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1. Introduction

Determining absolute limits on heat transport by a moving
fluid is a fundamental scientific challenge. It is motivated not only
by questions of planetary physics, e.g., where convection driven
by radioactive decay influences plate tectonics and the generation
of magnetic fields [1,2], but also by the search for optimal heat
exchangers [3,4]. Internally heated flows have recently attracted
renewed interest after experiments and numerical simulations
[5-7] revealed that their heat transport can significantly
exceed the known limits on ‘ordinary’ boundary-driven (Rayleigh-
Bénard) convection. For certain well-balanced source-sink pro-
files of internal heating and cooling, the flows that set up in
response to gravity appear to transport heat at a rate independent
of the molecular diffusivity, achieving the ‘mixing-length’ or
‘ultimate’ transport scaling. However, it remains a challenge to
determine theoretically which properties of the internal heating
are crucial to achieving highly efficient transport. Indeed, for
an arbitrary balanced source-sink profile in an arbitrary fluid
domain, it is not at all clear from the outset what transport will
result.

Thinking of the general question of assessing heat trans-
port across a fluid domain, the first challenge is to select a
globally-defined yet meaningful diagnostic measure of transport
efficiency. Many known quantities that give equivalent measures
for boundary-driven convection are no longer comparable for
internally heated flows, and can end up following different scaling
laws. We choose to measure heat transport using the mean-
squared temperature gradient averaged over space and time.
Since by Fourier’s law the diffusive heat flux is controlled by
the temperature gradient, it is reasonable to expect that a highly
efficient transfer protocol finds a way to minimize temperature
gradients overall. Other authors have studied the mean temper-
ature [8-12], root-mean-squared temperature [5,6,13] or vertical
heat flux [14-16]. For particular choices of source-sink distribu-
tions and boundary conditions such quantities are equivalent to
our measure [17], but this is not generally true.

Having selected a measure of transport, one can seek flows
optimizing its value, subject to various constraints. A tractable
goal for analysis, that we pursue in this paper, is to produce a pri-
ori bounds on transport holding for general classes of admissible
flows. In particular, we shall derive a lower bound on the mean
thermal dissipation of an internally heated flow, which takes
into account its mean kinetic energy as well as the shape of the
imposed source-sink distribution and the flow domain. We also
derive a similar bound holding for buoyancy-driven internally
heated convection. We work with balanced source-sink distri-
butions that add and subtract the same amount of heat overall.
The case of imbalanced heating has been studied extensively in
the literature: bounds on measures of heat transport are known
for uniform internal heating under a variety of boundary condi-
tions [8-12,17], as well as for essentially arbitrary source-sink
distributions in a disc with a constant temperature boundary [18].
Bounds on balanced heat transfer have also been obtained, for
periodic flows under an assumption of statistical homogeneity
and isotropy [19-22], and for smooth source-sink distributions
that vary only in the gravity direction across a fluid layer [13].
Here, we treat a much broader class of velocities, source-sink
functions and flow domains. We also give examples illustrating
the sharpness of our bounds.

There are various approaches to a priori bounds in fluid me-
chanics, but for buoyancy-driven convection the relevant results
can be traced back at least to the work of Malkus, Howard
and Busse [23-27] as well as to the ‘background method’ of
Doering and Constantin [28-30]. We follow a two-step approach
that is similar to the ‘optimal wall-to-wall’ approach of [31-33],
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and also to an approach that has been used with horizontal
convection [34-36]. First, we drop the momentum equation and
optimize heat transfer subject to the advection-diffusion equa-
tion alone. The resulting optimal transfer rate depends on the
advective intensity, measured in a chosen norm. Then, we re-
store the momentum equation via a balance law relating the
velocity norm to an appropriate Rayleigh number. Algebraic ma-
nipulation leads to an a priori bound on the heat transport of
momentum-conserving flows.

We turn to describe our setup and results. Let 2 < R
be a bounded Lipschitz domain in dimension d > 2, and in-
troduce a temperature field T(x, t) solving the inhomogeneous
and non-dimensional advection-diffusion equation with insulat-
ing boundary conditions

{8[T+u-VT:AT+f in £,

1.1
at 4s£2. (1.1

n-vi =0

To ensure the source-sink function f(x, t) is balanced, we set
f fx, t)dx =0
2

where fQ -dx denotes averaging over the flow domain (per the
notation in Section 1.1). The advecting velocity u(x, t) obeys the
divergence-free condition V - u = 0 in £2, along with the no-
penetration boundary conditions u - i = 0 at 3£2. Note f is the
outwards-pointing unit normal to the domain boundary. These
conditions on f and u imply that the mean temperature fg T dx
is constant in time, and we take it to be zero without loss of
generality.

Given this setup, we seek bounds on the mean-squared tem-
perature gradient

(IVTP) := lim sup f f IVT(x, )2 dxdt

T—00 0 2
where for definiteness we use the limit superior. In Section 2, we
derive a pair of ‘variational’ upper and lower bounds:

(276 = VEP — VA~ (00 +u- VE)’) < (IVTP)

= (1P + 1947 @n +u- Yy - ) (12)
where &(x, t) and n(x, t) are test functions whose choice can be
optimized (see Theorem 2.1). The operator A~! is the Neumann
inverse Laplacian, defined in Section 1.1. A version of our lower
bound on {|VT|?) with a steady test function £(x) appeared
in a previous paper on mixing in periodic domains [19], along
with similar bounds on (T?) and (|VA*]T|2) (see also [20-22,
37] for a review). To complete the picture, we allow for time-
dependent test functions defined on general domains, and also
provide the complementary upper bound in (1.2). Moreover, we
prove in Corollary 2.1 that these bounds are sharp in the steady
case f = f(x) and u = u(x), meaning that an optimal choice
of test function evaluates (|VT|?). This is the analog of results
obtained in [32,33,38] for boundary-driven flows and in [18]
for internally-heated flows with cooled boundaries. Rather than
repeat the ‘symmetrization argument’ from these papers, we
present a different and likely more flexible proof in which the test
functions are introduced as Lagrange multipliers for enforcing the
advection—diffusion equation (much like the argument in [19]).
Sections 3 and 4 go on to ask what the variational bounds
(1.2) imply for optimal flows. By optimal, we mean flows that
minimize (|VT|?) subject to a constraint on the flow intensity,
such as might be given by fixing the value of the mean kinetic
energy (|u|?). To ease the presentation, we treat steady source-
sink functions f(x) that are not identically zero from here on; we
expect our results can be extended to unsteady sources/sinks, and
we remark on this below. Section 3 starts by bounding (|VT|?)
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Fig. 1. Examples of nearly optimal flows. Heat sources (red) and sinks (blue) oscillate sinusoidally on a scale ~ ¢ in (a) and are concentrated in regions of size ~ €

in (b). Black lines with arrows show streamlines of the cellular flow achieving (|VT|?) ~ Pe

(b). The squared Péclet number Pe? sets the kinetic energy of the flows.

in terms of the mean kinetic energy: we show that there are
positive constants Cy, C; and C3 depending on the domain 2, the
dimension d and the source-sink distribution f such that

2 G
(VTP > ———.
G+ G(ju?)
This follows from Corollary 3.1 and the subsequent discussion
on how to select £. A similar bound was proved in [19,21,37]
for periodic and statistically homogeneous, isotropic flows. We
too think of the ratios C;/C, and C;/C; as (squared) norms that
detect the structure of the sources and sinks. In the conductive
limit (Ju|?) — O, the first ratio dominates the bound and can be
chosen, as usual, to involve a negative Sobolev norm (see (3.8)).
In the advective limit (|u|?) — oo the second ratio is more
important; we explain how to choose it based on a Hardy space
norm (see (3.9)). While this norm is not completely unlike the
L'-norm, it produces a strictly better bound for problems with
point-like sources and sinks. See Section 3.1 for its definition, and
Section 3.2 for the proof of (1.3).
To help clarify our lower bound, and to explain what it takes
to find optimal (or at least nearly optimal) flows, we study a
pair of examples in Section 3.3 involving sinusoidal heating and
cooling or approximate point sources and sinks. Fig. 1 illustrates
the setups we have in mind: the heating/cooling in panel (a)
varies sinusoidally on a scale ~ I; the point-like sources and sinks
in panel (b) are concentrated in regions of size ~ ¢ (the figure
shows discs for simplicity). Given these setups, we prove upper
and lower bounds on the minimum mean-square temperature
gradient that match in terms of their scalings with respect to each
example’s parameters. Precisely, we show that
min  (|VT|?)
u(x,t)

(jui) <Pe2
BT+ VT=AT+f

: 2 1
min [Z s pe2}
(Proposition 3.1)

~ (1.4)
min {log 1, (log 5)2 é} for concentrated heating

(1.3)

for sinusoidal heating

(Proposition 3.2)

with prefactors that are independent of all parameters. (The
notation X ~ Y means that there are numerical constants C, C’ >
0 such that CY < X < ('Y). Parsing (1.3) in each example

~2 in (a) and of the ‘pinching’ flow achieving (|VT|?) ~ log?(¢~!)Pe™? in

produces the lower bound half of (1.4). For the matching upper
bounds, we construct the flows illustrated in Fig. 1 and select
test functions » to estimate their transport via (1.2). We use a
cellular flow structure for sinusoidal heating and a pinching effect
for approximate point sources and sinks. It was the analysis of
pinching flows that led us to the Hardy space norm; other, more
familiar norms gave strictly sub-optimal bounds.

The search for flows optimizing heat transfer is an active area
of research; see [18,39,40] for flows enhancing heat transport
with imbalanced heating, and [41] for flows inhibiting heat trans-
port in non-disc domains. In this paper, we base our constructions
on an ability to solve the pure and steady advection system

uO-VT():f in 2
V.u =0 in £2 (1.5)
uy-n=0 at 9%2.

Though understanding precisely when this system has a solution
is a difficult and open problem (see [42] for a recent account), it
is not so difficult to show its relevance for optimizing heat trans-
fer in the advective limit. Section 4 studies this limit in detail,
and achieves the following conditional result: if (1.5) admits a
(regular-enough) solution, then

lim min Pezf IVT|?dx = min JC |VTo|? dx.
Pe— o0 u(x) 2 ug(x).To(x) J 2

Nl <Pe gl <1

u-VT=AT+f ug-Vig=f

In the right-hand problem, the minimization is over all solutions
of (1.5). After a rescaling, its optimizers give the limit points of
almost-minimizing sequences on the left; see Theorem 4.1 for the
precise statement. Here, we allow for general families of steady
velocities belonging to a Banach space X that is continuously
embedded into LY(£2), amongst other requirements. The dimen-
sionless parameter Pe = U?L/k is the Péclet number, where U
is a characteristic velocity scale, L is a characteristic lengthscale
and « is the thermal diffusivity. The result captures the intuition
that optimal velocities find a way to minimize thermal dissipation
while achieving (essentially) perfect advection, and shows how to
compute the optimal prefactor in the scaling law min (|VT|?) ~
C($2,d, f)Pe2.

Finally, in Section 5 we bound the heat transfer of momentum-
constrained flows driven by a steady balanced source-sink func-
tion f(x) and a steady conservative gravitational acceleration
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g(x). In addition to the advection-diffusion equation (1.1) for the
temperature T, we let the velocity u solve the non-dimensional
Boussinesq equation

Pro' (u+u-Vu) = Au+RTg — Vp

with g = Ve¢. The choice ¢ = z yields the usual Boussinesq
equations with gravity in the negative z-direction, and we allow
for other choices as well. The non-dimensional parameters Pr
and R are the usual Prandtl number and a ‘flux-based’ Rayleigh
number [17] measuring the strength of the sources and sinks
relative to diffusion: Pr = v/ and R = «L>Q /(v«k?). Again, L is a
characteristic lengthscale and « is the thermal diffusivity; also, v
is the kinematic viscosity, « is the thermal expansion coefficient
and Q is a characteristic heating and cooling rate per unit volume
(which sets the dimensional amplitude of f). After deriving a set
of basic balance laws, we relate the mean enstrophy and energy
of the flow to the Rayleigh number, and thereby obtain a trio of
Rayleigh-dependent lower bounds (Theorem 5.1). These bounds
are in the general form

C(Q7 d7 f7 g)
RC(
with « = 0, 2/3 or 1 depending on the sign of (f¢) and for large
enough R; we give intuition for this below.
Section 6 is a conclusion section that includes a discussion of
open questions and future directions of research.

(IVT?) =

1.1. Notation

Here we summarize some common notational conventions.
We use X VY and X A 'Y for the maximum and minimum of two
quantities. We write X <Y if there is a constant C with X < CY,
and X ~ Y if X <Y < X.If the constant C depends on a parameter
a, we indicate this by writing X <, Y. The notation X <« Y means
that X/Y — 0 in a limit. Likewise, o(X) is a quantity tending to
zero upon division by X.

The d-dimensional volume of a set A is |A|. The average of ¢
over A is then

1
(pdx:—/(pdx.
Jﬁ Al Ja

The notations (), and (@) give spatial-temporal averages over
£2 and up to time 7, or across infinite time, respectively:

(@), :ffﬂgy(x, t)dxdt and () = limsup (¢), .

T—>00

We only use the limit superior long-time average.

As usual, [P(£2) is the space of functions whose pth power
is integrable on £2. We write H!(£2) for the Sobolev space of
functions in L2(£2) whose weak derivatives are in L?(£2). We use
H~1(£2) for the space of continuous linear functionals on H'(£2)
that are mean-free, meaning that they take constant functions to
zero, and define the dual norm

1

gpdx B 2

”g”"’*l(ﬂ) ‘= max ‘fgil = (/ ’VA 1g‘zdx> .
w(x) (fQ|Vg0|2dX)2 2

This and other such maximizations are performed over non-
constant ¢ € H'(£2). Not every g € H~'(£2) is a function, in
which case the ‘integral’ f o & - dx stands for the action of g as
a functional. Hardy and BMO spaces will be used; see Section 3.1
for definitions and a brief review.

Finally, since this paper deals only with insulating temperature
boundary conditions, we write A~! for the inverse Laplacian with
Neumann boundary data. That is, h = A~'g if £, hdx = 0 and

Ah=g in £
n-Vh=0 atadgQ.
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2. Variational bounds on heat transfer in an insulated domain

Section 2.1 derives upper and lower bounds on the mean
square thermal dissipation (|VT|?) of a general unsteady in-
compressible flow u(x, t) and a general unsteady and balanced
source-sink distribution f(x, t). These bounds involve a pair of
test functions, which can be optimized based on the details of
u and f. In the steady case where u = u(x) and f = f(x), the
optimization evaluates (|VT|?) so that the bounds are sharp (see
Section 2.2). One can also choose the test functions to bound
(IVT|?) in terms of a bulk measure of the flow intensity, such
as the mean kinetic energy (Ju|?); we do so starting in Section 3.

2.1. Variational bounds for unsteady flows and source-sink distribu-
tions

Define the admissible set

A= {9 €Ly (0,00, H'(2)) : 80 € L} (0, 00; H'(£2)),

. 1

(. 7) € L¥(@) ae. . lim —=]6C Dlzge) =0}- (2.1)
Let A, be the first non-trivial Neumann eigenvalue of the (nega-
tive) Laplacian on 2. It is the largest constant such that

2 2 1

A1||9||L2(Q) < ||V9||L2(m for all mean-zero 6 € H'(£2).
Theorem 2.1. Let u(x, t) be divergence-free with u - i = 0 at 32
and (|u|?) < oo, and let f(x, t) satisfy fo(x, t)dx =0 fort > 0.
Assume there exist ag, a; € (0, 1) and p € [d/2, co] such that

1 T
im [ e B O de =0 and
0

T—00 T

T e—al)q(r—t)
/ ——f(, Ollp2ydt <00 V7T >0. (2.2)
0 (z—1t)%»
Given any weak solution T(x, t) of
T +u-VT = AT +f in 2 23)
n-vi=0 at 9$2 ’
with T(-, 0) € L*(£2), the upper and lower bounds
— 2
(216 = 1VeP — VA7 (06 +u- VE)') < (IVTP)
= (1P + 1947 @n +u- Vo - ) 24)

hold for all n, & € A.

Remark 2.1. The two assumptions on f in (2.2) play different
roles. The first one ensures that [|T(-, 7)l;20) < JT as T — oo,
so that the integration-by-parts identity (|VT|?) = (fT) holds. The
second one implies that T(-, 7) € L*°(§2) for a.e. T > 0. This allows
us to define weak solutions in the usual way, by testing the given
equation against functions in H'(£2) and integrating by parts (fol-
lowing, e.g., [43]); it also ensures that f_q u-VTT dx = 0. As these
remarks are more or less standard fare in parabolic regularity
theory [43,44], we shall not present their proofs, but instead point
to the notes [45] for an exposition that is readily adapted to our
setting. In brief, the desired L?-bound follows from Gronwall’s in-
equality by testing the equation against T; the L°*°-bound follows
from known ‘heat kernel’ bounds on the forward-time solution
map of the homogeneous equation (bounding it from LP(£2) to
L°(£2) by a multiple of e=®14t( At)~%2P for any a € (0, 1), across
a time increment At).
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Remark 2.2. One can do away with the second assumption on f
in (2.2) by imposing enough integrability on u to the point that
u-V0e € H(2) ae. in time, for any § € H'(£). Since by
the Sobolev embedding theorem [43] [*¥/4+2)(£2) is included in

~1(£2) when d > 2, it suffices to assume that u € L%(£2) a.e.
in time. The L*° assumption on the test functions in A can then
be removed. These statements continue to hold in the borderline
case d = 2 due to ‘div-curl’ character of the product u - V@; see
Section 3.1 or [18] for more details.

Proof of Theorem 2.1. We apply the method of Lagrange mul-
tipliers, with the advection-diffusion equation (2.3) as the con-
straint and the test functions n and & as multipliers. Let (-), =
§ f, -dxdt be the average of a quantity over £2 x (0, 7). To
prove the lower bound in (2.4), start with the weak form of the
advection—diffusion equation, which states that

(f¢ —VT.VE —8TE —u-VTE), =0 (2.5)
for any £ € A and t > 0. Thus,
(IVTP), =(IVT] +2(f§ — VT - V& — 3, T& —u - VTE))_

= (IVT* 4+ 2f& — 2VT - V& + 2T (3;& +u - V§)),

2
- ;ﬁzTé dx .
> igf (IVOI* +2fE —2V6 - V& 420 (06 +u - VE)).

t=t

— 0.(1) (2.6)

where 0.(1) denotes a term that goes to zero as t — o0. To
see this last step, note that ||T(-, T)ll;2o) < /T as explained in
Remark 2.1. Also, [|§(-, T)llj20) < /T by the definition of the
admissible set A in (2.1). Hence,

%ﬁ}Tsdx

t=t 1
< —ITC,
T]82|

- J@ T(x, 0)&(x, 0) dx

To evaluate the infimum in (2.6), we make use of its Euler-

Lagrange equation
A0 = AE+0E+u-VE on (2
Ve =0 at 082

)||L2(Q)||$(',

—o T) 22

— 0 ast— o0.

which gives the optimal 6 at each fixed time. Testing against 6
and integrating by parts shows that

(IVOI?), = (VO - VE — 0 (3£ +u-VE)), .
Therefore, by (2.6),

(I9TP), = (265 = |[VA™ (4 + i +u- V") —or(D)

= <2fg — \VEP — |[VA N (0& +u- VE) > — 0.(1).
(2.7)
Note the cross term vanishes since
2(VE - VAT (& +u-VE)) =—2(£ (& +u-VE)),

1(7d
== [ 5i1E0 e = or(1)

by the growth conditions on & and the no-penetration conditions
for u. Taking T — oo in (2.7) yields the lower bound.

The upper bound in (2.4) is proved by a similar argument, but
with a version of (|VT|?) that lends itself to maximization, rather
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than minimization. Multiplying the advection-diffusion equation
(2.3) by T and integrating by parts shows that

(IVT1?): = (fT), + 0-(1),
as in the first part of Remark 2.1. This allows us to rewrite
(IVTP)e = T = IVTP?): + 0.(1)

and mimic the previous argument, but with an upper bound.
Specifically, using a Lagrange multiplier n € A in the weak form
(2.5) of the advection-diffusion equation, we can write that

(2T = 1vTP2),

=(2fT — |VT* =2(fn — VT -V — 3, Tn —u- VTyp)),

<sup (2f0 — |VO|* — 2fn+2V0 - Vi — 20 (9 +u - Vi),
[Z

+ 0.(1)

= (~2fn+[va™ n+am+u- Vo) +o.(1)

= (IVaE + [va~i @ +u- V=) +o.(1).

To pass between the first and second lines, integrate by parts to
find only 0.(1) contributions. Then, optimize over 0 like before.
Taking t — oo gives the upper bound. O

2.2. Sharpness in the steady case

The variational bounds in Theorem 2.1 apply to both steady
and unsteady u and f. In the steady case, these bounds cannot be
improved. We adapt the argument from [32,33].

Corollary 2.1. Let u(x), f(x) and T(x, t) be as in Theorem 2.1 (in
particular let f € [P(£2) for some p > d/2). Then,

max f ofe — |V~ VA - Ve dx = {|VTP)

EeH1(2)NL®(2)

=  min f Vol + VA~ - Vi — )] dx.
neH1(2)NL®(£2)

Remark 2.3. The integrability assumption on f derives from

the second part of (2.2), which guarantees for steady T(x) that

||T||Loo(9) sﬂ,d,p ”f”LP(.Q) < o0 [45] The first part of (22) is

redundant by Sobolev embedding [43].

Remark 2.4. Following up from Remark 2.2, if u € L%2) then the
result holds for f € H~1(£2) and with test functions &, n € H'(£2).

Proof. Optimizing the upper and lower bounds in Theorem 2.1
over all steady fields &, n € A gives that

sup o ofe — |VER — VAT - VE) dx

EcH(2)NL®(R2)

<(IVTP) < inf
neH1(£2)NL®(2)

fwm +1VA~ - vy — ) dx.
(2.8)

There is no loss of generality in taking £ and n to be mean-
free. The resulting variational problems are respectively strictly
concave and strictly convex, so that solving them is the same as
solving their Euler-Lagrange equations:

AE =u-VA ' (u-VE) —f,

Ap=u-VA ' (u-Vn—f)
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with 1 - V& = #i- Vi = 0 at 32. Equivalently, we must solve
u-Vn—f=A¢

2.9
u-Vé = An (29)

with the same boundary conditions. The change of variables T =
& + n and T,qj = £ — 7 recovers the steady heat equation and its
adjoint:

u-VT = AT +f,
—u- VT4 = ATj + f

with fi - VT = fi - VT,q; = 0 at 942. These last equations define T
and T,q; and ensure their boundedness, due to the second part of
our assumption (2.2) on f and Remark 2.1. Hence, & := (T+T,qj)/2
and n = (T — T,q;)/2 are admissible in (2.8), and we can proceed
to evaluate their bounds.

First, note that

(VTP = £ 1V + VP dx

because testing the second equation in (2.9) against £ yields that
f,Vn-VEdx = —f,u-Vi&dx = 0. Now, substitute § =
A~(u - Vi — f) into the right-hand side of (2.10) to obtain

(2.10)

(IVTP) = ﬁ2 VP + VA~ - v — )| dx.

This verifies the optimality of  and proves the second half of
Corollary 2.1. To prove the first half, note the identity

2 40 _ 2
fgwm dx—]gfé Ve dx

which derives from testing the first equation in (2.9) by &£ and the
second by 1 and combining the results. Indeed,

£ 56— V61 = [VnPdx = f f& — V5 + (u- VE)ndx
2 2

(2.11)

=f9f$ — V&P — (u- Vn)E dx =0,

Combining (2.10) and (2.11) and using that n = A~ (u - V&) we
conclude that

(IVT]2) = f)mmz +|VE[2 — V|2 dx

- J€22f§ —IVER = [VaT (- vE)| dx

as required. O
3. Bounds on energy-constrained flows

The previous section achieved upper and lower bounds on
(IVT|?) in terms of a pair of test functions, the choice of which
was left up to the reader depending on the application. We now
demonstrate how knowledge of the mean kinetic energy (|u|?)
along with the structure of the source-sink distribution f can be
used to achieve the lower bound

2 G

(VTP > —— .

G + G(lul?)
We base our approach on a well-known inequality of Coifman, Li-
ons, Meyers and Semmes [46], which we introduce in Section 3.1
along with the requisite functional analysis involving Hardy and
BMO spaces. This inequality explains how the advection term
u - VT inherits additional regularity beyond a typical dot product
from the fact that it involves divergence- and curl-free fields.
Using it, we achieve (3.1) in Section 3.2.

Section 3.3 goes on to discuss a pair of examples where our
methods establish the scaling law of min (|VT|?) with respect

(3.1)
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to (Ju?) and certain features of f. In each example, we apply
Corollary 3.1 with a suitable test function to deduce a lower
bound. We then saturate the scaling behaviors of this bound by
constructing nearly optimal velocity fields. Part of the puzzle is
to understand when flowing is significantly better than not, and
indeed this is reflected by a cross-over in the optimal scaling laws
achieved in Propositions 3.1 and 3.2.

3.1. A brief introduction to #' and BMO

First, we introduce the functional analytic framework we use
to prove our kinetic energy-based bounds. We leave out most
of the proofs, and point to Refs. [47-50] for full details. Given a
domain £2 C RY, the Hardy space #'(£2) and space of bounded
mean oscillation functions BMO(§2) are defined as follows.! Start-
ing with #'(£2), we fix a smooth and compactly supported func-
tion p(x) > 0 with fdedx = 1, and define the associated
maximal function operator by

1 X—z
/;z 57,0 (S)f(z)dz

This definition records the ‘worst-case averages’ of a given func-
tion f(x) against rescaled copies of the probability density p
(actually, it is the extension of f by zero from 2 to R? that
is being averaged). The Hardy space #!(£2) then consists of all
f € L'(£2) such that M,f € L'(R?), a condition that turns out to
be independent of p. This is a Banach space under the norm

et = / M, f(x) da.
|Rd

M, f(x) = sup , xeR.

§>0

(3.2)

It embeds continuously into L'(£2) since | - [|;1.q) < |l - I3y (a
consequence of Lebesgue differentiation). However, the reverse
inequality fails, as an example using a Dirac mass shows. Let
X € 2 and consider a sequence of functions {f,} whose L'-norms
are one, with f. ~ €% on the ball B.(x,) of radius ¢ > 0 centered
at xp and f, = 0 otherwise. Taking §(x) ~ |x — Xxg| V € in (3.2)
yields the bound M,f.(x) > 8~9(x), the L'-norm of which diverges
logarithmically as € — 0. This calculation is at the heart of our
pinching flow example in Section 3.3.2.

Being a Banach space, #!(£2) has a dual. A famous result of
Fefferman identifies 7£!(£2)* with a function space introduced by
John and Nirenberg [51] in connection with John’s work on elas-
ticity. The space of bounded mean oscillation functions BMO(£2)
consists of all functions g(x) for which

I8 o) = sup £
Qcn YQ

where Q is a d-dimensional cube. Modulo constants, this is a
norm under which BMO(£2) is a Banach space. The duality be-
tween #!(£2) and BMO(£2) is realized by the inequality

/ fg dx
2

which holds at first for f € #!(£2) and g € BMO(£2) N L®(£2),
and then for all g € BMO(£2) by continuous extension. It follows
directly from the definitions that || - [lsmoe) < 2 - llie(2) SO
that L°°(£2) embeds continuously into BMO(£2). Again, the reverse
direction fails: the function log(|x — xg|) belongs to BMO($2)
(see [48, Ch. IV]) but is not in L*°(£2) if %y € £2. This too shows
up in our discussion of pinching flows.

Finally, we recall the div-curl inequality of Coifman, Lions,
Meyers and Semmes [46]: if u(x) and v(x) belong to L*(R%; R?) and

g(x)—ﬁg‘ dx < o0

(3.3)

Sa.d If Iz lg lsmoe)

1 In the notation of Ref. [50], we are defining #(£2) and BMO,(£2). We omit
the subscripts to lighten the notation.
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are respectively divergence- and curl-free, their inner product u-v
belongs to #'(R?) and satisfies

(3.4)

The same result holds with a bounded Lipschitz domain £2 in
place of R? provided u satisfies no-penetration boundary con-
ditions. The key points for deducing this from (3.4) are that
(i) with no-penetration conditions, the extension of u by 0 to R?
is divergence-free, and (ii) one can find a curl-free extension of
v to R? whose [?-norm is bounded by that of its restriction to £2
(apply the Sobolev extension theorem [43] to a potential ¢ with
v = V). We shall make repeated use of the resulting inequality,
which states that

llu - vllirey Sa llull2gey 101 2(ra)-

lu- vl Se.d Iz lvlizge, (3.5)

if u is divergence-free with u - i = 0 at 92, and if v is curl-free.
3.2. Bounding the heat transfer of energy-constrained flows

Combining the main result of Section 2.1 with the functional
analysis recalled above, we bound (|VT|?) from below in terms of
the mean kinetic energy (|u|?). With an eye towards the examples
of Section 3.3, we state this result for steady f(x) while allowing
u(x, t) and T(x, t) to be unsteady (however, see the remark).

Corollary 3.1. Let u(x, t), f(x) and T(x, t) be as in Theorem 2.1 (or
as in Remark 2.2). There is a constant C > 0 depending only on £2
and d such that

(f &f dx)’
£ IVEP dx + ClIE 2000 (1P)
for every non-constant £ € H'(£2)NL>($2) (or HY(2

(IVTP?) =

(3.6)

), respectively).

Remark 3.1. The same bound holds for unsteady f(x, t) with (£f)
in place of fg &f, though if the time-average of f vanishes iden-
tically then this is not a useful bound. To improve the result, one
should use unsteady test functions &(x, t) following Theorem 2.1.
This leads to a bound with an additional term C(|VA‘1E)[$|2) in
the denominator, the implications of which we leave to future
work.

Proof. Applying Theorem 2.1 with a steady test function &(x)
gives the lower bound

2 2 -1 2
(VTP 22 f fede— f [VEPdx— (VA (- V).
Substituting A& for £ and optimizing A € R, there follows

(fof5 ax)’
fo IVEPdx + (IVA~(u- VE)?)

Note the denominator is non zero b}/ our hypothesis on &. We
proceed to estimate (|[VA~!(u - V&)|"). At almost every time,

(fgu-VSgodx)

(IVT)?) > (3.7)

/ VA~ - VE[” dx = max
2 ¢(x) IVollze)
2
(fg u-Voét dx)
=max | <2 —F7"— ) .
*) Vel

By the duality of %' and BMO in (3.3) and the div-curl inequality
(3.5),

u-Veédx
7

Se.d - Vollyieléllemoe)

Se.d ”u”LZ(Q)”V(p”LZ(_Q)”E”BMO(.Q)
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Combining these statements and averaging in time, there follows

(VA - VEN) Sea () - 1€ 2woay-
Substituting into (3.7) yields the bound

(f, &f dx)’
£, IVEI* dx + C(£2, d)lléllgmomﬂul )

How should the test function &£(x) be chosen in this last result?
The answer depends, of course, on the domain 2, the dimension
d and the structure of the source-sink function f. It also depends
on the magnitude of (|Jul?). On the one hand, for sufficiently
small kinetic energies one expects to be able to ‘cross out’ the
second term in the denominator of (3.6), and select & through
the maximization

g8 dx)” x)’

o [, IVEP dx

This leads to the choice £ = A~'f. On the other hand, for large
(|lu|?) one is lead to the maximization

Vot dy)”

5(") & ”BMO 2)

by the duality between #(£2) and BMO(£2). Here the best choice
of & is less apparent, though one achieving this equivalence is
always guaranteed to exist. (We guess that time-dependent f
could be handled similarly by a suitable smoothing in time of
the choices in (3.8) and (3.9), taking into account the additional
term (|VA‘18[§|2) from Remark 3.1.) Of course, once one makes
a choice for &, it can be plugged back into (3.6) to achieve a
lower bound with known constants at all values of (|u|?). We
demonstrate this in examples below.

(IVTF) =

= I 121 (38)

~ed If 120, (39)

3.3. Two examples

We now apply our variational bounds to a pair of examples
involving oscillatory or concentrated heating and cooling. In each
example, we deduce the scaling law of min (|VT|?) with respect
to its parameters, along with velocity fields achieving the optimal
scalings. See Section 3.3.1 for oscillatory heating and our accom-
panying cellular flows, and Section 3.3.2 for concentrated heating
and our pinching flows.

3.3.1. Sinusoidal heating and cellular flows
Our first example optimizes heat transfer between a periodic
pattern of sources and sinks. Let £2 = (0, 27)? and take

Lo (2) - Leos (%
f(x)_icos<7> 2cos<£>.

The parameter £~! € N sets the period of the pattern.

(3.10)

Proposition 3.1. Under the above setup,

u(x,t)
(ju[2)<Pe?
O T+u-VT=AT+f

min  (|VT|?) ~ min {zz 1}
" pe?

for all 7! € N and Pe > 0. The alternatives are achieved by no
flow (€2) or by the cellular flow (Pe~2) depicted in Fig. 1a of the
introduction.

Proof of the lower bound. We begin with the general lower
bound

(f &f dx)°

3.11
£, IV dx + C(2)I€ 3or PE G0

(IVT1?) =
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from Corollary 3.1. The present f belongs to L>°(£2) and is such
that all of its LP-norms are comparable. In particular, ||f|l;1o) ~
If ey ~ 1 for all €. Also, [Ifll412y ~ Ifllsmoz) ~ 1 and so
there exist many good choices of &.

Take, for example, & = f. Then

1 2 1 2\ *
/Efdx:/fzdx:/ fcos(—y)—fcos(—) dx ~ 1
2 2 I} 2 0 2 V4
while
If llsmoc2y < 21 ooy < 2.
Also,
/|V$|2=/ |VfI?
e 2
f 1. (2y\. 1. [2x\.]
= ——sin — e, — —sin| — ) | dx~ —.
ol ¢ V4 V4 V4 2

Combining these estimates into (3.11) yields the lower bound
1 1
<|VT|2> 2 ——— 2 min {62, 2} .
72+ Pe Pe

Proof of the upper bound. We seek a steady velocity u(x) whose
thermal dissipation is similar to the lower bound. To guide the
search, consider the upper bound

(1917 < £ V0P dxt £ 1947 @ vy —))F dx
2 2

from Corollary 2.1, which holds in the present two-dimensional
case for all n € H'(£2). Making the change of variables

Pe Vol dx

U= ———1u and T]Zpi ]
Vo 1) dx ¢

and dropping the tildes yields the estimate

1
VTP 7]C 2 JCV 2
(I |>§Pe2 - luffdx g Vil dx

+ Jg VA~ - v — ) dx

for all u and 5. This reformulation simplifies the algebra, as it
allows us to neglect the kinetic energy constraint. Of course, it
is actually the unscaled velocity with kinetic energy equal to Pe
whose thermal dissipation we are estimating.

There are two alternatives to consider, depending on whether
we should take # = 0 or not. In the case with no flow, the choice
of » is immaterial and

2 —1¢|2
(9T < f [va'f ax

—JC gsin x é—l—{sin & e
“Je| 4 e )4 e )

with e, and e, being the unit vectors along the x- and y-coor-
dinates.

On the other hand, for the particular f in the example we
can easily construct an admissible pair (u, ) satisfying the pure
advection equation
u-Vnp=f.

Simply take u = V¢ = (dyyr, —oxy) with the stream function
w(x) = Isin (?) sin (%’)

and use the test function

n(x) = —lcos G) cos (%) .

(3.12)

2
dx ~ ¢2
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In fact, the definition of f in (3.10) was made precisely with these
choices in mind. The second term in (3.12) now vanishes, so that

1 1
VT|? <—JC uzdxf Vnl?dx < —.
(I |>_Pez Q|| Q| nl S b2

Since we are always free to use either velocity field, the minimum
thermal dissipation is bounded according as

1
min (|[VT)?) < min { %, — }.
fore) < min e 1)

The proof is complete. O

3.3.2. Concentrated heating and pinching flows
Next we consider source-sink profiles of the general form

fx) = fi(x) — f-(x)

where f, are non-negative and supported in disjoint balls B.(x..)
centered at x,. with radii € > 0. Fixing units, we take

/ fe(x)dx =1
Be(x+)
and x+ = (0, =1/2). We also suppose that

1 1
IfilleooBexay) S = and  [[Vfillio ey S p

and impose the ‘up-down’ symmetry condition

fi(x,y) = f-(x, —y) (3.13)

saying that the heat added by f. at (x, y) matches the heat taken
away by f_ at (x, —y). A source-sink distribution satisfying these
conditions can be constructed by smoothing a point source and
point sink across a scale ~ ¢; there are of course many other
possibilities. Regarding the domain, we assume for simplicity that
it is the square 2 = (—1, 1)%.

Proposition 3.2. Under the above setup,

, , _ 1 1\° 1
min (IVT|*) ~ min 4 log —, | log — —
u(x,t) € € Pe
(uf?) <Pe2

O THU-VT=AT+f

for all € € (0,1/20) and Pe > 0. The alternatives are achieved by
no flow (log(e~")) or by the pinching flow (log?(e~")Pe~2) depicted
in Fig. 1b of the introduction.

Remark 3.2. Our setup is already quite general, but one can
generalize it further without altering the scaling of the result.
This includes allowing the symmetry condition (3.13) to hold only
after integration in x, or considering domains §2 that include the
pinching flows we use to prove the upper bound.

Proof of the lower bound. Again we begin with the lower bound
2
T £, IVER dx + C(2)1 o0 PE?

from Corollary 3.1. Recall the example of the smoothed Dirac
mass discussed in Section 3.1, which had logarithmically diverg-
ing #'-norm as € — 0. This prompts us to look for a test function
&(x) with the properties that

1
[ eraxziog? and o < 1
2

(3.14)

which would prove in the present setting that ||f||,,1 2 log el

A suitable choice is given by

Eo(lx—x.])  iflx—x| <3
Ex) = —&(lx—x_]) if[x—x_| <3
0 otherwise
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where
log(£) ifr<e
Eo(r) = {log(5) ife <r=<1/4
0 otherwise.

For one,

/ £f dr = / Eo([% — X, [ (x) dx
2 Be(x4)
1 1
+/ £o([% — x_|)f_(x) dx = 2log (—) >log 2.
Be(x_) 4e €

Also, [|€|lsmoc2) < 1 as log(|x]) € BMO(RY), and since the mini-
mum and maximum of two functions g, h € BMO(R?) have BMO-
norms bounded by a multiple of [Igllgmorey + [I7llgmorey (s€€
[48, Ch. IV]).

Continuing, we compute the H'-norm in the dominator of
(3.14). Evidently,

/IVEIZdX=/ IVEo(x — x4 Pd
2 $2\Be(x4)
r=1/4

+/ |vso(|x—x_|)|2dxs/ Tar
2\Be(x_) r=e r

1
< log —.
€

Assembling the estimates shows that

(log 1)? . 1 1\ 1
————— ~minjlog—, (log— ] —¢.
log + Pe € €/ Pe

Proof of the upper bound. We turn to construct steady velocity
fields u(x) saturating the lower bound. Arguing just as in proof of
Proposition 3.1 (see the derivation leading up to (3.12)) we apply
Corollary 2.1 to show that

(IVTP) 2

1
(IVTP) < jf |u|2dxf |vn|2dx+f VA~ (u- vy — ) dx
Pe” Jg2 2 Q

(3.15)

where T is the temperature field associated to the scaled version
of u with mean kinetic energy Pe. Again, this upper bound applies
for any choice of u and 75, regardless of the L?>-norm of the
velocity. We shall consider two different choices for (u, n), the
first of which involves no flow, and the second of which is the
anticipated pinching flow.

No flow. The first possibility is to take u = 0. Then n drops out
n (3.15), and we see that

2
(VTP f [VA~1f| dx = max e et — I ’:‘)| :
AT
To prove that (|[VT|?) < log(e~!), which is the desired upper
bound in this case, it suffices to show that

cin(1) [ et

Here, ¢4 are the positive and negative parts of ¢, and we allow
for any combination of pluses and minuses on the left (e.g., ¢ f_).
Since the argument is the same for all combinations, we use ¢ f.
By our assumptions on f,

/ P+fy dx = / p+fydx < JC P+ dx
2 Be(x4) Qe(x4)

(3.16)

ifr dx
7
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where Q.(x.) is a square of side length € centered at x,. The
desired bound now follows from a BMO-type argument, involv-
ing controlling consecutive jumps in the average of ¢, along a
sequence of squares going from Q.(x, ) to £2.

Since £2 = (—1, 1)?, there is a sequence of squares Q, . .., Qy
C £2 of ever increasing diameters and with the following proper-
ties: (i) the first square is Q; = Q.(x) and the last square is §2;
(ii) consecutive squares intersect, with an area |Q; N Q;41| that is
within a factor of 5 of the areas |Q;| and |Q;1[; (iii) no more than
10 squares include any given x € £2; (iv) there are N ~ log(1/¢)
squares in total. To use the squares, observe first that

2
f Y+ d?"—f @+ dx
Q Qi1

2
Oy — JC P+ dx+

Q Q

5/ Vo, |* dx
QiUQiy1

Qit1
by condition (ii) and Poincaré’s inequality for d = 2. Summing up
over consecutive pairs of squares,

2
‘f g0+dx—f(p+dx =
Qe(x4+) 2

2

< dx

~

D+ —JC P+
Qit1

dx — f o dx
Qit1

sN/ V. [ dx
2

where in the first step we used condition (i), in the second step
we applied the Cauchy-Schwarz inequality and in the last step
we used condition (iii). Since

2
fovan] < [1opens [ o
2 2 2

we can conclude the result. In particular,

2 2
‘/ P+fy dx ]C P4+ dx
2 Qe(x4)
) 2
5‘]6 €0+dx‘ +‘f ‘P+d7‘—f‘ﬂ+dx
2 Qe(x+) fe)
1+N) / [Vol|? dx<log< )/ [Vo|? dx

by condition (iv). This shows (3.16) and hence

S

1
(IVTI?) < log =

for the choice u = 0.

Pinching flows. Next we achieve (|VT|?) < log*(e~1)Pe~? using
a ‘pinching’ flow. The flow we have in mind squeezes a large
portion of the domain 2 into the balls B.(x..) where the heat is
being added and taken away. This requires the velocity to grow
as 1/|x — x+|, which results in a logarithmically diverging kinetic
energy. At the same time we will enforce the pure advection
equation u - Vnp = f leading to a similar divergence in the
homogeneous H'-norm of 5. Using all of this in the bound

1
VT|? <—JC uzdxf Vn|? dx
(I I)_Pe2 9|| QI nl

which follows from (3.15) will lead to the desired result.

(3.17)
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The key task is to find a way to solve the pure advection
equation with the given source-sink functions f = f, — f_. Our
solution will be symmetric under the reflection (x, y) — (x, =),
so we define it explicitly on the upper-half plane. Introduce polar
coordinates (r, #) centered at (0, 1/2 + 2¢), and let R, be the
rectangle centered at x, = (0, 1/2) with vertical side length 2¢
and horizontal side length 2+/3¢. The rectangle is defined such
that it contains the ball B.(x, ) where the source f, is supported,
and is such that its top and bottom sides are tangent to this ball.
Outside of R, and for y > 0, we define u = V+y; with

1171 7 1lx
-6 @E(? 6]
z 6 e (4,
9)= 156 302
W]() 9_% 96(”,%]
0 otherwise.

The streamlines are left-right symmetric and are arranged in two
trapezoidal channels, and the flow enters the rectangle R, from
the right and exits it on the left. Inside R, we use a horizontal
flow that matches the inflow and outflow conditions of the prior
construction on the vertical sides of R.. Specifically, we take u =
VLI/IZ with

Y (y) =y <2n+arctan<u>>
2Y) =V 2v3¢

- arctan(zy_1_4€>
G 24/3¢ '

The rest of the flow is defined by odd reflection across the line
y=0.

Having chosen u, we now show how to solve u - Vp = f
to produce the required test function 7. Inside R, the equation
simplifies to dyy,dxn = f, which we integrate to get n = 1, with

¥ f(s.y) ds — _/" 1262 4+ (2y — 1 — 4e)?
o W) o 43¢

Outside of R, and for y > 0, we take n = n; = 0 in reg-
ions of no flow, and choose 7, to be otherwise constant along
the streamlines. Matching conditions are imposed to ensure con-
tinuity across the boundary of R.. In formulas,

m(V3€, 3 +2e ++3etand)  if 0 € (3F, 11T
na( fe,z—l—Ze—fetanQ) 1f6€(6,4§
0 otherwise.

f(s,y)ds.

n2(X) =

n1(0) =

This gives u - Vn; = 0 outside of R,, and then we define n for
y < 0 by reflection about y = 0. Altogether, we have produced a
pair (u, n) solving the pure advection equation u - Vi = f on £2.

To complete the proof we must estimate the [?>-norms of u
and V1. By the up-down symmetry,

/|u|2dx / |V1//1|2dx+f [V, |? dx
2 (£2\Re)N{y>0} Re

2 2
2 1
/ / [0:Yr|” + ‘raelﬁl

rdrdé
43
+/ V3¢
Re

12€2 + (2y — 1 — 4¢e)?
1
< log <7> +1
€

A similar calculation using the bounds |f| < €~
assumed at the start of the example gives that

1
/ [Vn|? dx < log () +1.
I?) €

2
dx

2and |Vf] <3
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Plugging these estimates into (3.17) shows that

2
<|VT|2> < log (12/6)
Pe
for our pinching flow.
Using the better of the two flows — no flow or the pinching
flow — bounds the minimum thermal dissipation by

. ) . 1 1\° 1
min (|VT|) Smin{log—, (log—) —¢.
€ €/ Pe

The proof is complete. O
4. Asymptotic analysis of steady optimal flows

Each of the lower bounds from the previous section rearranges
to give an asymptotic result: given a sequence {(u,, T,)} solving
the advection-diffusion equation with source-sink f(x) and with
(|tn|*) — o0,

linrg(i)gf(luﬂ ) (IVTal®) Ze.a If 113,10, > O

The cellular and pinching flow examples from Section 3.3 give
scenarios in which this bound is sharp in its scaling with respect
to the mean kinetic energy (|u,|?), as well as features of f.
Motivated by this, we now ask what it takes for a sequence
of velocity fields to be ‘almost optimal’ in the sense that their
thermal dissipation is minimized at leading order. Focusing on
the fully steady case where u = u(x), f = f(x) and T = T(x), we
obtain a limiting variational problem whose minimizers encode
key asymptotic properties of almost minimizers (including min-
imizers as a special case). The minimum value of this problem
gives the sharpest possible asymptotic lower bound.

A word about setup is required, especially regarding the reg-
ularity of our velocity fields. Depending on the application, one
may wish to constrain a different norm of the velocity other than
the kinetic energy-based L2-one we have used so far (e.g., the con-
vection problem treated in Section 5 lends itself to the H!-norm).
In this section, we consider divergence-free and no-penetration
velocities u belonging to a general Banach space (X, || - ||x), which
for a technical reason we must assume is continuously embedded
into LY(£2) via the inequality || - liaey S I - llx- We further
assume X is a dual space, so that its unit ball || - |[x < 1 s
weak-* compact [52]; this ensures the existence of optimizers
for the problems we consider below. Following Remark 2.4, we
let f € H~!(£2) and be mean-free.

Given this setup, we ask to take the parameter Pe — oo in the
sequence of minimization problems

min f VTP dx. (4.1)
u(x) 2
llullx <Pe
u-VT=AT+f
Applying the sharp variational upper bound from Corollary 2.1,
we learn that
min f VT2 dx
u(x) I?;

[lullx <Pe
WVT=AT+f

= min f Vil + VA~ - Vi — )] dx (42)
X Jo

lulx <Pe

where the admissible 1 belong to H!(£2). The differential equation
on the left-hand side is enforced by the optimization on the right.
It follows from the right-hand formulation that optimal velocities
achieve |lu|lx = Pe if f is not identically zero, since otherwise one
could decrease the minimum by replacing (u, ) with (Au, A~ 17)
for some A > 1.

First, we identify a sufficient and necessary condition for the
minimum to scale as Pe~2
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Lemma 4.1. There holds

limsup min Pezf |VT|? dx < oo
Pe—00 u(x) 2
[l <Pe
WNT=AT+f

if and only if there exists (ug, To) € X x H'(£2) satisfying

uy - VI, =f in 2
V-uy=0 in 2 (4.3)
u-n=0 at 9£2.

Proof. That the existence of (ug, To) implies the asserted pe~?

bound follows from the right-hand formulation of the optimiza-
tion in (4.2). Indeed, we can always assume that |ugllx = 1,
and then setting (u, ) = (Peug, Pe~'Ty) into (4.2) shows that
min f, |[VT|* < Pe? {, |VT,|* for all Pe.

For the reverse implication, let {up,} be an admissible se-
quence for the finite-Pe problems, with ||up.||x < Pe and whose
temperatures {Tp.} obey f, |VTp|* < Pe™2. Rescale to the vari-
ables (iipe, Tpe) := (Pe~'ttpe, PeTp,) to find that

lupellx =1, [VTeell2(oy <1 and  up - VTp,

1
— ATpe +
Pe Pe f

after dropping the tildes. Applying the Banach-Alaoglu theo-
rem [53] to the dual Banach space X and using our assumption
that it is continuously embedded into L4(£2), hence also in [*(£2)
since d > 2, we can extract a subsequence {up, Tpe} (not rela-
beled) converging weakly-s to (uo, To) both in X x H'(£2) and in
1%(£2) x H'(£2). Note

! AT,
Pe Pe

lupe - VIpe — flly-10) = H
H-1(2)

1 1
— VT, <— >0
Pe” rell2(2) < Pe

by the definition of the H~'-norm in 1.1. An application of the
div-curl lemma [54, Theorem 4 in §5.B] then verifies that the dot
product up, - VTp, converges to sy - VT, and hence ug - VT = f.
The incompressibility and no-penetration conditions for up, are
also preserved in the weak-* limit, so that they hold for u,. O

We come now to the main result of this section, in which we
rescale the minimization problem (4.1) by Pe~2 and take Pe —
oo. A sequence of admissible velocities {up.} with |[up|x < Pe
is said to be almost minimizing if their corresponding (steady)
temperature fields {Tp.} satisfy

J[ |[VTp|>dx = min
2 u(x)

|lully <Pe
WVT=AT+f

f|VT|2dx+o(Pe_2) as Pe — oo.
@

(4.4)

Included in this definition are sequences of optimizers.

Theorem 4.1. Assume the pure advection system (4.3) has a solution
in X x H'(£2). Then,

lim  min Pe2f|vr|2dx: min f|VTO|2dx (45)
Pe— 00 u(x) 2 up(x).To(x) J2

llullx <Pe luglix <1

u-VT=AT+f ug-VIp=f

where the minimization on the right is over all solutions of (4.3) in
X x HY(£2). Also, uy solves this limiting problem if and only if it is
a weak-x* limit point in X of a sequence {Pe™"up,}) where {up,} is
almost minimizing on the left.

Remark 4.1. If f is not identically zero, any optimal velocity ug
in the limiting problem has unit norm, i.e., ||uglx 1. Indeed,
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increasing the norm of uy decreases the value of f_q |VTo|? dx via
the coupling uy-VTy = f. This is the limiting version of the similar
observation made directly after (4.2) for finite Pe.

Remark 4.2. Both the dependence of T on u in the finite-Pe
problems, and of optimal Ty on 1y at Pe = oo are one-to-one. The
former is the uniqueness-property of steady advection-diffusion;
the latter comes from the fact that the limiting minimization is
strictly convex in Ty when uy is fixed, hence optimal T, depend
uniquely on ugy. A partial converse holds: if the closed unit ball
Il - lx < 1of X is strictly convex, the correspondence between
optimal uy and optimal Ty is one-to-one. To see this, note that
any two optimizers uy and uj lie on the boundary of the unit
ball (by the previous remark). But then their average (uo + uj)/2
would also be optimal, which is a contradiction unless uy = uy,

Remark 4.3. It is natural to ask whether the limit points of the
rescaled temperatures {PeTp.} generated by almost minimizers
{up.} are also captured by the limiting problem. In one direction,
it follows from the proof below that the weak-H! limit points of
{PeTp.} are always optimal for the limiting problem. The converse
holds if the space X has an additional ‘Radon-Riesz like’ property,
which requires that every sequence {u,} converging weakly-* to
a vector u with |lu,|lx — |lullx also converges strongly to u. If
X is a Hilbert space then it has this property; uniformly convex
spaces such as [P(£2) for p € (1,00) do as well [52]. Under
this additional assumption, one can prove that the sequence of
almost minimizing rescaled velocities {Pe”'up,} recovering ug as
in the statement actually converges strongly in X to ug (they
consistently lie on the boundary of the unit ball). This and the first
part of the previous remark imply that {PeTp.} converges strongly
in H', to the unique optimizer T, corresponding to uy.

Proof. The proof is a tightening of the argument behind
Lemma 4.1. The upper bound

lim sup mi)n Pe?* + |VT|?dx < min JC|VT0|2dx (4.6)
2 2

Pe— 00 u(x ug(x),To (%)
llullx <Pe lluglix <1
u-VT=AT+f uy-VIp=f

follows just as in the ‘if part of the lemma. In particular, any
admissible (ug, Tp) with ||ug||x = 1 on the right satisfies

Pezﬁz|VTpe|2dx§fQ|VTo|2dx

where Tp, solves the advection-diffusion equation with up,
Peuy (use n = Pe™'Ty in Corollary 2.1). The desired inequality
(4.6) follows from minimizing over (ug, Tp). In particular, when
f is not identically zero we can discard the case ||ug|lx < 1 as
being sub-optimal per Remark 4.1; if f is identically zero, there
is nothing to show.

Next, we show the lower bound

(4.7)

min VT[> dx < liminf min Pezf IVT|?dx. (4.8)
ug(x),To(x) k7] Pe— o0 u(x) k9]

lluglix <1 llullx <Pe
uy-VTo=f uVTZAT+Hf

Start by considering a general admissible sequence {up.} on the
right, with |jup.|[x < Pe and whose temperatures {Tp.} can be
taken to obey f, [VTp|> < Pe™? as otherwise there is nothing
to show. Again following the proof of Lemma 4.1, we rescale
to {(Pe”'up,, PeTp,)} and extract a weak-* limit point (ug, Tp) €
X x H'(£2) solving the pure advection system (4.3). Moreover,

lluollx < liminf [|Pe™"upellx < 1, (4.9a)
Pe— o0
f IVT,[2 dx < liminf Pe? f IV Tp|? dx (4.9b)
2 Pe— o0 2
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by the weak-* lower semi-continuity of (dual) norms. Minimizing
over all sequences {up,} with the above properties yields (4.8). At
this stage, it is clear that both inequalities in (4.6) and (4.8) are
actually equalities, so (4.5) is proved.

We end with the pairing between weak-* limit points of
almost minimizers {up.}, which by definition obey (4.4), and the
solutions (ug, Tp) of the limiting problem. Suppose uy is optimal in
the limit. Going back to the proof of the upper bound (4.6), we see
that the rescaled velocities {Peug} must be almost minimizers. In
particular, the left-hand sides of (4.6) and the optimized version
of (4.7) are equal up to o(1) terms. Conversely, if the sequence
{up.} used in the proof of (4.8) is almost minimizing, then the
weak-x limit points (ug, Tg) found by rescaling must be optimal
in the limit. This is because the left-hand sides of (4.8) and (4.9b)
become equal when the latter is applied to an almost minimizing
sequence. O

5. Internally heated buoyancy-driven flows

We finally come to the problem of bounding the heat trans-
port of an internally heated buoyancy-driven flow. As usual, we
assume the source-sink function f(x) is mean-free so that its
heating and cooling is balanced, and suppose it is not identically
zero. The velocity u(x, t) and temperature T(x, t) are required to
satisfy the equations

Pro' (u+u-Vu) = Au+RTg — Vp (5.1a)

&T +u-VT = AT +f (5.1b)

in addition to the usual divergence-free and no-penetration
boundary conditions. Here, g(x) Vp(x) is a conservative
gravitational acceleration field with a non-constant potential ¢ €
H'(£2). For example, setting ¢ = z gives g k which is a
common choice in studies of convection.

Momentum conservation implies balance laws relating the
flow’s mean enstrophy (|Vu|?) to the Rayleigh-like number R
measuring the strength of buoyancy relative to viscosity. These
balances laws are insensitive to the Prandtl number Pr, so it
drops out of the analysis. (See the introduction for formulas giving
R and Pr in terms of dimensional parameters). Requiring u to
satisfy such balance laws should in principle significantly restrict
heat transport. We obtain a trio of lower bounds confirming
this intuition for sources and sinks that are not aligned with
gravity.

5.1. Bounds on enstrophy-constrained flows

We start by deriving bounds on the heat transport achieved
by general incompressible flows in terms of their mean enstro-
phy (|Vu|?). These follow from Corollary 3.1 and the fact that
Poincaré’s inequality allows us to relate the mean enstrophy to
the mean energy (|u|?). Namely,

(luf) < u(IVul?) (5.2)

for all divergence-free u with u - 1 = 0 at 3£2. This can be
checked for an arbitrary bounded Lipschitz domain £2 using an
argument-by-contradiction, with the crucial point being that the
only constant flow satisfying no-penetration conditions is no flow
(see, e.g., [55]). The optimal constant satisfies

1 [ IVul* dx
n ==
ux) [ ul® dx
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with divergence-free and no-penetration conditions. Applying
(5.2) to the lower bound from Corollary 3.1 and eliminating the
test function & proves the following result:

Corollary 5.1. Suppose the hypotheses of Corollary 3.1 hold and let
(|Vu|?) < oo. There are positive constants C;, C, and C; depending
on the domain £2, the dimension d and the source-sink distribution
f such that

2 Gi
(VTP > —————.
G + G(|Vul%)

(5.3)
Remark 5.1. For flows in dimensions d = 2, 3 this result does not
require the second assumption on f in (2.2). This follows from
Remark 2.1 because flows with bounded mean enstrophy belong
to [P(£2) at a.e. time for p < 2d/(d—2), by the Sobolev embedding
theorem.

5.2. Balance laws

The next ingredient for deriving Rayleigh-dependent bounds
on (|VT|?) is a pair of balance laws relating the mean enstrophy
(|IVul?) to the flux-based Rayleigh number R in the momentum
equation. The first law states that the rate of energy loss to
viscous dissipation must balance the total power supplied to drive
the flow:

(IVul®) = (RTg - u). (5.4)

To prove it, dot (5.1a) by u and integrate by parts in space and
time, using the no-penetration conditions to drop the boundary
terms.

A second balance law is obtained by testing the advection-
diffusion equation (5.1b) against the gravitational potential ¢.
Recalling that g = Vg, this yields

— (fo) =(g-(uT — VT)).

In the Boussinesq approximation, temperature and density vari-
ations are negatively proportional to one another (see, e.g., [56]).
Thus, we can interpret this balance law as expressing a con-
servation of total gravitational potential energy: the change in
potential energy due to the heating and cooling must balance a
similar change from the total heat flux.

Combining (5.4) with (5.5) and applying the Cauchy-Schwarz
inequality, we deduce that

(5.5)

(IVul?) =R(g - VT — f¢)

<R(gP)2(IVTP)? —R{fg).

This sets a Rayleigh-dependent limit on the advective intensity of
buoyancy-driven internally heated flows.

(5.6)

5.3. Bounds on buoyancy-driven flows

It is now an algebraic exercise to obtain lower bounds on the
heat transport of internally heated buoyancy-driven flows. Here
is the result:

Theorem 5.1. Let u(x, t) and T(x, t) solve the Boussinesq equations
(5.1) with insulating and no-penetration boundary conditions. Let
f(x) be a balanced and steady source-sink distribution satisfying the
assumptions of Corollary 3.1, and take C;, C; and Cs3 to be as in
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Corollary 5.1. We have the following bounds:

1. If f) >0,

(f @)?
(Ig1?)
2. If (fo) = O, there exists Ry > 0 such that

(VT

for all R;

C 3
(IVT]?) > (121> for all R > Ry;
2G3(Ig|") 2R

3. If {fe) < O, there exists Ry > 0 such that

(IVTP?) > for all R > R;.

.G
T 2G(fe)IR

Remark 5.2. Theorem 5.1 actually applies to all divergence-free
and no-penetration velocities u and temperatures T that need
not solve the Boussinesq equations, but only satisfy the balance
laws (5.5) and the (time-averaged) energy inequality (|Vu|?) <
(RTg - u), which is a weakening of (5.4). These conditions, and
hence our bounds, hold for Leray-Hopf solutions of (5.1) (see
[57,58] for similar comments in the context of Rayleigh-Bénard
convection).

Proof. Statement 1 is a direct consequence of estimate (5.6), the
nonnegativity of (|Vu|?) and the assumed positivity of (f¢).

For the other two statements, start by combining (5.6) with
the general lower bound in (5.3) to deduce that

G

(|VT| )y > . . (5.7)
G+ GRgA) 2 (IVT)? + GRI(f )]
To prove statement 2, set (fg) = 0 to obtain
G
(IVTP) = (58)

G + GR(gP) 2 (|VT?)2

This implies that (|[VT|?) > C;/(2G)if (|VTI?) < C2/(C2R*(|g|?)),
which is a contradiction if R is sufficiently large. Thus we can take
(IVT[?) > C2/(C2R*(|g|*)), in which case a manipulation of (5.8)
proves the desired bound.

Statement 3 follows from a similar argument. Note we can as-
sume that G, + GsR(|g|?)2 (|[VT[2)? < GsR|(f)|, since otherwise
(VTI?) = (fe)2/(2(lg|*)) for large enough R. The desired bound
now follows from (5.7). O

We close by discussing the physical meaning of (f¢) and
its role in Theorem 5.1. As was mentioned briefly after (5.5),
in the Boussinesq approximation temperature variations 8T are
negatively proportional to density variations & o via the coefficient
of thermal expansion. So, f can be thought of not only as a
distributed heat source/sink but also as a sink/source of density.
In this light, the three cases in Theorem 5.1 have to do with
whether there is a net negative, zero or positive supply of gravita-
tional potential energy from f. With a positive supply, a strongly
convecting and perhaps turbulent flow can result, leading to
highly efficient heat transport consistent with our third bound
({(fe) < 0).In contrast, a zero or negative potential energy supply
inhibits convection and with it heat transport. This is reflected by
the significant barriers to heat transport expressed in the first and
second bounds ({f¢) > 0 or = 0). We wonder whether, in these
cases, turbulence could in some sense be ruled out.

6. Conclusion

This paper discussed heat transport by incompressible flows in
an insulated domain with a balanced distribution of heat sources

13

Physica D 444 (2023) 133591

and sinks. When the temperature T(x, t) is a passive scalar that
diffuses and is advected by a divergence-free and no-penetration
velocity field u(x, t), we showed in Section 3 that

(f, &f dx)’
T £ IVEP dx+ C(2, DE 2o (1ul?)

This bound holds for mean-free and steady source-sink functions
f(x), with a constant C(£2, d) depending on the flow domain £
and the dimension d > 2. It involves a choice of test function £(x)
which can be optimized to obtain a best-case lower bound (see
Corollary 3.1, and also Remark 3.1 which discusses unsteady f and
&). Actually, (6.1) derives from a more general bound on the heat
transport of unsteady source-sink functions and flows, proved
in Section 2 with a complementary upper bound. As shown by
Corollary 2.1, these bounds are sharp if both u(x) and f(x) are
steady.

We then applied our bounding framework to construct op-
timal, or at least highly competitive, flows. One example in
Section 3.3 was of a two-dimensional cellular flow adapted to
sinusoidal heating and cooling. A second example involved a
pinching flow between concentrated sources and sinks. The lat-
ter highlighted our use of Hardy and BMO norms, which came
with the choice to apply the div-curl inequality of Coifman,
Lions, Meyers and Semmes [46] to control the non-local term
(IVA~(u V§)| ) in an intermediate step. This extended the esti-
mates of [19,21,37] from the setting of statistically homogeneous
and isotropic flows in periodic domains to general flows and
domains. The Hardy space norm was pivotal for identifying the
optimal scaling of min (|VT|?) with respect to the size of the
sources and sinks, and for showing the (near) optimality of our
pinching flows. The status of pinching flows for other objectives
such as (T?), or in higher dimensions with d > 2, remains to be
seen.

More generally, for a fixed distribution of heating and cooling
f(x) such that the pure and steady advection equation u- VT = f
is solvable, we showed the convergence

(IVT?) = (6.1)

min Pezf IVT|?dx — min f |[VTo|?dx as Pe — oo
u(x) uy@.Totx) Jo

[l <Pe llugllx <1

u-VT=AT+f uy-VIg=f

(6.2)

where the Péclet number Pe sets the maximum flow intensity
measured in a Banach space norm, || - ||x. The argument in
Section 4 showed that the minimum values converge, and also
that the minimizers (and almost minimizers) of the finite-Pe
problems on the left-hand side of (6.2) converge to those of the
limiting problem on its right. Whether or not the pure advection
equation is actually solvable is a fascinating and generally open
question, even in two dimensions (see [42] and the references
therein). Solving it was a key part of the examples in Section 3.3.

Finally, we leveraged balance laws implied by momentum
conservation to produce lower bounds on {|VT|?) for buoyancy-
driven internally heated flows. Section 5 considered flows driven
by steady heating and cooling f(x) and a steady conservative
gravitational acceleration g(x) = V¢(x), with the standard setting
being ¢ = z. For asymptotically large values of the flux-based
Rayleigh number R, we proved that

1 if (fp) >0
R723 if (fo) =0
R7' if (fe) <0

with a prefactor depending on the domain £2, the dimension d,
the source-sink distribution f and the gravity g. The three scaling

(IVTP?) Z0.dfe (6.3)



B. Song, G. Fantuzzi and I. Tobasco

regimes distinguish whether the spatial arrangement of the heat
sources and sinks supplies the fluid with a net negative, zero or
positive input of gravitational potential energy. Quite naturally, in
the first two cases buoyancy-driven flows have severely limited
heat transfer. This leaves open questions about the actual flow.
We wonder if (f¢) > 0 implies that ‘turbulence’ cannot occur,
as one might expect it to produce well-mixed temperatures with
(IVT|?) « 1.1t should be especially interesting to investigate the
borderline case (f¢) = 0, where the possibility of turbulence may
be sensitive to the details of the setup (e.g., the shape of the flow
domain, or the fine details of the heat sources and sinks versus
the gravity).

Contrary to our lower bounds on passive advection-diffusion,
we do not know if the estimates in (6.3) are ever sharp, or even if
they depend optimally on R. Turbulent flows in experiments and
simulations with (fg) < 0 have (|VT|?) ~ R~/2 [5-7,13], which
is much larger than our lower bound. This gap is in line with
the broader literature on convection. For instance, with uniformly
heated convection between cooled boundaries, the lower bound
(IVT|?) = R™V3 by Lu and Doering [8] is far from the (|VT|?) ~
R™'/3 scaling seen in simulations [9]. Similarly, upper-bound the-
ory for boundary-driven Rayleigh-Bénard convection proves heat
transport bounds that grow with a ‘mixing length’ scaling [30],
while most turbulent data displays a slower boundary-limited
scaling law [59,60]. This does not mean that the bounds are never
sharp — the a priori scaling bounds just mentioned are sharp up to
possible logarithmic corrections [32] and without log-corrections
in three dimensions [61] for general enstrophy-constrained flows.
Likewise, the known bounds on imbalanced internal heating are
sharp up to log-corrections [18], and this paper has produced
sharp bounds for balanced heating as well. In any case, power-law
improvements of the known a priori bounds must use information
from the momentum equation beyond the usual balance laws.

None of this rules out the possibility that there exist other,
non-turbulent solutions of the Boussinesq equations for which
(IVT|?) displays the same scaling as the lower bounds in (6.3).
In fact, an asymptotic construction and numerical simulations
in [13] produce steady flows achieving (|VT|?) ~ R™! in a two-
dimensional box with insulating vertical boundaries, isothermal
bottom boundaries and a sinusoidal heating and cooling profile.
Our bounds extend to this configuration with the same scal-
ing results, and different prefactors. Perhaps this suggests the
bounds are sharp, or perhaps there are still obstructions to sharp-
ness that have to do with the particular choice of heating and
cooling. Enunciating the conditions under which asymptotically
optimal heat transport is achievable by momentum-conserving
flows remains an interesting open problem.
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