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WEYL LAWS FOR OPEN QUANTUM MAPS

ZHENHAO LI

ABSTRACT. We find Weyl upper bounds for the quantum open baker’s map in the
semiclassical limit. For the number of eigenvalues in an annulus, we derive the
asymptotic upper bound O(N?) where § is the dimension of the trapped set of the
baker’s map and (27rN)~! is the semiclassical parameter, which improves upon the
previous result of O(N?*¢). Furthermore, we derive a Weyl upper bound with explicit
dependence on the inner radius of the annulus for quantum open baker’s maps with
Gevrey cutoffs.

1. INTRODUCTION

Open quantum maps provide simple finite-dimensional models of open quantum
chaos. This makes them especially conducive to numerical experimentation and thus
appealing in the study of scattering resonances. They quantize a symplectic relation on
a compact phase space. Such relations are toy models for Poincaré sections that arise
when considering scattering Hamiltonians with hyperbolic trapped sets. See papers by
Nonnenmacher—Sjostrand—Zworski [NSZ11, NSZ14] for the precise description of the
reduction from specific open quantum systems to open quantum maps using Poincaré
sections. In this paper, the symplectic relation we consider is the classical baker’s map
on a 2-torus, which gives rise to the quantum open baker’s map. We find a Weyl upper
bound for the number of eigenvalues in an annulus.

The quantum open baker’s map is an operator on

03, = 0*(Zy), Zy =7)(NZ)

defined by the triple
(M, A,x), MeN, AcCH{0,...,M—1}, xe€C5((0,1);[0,1]). (1.1)

Here, M is the base, A is the alphabet, and x is the cutoff. Put N = KM where
K € N. Then the quantum open baker’s map is given by

XN/M]: N/MXN/M

By = Fy La
XN/M]: N/MXN/M

where Fy is the unitary discrete Fourier transform, 14 s is a diagonal matrix whose

(4,7)-th entry is equal to one if | j/K | € A and zero otherwise, and x /s is a discretized
1
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smooth cutoff function. For example, for the triple (3,{0,2},x) and N = 3K, the
corresponding quantum open baker’s map is then

XkFrXrk 0 0
By = F& 0 0 0
0 0 xxFrXK

Define the canonical relation on the torus T? ; by

saana () = (0,6) = (My— o, 20),

M
+1
(y,m) € <%7a7> x (0,1), a€A.

Then the corresponding semiclassical Fourier integral operator is given by

Uy, = ZU,‘: where
acA

(1.2)

Uo(a) = oo [ R S0 (3g) My — ayuly) dydo.
21h R2

The quantum open baker’s map can then be seen as the discrete analogue of this
Fourier integral operator with the corresponding semiclassical parameter (27rN)~!.
For a rigorous analysis of the analogy, see papers of Degli Esposti-Nonnenmacher—
Winn [ENWO06] and Nonnenmacher—Zworski [NZ06]. Heuristics can be found in earlier
works of Baldzs—Voros [BV89] and Saraceno—Voros [SV94]. In view of this analogy, one
would then expect that forward in time propagation by By would lead to localization
in frequency space to the Cantor set and backward propagation by By would lead
to localization in physical space to the Cantor set. Indeed, Fig. 1 demonstrates this
property numerically.

Following the above observations, we should expect the eigenfunctions to be localized
in frequency near the (M, A)-Cantor set provided that the eigenvalues are not too small
(see Fig. 2). The maximum number of eigenfunctions that can be packed into such a
region in phase space should then on the order of N? where

5 - loglAl
~ logM

is the dimension of the Cantor set. Our result uses such localization properties to

(1.3)

provide rigorous upper bounds to the number of eigenvalues of By above a threshold.
More specifically, consider the eigenvalue counting function

N (v) = [Spec(By) N{|A\| > M7V}, (1.4)

defined for v > 0, where the eigenvalues are counted with multiplicities. Then we have
the following Weyl upper bound:
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F1GURE 1. A demonstration of the localizing properties of By for M =
3, A ={0,2}, and N = 3". An /% normalized vector f was chosen
uniformly at random. Plots (A) — (C) are the frequency side of forward
propagation, and (D) — (F) are the spatial side of backward propagation.
Each figure plots the absolute value of the indicated vector as a map from
Zny — R
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FIGURE 2. The Fourier side of a typical eigenvector. M =4, A = {1,2},
and x is identically 1 on the Cantor set generated by M and A. Here,
N = 45 and the absolute value of F,v is plotted as a function from

Zn — R where v is eigenvector with the 50th largest eigenvalue at
I\ A2 M—0-4569
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Theorem 1. For each v > 0, we have as N = KM — oo,
Ny (v) = O(N). (1.5)

The proof of the theorem in §4.1 follows the methods used in [DJ17], in which the
bound
Ny (v) = O(N°*)
for any ¢ > 0 was proved. We obtain the e-improvement in this paper by using

tighter propagation estimates and a modified approximate inverse identity (see §3.1
for details).

With stronger assumptions on the decay of the cutoff function x, an explicit de-
pendence of the upper bound on the depth of the spectrum v can be extracted. In
particular, we consider Gevrey class functions, first introduced in [Gev18| to study
regularity of solutions to the heat equation. Given s > 1, a function f € C>®(R) is
s-Gevrey if for every compact K C R, there exists a constant Cx s such that

sup [0 f ()| < O (o)
zeK

for all « € Z*. For s = 1, this is simply the space of real analytic functions, which
cannot be compactly supported. However, for every s > 1, there exist smooth and
compactly supported s-Gevrey functions. For s > 1, we write

G2((0,1)) ={f € C>(R) : fis s-Gevrey and supp f C (0,1)}
Observe that if x € G((0,1)) for some s > 1, then
%) < Ceme”, (1.6)

for some positive constants C' and c. Here, y denotes the usual Fourier transform given
by

x(e) :/Re_%ng(x) dzx. (1.7)

So even though we cannot have exponential decay of the Fourier transform that comes
with analyticity, we can still get arbitrarily close. Finally, observe that for n > 0,

/ ()| de < e (1.8)
n

for some new constant ¢ < ¢. See [Rod93, Chapter 1] for a more detailed account
on Gevrey classes and their Fourier decay properties. With this stronger cutoff decay
assumption, we then have the following Weyl upper bound:

Theorem 2. Assume that x € G$((0,1)) for some s > 1, then for all v > 1 and all
sufficiently large N = KM where K € N,

Nu(v) < CNO-9s (1.9)
where the constant C' depend only on x and M.
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In the study of quantum chaos, open quantum systems given by the Laplacian on
a noncompact Riemannian manifold whose geodesic flow is hyperbolic on the trapped
set provide an important mathematical model. In the papers by Nonnenmacher—
Sjostrand—Zworski [NSZ11, NSZ14], the study of resonances for such open quantum
system is reduced to the open quantum map, so we should expect our results to run
parallel to previous Weyl upper bounds for open quantum systems. We note that
in the correspondence between quantum systems and quantum maps, if w € C with
Imw < 0 is a scattering resonance of the open quantum system, then

A= e—iwlogM — M—iw (110)

is a corresponding eigenvalue of By, which makes sense in view of the fact that By can
be thought of as a toy model for the time ¢t = log M propagator of an open quantum
system with expansion rate 1. This means that Weyl upper bounds in horizontal
strips below the real line should correspond to our Weyl law in an annulus. Weyl
upper bounds for resonances of the Laplacian in strips (which corresponds to annuli
for the open quantum maps by Eq. (1.10)) were first proved by Sjostrand [Sjo90]. This
was done in the analytic category, which we cannot afford in our case since the cutoff
X is compactly supported. Using Eq. (1.10), the corresponding bound that Sjostrand
found would give Ny(v) = O(N°v!~°) where ¢§ is the Minkowski dimension of the
trapped set. Since we can only assume Gevrey for s > 1 in our setting, we see a
corresponding loss in our result as we only have O(N 5V“"(1_5)). However, we remark
that it appears from numerical experiments in §5.2 that if the cutoff is identically 1
near the trapped set, the Sjostrand bound of O(N°v'~?) is recovered for v not too
large (Fig. 4), but our methods do not appear to be able to account for this behavior.

Weyl upper bounds for the Laplacian in fixed strips have been proved in vari-
ous smooth settings by Guillopé-Lin-Zworski [GLZ04], Zworski [Zwo099], Sjostrand—
Zworski [SZ07], Nonnenmacher—Sjostrand—Zworski [NSZ11, NSZ14], and Datchev—
Dyatlov [DD13]. These give the corresponding bounds Ny (v) = O(N?), which aligns
with our result in Theorem 1. Physical microwave experiments on the Weyl law
asymptotics have been done by Potzuweit et al. [PWB'12], and various numerical
experiments can be found in, Lu-Sridhar—Zworski [L.SZ03], Borthwick—Weich [BW16],
Borthwick [Borl4], and Borthwick-Dyatlov—Weich [DBW19]. The main idea behind
deriving the Weyl upper bounds is the localization of the eigenfunctions in phase space
(see Proposition 3.1), and this was observed numerically by Keating et al. [KKNPS06].
In the seeting of Walsh quantization, which uses a modified Fourier transform, the
localization was later proved by Keating et al. [KNNSO§]
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2. OPEN QUANTUM MAPS

In this section, we establish some basic definitions and a general nonstationary phase
estimate. We then give a more detailed definition of the quantum open baker’s map,
and use the nonstationary phase estimate to prove the one-step propagation estimate
for the quantum open baker’s map By that will be iterated in order to get propogation
of singularities estimates for long times.

2.1. Preliminaries. For N € N, we have the abelian group
Zy :=7Z/NZ~{0,...,N — 1},

and we have the associated (3, = (*(Zy) space of functions u : Zy — C equipped with
the norm

N-1
2 _ -\ |2
lulfy = X )P
j:

The unitary Fourier transform on /3, is given by

Fru(j) = \/—% ZO exp ( 3 N- )u(e).

Given a function ¢ : [0, 1] — C, its discretization is a function denoted oy € £3 given

by

. J .
o =o(1). GeoNo1 2
We denote the corresponding Fourier multiplier by
on = FyonFn (22)

For the distance function on [0, 1], we consider the interval with 0 and 1 identified. In
particular,

For the distance between sets, we have the usual

d(U,V)= inf Vd(:t,y).

zelU, ye

Now we have the following nonstationary phase estimate.

Lemma 2.1. Fiz x € C°((0,1)). Assume that a € Zy and

d(%,O) >r

for some r € (0,1/2). Then

N-1 )
Z exp 2miam N <@)
— N N

< N g, (N7) (2.3)
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where

o (2) < Crz™™ VYn if p € C°((0,1))
BT ce e ifp e gi((0,1)

The positive constants C.,, C, and ¢ depend only on the choice of x.

Proof. The Poisson summation formula gives

N-1 :
Z exp <2W;\?m> X (%) = NZ)Z(N@ —a).
m=0 LEL

Note that y is rapidly decaying and by our assumption, N¢ —a > Nr. Therefore, for

every n > 0,

’NZ)Q(NK - a)‘ <CNY (Nt—a)™

LeZ LEZ
<2CNY (N(r+0)™
>0

< C,N(Nr)™

where the constant depends only on n. Similarly, if x € G5((0,1)) for some s > 1, then
in view of Eq. (1.6) and Eq. (1.8),

‘NZ)Z(]\M — a)‘ < CNZeXp (—C|N€ —a
< 2CN - exp (—C(NT’)%> + 20/

LeZ LeZ
Nr

exp <—c£ %> d¢
< CN exp (—6(N7‘)%> :
where we interpret the sum as a lower Riemann sum to bound by the integral. Again,

all the constants above depend only on Y. Therefore we have both of the desired
estimates. m

2.2. One-step propagation. Let the triple (M, A4, x) be as in Eq. (1.1), and put
N = KM where K € N. Define the projection I, : €3 — €3, a € {0,..., M — 1},
by

Nu(j) =u(j+ak), we,je{o.. K-1}. (2.5)
Then the open quantum map By : (4 — (3 can be written as

By = ZF;HZXN/MFN/MXN/MHa-
acA
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Expanding out the Fourier transforms, we have the formula

Byu(j) = ~ ZZexp{Zm( ]1\\[46) +%)}

a€A m (=0
X(%)x(%)u(ﬁ +aK). (2.6)

It will be useful in the propagation estimates to define the expanding map

O =Dy |_|(“ 6L+1)—>(0,1)

acA

given by

O(z) =Mz —a, x€ (%,%)

We will obtain estimates in terms of the constants C,, for the propagation of singu-

(2.7)

larities. In particular, we start by showing that by applying By once, the resulting
function will be roughly microlocalized to »e7.4((0,1)?), and by applying B} once,
the resulting function will be roughly microlocalized to %;417 4((0,1)%) (of course, this
is imprecise since our setting is discrete). This localization behavior is clear in the
classical open baker’s map s)r 4. In the discrete setting, it is then natural to consider
By as a matrix consisting of blocks that reflect the classical structure of the baker’s
map, and each block will be rapidly decaying away from the diagonal, so then we can
apply Schur’s bound to control the norm. To make precise the above heuristics, we
have the following estimate.

Proposition 2.2. Assume that v, : [0,1] — [0, 1] such that

d(supp 1h, " (supp p)) > r (2.8)

where ® is the expanding map as defined in Eq. (2.7) and r is a small gap satisfying

0 < Mr < 2d(supp x,0). (2.9)
Let % and ok are Fourier multipliers as defined in (2.2). Then
lon Bonlle, e, < 9x(NT)
1% Byoille, -, < gx(NT)
where
_ Cnaz™" Vnif ¢ € C((0,1))
gx<x) < epl/s . B (2'10)
Ce if ¢ € G2((0,1))

where C,,, ¢, and C are positive constants dependending only on x.
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Proof. 1. We computed each entry of oyBytYny as an N x N matrix, N = KM for
some K € N. From the expansion Eq. (2.6) for By, we can write

onBynu(j) Z Z Aju(l + aK)

acA (=0

where

= o) e (P () e (5 + 5) B

= S (G 00) ()

Observe that Aj, can be nonzero only when

] 14 Y4
a€ A, % € supp ¢, N + M € supp ¢, 174 € supp x. (2.11)

For j and ¢ such that condition (2.11) holds, it follows from Eq. (2.8) that

| — (M
d(J ~ ,O) > min{M - r,2d(supp x,0)} > M -r. (2.12)

Here, note that we crucially used condition (2.9) on r, which controls the case that
supp ¢ contains a neighborhood of ak/M and supp ®'() contains a neighborhood of
(a + 1)k/M or vice versa for some a € A.

2. We now use Schur’s bound (see for instance [Zwol12, §4.5.1]) to bound the operator
of oy ByYy. In particular, it suffices to show that

OgrjnglzZIA | < Gy(N)
acA (=0
N-1

max Yy |A%| < Gy (Nr)

acA -
0<(<N/M—1 j=0
for some g, that satisfies (2.10) in order to conclude |onBytn|le2 ez < gy(NT).

Let g = gy,, as in Proposition 2.1 where yu(z) = x(Mx). Then for any a € A and
j€{0,...,N—1}, (2.11) and (2.12) means that the conditions of Proposition 2.1 are
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satisfied, so

=

L
bm
IA

% Zﬁ

0t
> gli—eM)

(=2 0)>Mr

<2vVM Y g(eM) (2.13)

{>Nr

Iy
=)
IN

Similarly, for any ¢ and a, we have that

N-1 N-1
M ~
Do 1AG] < = D 1Ay
j=0 Jj=0
<VM Y g M)

g d(M0)>Mr

<am2 3 g(j) (2.14)

j>NMr

3. Now we substitute in the relevant g, into the bounds from Step 2 to recover the
desired estimates. With no extra assumptions on y, g decays rapidly. Then it follows
from Eq. (2.13) and Eq. (2.14)

> 2 2] < Cy S (EM) L < Cu(Vr) !

acA (=0 {>Nr
-1

y Q< Y g Co(N7)™

j>NMr

(2.15)

b

where (), can change from line to line but depends only on n, y, and M. On the other
hand, if x € G5((0,1)), then g < Cexp(—cxs). Therefore, it follows from Eq. (2.13)
and Eq. (2.14) that

Z Z |A | < C/ exp (—CJZ%> dr < C’exp (—EQ:%>

acA (=0

ZyA |<0/

NMr

(2.16)
exp (—cx%> dr < éexp (—51‘%>

where the constants depend only on x and M. Here, the sum can be seen as a lower
Riemann sum, which is bounded by the corresponding integral. Therefore, by Schur’s
estimate, Eq. (2.15) and Eq. (2.16) yield the desired estimates on ¢y Bynty. To obtain
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the estimates on the Fourier side, we simply have

103 By enlla e, = 1Fxlen Byyn) Fulle e, < lonBynlla —a

which gives the identical bounds for the Fourier side. 0

The manifestation of this propagation estimate is clear in Fig. 1. Each time a
random function over Zy is propagated by By, it localizes in frequency space to the
next Cantor subset, and similarly propagation by B} yields localization in physical
space to the next Cantor subset.

3. PROPAGATION OF SINGULARITIES

Now we are in a position to iteratively apply the one-step propagation estimate
Proposition 2.2 to obtain bounds on propagation for a long time. First, we will derive
a general estimate for long time propagation. The general estimate will then be applied
to the case x € C2°((0,1)), and then to the Gevrey case x € G3((0,1)) for s > 1.

3.1. Long-time propagation. Let N = KM for K € N and let ® denote the ex-
panding map as defined in the (2.7). Define the fattened Cantor set

X; ={07(x)+y mod1l:ze€[0,1],|yl <a;}=®77(0,1]) + [~aj,a;]. (3.1

The gap a; will be adjusted later. For now, we only need to assume that a; > a;_; /M.
Set

Aj = (Ix)% (3.2)
Roughly speaking, A; is a localizing operator on the Fourier side that localizes N - a;-
close to the j-th discrete Cantor subset in Zy. We remark that the discrete Cantor
subsets of Zx are generally not defined in our setting since we do not assume that N
is a power of M. We only assume that N is a multiple of M in order to ensure that
By is well-defined. However, this is not a problem since the fattened Cantor sets are

simply defined on the continuum and then discretized.
Note that
a;_1

(@71 (X;), [0, 1]\ X;) < aj — ——.
Define the gap distance by d; = a; and

a;_1
for 7 > 2. Therefore, by Proposition 2.2, we have estimates of the form

where
1Rz, ez, < G (dy) -
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provided that condition (2.9) holds, i.e.

d; 2
— < — .
0 <+ < 574supp X, 0) (3.5)

We propagate the estimate (3.4) to obtain long time estimates in the following propo-
sition.
Define the annular domain
Q,={M™7" <|\<5}cCC. (3.6)
Proposition 3.1. Let N = KM for some K € N. Fix a sequence

log N
d; (<
{ }] 1 — IOgM

such that the condition (3.5) holds. Then there exists a Fourier multiplier
A A — 15
and families of operators
Z(\) 05 — Oy RN : 03 — 1%
that satisfy the identity
I=Z\)(By—X)+RA\+A (3.7)
such that

(1) we have the remainder estimate

N

-1

IRz 3, < D INT (i) (3-8)

<.
Il
o

where §,, is the same as in Eq. (2.10).
(2) A has rank bounded by

rank A < 2M*

+ 22 Y k] (3.9)

Proof. We obtain the identity from iterating propagation estimate Eq. (3.4). Put

(3.10)

so that
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Then we can form the fattened Cantor sets X; as in Eq. (3.1) with the corresponding
Fourier localizers A; defined in Eq. (3.2). Iterating the estimate Eq. (3.4) (-times, we
find

(1 — Ag)Bfi; :(1 — Ag)BNAg,lBﬁf_l + (1 — Ag)BN<1 — Ag,1)8ﬁ1
-1
=Y (1—-A)By(1—A;)By...(1— Ay ;)ByAr; 1By
0

Jj=

=FEy(By — \)
-1
+ > N1 = A)By(1— Ar1)By ... (1 — A ) By Arj
=0
where
0—1 6—5—2
Ee = Z (1= A)BN(1 = Ap1)By ... (1= Apj) By Apj (N BE7727F),
J=0 k=0

Now, we have the desired approximate inverse identity given by

I=— ( AR - Ag)(BN)’“> (By — A) + A1 — A)(By)" + Ay

0<k</t

= — ( Z )\717]6([ — A@)(BN)k> (BN - )\) + AiZEZ(B - )‘)

0<k</t
/-1
FAY NI 1= A)By(1 = Ap1)By . (1= Apj) By Ar o1 + Ay
j=0
= Zy(Byx — A) + Re + A, (3.11)

where

Zy=— ( > oaRI - Ag)(BN)’“> + M E,
0<k</t
(-1 '
Re=Y N7'BY(1— Arj)ByArj

J=0

By assumption, condition (3.5) is satisfied, so Eq. (3.4) gives the desired remainder
bound

-1
HRZHQW@VSZW i1 (N-(a[_j— AZ[1>>
=0
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To bound the rank of Ay, we observe that ®¢([0,1]) is the union of M?° copies of
intervals of length M~*. Then from (3.1), the measure of X, can be bounded by

| X < MPY(M™" + 2ay).
By Eq. (3.10), we then obtain the desired bound

L
N dy,
el
k=1

Note that the above inequality holds since M ¢ < 1/N by assumption, and the factor
of 2 here is merely to account for the discretization. The proposition then follows by

rank A, < 2N - | X,| < 2M%

putting
A=Ay
Z(\) =2,
R(N) =Ry

U

3.2. Propagation with smooth cutoff. Ultimately, we want to find the asymptotics
of the eigenvalue counting function as N — oo for a fixed v > 0. Therefore, we need
some uniform control over the identity Eq. (3.7) for all sufficiently large N at a fixed
v. In particular, we choose d; so that ‘R, will be uniformly small for all large N and
the rank of A will be on the order N°.

In the case that x € C°((0,1), recall that § = g, is rapidly decaying. Then
provided that the gaps dy_; are chosen so that (3.5) holds, the identity (3.7) holds
with the remainder estimate (3.8) given by

-1
IRl e, < Cu DA77y (3.12)
=0
for constants C,, depending only on x. Note that for |[A] < 1, the factor A7~ in
Eq. (3.12) increases exponentially as j increases. In order for R, to be small in norm,
this growth needs to be tempered by d,—;. The strategy is to choose d,_; in such a
way so that the sum in Eq. (3.12) becomes exponentially decreasing in j.
Therefore, we put

LM
dj =5

We will choose L > 0. Meanwhile, let the time of propagation be

log N
= : 14
‘ Log M J (314

(3.13)
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Since M > 2, there exists a sufficiently large n so that

1.5 1
- 3.15
Mnfz/ < 2 ( )
Then choose L so that
L™ > 4M¥C, (3.16)

where the constant C,, is as in Eq. (3.12). Note that the choice of L depends only on
x and M. Next,

Therefore for all sufficiently large ¢ (and thus for all sufficiently large N), condition
(3.5) will be satisfied. Therefore, Proposition 3.1 applies and we have the remainder
estimate

/-1
IRellg e, < Cu D> A7,
j=0
CMY N[ 20\
< n
- I (M(n—u)>
j=0
1
<3 (3.17)

Furthermore, Eq. (3.9) gives the rank bound

1
L
1 § 6
k=1

where C' depends only on v, x and M. In summary, we have the following corollary of
Proposition 3.1:

Corollary 3.2. Consider the quantum open maps given by the triple (M, A, x) and
fir v > 0. For all sufficiently large N = KM where K € N there exists operators
A, Z(N\), and R(X\) on % as in Proposition 5.1 that satisfies the identity Eq. (3.7).
Furthermore, they satisfy the remainder estimate

IRz~ <1/2

and the rank bound

rank A < CON?

where C' does not depend on N.
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3.3. Propagation with Gevrey cutoff. In the previous section, we fixed some v
and could not have extracted dependence of the rank estimates on v since we do not
know how the constants C,, behave. In particular, the dependence on v is buried the
choice of L in Eq. (3.16). However, if we assume that y € G3((0,1)), we get more
explicit control over the decay of g.

For N > v® > 1, put the time of propagation as

- {M} 519

log M

With x € G5((0,1)) for s > 1, the remainder bound (3.8) then gives

-1 -1
[Rellezez < CZ A—Ilemedi — Z eV log M—cd (3.19)
=0 =0

where C' and ¢ depend only on x. Again, the remainder bound holds only if d;/N
is sufficiently small for all j according to Eq. (3.5). This condition will eventually be
fulfilled using the choice of propagation time given by Eq. (3.18) and choosing N to be
sufficiently large. First, we need to choose the gap distances. We see from Eq. (3.19)
that we should put

dl/s _

5 =

<V log M +
c
where p is chosen to be sufficiently large so that

C Z e+ <
§=0

Then if d,_; satisfies (3.5), then the estimate Eq. (3.19) gives the desired remainder
bound

)(j +1), (3.20)

DN —

IRellzsee < 1/2.

Indeed, note that dy_; takes its maximum value at j = ¢ — 1, so (3.5) is satisfied if

2d(supp ¥, 0) . [ viogM + p | log (ﬂ) ’
— 2 2 >N di=N v 21
M - ! c log M (3:21)

For 1 < v* < N, the above is indeed satisfied for all sufficiently large N, and the
threshold depends only on y, M, and €. Finally, to estimate the rank of A in Eq. (3.7),
we see from Eq. (3.9) that

N? log M A (4 1)
rank A < 2V [Vs 9 (M) ZM < ONF D) (3.22)
VS

c M

J=0

Note analysis above yields the following corollary of Proposition 3.1.
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Corollary 3.3. Consider the quantum open maps given by the triple (M, A, x) where
X € Gi((0,1)) for an s > 1. Then for all 1 < v° < N, there exists a constant Cy .
such that for all N = KM > C, v where K € N, there exists operators A, Z(X), and
R(X\) on (3% as in Proposition 3.1 that satisfies the identity Eq. (3.7). Furthermore,
they satisfy the remainder estimate

IRz —e, <1/2

and the rank bound
rank A < ON°ps(1=9)

where C' does not depend on N or v.

4. WEYL BOUNDS

Now we proceed to bounding the number of eigenvalues in 2, as defined in (3.6).
To do so, we will eventually pass to Jensen’s formula from complex analysis:

Lemma 4.1. Let f(z) be a holomorphic function on a connected open set Q@ C C. Let
K C Q be a compact subset. Suppose there exists a constant L > 0 and a point zy € K
such that

sup|f()] < € 1f(z0)] 2 7" (4.1)
FAS]
Then the number of zeros of f(z) in K counted with multiplicity is bounded by

Hze K:f(z)=0}| <CL (4.2)

where the constant C' depends only on the geometry, i.e. 2z, 2, and K.

See [DJ17, Lemma 4.4] for a proof of the lemma.

We want to apply Lemma 4.1 to some expression involving a factor of det(By — A)
in the region €2, (defined in (3.6)) in order to count the number of eigenvalues in €Q,,.
To get the lower bound at a point in €, required in Lemma 4.1, we first modify the
approximate inverse identity (3.7) as follows:

I=X"'By -2 By—\)
=Z(By —A\) +R+X'ABy — A TA(By — \)
=(Z-X2T"A)(By -\ +R+)\'ABy (4.3)
where Z and R depend holomorphically on A. In either the general cutoff setting

and the Gevrey cutoff setting, Corollary 3.2 and Corollary 3.3 both give the bound
IR(Mlez, 2, < 1/2. Therefore, we can define

BN<)\) = )\_IABN(I - R)_l

F()\) :=det(I — By) (44
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Note that F'(A) is holomorphic in the annulus ©,. From Eq. (4.3), we have
F(\) =det(I —R)det(I — R — A\'ABy)
= det(I — R)det(Z — A7 Z) det(By — ).

Therefore if A is an eigenvalue, it must also be a zero of F(\) considered with multi-
plicity. Thus it suffices to bound the number of zeros of F.

4.1. Proof of Theorem 1. By Corollary 3.2, we see that for all A € Q,,
IFO)] < (1B llg e, + 175 < (2MY 4 1)rmkd < eV (4.5)

where the constant C' does not depend on N. Now we want to find a lower bound on
F(\) at a single point. Observe that at A = 4,

1
1Byl e, < 5
and so

[F(4)] = |det((I — By(4) ™)
— | det(I + B (4)(I — By(4) )|
< |1+ By(A)(I = By(4)

2 2
05— 0%

< eV (4.6)

where again the constant C' does not depend on N. Therefore, Theorem 1 follows from
applying Lemma 4.1 to Eq. (4.6) and Eq. (4.5).

4.2. Proof of Theorem 2. We modify the definition of the domain 2, slightly to
ensure the geometry scales correctly later. Take

Q,={z: M7 <|z] <e™).

Clearly, counting zeros of F()\) for A € Q, suffices, and as long as €* > 4, we will be
able to find a lower bound at a single point of F'()\).

By Corollary 3.3, for all |\| > M ™",

s(1—-6)

|F()\)’ < (QMI/ + 1)rankA < MC’V-N% (47)

where the constant C' is independent of N and v. For a lower bound on large A, note
that for all A > 4,

1
1Bl < 5
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and thus for such A,

[FN)7H = [det((1 = B(A) ™)
= | det(I + B(A)(I = B(A)) )|

s(1-6)

< MOVN ’ (4.8)

where again the constant does not depend on N or v. The domain €2, in which we
wish to upper bound the number of zeros varies with v, and the constant in Lemma 4.1
depends on the geometry of the domain. Therefore, in order to capture the dependence
on v, consider the function

F(w) = F(e?). (4.9)

In particular, the number of zeros of FI(A) for A € Q,, is the same as the number of
zeros of G(w) for

we{a+bi:a€[—vlogM,bv|, be [2rk,2r(k+1))}
for any k € Z. Let
Q, = {a+bi:acvlogM,5v],be0,2m0)}

Let N'(v) denote the number of zeros of F()\) for A € Q, and let N'(v) denote the
number of zeros of F(w) for w € ,. Note that %QV is the same domain independent
of v. Then applying Lemma 4.1 with Eq. (4.7) and Eq. (4.8), where the latter is taken
at the point e?, then for all sufficiently large v, we have the upper bound

C -~
N(v) < ;N(W
= €|{zeros of F(vw) for w € EQV}|
,/ v
S CN(;VS(lf(S),

where the constant C' does not depend on N or v. This concludes the proof.

5. NUMERICAL DISCUSSION

In this section, we look at how the Weyl upper bounds derived in this paper perform
against numerical data. All plots were made using MATLAB, version R2021b.

We use the same smooth cutoff function as in [DJ17] and observe that it is 2-Gevrey.
The cutoff is constructed as follows. Let
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35 1
4 -v=10 e
34t |-+-v=11 ;;X,
v=12 f*/ |
33} [-—<-v=13 @;i* 0.8
= -G -v=14 g * . . -
a0 L v=15 A *
32 7% 06} *
= 5
E 3.1 A K )
= o
F 2 - ’/'/’ 0.4 [
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'_‘O £ b‘( -7
2‘9 | ‘ ‘/,//7"///
Vot X 02}
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#
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4 42 44 46 48 5 1 11 12 13 14 15

log N/ log M

1%

FIGURE 3. M =5, A=1{1,2,3}, 7 = 0.05. Left: log Ny (v)/log M is
plotted against log N/log M for K = N/M = {125,175,225,...,625}
given various fixed values of v. From top to bottom, the corresponding
values of v are 1.5,1.4,...,1.0. Right: the corresponding slope of the
linear regression of each curve is plotted against v, and the red line is at

d =log|A|/log M.

Note that f(z) = 0 for # < 3% and f(z) =1 for # > 121 Given a tightness parameter

7 € (0,1/2], we then define the cutoff

i) (5):

X is 2-Gevrey and is identically 1 near the interval [7,1 — 7).

The MATLAB function eig() was used to compute eigenvalues. We note that
column j of By, is identically zero if |j - M/N| € A. We cut these columns as well
as the corresponding rows from the matrix By, to form an K|A| x K|.A| matrix By,
and compute the eigenvalues of the trimmed matrix using MATLAB. The nonzero
cigenvalues of By, are identical to those of By, so for the sake of counting the
number of eigenvalues greater than M ™", using the trimmed matrix only speeds up
the computation.

5.1. Dependence on N. For a fixed v, the counting function Ny (v) is asymptotically
upper bounded by N% as N = KM — oo. For the numerical experiment in Fig. 3
we plot log Ny (v)/log M against log N/log M for several different values of v, and
for each v, we compute the slope of the linear regression. The numerically computed
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37r
3.65 -
3.6 H

3.55 - A

log(Nx(v))/log M

3.45 - %%

34r

335 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

logv/log M

FIGURE 4. M =5, A={1,2,3}, 7 = 0.05, N = 5°. The blue data set
is log Ny (v) plotted against logv for v = 1.0,1.1,1.2,...,3.0. The red
line is the same experiment for the perturbed matrix B Ny + P where P
is a randomly chosen matrix normalized so that ||P||g2_e < 1071, The

yellow line is the linear regression for the experiment in blue, and has a
slope of 0.3308, which is fairly close to 1 — § ~ 0.3174.

log | A]
log M *
other quantum open baker’s maps. This is in numerical agreement with the upper

bound derived in this paper, and suggests that there could be matching lower bound,
although no such bounds are known.

Similar numerical results can be obtained for

slopes are all fairly close to § =

The numerics depicted in Fig. 3 is fairly stable under perturbations on the order
107 in the given range of K and v. In particular, for each N = K - M, we also
computed the spectrum of BN,X + P where P is a random matrix whose entries are
i.i.d. random Gaussians, and the whole matrix is normalized so that || P|[s2_2 = 107°.
Running the same experiment as in Fig. 3 with each of the matrices perturbed by a
random matrix of norm 107°, the differences in the resulting slopes are on the order
1073, which suggests a lack of strong pseudo spectral effects in the range of N and v
of concern.

5.2. Dependence on v. Now we fix a large N = KM and see how the counting
function Ny (v) varies with v. Since we have the asymptotic upper bound ~ v*(1=9,
we plot log v/ log M against log Ny (v)/log M. The numerical data for Ny (v) becomes
more unstable as v becomes large. In Fig. 4, we fix N = 5° and go to largest v for which
a perturbation on the order 10719 yields no discernible difference. The line of best fit

as depicted in Fig. 4 has a slope of 0.3308, which is much closer to 1 —d ~ 0.3174 than
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1 15 2 25 3 35 4 4.5 5

FIGURE 5. M =3, A= {1}, 7=0.1, N = 3% In particular, this is the
degenerate case where the dimension of the trapped set is 6 = 0. Left:
A plot of the eigenvalues in the complex unit circle. Right: Log of the
magnitude of the five largest eigenvalues

to s(1 — d). We note that the alphabet and x we chose is such that y is identically 1
on the Cantor set associated with the alphabet. In fact, similar experiments with the
cutoff identically one near the Cantor set has similar behavior in that Ay (v) behaves
like v*~%. However, the Weyl bound ~ N®§*(=9) holds for all choices of alphabets and
s-Gevrey cutoffs.

In the edge case where we take the alphabet to be a single point and ¢ = 0, we
should see that the magnitude of the first few eigenvalues to decrease exponentially,
which would exhibit the Ny (v) < v? behavior. Indeed, this is what we see in Fig. 5.
We remark that essentially the same values for the top eigenvalues is obtained if we
take other values of N, which makes sense in light of the fact that the upper bound
we derived is independent of N for the degenerate case § = 0.
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