
WEYL LAWS FOR OPEN QUANTUM MAPS

ZHENHAO LI

Abstract. We find Weyl upper bounds for the quantum open baker’s map in the
semiclassical limit. For the number of eigenvalues in an annulus, we derive the
asymptotic upper bound O(N �) where � is the dimension of the trapped set of the
baker’s map and (2⇡N)�1 is the semiclassical parameter, which improves upon the
previous result ofO(N �+"). Furthermore, we derive a Weyl upper bound with explicit
dependence on the inner radius of the annulus for quantum open baker’s maps with
Gevrey cuto↵s.

1. Introduction

Open quantum maps provide simple finite-dimensional models of open quantum
chaos. This makes them especially conducive to numerical experimentation and thus
appealing in the study of scattering resonances. They quantize a symplectic relation on
a compact phase space. Such relations are toy models for Poincaré sections that arise
when considering scattering Hamiltonians with hyperbolic trapped sets. See papers by
Nonnenmacher–Sjöstrand–Zworski [NSZ11, NSZ14] for the precise description of the
reduction from specific open quantum systems to open quantum maps using Poincaré
sections. In this paper, the symplectic relation we consider is the classical baker’s map
on a 2-torus, which gives rise to the quantum open baker’s map. We find a Weyl upper
bound for the number of eigenvalues in an annulus.

The quantum open baker’s map is an operator on

`2N = `2(ZN), ZN = Z/(NZ)

defined by the triple

(M,A,�), M 2 N, A ⇢ {0, . . . ,M � 1}, � 2 C1
0 ((0, 1); [0, 1]). (1.1)

Here, M is the base, A is the alphabet, and � is the cuto↵. Put N = KM where
K 2 N. Then the quantum open baker’s map is given by

BN = F
⇤
N

0

B@
�N/MFN/M�N/M

. . .

�N/MFN/M�N/M

1

CA IA,M

where FN is the unitary discrete Fourier transform, IA,M is a diagonal matrix whose
(j, j)-th entry is equal to one if bj/Kc 2 A and zero otherwise, and �N/M is a discretized
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2 ZHENHAO LI

smooth cuto↵ function. For example, for the triple (3, {0, 2},�) and N = 3K, the
corresponding quantum open baker’s map is then

BN = F
⇤
N

0

@
�KFK�K 0 0

0 0 0
0 0 �KFK�K

1

A

Define the canonical relation on the torus T2
x,⇠ by

{M,A : (y, ⌘) 7! (x, ⇠) =
⇣
My � a,

⌘ + a

M

⌘
,

(y, ⌘) 2
⇣ a

M
,
a+ 1

M

⌘
⇥ (0, 1), a 2 A.

(1.2)

Then the corresponding semiclassical Fourier integral operator is given by

Uh :=
X

a2A

U
a
h where

U
a
hv(x) =

M

2⇡h

Z

R2

e
i
h ((x+a�My)✓+xa/M)�(M✓)�(My � a)u(y) dyd✓.

The quantum open baker’s map can then be seen as the discrete analogue of this
Fourier integral operator with the corresponding semiclassical parameter (2⇡N)�1.
For a rigorous analysis of the analogy, see papers of Degli Esposti–Nonnenmacher–
Winn [ENW06] and Nonnenmacher–Zworski [NZ06]. Heuristics can be found in earlier
works of Balázs–Voros [BV89] and Saraceno–Voros [SV94]. In view of this analogy, one
would then expect that forward in time propagation by BN would lead to localization
in frequency space to the Cantor set and backward propagation by BN would lead
to localization in physical space to the Cantor set. Indeed, Fig. 1 demonstrates this
property numerically.

Following the above observations, we should expect the eigenfunctions to be localized
in frequency near the (M,A)-Cantor set provided that the eigenvalues are not too small
(see Fig. 2). The maximum number of eigenfunctions that can be packed into such a
region in phase space should then on the order of N � where

� =
log |A|

logM
(1.3)

is the dimension of the Cantor set. Our result uses such localization properties to
provide rigorous upper bounds to the number of eigenvalues of BN above a threshold.
More specifically, consider the eigenvalue counting function

NN(⌫) = |Spec(BN) \ {|�| � M�⌫
}|, (1.4)

defined for ⌫ � 0, where the eigenvalues are counted with multiplicities. Then we have
the following Weyl upper bound:
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(a) FNBNf (b) FNB2
Nf (c) FNB3

Nf

(d) (B⇤
N )f (e) (B⇤

N )2f (f) (B⇤
N )3f

Figure 1. A demonstration of the localizing properties of BN for M =
3, A = {0, 2}, and N = 37. An `2N normalized vector f was chosen
uniformly at random. Plots (A) – (C) are the frequency side of forward
propagation, and (D) – (F) are the spatial side of backward propagation.
Each figure plots the absolute value of the indicated vector as a map from
ZN ! R

Figure 2. The Fourier side of a typical eigenvector. M = 4, A = {1, 2},
and � is identically 1 on the Cantor set generated by M and A. Here,
N = 46, and the absolute value of Fnv is plotted as a function from
ZN ! R where v is eigenvector with the 50th largest eigenvalue at
|�| ⇡ M�0.4869.
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Theorem 1. For each ⌫ > 0, we have as N = KM ! 1,

NN(⌫) = O(N �). (1.5)

The proof of the theorem in §4.1 follows the methods used in [DJ17], in which the
bound

NN(⌫) = O(N �+")

for any " > 0 was proved. We obtain the "-improvement in this paper by using
tighter propagation estimates and a modified approximate inverse identity (see §3.1
for details).

With stronger assumptions on the decay of the cuto↵ function �, an explicit de-
pendence of the upper bound on the depth of the spectrum ⌫ can be extracted. In
particular, we consider Gevrey class functions, first introduced in [Gev18] to study
regularity of solutions to the heat equation. Given s � 1, a function f 2 C1(R) is
s-Gevrey if for every compact K ⇢ R, there exists a constant CK,f such that

sup
x2K

|@↵f(x)|  C↵+1
K,f (↵!)

s

for all ↵ 2 Z+. For s = 1, this is simply the space of real analytic functions, which
cannot be compactly supported. However, for every s > 1, there exist smooth and
compactly supported s-Gevrey functions. For s > 1, we write

G
s
c((0, 1)) = {f 2 C1

c (R) : f is s-Gevrey and supp f ⇢ (0, 1)}

Observe that if � 2 G
s
c((0, 1)) for some s > 1, then

|�̂(⇠)|  Ce�c|⇠|1/s , (1.6)

for some positive constants C and c. Here, �̂ denotes the usual Fourier transform given
by

�̂(") =

Z

R
e�2⇡ix⇠�(x) dx. (1.7)

So even though we cannot have exponential decay of the Fourier transform that comes
with analyticity, we can still get arbitrarily close. Finally, observe that for ⌘ > 0,

Z 1

⌘

|�̂(⇠)| d⇠  Ce�c̃⌘1/s (1.8)

for some new constant c̃ < c. See [Rod93, Chapter 1] for a more detailed account
on Gevrey classes and their Fourier decay properties. With this stronger cuto↵ decay
assumption, we then have the following Weyl upper bound:

Theorem 2. Assume that � 2 G
s
c((0, 1)) for some s > 1, then for all ⌫ � 1 and all

su�ciently large N = KM where K 2 N,
NN(⌫)  CN �⌫(1��)s (1.9)

where the constant C depend only on � and M .
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In the study of quantum chaos, open quantum systems given by the Laplacian on
a noncompact Riemannian manifold whose geodesic flow is hyperbolic on the trapped
set provide an important mathematical model. In the papers by Nonnenmacher–
Sjöstrand–Zworski [NSZ11, NSZ14], the study of resonances for such open quantum
system is reduced to the open quantum map, so we should expect our results to run
parallel to previous Weyl upper bounds for open quantum systems. We note that
in the correspondence between quantum systems and quantum maps, if ! 2 C with
Im!  0 is a scattering resonance of the open quantum system, then

� = e�i! logM = M�i! (1.10)

is a corresponding eigenvalue of BN , which makes sense in view of the fact that BN can
be thought of as a toy model for the time t = logM propagator of an open quantum
system with expansion rate 1. This means that Weyl upper bounds in horizontal
strips below the real line should correspond to our Weyl law in an annulus. Weyl
upper bounds for resonances of the Laplacian in strips (which corresponds to annuli
for the open quantum maps by Eq. (1.10)) were first proved by Sjöstrand [Sjö90]. This
was done in the analytic category, which we cannot a↵ord in our case since the cuto↵
� is compactly supported. Using Eq. (1.10), the corresponding bound that Sjöstrand
found would give NN(⌫) = O(N �⌫1��) where � is the Minkowski dimension of the
trapped set. Since we can only assume Gevrey for s > 1 in our setting, we see a
corresponding loss in our result as we only have O(N �⌫s(1��)). However, we remark
that it appears from numerical experiments in §5.2 that if the cuto↵ is identically 1
near the trapped set, the Sjöstrand bound of O(N �⌫1��) is recovered for ⌫ not too
large (Fig. 4), but our methods do not appear to be able to account for this behavior.

Weyl upper bounds for the Laplacian in fixed strips have been proved in vari-
ous smooth settings by Guillopé–Lin–Zworski [GLZ04], Zworski [Zwo99], Sjöstrand–
Zworski [SZ07], Nonnenmacher–Sjöstrand–Zworski [NSZ11, NSZ14], and Datchev–
Dyatlov [DD13]. These give the corresponding bounds NN(⌫) = O(N �), which aligns
with our result in Theorem 1. Physical microwave experiments on the Weyl law
asymptotics have been done by Potzuweit et al. [PWB+12], and various numerical
experiments can be found in, Lu–Sridhar–Zworski [LSZ03], Borthwick–Weich [BW16],
Borthwick [Bor14], and Borthwick–Dyatlov–Weich [DBW19]. The main idea behind
deriving the Weyl upper bounds is the localization of the eigenfunctions in phase space
(see Proposition 3.1), and this was observed numerically by Keating et al. [KNPS06].
In the seeting of Walsh quantization, which uses a modified Fourier transform, the
localization was later proved by Keating et al. [KNNS08]
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2. Open quantum maps

In this section, we establish some basic definitions and a general nonstationary phase
estimate. We then give a more detailed definition of the quantum open baker’s map,
and use the nonstationary phase estimate to prove the one-step propagation estimate
for the quantum open baker’s map BN that will be iterated in order to get propogation
of singularities estimates for long times.

2.1. Preliminaries. For N 2 N, we have the abelian group

ZN := Z/NZ ' {0, . . . , N � 1},

and we have the associated `2N = `2(ZN) space of functions u : ZN ! C equipped with
the norm

kuk2`2N =
N�1X

j=0

|u(j)|2.

The unitary Fourier transform on `2N is given by

FNu(j) =
1

p
N

N�1X

`=0

exp
⇣
�

2⇡ij`

N

⌘
u(`).

Given a function ' : [0, 1] ! C, its discretization is a function denoted 'N 2 `2N given
by

'N(j) = '
⇣ j

N

⌘
, j 2 0, . . . , N � 1. (2.1)

We denote the corresponding Fourier multiplier by

'F
N = F

⇤
N'NFN (2.2)

For the distance function on [0, 1], we consider the interval with 0 and 1 identified. In
particular,

d(x, y) = min{|x� y|, 1� |x� y|}.

For the distance between sets, we have the usual

d(U, V ) = inf
x2U, y2V

d(x, y).

Now we have the following nonstationary phase estimate.

Lemma 2.1. Fix � 2 C1
c ((0, 1)). Assume that a 2 ZN and

d
⇣ a

N
, 0
⌘
� r

for some r 2 (0, 1/2). Then
�����

N�1X

m=0

exp

✓
2⇡iam

N

◆
�
⇣m
N

⌘�����  N · g�(Nr) (2.3)
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where

g�(x) 

(
Cnx�n

8n if ' 2 C1
c ((0, 1))

Ce�cx1/s
if ' 2 G

s
c((0, 1))

(2.4)

The positive constants Cn, C, and c depend only on the choice of �.

Proof. The Poisson summation formula gives

N�1X

m=0

exp

✓
2⇡iam

N

◆
�
⇣m
N

⌘
= N

X

`2Z

�̂(N`� a).

Note that �̂ is rapidly decaying and by our assumption, N`� a > Nr. Therefore, for
every n � 0,

���N
X

`2Z

�̂(N`� a)
���  CN

X

`2Z

(N`� a)�n

 2CN
X

`�0

(N(r + `))�n

 CnN(Nr)�n

where the constant depends only on n. Similarly, if � 2 G
s
c((0, 1)) for some s > 1, then

in view of Eq. (1.6) and Eq. (1.8),
���N
X

`2Z

�̂(N`� a)
���  CN

X

`2Z

exp
⇣
�c|N`� a|

1
s

⌘

 2CN · exp
⇣
�c(Nr)

1
s

⌘
+ 2C

Z 1

Nr

exp
⇣
�c⇠

1
s

⌘
d⇠

 C̃N exp
⇣
�c̃(Nr)

1
s

⌘
,

where we interpret the sum as a lower Riemann sum to bound by the integral. Again,
all the constants above depend only on �. Therefore we have both of the desired
estimates. ⇤

2.2. One-step propagation. Let the triple (M,A,�) be as in Eq. (1.1), and put
N = KM where K 2 N. Define the projection ⇧a : `2N ! `2N/M , a 2 {0, . . . ,M � 1},
by

⇧au(j) = u
⇣
j + aK

⌘
, u 2 `2N , j 2

n
0, . . . , K � 1

o
. (2.5)

Then the open quantum map BN : `2N ! `2N can be written as

BN =
X

a2A

F
⇤
N⇧

⇤
a�N/MFN/M�N/M⇧a.
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Expanding out the Fourier transforms, we have the formula

BNu(j) =

p
M

N

X

a2A

K�1X

m,`=0

exp


2⇡i

✓
(j �M`)m

N
+

ja

M

◆�

�
⇣m
K

⌘
�
⇣ `
K

⌘
u(`+ aK). (2.6)

It will be useful in the propagation estimates to define the expanding map

� = �M,A :
G

a2A

⇣ a

M
,
a+ 1

M

⌘
! (0, 1)

given by

�(x) = Mx� a, x 2

⇣ a

M
,
a+ 1

M

⌘
(2.7)

We will obtain estimates in terms of the constants Cn for the propagation of singu-
larities. In particular, we start by showing that by applying BN once, the resulting
function will be roughly microlocalized to {M,A((0, 1)2), and by applying B⇤

N once,
the resulting function will be roughly microlocalized to {�1

M,A((0, 1)
2) (of course, this

is imprecise since our setting is discrete). This localization behavior is clear in the
classical open baker’s map {M,A. In the discrete setting, it is then natural to consider
BN as a matrix consisting of blocks that reflect the classical structure of the baker’s
map, and each block will be rapidly decaying away from the diagonal, so then we can
apply Schur’s bound to control the norm. To make precise the above heuristics, we
have the following estimate.

Proposition 2.2. Assume that ', : [0, 1] ! [0, 1] such that

d(supp ,��1(supp')) � r (2.8)

where � is the expanding map as defined in Eq. (2.7) and r is a small gap satisfying

0 < Mr  2d(supp�, 0). (2.9)

Let  F
N and 'F

N are Fourier multipliers as defined in (2.2). Then

k'NBN Nk`2N!`2N
 g̃�(Nr)

k F
NBN'

F
Nk`2N!`2N

 g̃�(Nr)

where

g̃�(x) 

(
Cnx�n

8n if ' 2 C1
c ((0, 1))

Ce�cx1/s
if ' 2 G

s
c((0, 1))

(2.10)

where Cn, c, and C are positive constants dependending only on �.
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Proof. 1. We computed each entry of 'NBN N as an N ⇥ N matrix, N = KM for
some K 2 N. From the expansion Eq. (2.6) for BN , we can write

'NBN Nu(j) =
X

a2A

K�1X

`=0

Aa
j`u(`+ aK)

where

Aa
j` =

p
M

N
'
⇣ j

N

⌘
exp

⇣2⇡iaj
M

⌘
�
⇣ `
K

⌘
 
⇣ `
N

+
a

M

⌘
eAj`

eAj` =
K�1X

m=0

exp
⇣2⇡im(j � `M)

N

⌘
�
⇣m
K

⌘

Observe that Aa
j` can be nonzero only when

a 2 A,
j

N
2 supp',

`

N
+

a

M
2 supp ,

`

K
2 supp�. (2.11)

For j and ` such that condition (2.11) holds, it follows from Eq. (2.8) that

d
⇣j � `M

N
, 0
⌘
� min{M · r, 2d(supp�, 0)} � M · r. (2.12)

Here, note that we crucially used condition (2.9) on r, which controls the case that
supp contains a neighborhood of ak/M and supp��1(') contains a neighborhood of
(a+ 1)k/M or vice versa for some a 2 A.

2. We now use Schur’s bound (see for instance [Zwo12, §4.5.1]) to bound the operator
of 'NBN N . In particular, it su�ces to show that

max
0jN�1

X

a2A

K�1X

`=0

|Aa
j`|  g̃�(Nr)

max
a2A

0`N/M�1

N�1X

j=0

|Aa
j`|  g̃�(Nr)

for some g̃� that satisfies (2.10) in order to conclude k'NBN Nk`2N!`2N
 g̃�(Nr).

Let g = g�M as in Proposition 2.1 where �M(x) = �(Mx). Then for any a 2 A and
j 2 {0, . . . , N � 1}, (2.11) and (2.12) means that the conditions of Proposition 2.1 are
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satisfied, so

K�1X

`=0

|Aa
j`| 

p
M

N

K�1X

`=0

| eAj`|



p

M
X

`: d( j�`M
N ,0)�Mr

g(j � `M)

 2
p

M
X

`�Nr

g(`M) (2.13)

Similarly, for any ` and a, we have that

N�1X

j=0

|Aa
j`| 

p
M

N

N�1X

j=0

| eAj`|



p

M
X

j: d( j�`M
N ,0)�Mr

g(j � `M)

 2M3/2
X

j�NMr

g(j) (2.14)

3. Now we substitute in the relevant g� into the bounds from Step 2 to recover the
desired estimates. With no extra assumptions on �, g decays rapidly. Then it follows
from Eq. (2.13) and Eq. (2.14)

X

a2A

K�1X

`=0

|Aa
j`|  Cn

X

`�Nr

(`M)�n�1
 Cn(Nr)�1

N�1X

j=0

|Aa
j`|  Cn

X

j�NMr

g(j)  Cn(Nr)�1

(2.15)

where Cn can change from line to line but depends only on n, �, and M . On the other
hand, if � 2 G

s
c((0, 1)), then g  C exp(�cx

1
s ). Therefore, it follows from Eq. (2.13)

and Eq. (2.14) that

X

a2A

K�1X

`=0

|Aa
j`|  C

Z 1

Nr

exp
⇣
�cx

1
s

⌘
dx  C̃ exp

⇣
�c̃x

1
s

⌘

N�1X

j=0

|Aa
j`|  C

Z 1

NMr

exp
⇣
�cx

1
s

⌘
dx  C̃ exp

⇣
�c̃x

1
s

⌘ (2.16)

where the constants depend only on � and M . Here, the sum can be seen as a lower
Riemann sum, which is bounded by the corresponding integral. Therefore, by Schur’s
estimate, Eq. (2.15) and Eq. (2.16) yield the desired estimates on 'NBN N . To obtain
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the estimates on the Fourier side, we simply have

k F
NBN'

F
Nk`2N!`2N

= kF
⇤
N('NBN N)

⇤
FNk`2N!`2N

 k'NBN Nk`2N!`2N
,

which gives the identical bounds for the Fourier side. ⇤

The manifestation of this propagation estimate is clear in Fig. 1. Each time a
random function over ZN is propagated by BN , it localizes in frequency space to the
next Cantor subset, and similarly propagation by B⇤

N yields localization in physical
space to the next Cantor subset.

3. Propagation of singularities

Now we are in a position to iteratively apply the one-step propagation estimate
Proposition 2.2 to obtain bounds on propagation for a long time. First, we will derive
a general estimate for long time propagation. The general estimate will then be applied
to the case � 2 C1

c ((0, 1)), and then to the Gevrey case � 2 G
s
c((0, 1)) for s > 1.

3.1. Long-time propagation. Let N = KM for K 2 N and let � denote the ex-
panding map as defined in the (2.7). Define the fattened Cantor set

Xj := {��j(x) + y mod 1 : x 2 [0, 1], |y|  aj} = ��j([0, 1]) + [�aj, aj]. (3.1)

The gap aj will be adjusted later. For now, we only need to assume that aj > aj�1/M .
Set

Aj = (1lXj)
F
N . (3.2)

Roughly speaking, Aj is a localizing operator on the Fourier side that localizes N · aj-
close to the j-th discrete Cantor subset in ZN . We remark that the discrete Cantor
subsets of ZN are generally not defined in our setting since we do not assume that N
is a power of M . We only assume that N is a multiple of M in order to ensure that
BN is well-defined. However, this is not a problem since the fattened Cantor sets are
simply defined on the continuum and then discretized.

Note that

d(��1(Xj�1), [0, 1] \Xj)  aj �
aj�1

M
.

Define the gap distance by d1 = a1 and

dj = N ·

⇣
aj �

aj�1

M

⌘
(3.3)

for j � 2. Therefore, by Proposition 2.2, we have estimates of the form

(1� Aj)BNAj�1 = Rj (3.4)

where

kRjk`2N!`2N
 g̃� (dj) .
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provided that condition (2.9) holds, i.e.

0 <
dj
N


2

M
d(supp�, 0) (3.5)

We propagate the estimate (3.4) to obtain long time estimates in the following propo-
sition.

Define the annular domain

⌦⌫ := {M�⌫ < |�| < 5} ⇢ C. (3.6)

Proposition 3.1. Let N = KM for some K 2 N. Fix a sequence

{dj}
`
j=1, ` 

logN

logM

such that the condition (3.5) holds. Then there exists a Fourier multiplier

A : `2N ! `2N

and families of operators

Z(�) : `2N ! `2N R(�) : `2N ! `2N

that satisfy the identity

I = Z(�)(BN � �) +R(�) + A (3.7)

such that

(1) we have the remainder estimate

kR(�)k`2N!`2N


`�1X

j=0

|�|�j�1g̃�(d`�j) (3.8)

where g̃� is the same as in Eq. (2.10).
(2) A has rank bounded by

rankA  2M `�

"
N

M `
+ 2

X̀

k=1

dk
M `�k

#
(3.9)

Proof. We obtain the identity from iterating propagation estimate Eq. (3.4). Put

aj =
1

N

jX

k=1

dk
M j�k

(3.10)

so that

dj = N ·

⇣
aj �

aj�1

M

⌘
.
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Then we can form the fattened Cantor sets Xj as in Eq. (3.1) with the corresponding
Fourier localizers Aj defined in Eq. (3.2). Iterating the estimate Eq. (3.4) `-times, we
find

(1� A`)B
`
N =(1� A`)BNA`�1B

`�1
N + (1� A`)BN(1� A`�1)B

`�1
N

=
`�1X

j=0

(1� A`)BN(1� A`�1)BN . . . (1� A`�j)BNA`�j�1B
`�j�1
N

=E`(BN � �)

+
`�1X

j=0

�`�j�1(1� A`)BN(1� A`�1)BN . . . (1� A`�j)BNA`�j�1

where

E` =
`�1X

j=0

`�j�2X

k=0

(1� A`)BN(1� A`�1)BN . . . (1� A`�j)BNA`�j�1(�
kB`�j�2�k).

Now, we have the desired approximate inverse identity given by

I = �

 
X

0k<`

��1�k(I � A`)(BN)
k

!
(BN � �) + ��`(1� A`)(BN)

` + A`

= �

 
X

0k<`

��1�k(I � A`)(BN)
k

!
(BN � �) + ��`E`(B � �)

+ ��`
`�1X

j=0

�`�j�1(1� A`)BN(1� A`�1)BN . . . (1� A`�j)BNA`�j�1 + A`

= Z`(BN � �) +R` + A` (3.11)

where

Z` = �

 
X

0k<`

��1�k(I � A`)(BN)
k

!
+ �`E`

R` =
`�1X

j=0

��j�1Bj
N(1� A`�j)BNA`�j�1

By assumption, condition (3.5) is satisfied, so Eq. (3.4) gives the desired remainder
bound

kR`k`2N!`2N


`�1X

j=0

|�|�j�1g̃
⇣
N ·

⇣
a`�j �

a`�j�1

M

⌘⌘
.
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To bound the rank of A`, we observe that ��`([0, 1]) is the union of M �` copies of
intervals of length M�`. Then from (3.1), the measure of X` can be bounded by

|X`|  M �`(M�` + 2a`).

By Eq. (3.10), we then obtain the desired bound

rankA`  2N · |X`|  2M `�

"
N

M `
+ 2

X̀

k=1

dk
M `�k

#
.

Note that the above inequality holds since M�`
 1/N by assumption, and the factor

of 2 here is merely to account for the discretization. The proposition then follows by
putting

A = A`

Z(�) = Z`

R(�) = R`

⇤

3.2. Propagation with smooth cuto↵. Ultimately, we want to find the asymptotics
of the eigenvalue counting function as N ! 1 for a fixed ⌫ > 0. Therefore, we need
some uniform control over the identity Eq. (3.7) for all su�ciently large N at a fixed
⌫. In particular, we choose dj so that R` will be uniformly small for all large N and
the rank of A will be on the order N �.

In the case that � 2 C1
c ((0, 1), recall that g̃ = g̃� is rapidly decaying. Then

provided that the gaps d`�j are chosen so that (3.5) holds, the identity (3.7) holds
with the remainder estimate (3.8) given by

kR`k`2N!`2N
 Cn

`�1X

j=0

��j�1dn`�j (3.12)

for constants Cn depending only on �. Note that for |�| < 1, the factor ��j�1 in
Eq. (3.12) increases exponentially as j increases. In order for R` to be small in norm,
this growth needs to be tempered by d`�j. The strategy is to choose d`�j in such a
way so that the sum in Eq. (3.12) becomes exponentially decreasing in j.

Therefore, we put

d`�j =
L ·M j

1.5j
. (3.13)

We will choose L > 0. Meanwhile, let the time of propagation be

` =

�
logN

logM

⌫
. (3.14)
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Since M � 2, there exists a su�ciently large n so that

1.5n

Mn�⌫
<

1

2
. (3.15)

Then choose L so that

Ln > 4M ⌫Cn (3.16)

where the constant Cn is as in Eq. (3.12). Note that the choice of L depends only on
� and M . Next,

d`�j

N


L

1.5j
M j

N


L

1.5`
.

Therefore for all su�ciently large ` (and thus for all su�ciently large N), condition
(3.5) will be satisfied. Therefore, Proposition 3.1 applies and we have the remainder
estimate

kR`k`2N!`2N
 Cn

`�1X

j=0

��j�1d�n
`�j


CnM ⌫

Ln

`�1X

j=0

✓
2n

M (n�⌫)

◆j


1

2
(3.17)

Furthermore, Eq. (3.9) gives the rank bound

rankA  2N �

 
1 + 2

X̀

k=1

L

1.5`�k

!
 CN �

where C depends only on ⌫, � and M . In summary, we have the following corollary of
Proposition 3.1:

Corollary 3.2. Consider the quantum open maps given by the triple (M,A,�) and
fix ⌫ > 0. For all su�ciently large N = KM where K 2 N there exists operators
A, Z(�), and R(�) on `2N as in Proposition 3.1 that satisfies the identity Eq. (3.7).
Furthermore, they satisfy the remainder estimate

kR(�)k`2N!`2N
 1/2

and the rank bound

rankA  CN �

where C does not depend on N .
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3.3. Propagation with Gevrey cuto↵. In the previous section, we fixed some ⌫
and could not have extracted dependence of the rank estimates on ⌫ since we do not
know how the constants Cn behave. In particular, the dependence on ⌫ is buried the
choice of L in Eq. (3.16). However, if we assume that � 2 G

s
c((0, 1)), we get more

explicit control over the decay of g̃.

For N � ⌫s � 1, put the time of propagation as

` =

&
log
�
N
⌫s

�

logM

'
(3.18)

With � 2 G
s
c((0, 1)) for s > 1, the remainder bound (3.8) then gives

kR`k`2!`2  C
`�1X

j=0

��j�1e�cd
1/s
`�j =

`�1X

j=0

e⌫(j+1) logM�cd
1/s
`�j (3.19)

where C and c depend only on �. Again, the remainder bound holds only if dj/N
is su�ciently small for all j according to Eq. (3.5). This condition will eventually be
fulfilled using the choice of propagation time given by Eq. (3.18) and choosing N to be
su�ciently large. First, we need to choose the gap distances. We see from Eq. (3.19)
that we should put

d1/s`�j =
⇣⌫ logM + µ

c

⌘
(j + 1), (3.20)

where µ is chosen to be su�ciently large so that

C
1X

j=0

e�µ(j+1)


1

2
.

Then if d`�j satisfies (3.5), then the estimate Eq. (3.19) gives the desired remainder
bound

kR`k`2!`2  1/2.

Indeed, note that d`�j takes its maximum value at j = `� 1, so (3.5) is satisfied if

2d(supp�, 0)

M
� N�1d1 = N�1

 
⌫ logM + µ

c

$
log
�
N
⌫s

�

logM

%!s

(3.21)

For 1  ⌫s < N , the above is indeed satisfied for all su�ciently large N , and the
threshold depends only on �, M , and ". Finally, to estimate the rank of A in Eq. (3.7),
we see from Eq. (3.9) that

rankA  2
N �

⌫s�

"
⌫s + 2

✓
⌫ logM + µ

c

◆s `�1X

j=0

(j + 1)s

M j

#
 CN �⌫s(1��) (3.22)

Note analysis above yields the following corollary of Proposition 3.1.
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Corollary 3.3. Consider the quantum open maps given by the triple (M,A,�) where
� 2 G

s
c((0, 1)) for an s > 1. Then for all 1  ⌫s < N , there exists a constant C�,M,"

such that for all N = KM > C�,M," where K 2 N, there exists operators A, Z(�), and
R(�) on `2N as in Proposition 3.1 that satisfies the identity Eq. (3.7). Furthermore,
they satisfy the remainder estimate

kR(�)k`2N!`2N
 1/2

and the rank bound

rankA  CN �⌫s(1��)

where C does not depend on N or ⌫.

4. Weyl bounds

Now we proceed to bounding the number of eigenvalues in ⌦⌫ as defined in (3.6).
To do so, we will eventually pass to Jensen’s formula from complex analysis:

Lemma 4.1. Let f(z) be a holomorphic function on a connected open set ⌦ ⇢ C. Let
K ⇢ ⌦ be a compact subset. Suppose there exists a constant L > 0 and a point z0 2 K
such that

sup
z2⌦

|f(z)|  eL, |f(z0)| � e�L. (4.1)

Then the number of zeros of f(z) in K counted with multiplicity is bounded by

|{z 2 K : f(z) = 0}|  CL (4.2)

where the constant C depends only on the geometry, i.e. z0, ⌦, and K.

See [DJ17, Lemma 4.4] for a proof of the lemma.

We want to apply Lemma 4.1 to some expression involving a factor of det(BN � �)
in the region ⌦⌫ (defined in (3.6)) in order to count the number of eigenvalues in ⌦⌫ .
To get the lower bound at a point in ⌦⌫ required in Lemma 4.1, we first modify the
approximate inverse identity (3.7) as follows:

I = ��1BN � ��1(BN � �)

= Z(BN � �) +R+ ��1ABN � ��1A(BN � �)

= (Z � ��1A)(BN � �) +R+ ��1ABN (4.3)

where Z and R depend holomorphically on �. In either the general cuto↵ setting
and the Gevrey cuto↵ setting, Corollary 3.2 and Corollary 3.3 both give the bound
kR(�)k`2N!`2N

 1/2. Therefore, we can define

BN(�) := ��1ABN(I �R)�1

F (�) := det(I � BN)
(4.4)
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Note that F (�) is holomorphic in the annulus ⌦⌫ . From Eq. (4.3), we have

F (�) = det(I �R) det(I �R� ��1ABN)

= det(I �R) det(Z � ��1Z) det(BN � �).

Therefore if � is an eigenvalue, it must also be a zero of F (�) considered with multi-
plicity. Thus it su�ces to bound the number of zeros of F .

4.1. Proof of Theorem 1. By Corollary 3.2, we see that for all � 2 ⌦⌫ ,

|F (�)|  (kBNk`2N!`2N
+ 1)rankBN  (2M ⌫ + 1)rankA  eCN�

(4.5)

where the constant C does not depend on N . Now we want to find a lower bound on
F (�) at a single point. Observe that at � = 4,

kBN(4)k`2N!`2N


1

2
,

and so

|F (4)|�1 = | det((I � BN(4))
�1)|

= | det(I + BN(4)(I � BN(4))
�1)|

 kI + BN(4)(I � BN(4))
�1
k
rankBN

`2N!`2N

 eCN�
(4.6)

where again the constant C does not depend on N . Therefore, Theorem 1 follows from
applying Lemma 4.1 to Eq. (4.6) and Eq. (4.5).

4.2. Proof of Theorem 2. We modify the definition of the domain ⌦⌫ slightly to
ensure the geometry scales correctly later. Take

⌦⌫ = {z : M�⌫
 |z|  e5⌫}.

Clearly, counting zeros of F (�) for � 2 ⌦⌫ su�ces, and as long as e5⌫ � 4, we will be
able to find a lower bound at a single point of F (�).

By Corollary 3.3, for all |�| � M�⌫ ,

|F (�)|  (2M ⌫ + 1)rankA  MC⌫·N�⌫s(1��)
. (4.7)

where the constant C is independent of N and ⌫. For a lower bound on large �, note
that for all � � 4,

kB(�)k`2!`2 
1

2
,
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and thus for such �,

|F (�)|�1 = | det((I � B(�))�1)|

= | det(I + B(�)(I � B(�))�1)|

 MC⌫·N�⌫s(1��)
, (4.8)

where again the constant does not depend on N or ⌫. The domain ⌦⌫ in which we
wish to upper bound the number of zeros varies with ⌫, and the constant in Lemma 4.1
depends on the geometry of the domain. Therefore, in order to capture the dependence
on ⌫, consider the function

F̃ (!) := F (e!). (4.9)

In particular, the number of zeros of F (�) for � 2 ⌦⌫ is the same as the number of
zeros of G̃(!) for

! 2 {a+ bi : a 2 [�⌫ logM, 5⌫], b 2 [2⇡k, 2⇡(k + 1))}

for any k 2 Z. Let

⌦̃⌫ = {a+ bi : a 2 [⌫ logM, 5⌫], b 2 [0, 2⇡⌫)}

Let N (⌫) denote the number of zeros of F (�) for � 2 ⌦⌫ and let Ñ (⌫) denote the
number of zeros of F̃ (!) for ! 2 ⌦̃⌫ . Note that 1

⌫ ⌦̃⌫ is the same domain independent
of ⌫. Then applying Lemma 4.1 with Eq. (4.7) and Eq. (4.8), where the latter is taken
at the point e4⌫ , then for all su�ciently large ⌫, we have the upper bound

N (⌫) 
C

⌫
Ñ (⌫)

=
C

⌫
|{zeros of F̃ (⌫!) for ! 2

1

⌫
⌦⌫}|

 CN �⌫s(1��),

where the constant C does not depend on N or ⌫. This concludes the proof.

5. Numerical discussion

In this section, we look at how the Weyl upper bounds derived in this paper perform
against numerical data. All plots were made using MATLAB, version R2021b.

We use the same smooth cuto↵ function as in [DJ17] and observe that it is 2-Gevrey.
The cuto↵ is constructed as follows. Let

f(x) =

Z 1.02·x�0.01

�1
exp

✓
�

1

t(1� t)

◆
dt.
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Figure 3. M = 5, A = {1, 2, 3}, ⌧ = 0.05. Left: logNN(⌫)/ logM is
plotted against logN/ logM for K = N/M = {125, 175, 225, . . . , 625}
given various fixed values of ⌫. From top to bottom, the corresponding
values of ⌫ are 1.5, 1.4, . . . , 1.0. Right: the corresponding slope of the
linear regression of each curve is plotted against ⌫, and the red line is at
� = log |A|/ logM .

Note that f(x) = 0 for x 
0.01
1.02 and f(x) = 1 for x �

1.01
1.02 . Given a tightness parameter

⌧ 2 (0, 1/2], we then define the cuto↵

� = f
⇣x
⌧

⌘
f

✓
1� x

⌧

◆
.

� is 2-Gevrey and is identically 1 near the interval [⌧, 1� ⌧ ].

The MATLAB function eig() was used to compute eigenvalues. We note that
column j of BN,� is identically zero if bj ·M/Nc 2 A. We cut these columns as well
as the corresponding rows from the matrix BN,� to form an K|A|⇥K|A| matrix B̃N,�

and compute the eigenvalues of the trimmed matrix using MATLAB. The nonzero
eigenvalues of BN,� are identical to those of B̃N,�, so for the sake of counting the
number of eigenvalues greater than M�⌫ , using the trimmed matrix only speeds up
the computation.

5.1. Dependence on N . For a fixed ⌫, the counting functionNN(⌫) is asymptotically
upper bounded by N � as N = KM ! 1. For the numerical experiment in Fig. 3
we plot logNN(⌫)/ logM against logN/ logM for several di↵erent values of ⌫, and
for each ⌫, we compute the slope of the linear regression. The numerically computed
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Figure 4. M = 5, A = {1, 2, 3}, ⌧ = 0.05, N = 55. The blue data set
is logNN(⌫) plotted against log ⌫ for ⌫ = 1.0, 1.1, 1.2, . . . , 3.0. The red
line is the same experiment for the perturbed matrix B̃N,� +P where P
is a randomly chosen matrix normalized so that kPk`2!`2  10�10. The
yellow line is the linear regression for the experiment in blue, and has a
slope of 0.3308, which is fairly close to 1� � ⇡ 0.3174.

slopes are all fairly close to � = log |A|
logM . Similar numerical results can be obtained for

other quantum open baker’s maps. This is in numerical agreement with the upper
bound derived in this paper, and suggests that there could be matching lower bound,
although no such bounds are known.

The numerics depicted in Fig. 3 is fairly stable under perturbations on the order
10�5 in the given range of K and ⌫. In particular, for each N = K · M , we also
computed the spectrum of B̃N,� + P where P is a random matrix whose entries are
i.i.d. random Gaussians, and the whole matrix is normalized so that kPk`2!`2 = 10�5.
Running the same experiment as in Fig. 3 with each of the matrices perturbed by a
random matrix of norm 10�5, the di↵erences in the resulting slopes are on the order
10�3, which suggests a lack of strong pseudo spectral e↵ects in the range of N and ⌫
of concern.

5.2. Dependence on ⌫. Now we fix a large N = KM and see how the counting
function NN(⌫) varies with ⌫. Since we have the asymptotic upper bound ⇠ ⌫s(1��),
we plot log ⌫/ logM against logNN(⌫)/ logM . The numerical data for NN(⌫) becomes
more unstable as ⌫ becomes large. In Fig. 4, we fix N = 55 and go to largest ⌫ for which
a perturbation on the order 10�10 yields no discernible di↵erence. The line of best fit
as depicted in Fig. 4 has a slope of 0.3308, which is much closer to 1� � ⇡ 0.3174 than
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Figure 5. M = 3, A = {1}, ⌧ = 0.1, N = 36. In particular, this is the
degenerate case where the dimension of the trapped set is � = 0. Left:
A plot of the eigenvalues in the complex unit circle. Right: Log of the
magnitude of the five largest eigenvalues

to s(1� �). We note that the alphabet and � we chose is such that � is identically 1
on the Cantor set associated with the alphabet. In fact, similar experiments with the
cuto↵ identically one near the Cantor set has similar behavior in that NN(⌫) behaves
like ⌫1��. However, the Weyl bound ⇠ N ��s(1��) holds for all choices of alphabets and
s-Gevrey cuto↵s.

In the edge case where we take the alphabet to be a single point and � = 0, we
should see that the magnitude of the first few eigenvalues to decrease exponentially,
which would exhibit the NN(⌫) . ⌫2 behavior. Indeed, this is what we see in Fig. 5.
We remark that essentially the same values for the top eigenvalues is obtained if we
take other values of N , which makes sense in light of the fact that the upper bound
we derived is independent of N for the degenerate case � = 0.
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