the RDF scales as
ASyijn/(ai + a), where AS, ;; = |Sy; — Sy,j|. As a result differential sedimentation can have a
large effect on the RDF of particles that are small compared with the Kolmogorov length scale even
if S, is not large enough for sedimentation to influence the sampling of the turbulent flow.

While gravitational acceleration is steady and acts in a single direction leading to an angular
dependence of the pair probability, a simple estimate of its effect can be obtained based on an
isotropic approximation. When the turbulent shear acts on a particle pair it rotates the pair so that
the gravitational acceleration along the line of centers can fluctuate and change sign. In this sense
gravity might be modelled in a qualitative way, as suggested by Lu et al. [15], as giving rise to an
isotropic relative diffusion, D) ¢;;, that is given as

Dy gij = (tpi — 1pj) [ (gr()g (t)dr', (13)

where g, is the component of gravity along the lines of centers of the particles. This leads to an
estimate of the dispersion due to gravity of

Dy gij = UgT, (14)

Here Uyl = |1, — 7p,j] g is the relative settling velocity of the particle pair and 7,, analogous to the
turbulent acceleration correlation time, is the correlation time for the component of gravity along the
line of centers. While the gravitational force vector is fixed with respect to the laboratory reference
frame, its component along the line of centers g, varies and eventually decorrelates as a result of the
angular component of the shear-induced relative diffusion tensor B. Since this angular component
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FIG. 4. The RDF for a bidisperse suspension g;;(r) is shown as a function of r/n for three calculations
performed at Re; = 90 and Fr = 0.3. The symbols denote DNS data [12] which are in good agreement with
our inertial clustering model indicated by the solid lines.

is of the same order of magnitude as the radial component, we approximate the correlation time as

72

Ty = kgB—H,

15)

where k, is an order one constant. Thus, g;; is given as
o0 V /
gij(r) = exp [ / / ) dr’]. (16)
r By(r') + Dyeij + Dy g.ij

To complete the description k, needs to be determined. This is done by fitting with DNS data[12]
and we get

St; + St;
kg=0.02+7.6<%>|8ti—8tj|. (17

The inertial clustering model we have developed will now be compared with DNS calculations
[12] performed at Fr = 0.3 and Re; = 90. To accurately predict inertial clustering at large particle
separations for such a low Taylor-Reynolds number we use the correction for small separation of
length scales, given in Eq. (6) on the g;;(r) calculated from Eq. (16). The resulting prediction is
plotted in Fig. 4 as a function of the particle pair separation along with DNS data at three sets of
Stokes number 0.9-1, 0.5-0.6, 0.1-0.5. Our inertial clustering model, computed using parameters
corresponding to high Fr numbers, reproduces the DNS data with high fidelity, including a plateau
at small separations caused by differential sedimentation and the variation of the RDF with radial
position at larger r due to the inertial drift velocity. The AS, ;; considered here, of 1/3, 1/3, and
4/3, do not greatly alter the sampling of the turbulent velocity field by the particles but they result in
sufficient differential sedimentation to significantly reduce the peak clustering. To better understand
this we consider Dy ,;;/B,,, the relative strength of differential sedimentation to turbulent shear. At
large separations this parameter, which scales as AS,, ;;n/r, is small. Hence, in the large separations
the clustering dynamics is set by the turbulent environment and the RDF resembles the exponential
growth seen in Fig. 1. At smaller separations, typically in the dissipative range as r approaches the
particle size, AS, ;;n/r, and by extension Dy ¢;;/B), become large and the particle arrangement
becomes decorrelated by differential sedimentation thus cutting off the growth in the RDF. With
Kolmogorov scales typically on the order of millimetres and particles of about tens of microns even
moderately small AS, ;; is enough to generate a large enough AS, ;;n/a to flatten the RDF. This is
evident in Fig. 6 where AS, ;; as low as 1/3 can move the RDF away from the monotonic behavior.
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FIG. 5. The RDF of particles at contact g;;(a; + a;) is plotted as a function of a;, with a; = 40 um. This
corresponds to a variation of St; in the approximate range of 0.05 to 2. The DNS data [1], calculated at € =
0.04 m?/s® and Re,, = 72.41, is shown with symbols, while the solid lines show the results of our model. The
errors are minimal at all points of comparison.

Increasing AS, ;; to 4/3 significantly decreases the value to which the RDF plateaus by about a
factor of 3 even though based solely on mean St this case is expected to show higher clustering.
The St dependence can be observed when AS, ;; = 1/3 but larger g;;(r) is seen when the mean St
is closer to one. It should be noted that in our model the dominant contribution of the size ratio
appears through differential sedimentation, that scales as AS, ;;. The only other term that contains
size ratio is D) ¢ ;; and it is much smaller than D) ,;; or B,.

The variation of the RDF with St and AS,;; has been accurately resolved in our inertial
clustering model. This will be crucial in predicting concentration enhancement during collision
of two particles. To demonstrate the accuracy of the inertial clustering model predictions, we
consider water droplets in clouds. For these micron-sized droplets, Ayala et al. [1] have performed
DNS calculations to determine the RDF at contact, i.e., g;;j(a; + a;), of noninteracting particles
for a turbulent dissipation rate € = 0.04m?/s® and Taylor-scale Reynolds number Re; = 72.41.
This dissipation rate corresponds to Fr = 0.14. We compare with these DNS results by fixing a;
at 40 um and varying a; from 5 to 65 um in Fig. 5. Due to the low value of Re;, we use the
correction given in Eq. (6), though it will not alter the results at such small particle separations. We
find good agreement between our model results and DNS data on the decay of inertial clustering
as the particle sizes become disparate and differential sedimentation decorrelates the clusters. The
deviation for the monodisperse data point is also minimal, highlighting the weak effect gravity has
on inertial clustering of equal sized particles at moderately large Fr and justifying our neglect of this
mechanism.

Evaluation of the RDF in Eq. (16) requires a combination of dimensional parameters such as the
radii, p,, €, v, and g and the nondimensional quantity Re,. From these the important nondimensional
parameters such as St, Fr, and AS,;; can be obtained. Our results are fairly accurate over St
from 0.05 to 30 which is the range over which DNS data is available. The deviations of the
predictions from DNS g(r) — 1 is at most 7% in the critical dissipative sizes and inertial subrange.
Outside of these ranges there are very limited theoretical insights that can be incorporated into
our model. We have tackled the transition from dissipative to integral scale at low Re,, where
there is no inertial subrange, to better compare with RDF data available in literature. However,
the model is most accurate at high Re, and n/a where there are extended inertial and dissipative
ranges. In the transition between these two ranges, at high Re;, we find deviations of less than
12%. The differential sedimentation metric AS, ;; has been tested to values as high as 4/3 and
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we find the largest difference from DNS to be about 13%. For Fr there is a paucity of data
but our model assuming infinite Froude number has been tested against values of the Froude
number as low as 0.052 showing deviations of about 18%. The estimate for Fr = 0.3 can be
made from Fig. 4 where the errors are only about 13% in spite of confounding factors such as
bidispersity.

The inertial clustering model presented here is valid over a large range of St and AS, ;;. The
RDF can be evaluated from this model by performing the numerical integral in Eq. (16) with
orders of magnitude less computational effort than a DNS study. However, the model might
be slower than would be desirable when computing the evolution of the drop size distribution.
Hence, in the Appendix we develop a simplified model for g;;(r) that yields a closed form
expression.

III. COMPARISON WITH EXPERIMENTAL MEASUREMENTS

In this section we will use the model developed in Sec. II to predict inertial clustering observed
in experiments. Each experimental study only explores a limited region of the large parameter space
spanned by the model. Hence, we will draw from multiple experimental studies [16—19].

To compare with experiments, we assume that the measurements are performed in a region of
the suspension that is well mixed and has reached a statistical steady state. We assume that the
flow outside the region of homogeneous turbulence does not affect the RDF within this well mixed
region. The Reynolds number based on particle radius and settling velocity is assumed to be small
and we assume that a < 7 so that gas inertia associated with turbulent shear on the particle scale can
be neglected. The particles are treated as points and this is valid for r 3> a. All of these assumptions
are satisfied for the experiments considered in this section except that r becomes comparable with a
for the smallest separation experiments of Yavuz et al. [19] and the suspension studied by Ref. [17] is
not well mixed on the integral and inertial subrange scales. The theoretical and numerical treatment
of clustering focuses on the turbulent fluid motion, particle inertia and gravitational settling but
neglects colloidal interactions such as van der Waals and electrostatic forces. In the available
experimental studies the discussion and the reported error analysis do not consider such interactions
as a significant source of clustering. Hence, we do not consider them here.

The model described above yields the pair distribution function g;; of particle pairs with different
size. In this section we will use the g;;(r) that includes the correction for small separations
of turbulent length scales, given by Eq. (6), since most experiments are performed at low Re;.
While some experiments aim to produce nearly monodisperse suspensions, even the most carefully
designed experiments will possess some spread in the distribution of the particle sizes. To account
for this we average the RDF over the reported experimentally measured size distribution of the
particles, yielding an overall pair probability g*(r) = fg,-j(r)P(a,-)P(aj)daidaj. Here P(a) is the
probability of finding a particle of radius a. Saw et al. [17] report their experimental results using
bins of Stokes number, with the RDF generated from the particles in the same bin considered
approximately monodisperse and those from different bins presented as the approximate bidisperse
pair distribution function g7;. Our predictions for these are obtained by performing a similar integral
with the limits of integration on @; and a; limited to restricted regions over which the experimental
measurements were binned.

The RDF of silver-coated hollow-glass spheres in a turbulent air chamber has been observed
by Salazar et al. [16]. They performed measurements for three turbulence levels and we compare
with each of them in Fig. 6. Our predictions use their reported particle size distribution, with a
mean and standard deviation of 3 and 2 um, respectively, that excludes particles below a radius of
2.5 pm. This high pass filter mimics the small particles that have been reported to be missed by the
camera used in the experiment. There is relatively good agreement between the output of our model
and experimental data at small separations. The largest deviation in g*(r) — 1 is about 20% and is
observed at the lowest dissipation rate. This has been flagged in the original experimental paper as a
noticeable under-prediction by DNS without any satisfactory explanation. Hence, we do not attempt
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FIG. 6. The averaged pair probability g*(r) is plotted as a function of r/n, with symbols correspond-
ing to the experimental data from Salazar er al. [16] and solid lines the predictions by our model. Here
€ =1.33,409, 11 mz/s3 corresponds to Re; of 108, 134, 147 and mean St = 0.08, 0.13, 0.2.

to resolve the similar under-prediction of the experiments by our model. At the higher dissipation
rates the deviations at small separations are much smaller. At large separations the experimentally
measured g*(r) rapidly falls off. This is likely due the experimental errors introduced by the finite
measurement window of about 1 cm?.

Higher Re, than those considered in Ref. [16] are more typical in real world turbulent flows, such
as atmospheric clouds [26]. A more realistic Re;, of 440, has been achieved in the experimental
study by Saw et al. [17]. They measured inertial clustering of water droplets in a wind tunnel.
The Stokes numbers of these droplets were found to follow a log-normal distribution and the RDF
has been calculated by binning measurements over a certain range. The binning allows them to
look at nearly bidisperse particle collisions and so is relevant to test our inertial clustering model
dependence on size differences. This comparison is shown in Fig. 7 for experimental conditions
corresponding to € = 0.6 m?/s’ and Re; = 440. Good qualitative agreement is found between the
predictions of our model and experimental data even though differential sedimentation, the primary
focus of the bidisperse modeling in the present study, plays a small role in these experiments. In
particular, the trends of the RDF with St and r in the experiments are reproduced by the model. A

18,
—5t;=02-0.3
St;=0.1-0.2
16 —St; =0.01 - 0.1

FIG. 7. Comparison against the experiments by Saw et al. [17] (symbols) performed at € = 0.6 m?/s* and
Re; = 440 against our averaged gj; (solid lines) is shown as a function of r/n. The binning of the reported size
distribution is done with St; = 0.2-0.3 and three different St; of 0.2-0.3, 0.1-0.2, and 0.01-0.1, thus capturing
a nearly monodisperse case as well as two bidisperse cases.
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FIG. 8. For Re;, =300, Fr = 1.2, mean St = 0.63, and n = 0.27 mm g*(r) is shown as a function of
r/n. The symbols and dash-dotted red line are experimental measurements by Petersen et al. [18] and a fit
suggested by these authors, respectively. The symbols “x” and “0” are the experiments performed under the
same conditions but measured with a lower and higher field of view respectively. There is a larger difference
between these measurements than between our model’s result (shown with the black line). However, our model

predicts much stronger clustering at smaller separations than suggested by the fit.

complication in this experiment was that the particles were not well mixed on the inertial subrange
scales. To account for this, the authors assumed that the effects of transient mixing on the inertial
subrange scale and preferential concentration on the dissipative scale were independent processes.
The experimental RDF reported in Fig. 7 is shifted to remove the mixing effects. This process
would not properly account for the preferential concentration that occurs in the inertial subrange.
In addition, it should be noted that the asymptotic theory for low Stokes number [3] suggests that
dissipative scale preferential concentration is influenced by the temporal evolution of the dissipation
rate and enstrophy which evolve on the inertial timescales. Uncertainties associated with the effort
to disentangle mixing and preferential concentration may account for the low values of the adjusted
experimental RDF for the smallest St; at all » and for all St; at large /7. Excluding those the highest
g*(r) — 1 deviation is about 20%.

In contrast to the rest of the experimental results considered here, which have implicitly
assumed infinite Fr, Petersen er al. [18] performed experiments with a moderate Fr for which
gravity may play a role. They study particles experiencing turbulence through an array of jets
and reach Fr~ 1 and S, as high as 8. Unfortunately, they only test nearly equal sized particles
and so the plateauing of the pair distribution function due to differential sedimentation, that can
be estimated to occur when AS, ;;n/r is order one, lies well within the dissipative range and
beyond the range observed in the experiment. Still our model is expected to perform well in
the reported separation range as we have already argued that the role of gravity on the inertial
clustering of a monodisperse distribution of particles at moderate Froude numbers is minimal. We
compare with their experiments on Lycopodium particles whose radii have a mean and standard
deviation of 15 and 1 um, respectively, and assume a Gaussian distribution for the particle radius
distribution. The flow conditions correspond to Fr = 1.2, Re; = 300, and a Kolmogorov length
scale of 0.27 mm, leading to a mean St of 0.63. For this case, the reported fit of the experimental
data, uses a function based on the power-law behavior expected in the dissipative range. We
show this, along with the experimental data and the results of our model, in Fig. 8. To show the
robustness of our model, in addition to the data, the experimental error bounds are needed. To
obtain this we plot the experimental data obtained from measurements with a large and small field
of view. The deviation between these is greater than the difference between our model prediction
and so we conclude a good agreement has been achieved. However, in view of the large Stokes
number, the model predicts that a much higher pair distribution function would be observed in the
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FIG. 9. The averaged RDF g*(r) is shown as a function of r/7. The symbols are the experimental data from
Yavuz et al. [19] while the solid lines are the predictions of our inertial clustering model. We compare against
three experiments with mean St = 0.22, 0.46, 0.84, mean radii of 7.1, 10, 20.7 um and standard deviations of
0.3, 0.6, 0.7 um, respectively. The flow condition for the first two correspond to € = 2.1 m?/s* and Re;, = 229
while the last one is at € = 0.3 m?/s® and Re; = 155. The experiments do not exhibit a consistent physically
expected variation with St.

dissipation range than suggested by a simple power-law fit. Eventually the model predicts a plateau
of the pair distribution function when differential sedimentation becomes important at separations
smaller than about 0.27. This comparison illustrates the value of using a comprehensive model to
identify the dominant physics controlling the pair distribution function in the range of experimental
measurements.

To observe the largest enhancements of the pair distribution function due inertia, it would be
desirable to perform measurements at sub-Kolmogorov separations. This was attempted by Yavuz
et al. [19] who studied water droplets in a soccer-ball-shaped chamber with turbulence produced by
a collection of loudspeakers. In Fig. 9, we compare with their measurements for three experiments,
computing g*(r) by assuming a Gaussian distribution for the droplet radii defined by the reported
mean and standard deviation. Although the experimentally measured pair distributions for the two
large Stokes numbers are comparable in magnitude to the predictions in the sub-Kolmogorov range,
the experiments and model are otherwise in poor agreement, with deviations as high as 70%.
However, there are some issues immediately evident in the experimental data. At all separations the
reported RDF fails to grow with St for St < 1. This is contrary to current physical understanding
of the origins of clustering and contradicts other experiments performed with similar values of
St [16,17]. At small particle separations the experimental data is nearly collapsed for the three
St shown. This corresponds to a significantly higher than expected g*(r) when the lowest St
experimental result is considered and, presently, there is no known physical mechanism to account
for such a dramatic enhancement. Hydrodynamic interactions were shown by Brunk et al. to
enhance inertial clustering only by an O(1) factor [27]. This would be insufficient to account for
the order of magnitude increase of g*(r). A recent paper by Bragg er al. [28] provides further
experimental measurements indicating a rapid increase in the RDF at separations comparable with
the particle radius along with an analysis showing that this increase cannot be attributed to any
known hydrodynamic or colloidal particle interaction mechanisms or the current understanding of
inertial particle dynamics in turbulence.

IV. APPLICATION TO INERTIAL ENHANCEMENT OF CLOUD DROPLET COALESCENCE

In Sec. I we have developed a model for the pair distribution g(r) in a polydisperse suspen-
sion resulting from particle inertia, turbulence, and differential sedimentation and this model was
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compared with multiple experimental studies in Sec. III. This inertial clustering model will inform
the effective collision rate experienced between particle pairs. To demonstrate this, in this section,
we consider atmospheric clouds, where collisions driven by turbulence and gravitational settling
are both expected to be important for micron-sized droplet growth. Utilizing these results we will
analyze how the critical parameters shape inertial clustering and by extension the expected collision
rate in clouds.

Cloud droplet evolution for droplets of radii 15 to 40 wm is an active area of research in
climate science. Referred to as the “size-gap,” it is a range in which differential sedimentation and
condensation growth are weak and it is not fully understood how droplets grow [26]. Inaccurate
models in this regime lead to significant deviations between prediction and observation. In situ
measurements of drop size distribution in clouds and the time to precipitation, which is sensitive
to droplet growth in the size-gap do not agree with current models. Many mechanisms have been
proposed to resolve these discrepancies including turbulent collisions [29], polydispersity induced
by mixing [30], and ultragiant condensation nuclei [31], to name only a few. Studies, such as that
by Vaillancourt et al. [32], have investigated the role of inertial clustering driven enhancement of
the collision rate in crossing the “size-gap” and we will focus on this mechanism in this section. We
will use our inertial clustering model that accurately resolves how particle inertia driven clustering
occurs under the coupled action of turbulence and differential sedimentation.

Inertial clustering plays an important role influencing the observed collision rate of droplets in
clouds [1]. However, it is beyond the scope of this study to do a full simulation of the evolution
of the drop size distribution and so we will only calculate the effective collision rate experienced
by a distribution of droplets. We will span the mean radius a,, from 15 to 40 um corresponding to
the critically important “size-gap.” To capture polydispersity, and thus the influence of differential
sedimentation, we assume a Gaussian distribution and vary the standard deviation o, from 0.01 to
1.5 pm. The sedimentation induced relative velocity of two particles can be impacted by particle
inertia and its role can be estimated using Sty = 2Use1(4p,7 /3)V aja; /j1(ar + a2)? (see Davis [33]).
A St, of less than 1.9 has been estimated to be sufficient to approximate the gravity-driven collision
rate with its inertialess value [20].

While droplet inertia based on the turbulent timescale and the mean droplet size is not negligible
in the size gap, estimates by Chun et al. and Ireland et al. [3,10] showed that, when St < 0.2, inertia
does not alter the local collision dynamics and only enhances the collision rate through inertial
clustering leading to droplets being more likely to encounter each other. This can be expressed as

Kij = gij(a; + a)K}. (18)

Here, K;; is the actual collision rate between species i and j while KiQ is the collision rate
without particle inertia computed by Dhanasekaran et al. [20], who evaluated the collision rate
of drops due to the coupled effects of turbulence and differential sedimentation in the presence of
noncontinuum lubrication and long-range continuum hydrodynamic interactions. For the assumed
Gaussian distribution we obtain the effective collision rates without (K°) and with inertial clustering
(K) as

K’ = f K{P(a;)P(a;)da;da;, (19)

J
K = f gij(ai + a;)K,P(a;)P(a;)da;da;. (20)

To obtain the collision rates we assume conditions typical in clouds, of € = 0.01 m? / s, mean
free path of air of 70 nm, and Re; = 2500. The integrals in Eqs. (19) and (20) are performed by
Monte Carlo integration by choosing 100 particle pairs from the Gaussian distribution of droplet
radii. The impact of the enhancement is visualized in a color plot K/K° in Fig. 10 as a function of
a, and o,. To better contextualise the plot, we include two constant-Stokes-number curves: St = (.2
(green) and Sty = 1.9 (black) for reference. Below the St and St, constant curves the use of Eq. (18)

104602-14



MODEL FOR THE RADIAL DISTRIBUTION FUNCTION OF ...

1.25

0.2 0.4 0.6 0.8 1 1.2 14 K
oa(pm) KO

FIG. 10. A color plot of the enhancement of collision rate, K/K 0 due to preferential concentration as a
function of the mean and standard deviation of the radius, a,, and o,. Significant enhancement due to g(r)
is observed across the parameter space but the strongest effect occurs for nearly monodisperse collisions and
larger sizes within the “size-gap.” To gauge the values of the relevant nondimensional numbers curves of
constant St = 0.2 (green) and St, = 1.9 (black) are included.

is valid and the assumption that inertia does not alter the gravitational relative velocity is accurate.
In the broader region we can gain important qualitative insight into the role of inertial clustering on
droplet evolution within the “size-gap” regime.

The enhancement observed is more than 25% over most of the parameter regime shown here indi-
cating that inertial clustering will have a major impact of the collisional growth. To contextualise, the
mean radius spans the “size-gap” and the typical size ratio, characterized by o,/a,,, considered here
only goes as high as 0.1. This modest polydispersity is not unusual for condensation controlled size
distribution formed at the beginning of the size-gap. The enhancement within this critical region is
complex, with competing effects of increasing polydispersity and size. As a,, increases it is expected
that the collision rate increases but within the “size-gap” so does its enhancement due to inertial
clustering. This can be understood by the RDF being monotonically related to Stokes number when
it is not too large, which holds under the present conditions for which St ranges from 0.07 to 0.51.
Polydispersity might be expected to be weak given the small size ratio but it drives a sharp drop
in K/K° with increasing size ratio. Hence, the broader distribution generated by collisional growth
will experience a much weaker boost due to inertial clustering highlighting the highly “focused”
manner in which it acts. In the monodisperse environment at the end of the period of condensation
dominated droplet growth, inertia driven preferential concentration can significantly enhance the
probability of collisional growth to sizes larger than 15 um and promote polydispersity. In the
“size-gap” increasing droplet size competes with higher size variation in setting the strength of
inertial clustering and so it cannot be be discounted until the growth phase fuelled by differential
sedimentation driven collisions is reached. Hence, inertial clustering will be crucial in shaping the
evolution of the drop size distribution. Consequently, the results of our study are expected to be
integral to a detailed drop evolution simulation.

Due to turbulent intermittency it is possible to experience a dissipation rate higher than the €
chosen here. For an order of magnitude € = 0.1 m?/s* we have Fr = 0.3 for which our model has
been showed to be valid. Hence, a plot similar to Fig. 10 can be generated. For the sake of brevity
we will not span the dissipation parameter space. Instead we note that even in this highly turbulent
condition St within the size-gap only goes as high as 1.6 and so the peak clustering as function
of Stokes number is not yet expected to be reached. Thus, all the qualitative insights obtained are
expected to hold.
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V. SUMMARY

We have developed a model for inertial clustering of particles settling in a turbulent flow. It
incorporates known asymptotic results, such as the power-law dependence of the RDF of monodis-
perse particles on radial position in the dissipative range. Bidispersity is treated and differential
sedimentation attenuates the accumulation of particle pairs due to inertial drift. The unknown
constants, due to the limits of available analytical results and the approximate nature of our treatment
of differential sedimentation, are determined from DNS studies of monodisperse and bidisperse
particles. Our predictions agree well with DNS and experimental data for both monodisperse and
bidisperse cases. We use our model to study the impact on the coalescence rate of micron-sized
droplets in clouds. This analysis highlights the intricate details of how the parameters, such as the
drop size and size difference, impact clustering.

In Sec. II, we developed a model to accurately predict the RDF over a wide range of St and r.
The model is valid over a moderate range of bidispersity and Fr. We provided an approximation
for the RDF of a monodisperse dispersion without gravity over all length scales using known
asymptotic limits and DNS data to incorporate behavior for which simple theoretical expressions
are not available, such as the nonlocal movement of particles between eddies. This result is used
to predict the inward drift of an equivalent bidisperse particle pair that counteracts turbulent shear
diffusion coupled with a model for decorrelation due to differential sedimentation. Gravitational
effects on bidisperse particles are treated as an effective diffusivity motivated by the concept that
the turbulent shear allows particle pairs to experience a distribution of angles between the particle
separation vector and gravity. The solution of this drift-diffusion equation gives g(r). The order
one free parameter, embedded within the diffusion model, is obtained by fitting to available DNS
data[12]. The accuracy of our g(r) is demonstrated by comparing g(a; + a,) with DNS data [1]
available over a range of sizes. Our model holds for weak gravitational sampling (scaling as S,)
which can still generate strong differential sedimentation (scaling as AS, ;;n/[a; + az]).

The model for clustering is compared with available experimental results in Sec. III. The
comparisons take account of the reported polydispersity in the experiments. Good agreement is
found with low Re; nearly monodisperse experimental data [16], with errors around 20%, as well as
those performed at higher Re;, and reporting g;;(r) on bidiperse slices of a size distribution [17], with
our predictions deviating by about 20%. Inertial clustering measurements, with moderate Froude
number and moderately high Re;, of 300 [18], are consistent with our RDF, which show deviations
smaller than experimental error estimates. However, the predicted g(r) rises to much larger values
within the dissipative subrange than would be expected from the simple fit presented along with
the experimental data [18]. We also show that differential sedimentation would significantly alter
this RDF at sub-Kolmogorov distances. These comparisons highlight two limitations of currently
available experimental results. First, few results are available at sub-Kolmogorov separations where
the greatest inertial clustering is predicted to occur. Those measurements that are available are not
consistent with the current understanding of inertial particle dynamics in turbulence and particle
interaction mechanisms [19,28]. Second, no measurements are available to assess the manner in
which differential sedimentation attenuates inertial clustering.

Having developed and tested our model we apply it to predict the coalescence of micron-sized
droplets in clouds in Sec. IV by assuming that inertia, for the relevant cloud conditions, only impacts
the local pair probability. Inertial clustering is found to significantly enhance the effective collision
rate within the “size-gap” where droplet growth is slowest. While the larger drops collide more due
to their higher RDF’s, the increase in collision rate is appreciable throughout the 1540 um water
droplet size range. Although this enhancement decays rapidly as the standard deviation of the drop
size distribution increases, it may play a crucial role in generating polydispersity and enhancing the
sedimentation driven coalescence rate. These results illustrate the importance of inertial clustering
modeling that incorporates the effect of differential sedimentation to accurately model the evolution
of the droplet size distribution.
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FIG. 11. g;;(r) is shown as a function of r/n for three bidisperse calculations performed at Re, = 90 and
Fr = 0.3. The symbols denote DNS data [12] and the solid lines are the predictions of the algebraic model of
inertial clustering shown in Eq. (11). For reference the results from Fig. 4, obtained from our model described
in Sec. II, are shown with dashed-dotted lines. Good agreement is observed across the parameter space.
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APPENDIX: ALGEBRAIC MODEL FOR INERTIAL CLUSTERING

The inertial clustering result presented in Eq. (16) requires integrating the radial flux balance
of drift and diffusion across separations spanning the many scales of turbulence. While this is
dramatically faster than obtaining g;;(r) from a DNS calculation, it might still prove to be a
stumbling block for calculations of an evolving drop size distribution where the RDF is required
for a broad range of parameters. Hence, a closed form algebraic expression for g;;(r) is derived. It is
motivated by the idea of a cut off radius r, representing the transition from monodispere power-law
behavior at larger separations to a flattening of the RDF due to bidispersity when the particle pairs
are close to each other [3]. This is given as

24 2\
Nt ) . (A1)

gij(r)= CO(m

While this result is exact for small St and » < 1 in the absence of gravity a similar result was
postulated for bidisperse spheres driven by turbulence and differential sedimentation at separations
in the dissipative range [15]. To allow the cut off radius to occur for any r, we introduce it into the
uniformly valid monodisperse result of Eq. (3) and obtain

(F) = ex log ¢y <1 n L) (A2)
=R e |\
2(14(*5) )

St+St; . .
Here, cp and c¢; are evaluated at St = —=—. The characteristic separation r, sets the crossover

from monodisperse behavior to the bidisperse plateau of g;;(r). This crossover length is set by the
competition between the characteristic settling and turbulent velocities and is given as

re = keglSt; — St;| V151 (A3)
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Here k. is independent of r and, similar to the integral model, is obtained by fitting with DNS results
[12] and determined to be

St; + St;
5%&,- — St;]. (Ad)

ke=1+

The algebraic model for inertial clustering is compared with DNS results [12] in Fig. 11.

These were carried out at Fr = 0.3 and Re; = 90 and so the correction for small Re, given in

Eq. (6) is needed for large particle separations. From the figure it is evident that all the important

features of the RDF, including variation with r, St, and AS, ;;, have been captured with reasonable
accuracy.
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