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a b s t r a c t

Internally heated convection involves the transfer of heat by fluid motion between a distribution of
sources and sinks. Focusing on the balanced case where the total heat added by the sources matches
the heat taken away by the sinks, we obtain a priori bounds on the minimum mean thermal dissipation
⟨|∇T |2⟩ as a measure of the inefficiency of transport. In the advective limit, our bounds scale with the
inverse mean kinetic energy of the flow. The constant in this scaling law depends on the source–sink
distribution, as we explain both in a pair of examples involving oscillatory or concentrated heating
and cooling, and via a general asymptotic variational principle for optimizing transport. Key to our
analysis is the solution of a pure advection equation, which we do to find examples of extreme heat
transfer by cellular and ‘pinching’ flows. When the flow obeys a momentum equation, our bound is
re-expressed in terms of a flux-based Rayleigh number R yielding ⟨|∇T |2⟩ ≥ CR−α . The power α is
0, 2/3 or 1 depending on the arrangement of the sources and sinks relative to gravity.
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. Introduction

Determining absolute limits on heat transport by a moving
luid is a fundamental scientific challenge. It is motivated not only
y questions of planetary physics, e.g., where convection driven
y radioactive decay influences plate tectonics and the generation
f magnetic fields [1,2], but also by the search for optimal heat
xchangers [3,4]. Internally heated flows have recently attracted
enewed interest after experiments and numerical simulations
5–7] revealed that their heat transport can significantly
xceed the known limits on ‘ordinary’ boundary-driven (Rayleigh–
énard) convection. For certain well-balanced source–sink pro-
iles of internal heating and cooling, the flows that set up in
esponse to gravity appear to transport heat at a rate independent
f the molecular diffusivity, achieving the ‘mixing-length’ or
ultimate’ transport scaling. However, it remains a challenge to
etermine theoretically which properties of the internal heating
re crucial to achieving highly efficient transport. Indeed, for
n arbitrary balanced source–sink profile in an arbitrary fluid
omain, it is not at all clear from the outset what transport will
esult.

Thinking of the general question of assessing heat trans-
ort across a fluid domain, the first challenge is to select a
lobally-defined yet meaningful diagnostic measure of transport
fficiency. Many known quantities that give equivalent measures
or boundary-driven convection are no longer comparable for
nternally heated flows, and can end up following different scaling
aws. We choose to measure heat transport using the mean-
quared temperature gradient averaged over space and time.
ince by Fourier’s law the diffusive heat flux is controlled by
he temperature gradient, it is reasonable to expect that a highly
fficient transfer protocol finds a way to minimize temperature
radients overall. Other authors have studied the mean temper-
ture [8–12], root-mean-squared temperature [5,6,13] or vertical
eat flux [14–16]. For particular choices of source–sink distribu-
ions and boundary conditions such quantities are equivalent to
ur measure [17], but this is not generally true.
Having selected a measure of transport, one can seek flows

ptimizing its value, subject to various constraints. A tractable
oal for analysis, that we pursue in this paper, is to produce a pri-

ori bounds on transport holding for general classes of admissible
flows. In particular, we shall derive a lower bound on the mean
thermal dissipation of an internally heated flow, which takes
into account its mean kinetic energy as well as the shape of the
imposed source–sink distribution and the flow domain. We also
derive a similar bound holding for buoyancy-driven internally
heated convection. We work with balanced source–sink distri-
butions that add and subtract the same amount of heat overall.
The case of imbalanced heating has been studied extensively in
the literature: bounds on measures of heat transport are known
for uniform internal heating under a variety of boundary condi-
tions [8–12,17], as well as for essentially arbitrary source–sink
distributions in a disc with a constant temperature boundary [18].
Bounds on balanced heat transfer have also been obtained, for
periodic flows under an assumption of statistical homogeneity
and isotropy [19–22], and for smooth source–sink distributions
that vary only in the gravity direction across a fluid layer [13].
Here, we treat a much broader class of velocities, source–sink
functions and flow domains. We also give examples illustrating
the sharpness of our bounds.

There are various approaches to a priori bounds in fluid me-
chanics, but for buoyancy-driven convection the relevant results
can be traced back at least to the work of Malkus, Howard
and Busse [23–27] as well as to the ‘background method’ of
Doering and Constantin [28–30]. We follow a two-step approach
that is similar to the ‘optimal wall-to-wall’ approach of [31–33],
2

and also to an approach that has been used with horizontal
convection [34–36]. First, we drop the momentum equation and
optimize heat transfer subject to the advection–diffusion equa-
tion alone. The resulting optimal transfer rate depends on the
advective intensity, measured in a chosen norm. Then, we re-
store the momentum equation via a balance law relating the
velocity norm to an appropriate Rayleigh number. Algebraic ma-
nipulation leads to an a priori bound on the heat transport of
momentum-conserving flows.

We turn to describe our setup and results. Let Ω ⊂ Rd

be a bounded Lipschitz domain in dimension d ≥ 2, and in-
troduce a temperature field T (x, t) solving the inhomogeneous
and non-dimensional advection–diffusion equation with insulat-
ing boundary conditions{
∂tT + u · ∇T = ∆T + f in Ω,
n̂ · ∇T = 0 at ∂Ω.

(1.1)

To ensure the source–sink function f (x, t) is balanced, we set?
Ω
f (x, t) dx = 0

where
>
Ω
· dx denotes averaging over the flow domain (per the

notation in Section 1.1). The advecting velocity u(x, t) obeys the
divergence-free condition ∇ · u = 0 in Ω , along with the no-
penetration boundary conditions u · n̂ = 0 at ∂Ω . Note n̂ is the
outwards-pointing unit normal to the domain boundary. These
conditions on f and u imply that the mean temperature

>
Ω
T dx

is constant in time, and we take it to be zero without loss of
generality.

Given this setup, we seek bounds on the mean-squared tem-
perature gradient

⟨|∇T |2⟩ := lim sup
τ→∞

? τ

0

?
Ω
|∇T (x, t)|2 dxdt

where for definiteness we use the limit superior. In Section 2, we
derive a pair of ‘variational’ upper and lower bounds:⟨
2f ξ − |∇ξ |2 − |∇∆−1(∂tξ + u · ∇ξ )|

2
⟩
≤
⟨
|∇T |2

⟩
≤

⟨
|∇η|2 + |∇∆−1(∂tη + u · ∇η − f )|

2
⟩

(1.2)

where ξ (x, t) and η(x, t) are test functions whose choice can be
optimized (see Theorem 2.1). The operator ∆−1 is the Neumann
inverse Laplacian, defined in Section 1.1. A version of our lower
bound on ⟨|∇T |2⟩ with a steady test function ξ (x) appeared
in a previous paper on mixing in periodic domains [19], along
with similar bounds on ⟨T 2

⟩ and ⟨|∇∆−1T |2⟩ (see also [20–22,
37] for a review). To complete the picture, we allow for time-
dependent test functions defined on general domains, and also
provide the complementary upper bound in (1.2). Moreover, we
prove in Corollary 2.1 that these bounds are sharp in the steady
case f = f (x) and u = u(x), meaning that an optimal choice
of test function evaluates ⟨|∇T |2⟩. This is the analog of results
obtained in [32,33,38] for boundary-driven flows and in [18]
for internally-heated flows with cooled boundaries. Rather than
repeat the ‘symmetrization argument’ from these papers, we
present a different and likely more flexible proof in which the test
functions are introduced as Lagrange multipliers for enforcing the
advection–diffusion equation (much like the argument in [19]).

Sections 3 and 4 go on to ask what the variational bounds
(1.2) imply for optimal flows. By optimal, we mean flows that
minimize ⟨|∇T |2⟩ subject to a constraint on the flow intensity,
such as might be given by fixing the value of the mean kinetic
energy ⟨|u|2⟩. To ease the presentation, we treat steady source–
sink functions f (x) that are not identically zero from here on; we
expect our results can be extended to unsteady sources/sinks, and
we remark on this below. Section 3 starts by bounding ⟨|∇T |2⟩
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Fig. 1. Examples of nearly optimal flows. Heat sources (red) and sinks (blue) oscillate sinusoidally on a scale ∼ ℓ in (a) and are concentrated in regions of size ∼ ϵ

n (b). Black lines with arrows show streamlines of the cellular flow achieving ⟨|∇T |2⟩ ∼ Pe−2 in (a) and of the ‘pinching’ flow achieving ⟨|∇T |2⟩ ∼ log2(ϵ−1)Pe−2 in
b). The squared Péclet number Pe2 sets the kinetic energy of the flows.
n terms of the mean kinetic energy: we show that there are
ositive constants C1, C2 and C3 depending on the domain Ω , the
imension d and the source–sink distribution f such that

|∇T |2⟩ ≥
C1

C2 + C3⟨|u|2⟩
. (1.3)

his follows from Corollary 3.1 and the subsequent discussion
n how to select ξ . A similar bound was proved in [19,21,37]
or periodic and statistically homogeneous, isotropic flows. We
oo think of the ratios C1/C2 and C1/C3 as (squared) norms that
etect the structure of the sources and sinks. In the conductive
imit ⟨|u|2⟩ → 0, the first ratio dominates the bound and can be
hosen, as usual, to involve a negative Sobolev norm (see (3.8)).
n the advective limit ⟨|u|2⟩ → ∞ the second ratio is more
mportant; we explain how to choose it based on a Hardy space
orm (see (3.9)). While this norm is not completely unlike the
1-norm, it produces a strictly better bound for problems with
oint-like sources and sinks. See Section 3.1 for its definition, and
ection 3.2 for the proof of (1.3).
To help clarify our lower bound, and to explain what it takes

o find optimal (or at least nearly optimal) flows, we study a
air of examples in Section 3.3 involving sinusoidal heating and
ooling or approximate point sources and sinks. Fig. 1 illustrates
he setups we have in mind: the heating/cooling in panel (a)
aries sinusoidally on a scale ∼ l; the point-like sources and sinks
n panel (b) are concentrated in regions of size ∼ ϵ (the figure
hows discs for simplicity). Given these setups, we prove upper
nd lower bounds on the minimum mean-square temperature
radient that match in terms of their scalings with respect to each
xample’s parameters. Precisely, we show that

min
u(x,t)

⟨|u|2⟩≤Pe2
∂t T+u·∇T=∆T+f

⟨|∇T |2⟩

∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{
ℓ2, 1

Pe2

}
for sinusoidal heating

(Proposition 3.1)

min
{
log 1

ϵ
,
(
log 1

ϵ

)2 1
Pe2

}
for concentrated heating

(Proposition 3.2)

(1.4)

ith prefactors that are independent of all parameters. (The
otation X ∼ Y means that there are numerical constants C, C ′ >
such that CY ≤ X ≤ C ′Y ). Parsing (1.3) in each example
3

produces the lower bound half of (1.4). For the matching upper
bounds, we construct the flows illustrated in Fig. 1 and select
test functions η to estimate their transport via (1.2). We use a
cellular flow structure for sinusoidal heating and a pinching effect
for approximate point sources and sinks. It was the analysis of
pinching flows that led us to the Hardy space norm; other, more
familiar norms gave strictly sub-optimal bounds.

The search for flows optimizing heat transfer is an active area
of research; see [18,39,40] for flows enhancing heat transport
with imbalanced heating, and [41] for flows inhibiting heat trans-
port in non-disc domains. In this paper, we base our constructions
on an ability to solve the pure and steady advection system⎧⎨⎩

u0 · ∇T0 = f in Ω
∇ · u0 = 0 in Ω
u0 · n̂ = 0 at ∂Ω.

(1.5)

Though understanding precisely when this system has a solution
is a difficult and open problem (see [42] for a recent account), it
is not so difficult to show its relevance for optimizing heat trans-
fer in the advective limit. Section 4 studies this limit in detail,
and achieves the following conditional result: if (1.5) admits a
(regular-enough) solution, then

lim
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx = min

u0(x),T0(x)
∥u0∥X≤1
u0 ·∇T0=f

?
Ω
|∇T0|2 dx.

In the right-hand problem, the minimization is over all solutions
of (1.5). After a rescaling, its optimizers give the limit points of
almost-minimizing sequences on the left; see Theorem 4.1 for the
precise statement. Here, we allow for general families of steady
velocities belonging to a Banach space X that is continuously
embedded into Ld(Ω), amongst other requirements. The dimen-
sionless parameter Pe = U2L/κ is the Péclet number, where U
is a characteristic velocity scale, L is a characteristic lengthscale
and κ is the thermal diffusivity. The result captures the intuition
that optimal velocities find a way to minimize thermal dissipation
while achieving (essentially) perfect advection, and shows how to
compute the optimal prefactor in the scaling law min ⟨|∇T |2⟩ ∼
C(Ω, d, f )Pe−2.

Finally, in Section 5 we bound the heat transfer of momentum-
constrained flows driven by a steady balanced source–sink func-

tion f (x) and a steady conservative gravitational acceleration
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(x). In addition to the advection–diffusion equation (1.1) for the
emperature T , we let the velocity u solve the non-dimensional
oussinesq equation

r−1 (∂tu+ u · ∇u) = ∆u+ RTg −∇p

ith g = ∇ϕ. The choice ϕ = z yields the usual Boussinesq
quations with gravity in the negative z-direction, and we allow
or other choices as well. The non-dimensional parameters Pr
nd R are the usual Prandtl number and a ‘flux-based’ Rayleigh
umber [17] measuring the strength of the sources and sinks
elative to diffusion: Pr = ν/κ and R = αL5Q/(νκ2). Again, L is a
haracteristic lengthscale and κ is the thermal diffusivity; also, ν
s the kinematic viscosity, α is the thermal expansion coefficient
nd Q is a characteristic heating and cooling rate per unit volume
which sets the dimensional amplitude of f ). After deriving a set
f basic balance laws, we relate the mean enstrophy and energy
f the flow to the Rayleigh number, and thereby obtain a trio of
ayleigh-dependent lower bounds (Theorem 5.1). These bounds
re in the general form

|∇T |2⟩ ≥
C(Ω, d, f , g)

Rα

ith α = 0, 2/3 or 1 depending on the sign of ⟨f ϕ⟩ and for large
enough R; we give intuition for this below.

Section 6 is a conclusion section that includes a discussion of
open questions and future directions of research.

1.1. Notation

Here we summarize some common notational conventions.
We use X ∨ Y and X ∧ Y for the maximum and minimum of two
quantities. We write X ≲ Y if there is a constant C with X ≤ CY ,
and X ∼ Y if X ≲ Y ≲ X . If the constant C depends on a parameter
a, we indicate this by writing X ≲a Y . The notation X ≪ Y means
that X/Y → 0 in a limit. Likewise, o(X) is a quantity tending to
zero upon division by X .

The d-dimensional volume of a set A is |A|. The average of ϕ
over A is then?
A
ϕ dx =

1
|A|

∫
A
ϕ dx.

The notations ⟨ϕ⟩τ and ⟨ϕ⟩ give spatial–temporal averages over
and up to time τ , or across infinite time, respectively:

ϕ⟩τ =

? τ

0

?
Ω
ϕ(x, t) dxdt and ⟨ϕ⟩ = lim sup

τ→∞

⟨ϕ⟩τ .

e only use the limit superior long-time average.
As usual, Lp(Ω) is the space of functions whose pth power

s integrable on Ω . We write H1(Ω) for the Sobolev space of
unctions in L2(Ω) whose weak derivatives are in L2(Ω). We use
−1(Ω) for the space of continuous linear functionals on H1(Ω)
hat are mean-free, meaning that they take constant functions to
ero, and define the dual norm

g∥H−1(Ω) := max
ϕ(x)

∫
Ω
gϕ dx(∫

Ω
|∇ϕ|2 dx

) 1
2
=

(∫
Ω

⏐⏐∇∆−1g
⏐⏐2 dx) 1

2

.

This and other such maximizations are performed over non-
constant ϕ ∈ H1(Ω). Not every g ∈ H−1(Ω) is a function, in
which case the ‘integral’

∫
Ω
g · dx stands for the action of g as

functional. Hardy and BMO spaces will be used; see Section 3.1
or definitions and a brief review.

Finally, since this paper deals only with insulating temperature
oundary conditions, we write∆−1 for the inverse Laplacian with
eumann boundary data. That is, h = ∆−1g if

>
Ω
h dx = 0 and

∆h = g in Ω

n̂ · ∇h = 0 at ∂Ω. a

4

2. Variational bounds on heat transfer in an insulated domain

Section 2.1 derives upper and lower bounds on the mean
quare thermal dissipation ⟨|∇T |2⟩ of a general unsteady in-
ompressible flow u(x, t) and a general unsteady and balanced
ource–sink distribution f (x, t). These bounds involve a pair of
est functions, which can be optimized based on the details of
and f . In the steady case where u = u(x) and f = f (x), the
ptimization evaluates ⟨|∇T |2⟩ so that the bounds are sharp (see
ection 2.2). One can also choose the test functions to bound
|∇T |2⟩ in terms of a bulk measure of the flow intensity, such
s the mean kinetic energy ⟨|u|2⟩; we do so starting in Section 3.

.1. Variational bounds for unsteady flows and source–sink distribu-
ions

Define the admissible set

=

{
θ ∈ L2loc

(
0,∞;H1(Ω)

)
: ∂tθ ∈ L2loc

(
0,∞;H−1(Ω)

)
,

θ (·, τ ) ∈ L∞(Ω) a.e. τ , lim
τ→∞

1
√
τ
∥θ (·, τ )∥L2(Ω) = 0

}
. (2.1)

Let λ1 be the first non-trivial Neumann eigenvalue of the (nega-
tive) Laplacian on Ω . It is the largest constant such that
λ1∥θ∥

2
L2(Ω)

≤ ∥∇θ∥2
L2(Ω)

for all mean-zero θ ∈ H1(Ω).

heorem 2.1. Let u(x, t) be divergence-free with u · n̂ = 0 at ∂Ω
nd ⟨|u|2⟩ < ∞, and let f (x, t) satisfy

>
Ω
f (x, t) dx = 0 for t > 0.

Assume there exist a0, a1 ∈ (0, 1) and p ∈ [d/2,∞] such that

lim
τ→∞

1
τ

∫ τ

0
e−2a0λ1(τ−t)

∥f (·, t)∥2H−1(Ω) dt = 0 and∫ τ

0

e−a1λ1(τ−t)

(τ − t)
d
2p

∥f (·, t)∥Lp(Ω) dt <∞ ∀ τ > 0. (2.2)

Given any weak solution T (x, t) of{
∂tT + u · ∇T = ∆T + f in Ω
n̂ · ∇T = 0 at ∂Ω

(2.3)

ith T (·, 0) ∈ L2(Ω), the upper and lower bounds⟨
2f ξ − |∇ξ |2 − |∇∆−1(∂tξ + u · ∇ξ )|

2
⟩
≤
⟨
|∇T |2

⟩
≤

⟨
|∇η|2 + |∇∆−1(∂tη + u · ∇η − f )|

2
⟩

(2.4)

old for all η, ξ ∈ A.

emark 2.1. The two assumptions on f in (2.2) play different
roles. The first one ensures that ∥T (·, τ )∥L2(Ω) ≪

√
τ as τ → ∞,

o that the integration-by-parts identity ⟨|∇T |2⟩ = ⟨fT ⟩ holds. The
second one implies that T (·, τ ) ∈ L∞(Ω) for a.e. τ > 0. This allows
us to define weak solutions in the usual way, by testing the given
equation against functions in H1(Ω) and integrating by parts (fol-
lowing, e.g., [43]); it also ensures that

∫
Ω
u ·∇TT dx = 0. As these

remarks are more or less standard fare in parabolic regularity
theory [43,44], we shall not present their proofs, but instead point
to the notes [45] for an exposition that is readily adapted to our
setting. In brief, the desired L2-bound follows from Gronwall’s in-
equality by testing the equation against T ; the L∞-bound follows
from known ‘heat kernel’ bounds on the forward-time solution
map of the homogeneous equation (bounding it from Lp(Ω) to
L∞(Ω) by a multiple of e−aλ1∆t (∆t)−d/2p for any a ∈ (0, 1), across

time increment ∆t).
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emark 2.2. One can do away with the second assumption on f
in (2.2) by imposing enough integrability on u to the point that
u · ∇θ ∈ H−1(Ω) a.e. in time, for any θ ∈ H1(Ω). Since by
the Sobolev embedding theorem [43] L2d/(d+2)(Ω) is included in

−1(Ω) when d > 2, it suffices to assume that u ∈ Ld(Ω) a.e.
in time. The L∞ assumption on the test functions in A can then
be removed. These statements continue to hold in the borderline
case d = 2 due to ‘div–curl’ character of the product u · ∇θ ; see
Section 3.1 or [18] for more details.

Proof of Theorem 2.1. We apply the method of Lagrange mul-
tipliers, with the advection–diffusion equation (2.3) as the con-
straint and the test functions η and ξ as multipliers. Let ⟨·⟩τ => τ
0

>
Ω
· dxdt be the average of a quantity over Ω × (0, τ ). To

prove the lower bound in (2.4), start with the weak form of the
advection–diffusion equation, which states that

⟨f ξ −∇T · ∇ξ − ∂tTξ − u · ∇Tξ⟩τ = 0 (2.5)

for any ξ ∈ A and τ > 0. Thus,⟨
|∇T |2

⟩
τ
=
⟨
|∇T |2 + 2 (f ξ −∇T · ∇ξ − ∂tTξ − u · ∇Tξ)

⟩
τ

=
⟨
|∇T |2 + 2f ξ − 2∇T · ∇ξ + 2T (∂tξ + u · ∇ξ)

⟩
τ

−
2
τ

?
Ω
Tξ dx

⏐⏐⏐⏐t=τ
t=0

≥ inf
θ

⟨
|∇θ |2 + 2f ξ − 2∇θ · ∇ξ + 2θ (∂tξ + u · ∇ξ)

⟩
τ

− oτ (1) (2.6)

where oτ (1) denotes a term that goes to zero as τ → ∞. To
see this last step, note that ∥T (·, τ )∥L2(Ω) ≪

√
τ as explained in

Remark 2.1. Also, ∥ξ (·, τ )∥L2(Ω) ≪
√
τ by the definition of the

dmissible set A in (2.1). Hence,

1
τ

?
Ω
Tξ dx

⏐⏐⏐t=τ
t=0

⏐⏐⏐⏐ ≤ 1
τ |Ω|

∥T (·, τ )∥L2(Ω)∥ξ (·, τ )∥L2(Ω)

+

⏐⏐⏐⏐1τ ?Ω T (x, 0)ξ (x, 0) dx
⏐⏐⏐⏐→ 0 as τ → ∞.

To evaluate the infimum in (2.6), we make use of its Euler–
Lagrange equation{
∆θ = ∆ξ + ∂tξ + u · ∇ξ on Ω
n̂ · ∇θ = 0 at ∂Ω

which gives the optimal θ at each fixed time. Testing against θ
and integrating by parts shows that⟨
|∇θ |2

⟩
τ
= ⟨∇θ · ∇ξ − θ (∂tξ + u · ∇ξ)⟩τ .

Therefore, by (2.6),⟨
|∇T |2

⟩
τ
≥

⟨
2f ξ −

⏐⏐∇∆−1 (∆ξ + ∂tξ + u · ∇ξ)
⏐⏐2⟩

τ
− oτ (1)

=

⟨
2f ξ − |∇ξ |2 −

⏐⏐∇∆−1(∂tξ + u · ∇ξ )
⏐⏐2⟩

τ
− oτ (1).

(2.7)

Note the cross term vanishes since

2
⟨
∇ξ · ∇∆−1 (∂tξ + u · ∇ξ)

⟩
τ
= −2 ⟨ξ (∂tξ + u · ∇ξ)⟩τ

= −
1
τ

∫ τ

0

d
dt

∥ξ∥2L2(Ω) dt = oτ (1)

y the growth conditions on ξ and the no-penetration conditions
or u. Taking τ → ∞ in (2.7) yields the lower bound.

The upper bound in (2.4) is proved by a similar argument, but
ith a version of ⟨|∇T |2⟩ that lends itself to maximization, rather
5

han minimization. Multiplying the advection–diffusion equation
2.3) by T and integrating by parts shows that

|∇T |2⟩τ = ⟨fT ⟩τ + oτ (1),

as in the first part of Remark 2.1. This allows us to rewrite

⟨|∇T |2⟩τ = ⟨2fT − |∇T |2⟩τ + oτ (1)

and mimic the previous argument, but with an upper bound.
Specifically, using a Lagrange multiplier η ∈ A in the weak form
(2.5) of the advection–diffusion equation, we can write that⟨
2fT − |∇T |2

⟩
τ

=
⟨
2fT − |∇T |2 − 2 (f η −∇T · ∇η − ∂tTη − u · ∇Tη)

⟩
τ

≤ sup
θ

⟨
2f θ − |∇θ |2 − 2f η + 2∇θ · ∇η − 2θ (∂tη + u · ∇η)

⟩
τ

+ oτ (1)

=

⟨
−2f η +

⏐⏐∇∆−1 (∆η + ∂tη + u · ∇η − f )
⏐⏐2⟩

τ
+ oτ (1)

=

⟨
|∇η|2 +

⏐⏐∇∆−1(∂tη + u · ∇η − f )
⏐⏐2⟩

τ
+ oτ (1).

o pass between the first and second lines, integrate by parts to
ind only oτ (1) contributions. Then, optimize over θ like before.
aking τ → ∞ gives the upper bound. □

.2. Sharpness in the steady case

The variational bounds in Theorem 2.1 apply to both steady
nd unsteady u and f . In the steady case, these bounds cannot be
mproved. We adapt the argument from [32,33].

orollary 2.1. Let u(x), f (x) and T (x, t) be as in Theorem 2.1 (in
articular let f ∈ Lp(Ω) for some p > d/2). Then,

max
ξ∈H1(Ω)∩L∞(Ω)

?
Ω
2f ξ − |∇ξ |2 − |∇∆−1(u · ∇ξ )|

2
dx =

⟨
|∇T |2

⟩
= min

η∈H1(Ω)∩L∞(Ω)

?
Ω
|∇η|2 + |∇∆−1(u · ∇η − f )|

2
dx.

emark 2.3. The integrability assumption on f derives from
he second part of (2.2), which guarantees for steady T (x) that
T∥L∞(Ω) ≲Ω,d,p ∥f ∥Lp(Ω) < ∞ [45]. The first part of (2.2) is

redundant by Sobolev embedding [43].

Remark 2.4. Following up from Remark 2.2, if u ∈ Ld(Ω) then the
result holds for f ∈ H−1(Ω) and with test functions ξ, η ∈ H1(Ω).

Proof. Optimizing the upper and lower bounds in Theorem 2.1
over all steady fields ξ, η ∈ A gives that

sup
ξ∈H1(Ω)∩L∞(Ω)

?
Ω
2f ξ − |∇ξ |2 − |∇∆−1(u · ∇ξ )|

2
dx

≤
⟨
|∇T |2

⟩
≤ inf

η∈H1(Ω)∩L∞(Ω)

?
Ω
|∇η|2 + |∇∆−1(u · ∇η − f )|

2
dx.

(2.8)

There is no loss of generality in taking ξ and η to be mean-
free. The resulting variational problems are respectively strictly
concave and strictly convex, so that solving them is the same as
solving their Euler–Lagrange equations:

∆ξ = u · ∇∆−1 (u · ∇ξ)− f ,

∆η = u · ∇∆−1 (u · ∇η − f )
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ith n̂ · ∇ξ = n̂ · ∇η = 0 at ∂Ω . Equivalently, we must solve{
u · ∇η − f = ∆ξ

u · ∇ξ = ∆η
(2.9)

ith the same boundary conditions. The change of variables T =

+ η and Tadj = ξ − η recovers the steady heat equation and its
djoint:

u · ∇T = ∆T + f ,

−u · ∇Tadj = ∆Tadj + f

ith n̂ · ∇T = n̂ · ∇Tadj = 0 at ∂Ω . These last equations define T
and Tadj and ensure their boundedness, due to the second part of
our assumption (2.2) on f and Remark 2.1. Hence, ξ := (T+Tadj)/2
and η := (T − Tadj)/2 are admissible in (2.8), and we can proceed
to evaluate their bounds.

First, note that⟨
|∇T |2

⟩
=

?
Ω
|∇ξ |2 + |∇η|2 dx (2.10)

because testing the second equation in (2.9) against ξ yields that>
Ω
∇η · ∇ξ dx = −

>
Ω
u · ∇ξξ dx = 0. Now, substitute ξ =

∆−1(u · ∇η − f ) into the right-hand side of (2.10) to obtain⟨
|∇T |2

⟩
=

?
Ω
|∇η|2 +

⏐⏐∇∆−1(u · ∇η − f )
⏐⏐2 dx.

This verifies the optimality of η and proves the second half of
Corollary 2.1. To prove the first half, note the identity?
Ω
|∇η|2 dx =

?
Ω
f ξ − |∇ξ |2 dx (2.11)

hich derives from testing the first equation in (2.9) by ξ and the
econd by η and combining the results. Indeed,

Ω
f ξ − |∇ξ |2 − |∇η|2 dx =

?
Ω
f ξ − |∇ξ |2 + (u · ∇ξ )η dx

=

?
Ω
f ξ − |∇ξ |2 − (u · ∇η)ξ dx = 0.

ombining (2.10) and (2.11) and using that η = ∆−1(u · ∇ξ ) we
onclude that

|∇T |2
⟩
=

?
Ω
2 |∇η|2 + |∇ξ |2 − |∇η|2 dx

=

?
Ω
2f ξ − |∇ξ |2 −

⏐⏐∇∆−1(u · ∇ξ )
⏐⏐2 dx

s required. □

. Bounds on energy-constrained flows

The previous section achieved upper and lower bounds on
|∇T |2⟩ in terms of a pair of test functions, the choice of which
as left up to the reader depending on the application. We now
emonstrate how knowledge of the mean kinetic energy ⟨|u|2⟩
long with the structure of the source–sink distribution f can be
sed to achieve the lower bound

|∇T |2⟩ ≥
C1

C2 + C3⟨|u|2⟩
. (3.1)

e base our approach on a well-known inequality of Coifman, Li-
ns, Meyers and Semmes [46], which we introduce in Section 3.1
long with the requisite functional analysis involving Hardy and
MO spaces. This inequality explains how the advection term
· ∇T inherits additional regularity beyond a typical dot product

from the fact that it involves divergence- and curl-free fields.
Using it, we achieve (3.1) in Section 3.2.

Section 3.3 goes on to discuss a pair of examples where our
ethods establish the scaling law of min ⟨|∇T |2⟩ with respect
 t

6

to ⟨|u|2⟩ and certain features of f . In each example, we apply
Corollary 3.1 with a suitable test function to deduce a lower
bound. We then saturate the scaling behaviors of this bound by
constructing nearly optimal velocity fields. Part of the puzzle is
to understand when flowing is significantly better than not, and
indeed this is reflected by a cross-over in the optimal scaling laws
achieved in Propositions 3.1 and 3.2.

3.1. A brief introduction to H1 and BMO

First, we introduce the functional analytic framework we use
to prove our kinetic energy-based bounds. We leave out most
of the proofs, and point to Refs. [47–50] for full details. Given a
domain Ω ⊂ Rd, the Hardy space H1(Ω) and space of bounded
mean oscillation functions BMO(Ω) are defined as follows.1 Start-
ing with H1(Ω), we fix a smooth and compactly supported func-
ion ρ(x) ≥ 0 with

∫
Rd ρ dx = 1, and define the associated

maximal function operator by

Mρ f (x) = sup
δ>0

⏐⏐⏐⏐∫
Ω

1
δd
ρ

(
x− z
δ

)
f (z) dz

⏐⏐⏐⏐ , x ∈ Rd. (3.2)

his definition records the ‘worst-case averages’ of a given func-
ion f (x) against rescaled copies of the probability density ρ
actually, it is the extension of f by zero from Ω to Rd that
s being averaged). The Hardy space H1(Ω) then consists of all
∈ L1(Ω) such that Mρ f ∈ L1(Rd), a condition that turns out to
e independent of ρ. This is a Banach space under the norm

f ∥H1(Ω) =

∫
Rd

Mρ f (x) dx.

t embeds continuously into L1(Ω) since ∥ · ∥L1(Ω) ≤ ∥ · ∥H1(Ω) (a
onsequence of Lebesgue differentiation). However, the reverse
nequality fails, as an example using a Dirac mass shows. Let
0 ∈ Ω and consider a sequence of functions {fϵ} whose L1-norms
re one, with fϵ ∼ ϵ−d on the ball Bϵ(x0) of radius ϵ > 0 centered
t x0 and fϵ = 0 otherwise. Taking δ(x) ∼ |x− x0| ∨ ϵ in (3.2)
ields the bound Mρ fϵ(x) ≳ δ−d(x), the L1-norm of which diverges
ogarithmically as ϵ → 0. This calculation is at the heart of our
inching flow example in Section 3.3.2.
Being a Banach space, H1(Ω) has a dual. A famous result of

efferman identifies H1(Ω)∗ with a function space introduced by
ohn and Nirenberg [51] in connection with John’s work on elas-
icity. The space of bounded mean oscillation functions BMO(Ω)
onsists of all functions g(x) for which

g∥BMO(Ω) = sup
Q⊂Ω

?
Q

⏐⏐⏐⏐g(x)− ?Q g
⏐⏐⏐⏐ dx <∞

here Q is a d-dimensional cube. Modulo constants, this is a
orm under which BMO(Ω) is a Banach space. The duality be-
ween H1(Ω) and BMO(Ω) is realized by the inequality⏐⏐⏐⏐∫
Ω

fg dx
⏐⏐⏐⏐ ≲Ω,d ∥f ∥H1(Ω)∥g∥BMO(Ω) (3.3)

hich holds at first for f ∈ H1(Ω) and g ∈ BMO(Ω) ∩ L∞(Ω),
nd then for all g ∈ BMO(Ω) by continuous extension. It follows
irectly from the definitions that ∥ · ∥BMO(Ω) ≤ 2∥ · ∥L∞(Ω) so

that L∞(Ω) embeds continuously into BMO(Ω). Again, the reverse
direction fails: the function log(|x− x0|) belongs to BMO(Ω)
see [48, Ch. IV]) but is not in L∞(Ω) if x0 ∈ Ω . This too shows
p in our discussion of pinching flows.
Finally, we recall the div–curl inequality of Coifman, Lions,

eyers and Semmes [46]: if u(x) and v(x) belong to L2(Rd
;Rd) and

1 In the notation of Ref. [50], we are defining H1
z (Ω) and BMOr (Ω). We omit

he subscripts to lighten the notation.
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re respectively divergence- and curl-free, their inner product u·v
elongs to H1(Rd) and satisfies

∥u · v∥H1(Rd) ≲d ∥u∥L2(Rd)∥v∥L2(Rd). (3.4)

he same result holds with a bounded Lipschitz domain Ω in
lace of Rd provided u satisfies no-penetration boundary con-
itions. The key points for deducing this from (3.4) are that
i) with no-penetration conditions, the extension of u by 0 to Rd

s divergence-free, and (ii) one can find a curl-free extension of
to Rd whose L2-norm is bounded by that of its restriction to Ω

apply the Sobolev extension theorem [43] to a potential ϕ with
= ∇ϕ). We shall make repeated use of the resulting inequality,
hich states that

u · v∥H1(Ω) ≲Ω,d ∥u∥L2(Ω)∥v∥L2(Ω) (3.5)

f u is divergence-free with u · n̂ = 0 at ∂Ω , and if v is curl-free.

.2. Bounding the heat transfer of energy-constrained flows

Combining the main result of Section 2.1 with the functional
nalysis recalled above, we bound ⟨|∇T |2⟩ from below in terms of
he mean kinetic energy ⟨|u|2⟩. With an eye towards the examples
f Section 3.3, we state this result for steady f (x) while allowing
(x, t) and T (x, t) to be unsteady (however, see the remark).

orollary 3.1. Let u(x, t), f (x) and T (x, t) be as in Theorem 2.1 (or
s in Remark 2.2). There is a constant C > 0 depending only on Ω
nd d such that⟨
|∇T |2

⟩
≥

(>
Ω
ξ f dx

)2>
Ω
|∇ξ |2 dx+ C∥ξ∥2BMO(Ω)

⟨
|u|2

⟩ (3.6)

or every non-constant ξ ∈ H1(Ω)∩L∞(Ω) (or H1(Ω), respectively).

Remark 3.1. The same bound holds for unsteady f (x, t) with ⟨ξ f ⟩
in place of

>
Ω
ξ f , though if the time-average of f vanishes iden-

tically then this is not a useful bound. To improve the result, one
should use unsteady test functions ξ (x, t) following Theorem 2.1.
This leads to a bound with an additional term C⟨|∇∆−1∂tξ |

2
⟩ in

the denominator, the implications of which we leave to future
work.

Proof. Applying Theorem 2.1 with a steady test function ξ (x)
ives the lower bound

|∇T |2⟩ ≥ 2
?
Ω
f ξ dx−

?
Ω
|∇ξ |2 dx− ⟨|∇∆−1(u · ∇ξ )|

2
⟩.

ubstituting λξ for ξ and optimizing λ ∈ R, there follows

|∇T |2⟩ ≥

(>
Ω
f ξ dx

)2>
Ω
|∇ξ |2 dx+ ⟨|∇∆−1(u · ∇ξ )|2⟩

. (3.7)

ote the denominator is non-zero by our hypothesis on ξ . We
roceed to estimate ⟨|∇∆−1(u · ∇ξ )|2⟩. At almost every time,

Ω

|∇∆−1u · ∇ξ |
2
dx = max

ϕ(x)

(∫
Ω
u · ∇ξ ϕ dx
∥∇ϕ∥L2(Ω)

)2

= max
ϕ(x)

(∫
Ω
u · ∇ϕ ξ dx
∥∇ϕ∥L2(Ω)

)2

.

y the duality of H1 and BMO in (3.3) and the div–curl inequality
3.5),∫
Ω

u · ∇ϕ ξ dx
⏐⏐⏐⏐ ≲Ω,d ∥u · ∇ϕ∥H1(Ω)∥ξ∥BMO(Ω)

≲ ∥u∥ ∥∇ϕ∥ ∥ξ∥ .
Ω,d L2(Ω) L2(Ω) BMO(Ω)

7

Combining these statements and averaging in time, there follows

⟨|∇∆−1(u · ∇ξ )|
2
⟩ ≲Ω,d ⟨|u|2⟩ · ∥ξ∥2BMO(Ω).

Substituting into (3.7) yields the bound⟨
|∇T |2

⟩
≥

(>
Ω
ξ f dx

)2>
Ω
|∇ξ |2 dx+ C(Ω, d)∥ξ∥2BMO(Ω)⟨|u|

2
⟩
. □

How should the test function ξ (x) be chosen in this last result?
The answer depends, of course, on the domain Ω , the dimension
d and the structure of the source–sink function f . It also depends
on the magnitude of ⟨|u|2⟩. On the one hand, for sufficiently
small kinetic energies one expects to be able to ‘cross out’ the
second term in the denominator of (3.6), and select ξ through
the maximization

max
ξ (x)

(∫
Ω
ξ f dx

)2∫
Ω
|∇ξ |2 dx

= ∥f ∥2H−1(Ω). (3.8)

his leads to the choice ξ = ∆−1f . On the other hand, for large
|u|2⟩ one is lead to the maximization

max
ξ (x)

(∫
Ω
ξ f dx

)2
∥ξ∥2BMO(Ω)

∼Ω,d ∥f ∥2H1(Ω) (3.9)

by the duality between H1(Ω) and BMO(Ω). Here the best choice
of ξ is less apparent, though one achieving this equivalence is
always guaranteed to exist. (We guess that time-dependent f
could be handled similarly by a suitable smoothing in time of
the choices in (3.8) and (3.9), taking into account the additional
term ⟨|∇∆−1∂tξ |

2
⟩ from Remark 3.1.) Of course, once one makes

a choice for ξ , it can be plugged back into (3.6) to achieve a
lower bound with known constants at all values of ⟨|u|2⟩. We
demonstrate this in examples below.

3.3. Two examples

We now apply our variational bounds to a pair of examples
involving oscillatory or concentrated heating and cooling. In each
example, we deduce the scaling law of min ⟨|∇T |2⟩ with respect
to its parameters, along with velocity fields achieving the optimal
scalings. See Section 3.3.1 for oscillatory heating and our accom-
panying cellular flows, and Section 3.3.2 for concentrated heating
and our pinching flows.

3.3.1. Sinusoidal heating and cellular flows
Our first example optimizes heat transfer between a periodic

pattern of sources and sinks. Let Ω = (0, 2π )2 and take

f (x) =
1
2
cos

(
2y
ℓ

)
−

1
2
cos

(
2x
ℓ

)
. (3.10)

he parameter ℓ−1
∈ N sets the period of the pattern.

roposition 3.1. Under the above setup,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂t T+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min
{
ℓ2,

1
Pe2

}

for all ℓ−1
∈ N and Pe ≥ 0. The alternatives are achieved by no

low (ℓ2) or by the cellular flow (Pe−2) depicted in Fig. 1a of the
ntroduction.

roof of the lower bound. We begin with the general lower
ound⟨
|∇T |2

⟩
≥

(>
Ω
ξ f dx

)2> 2 2 2 (3.11)

Ω
|∇ξ | dx+ C(Ω)∥ξ∥BMO(Ω)Pe
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rom Corollary 3.1. The present f belongs to L∞(Ω) and is such
hat all of its Lp-norms are comparable. In particular, ∥f ∥L1(Ω) ∼

f ∥L∞(Ω) ∼ 1 for all ℓ. Also, ∥f ∥H1(Ω) ∼ ∥f ∥BMO(Ω) ∼ 1 and so
here exist many good choices of ξ .

Take, for example, ξ = f . Then

Ω

ξ f dx =

∫
Ω

f 2 dx =

∫
Ω

⏐⏐⏐⏐12 cos
(
2y
ℓ

)
−

1
2
cos

(
2x
ℓ

)⏐⏐⏐⏐2 dx ∼ 1

hile

f ∥BMO(Ω) ≤ 2∥f ∥L∞(Ω) ≤ 2.

lso,

Ω

|∇ξ |2 =

∫
Ω

|∇f |2

=

∫
Ω

⏐⏐⏐⏐−1
ℓ
sin
(
2y
ℓ

)
êy −

1
ℓ
sin
(
2x
ℓ

)
êx

⏐⏐⏐⏐2 dx ∼
1
ℓ2
.

Combining these estimates into (3.11) yields the lower bound⟨
|∇T |2

⟩
≳

1
ℓ−2 + Pe2

≳ min
{
ℓ2,

1
Pe2

}
.

roof of the upper bound. We seek a steady velocity u(x) whose
hermal dissipation is similar to the lower bound. To guide the
earch, consider the upper bound

|∇T |2
⟩
≤

?
Ω
|∇η|2 dx+

?
Ω
|∇∆−1(u · ∇η − f )|

2
dx

rom Corollary 2.1, which holds in the present two-dimensional
ase for all η ∈ H1(Ω). Making the change of variables

=
Pe√>

Ω
|ũ|2 dx

ũ and η =

√>
Ω
|ũ|2 dx

Pe
η̃

nd dropping the tildes yields the estimate

|∇T |2
⟩
≤

1
Pe2

?
Ω
|u|2 dx

?
Ω
|∇η|2 dx

+

?
Ω

⏐⏐∇∆−1(u · ∇η − f )
⏐⏐2 dx (3.12)

for all u and η. This reformulation simplifies the algebra, as it
allows us to neglect the kinetic energy constraint. Of course, it
is actually the unscaled velocity with kinetic energy equal to Pe
whose thermal dissipation we are estimating.

There are two alternatives to consider, depending on whether
we should take u = 0 or not. In the case with no flow, the choice
of η is immaterial and

⟨|∇T |2⟩ ≤
?
Ω

⏐⏐∇∆−1f
⏐⏐2 dx

=

?
Ω

⏐⏐⏐⏐− ℓ4 sin
(
2x
ℓ

)
êx +

ℓ

4
sin
(
2y
ℓ

)
êy

⏐⏐⏐⏐2 dx ∼ ℓ2

with êx and êy being the unit vectors along the x- and y-coor-
inates.
On the other hand, for the particular f in the example we

an easily construct an admissible pair (u, η) satisfying the pure
dvection equation

· ∇η = f .

imply take u = ∇
⊥ψ = (∂yψ,−∂xψ) with the stream function

(x) = l sin
(x
l

)
sin
(y
l

)
nd use the test function

(x) = −l cos
(x)

cos
(y)

.

l l

8

In fact, the definition of f in (3.10) was made precisely with these
choices in mind. The second term in (3.12) now vanishes, so that⟨
|∇T |2

⟩
≤

1
Pe2

?
Ω
|u|2 dx

?
Ω
|∇η|2 dx ≲

1
Pe2

.

Since we are always free to use either velocity field, the minimum
thermal dissipation is bounded according as

min
⟨
|∇T |2

⟩
≲ min

{
ℓ2,

1
Pe2

}
.

The proof is complete. □

3.3.2. Concentrated heating and pinching flows
Next we consider source–sink profiles of the general form

f (x) = f+(x)− f−(x)

here f± are non-negative and supported in disjoint balls Bϵ(x±)
entered at x± with radii ϵ > 0. Fixing units, we take

Bϵ (x±)
f±(x) dx = 1

nd x± = (0,±1/2). We also suppose that

f±∥L∞(Bϵ (x±)) ≲
1
ϵ2

and ∥∇f±∥L∞(Bϵ (x±)) ≲
1
ϵ3

and impose the ‘up–down’ symmetry condition

f+(x, y) = f−(x,−y) (3.13)

saying that the heat added by f+ at (x, y) matches the heat taken
way by f− at (x,−y). A source–sink distribution satisfying these
onditions can be constructed by smoothing a point source and
oint sink across a scale ∼ ϵ; there are of course many other
ossibilities. Regarding the domain, we assume for simplicity that
t is the square Ω = (−1, 1)2.

roposition 3.2. Under the above setup,

min
u(x,t)

⟨|u|2⟩≤Pe2
∂t T+u·∇T=∆T+f

⟨|∇T |2⟩ ∼ min

{
log

1
ϵ
,

(
log

1
ϵ

)2 1
Pe2

}

for all ϵ ∈ (0, 1/20) and Pe ≥ 0. The alternatives are achieved by
no flow (log(ϵ−1)) or by the pinching flow (log2(ϵ−1)Pe−2) depicted
in Fig. 1b of the introduction.

Remark 3.2. Our setup is already quite general, but one can
generalize it further without altering the scaling of the result.
This includes allowing the symmetry condition (3.13) to hold only
fter integration in x, or considering domains Ω that include the
inching flows we use to prove the upper bound.

roof of the lower bound. Again we begin with the lower bound⟨
|∇T |2

⟩
≥

(>
Ω
ξ f dx

)2>
Ω
|∇ξ |2 dx+ C(Ω)∥ξ∥2BMO(Ω)Pe

2 (3.14)

rom Corollary 3.1. Recall the example of the smoothed Dirac
ass discussed in Section 3.1, which had logarithmically diverg-

ng H1-norm as ϵ → 0. This prompts us to look for a test function
(x) with the properties that

Ω

ξ f dx ≳ log
1
ϵ

and ∥ξ∥BMO(Ω) ≲ 1,

which would prove in the present setting that ∥f ∥H1 ≳ log ϵ−1.
A suitable choice is given by

ξ (x) =

⎧⎨⎩
ξ0(|x− x+|) if |x− x+| ≤ 1

4
−ξ0(|x− x−|) if |x− x−| ≤ 1

4

0 otherwise
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here

ξ0(r) =

⎧⎨⎩
log( 1

4ϵ ) if r ≤ ϵ

log( 1
4r ) if ϵ < r ≤ 1/4

0 otherwise.

For one,∫
Ω

ξ f dx =

∫
Bϵ (x+)

ξ0(|x− x+|)f+(x) dx

+

∫
Bϵ (x−)

ξ0(|x− x−|)f−(x) dx = 2 log
(

1
4ϵ

)
≳ log

1
ϵ
.

lso, ∥ξ∥BMO(Ω) ≲ 1 as log(|x|) ∈ BMO(Rd), and since the mini-
um and maximum of two functions g, h ∈ BMO(Rd) have BMO-
orms bounded by a multiple of ∥g∥BMO(Rd) + ∥h∥BMO(Rd) (see
48, Ch. IV]).

Continuing, we compute the H1-norm in the dominator of
3.14). Evidently,

Ω

|∇ξ |2 dx =

∫
Ω\Bϵ (x+)

|∇ξ0(|x− x+|)|2dx

+

∫
Ω\Bϵ (x−)

|∇ξ0(|x− x−|)|2 dx ≲

∫ r=1/4

r=ϵ

1
r
dr

≲ log
1
ϵ
.

ssembling the estimates shows that

|∇T |2⟩ ≳

(
log 1

ϵ

)2
log 1

ϵ
+ Pe2

∼ min

{
log

1
ϵ
,

(
log

1
ϵ

)2 1
Pe2

}
.

roof of the upper bound. We turn to construct steady velocity
ields u(x) saturating the lower bound. Arguing just as in proof of
roposition 3.1 (see the derivation leading up to (3.12)) we apply
orollary 2.1 to show that

|∇T |2
⟩
≤

1
Pe2

?
Ω
|u|2 dx

?
Ω
|∇η|2 dx+

?
Ω

⏐⏐∇∆−1(u · ∇η − f )
⏐⏐2 dx

(3.15)

here T is the temperature field associated to the scaled version
f u with mean kinetic energy Pe. Again, this upper bound applies
or any choice of u and η, regardless of the L2-norm of the
elocity. We shall consider two different choices for (u, η), the

first of which involves no flow, and the second of which is the
anticipated pinching flow.
No flow. The first possibility is to take u = 0. Then η drops out
in (3.15), and we see that

⟨|∇T |2⟩ ≤
?
Ω

⏐⏐∇∆−1f
⏐⏐2 dx = max

ϕ(x)>
Ω ϕ dx=0

⏐⏐>
Ω
ϕ(f+ − f−)

⏐⏐2>
Ω
|∇ϕ|2

.

o prove that ⟨|∇T |2⟩ ≲ log(ϵ−1), which is the desired upper
ound in this case, it suffices to show that⏐⏐⏐⏐∫
Ω

ϕ±f± dx
⏐⏐⏐⏐2 ≲ log

(
1
ϵ

)∫
Ω

|∇ϕ|2 dx. (3.16)

Here, ϕ± are the positive and negative parts of ϕ, and we allow
for any combination of pluses and minuses on the left (e.g., ϕ+f−).
ince the argument is the same for all combinations, we use ϕ+f+.
y our assumptions on f ,

ϕ+f+ dx =

∫
ϕ+f+ dx ≲

?
ϕ+ dx
Ω Bϵ (x+) Qϵ (x+)

9

here Qϵ(x+) is a square of side length ϵ centered at x+. The
desired bound now follows from a BMO-type argument, involv-
ing controlling consecutive jumps in the average of ϕ+ along a
sequence of squares going from Qϵ(x+) to Ω .

Since Ω = (−1, 1)2, there is a sequence of squares Q1, . . . ,QN
⊂ Ω of ever increasing diameters and with the following proper-
ties: (i) the first square is Q1 = Qϵ(x+) and the last square is Ω;
(ii) consecutive squares intersect, with an area |Qi ∩ Qi+1| that is
ithin a factor of 5 of the areas |Qi| and |Qi+1|; (iii) no more than

10 squares include any given x ∈ Ω; (iv) there are N ∼ log(1/ϵ)
squares in total. To use the squares, observe first that⏐⏐⏐⏐?Qi

ϕ+ dx−
?
Qi+1

ϕ+ dx
⏐⏐⏐⏐2

≲

?
Qi

⏐⏐⏐⏐ϕ+ −

?
Qi
ϕ+

⏐⏐⏐⏐2 dx+
?
Qi+1

⏐⏐⏐⏐ϕ+ −

?
Qi+1

ϕ+

⏐⏐⏐⏐2 dx

≲

∫
Qi∪Qi+1

|∇ϕ+|
2 dx

by condition (ii) and Poincaré’s inequality for d = 2. Summing up
ver consecutive pairs of squares,?
Qϵ (x+)

ϕ+ dx−
?
Ω
ϕ+ dx

⏐⏐⏐⏐2 =
⏐⏐⏐⏐⏐
N−1∑
i=1

?
Qi
ϕ+ dx−

?
Qi+1

ϕ+ dx

⏐⏐⏐⏐⏐
2

≲ N
N−1∑
i=1

⏐⏐⏐⏐?Qi
ϕ+ dx−

?
Qi+1

ϕ+ dx
⏐⏐⏐⏐2

≲ N
N−1∑
i=1

∫
Qi∪Qi+1

|∇ϕ+|
2 dx

≲ N
∫
Ω

|∇ϕ+|
2 dx

where in the first step we used condition (i), in the second step
we applied the Cauchy–Schwarz inequality and in the last step
we used condition (iii). Since⏐⏐⏐?
Ω
ϕ+ dx

⏐⏐⏐2 ≲

∫
Ω

|ϕ|2 dx ≲

∫
Ω

|∇ϕ|2 dx

e can conclude the result. In particular,∫
Ω

ϕ+f+ dx
⏐⏐⏐⏐2 ≲

⏐⏐⏐⏐?Qϵ (x+)
ϕ+ dx

⏐⏐⏐⏐2
≲
⏐⏐⏐?
Ω
ϕ+ dx

⏐⏐⏐2 + ⏐⏐⏐⏐?Qϵ (x+)
ϕ+ dx−

?
Ω
ϕ+ dx

⏐⏐⏐⏐2
≲ (1+ N)

∫
Ω

|∇ϕ|2 dx ≲ log
(
1
ϵ

)∫
Ω

|∇ϕ|2 dx

by condition (iv). This shows (3.16) and hence

|∇T |2⟩ ≲ log
1
ϵ

for the choice u = 0.
Pinching flows. Next we achieve ⟨|∇T |2⟩ ≲ log2(ϵ−1)Pe−2 using
a ‘pinching’ flow. The flow we have in mind squeezes a large
portion of the domain Ω into the balls Bϵ(x±) where the heat is
being added and taken away. This requires the velocity to grow
as 1/|x− x±|, which results in a logarithmically diverging kinetic
energy. At the same time we will enforce the pure advection
equation u · ∇η = f leading to a similar divergence in the
homogeneous H1-norm of η. Using all of this in the bound⟨
|∇T |2

⟩
≤

1
Pe2

?
Ω
|u|2 dx

?
Ω
|∇η|2 dx (3.17)

which follows from (3.15) will lead to the desired result.
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The key task is to find a way to solve the pure advection
equation with the given source–sink functions f = f+ − f−. Our
olution will be symmetric under the reflection (x, y) ↦→ (x,−y),
o we define it explicitly on the upper-half plane. Introduce polar
oordinates (r, θ ) centered at (0, 1/2 + 2ϵ), and let Rϵ be the
ectangle centered at x+ = (0, 1/2) with vertical side length 2ϵ
nd horizontal side length 2

√
3ϵ. The rectangle is defined such

hat it contains the ball Bϵ(x+) where the source f+ is supported,
nd is such that its top and bottom sides are tangent to this ball.
utside of Rϵ and for y > 0, we define u = ∇

⊥ψ1 with

1(θ ) =

⎧⎪⎪⎨⎪⎪⎩
11π
6 − θ θ ∈ ( 5π3 ,

11π
6 ]

π
6 θ ∈ ( 4π3 ,

5π
3 ]

θ − 7π
6 θ ∈ ( 7π6 ,

4π
3 ]

0 otherwise.

he streamlines are left–right symmetric and are arranged in two
rapezoidal channels, and the flow enters the rectangle Rϵ from
he right and exits it on the left. Inside Rϵ , we use a horizontal
low that matches the inflow and outflow conditions of the prior
onstruction on the vertical sides of Rϵ . Specifically, we take u =
⊥ψ2 with

2(y) = ψ1

(
2π + arctan

(
2y− 1− 4ϵ

2
√
3ϵ

))
= −

π

6
− arctan

(
2y− 1− 4ϵ

2
√
3ϵ

)
.

he rest of the flow is defined by odd reflection across the line
= 0.
Having chosen u, we now show how to solve u · ∇η = f

to produce the required test function η. Inside Rϵ the equation
simplifies to ∂yψ2∂xη = f , which we integrate to get η = η2 with

η2(x) =
∫ x

0

f (s, y)
∂yψ2(y)

ds = −

∫ x

0

12ϵ2 + (2y− 1− 4ϵ)2

4
√
3ϵ

f (s, y) ds.

utside of Rϵ and for y > 0, we take η = η1 = 0 in reg-
ons of no flow, and choose η1 to be otherwise constant along
he streamlines. Matching conditions are imposed to ensure con-
inuity across the boundary of Rϵ . In formulas,

1(θ ) =

⎧⎨⎩
η2(

√
3ϵ, 1

2 + 2ϵ +
√
3ϵ tan θ ) if θ ∈ ( 5π3 ,

11π
6 ]

η2(−
√
3ϵ, 1

2 + 2ϵ −
√
3ϵ tan θ ) if θ ∈ ( 7π6 ,

4π
3 ]

0 otherwise.

This gives u · ∇η1 = 0 outside of Rϵ , and then we define η for
y < 0 by reflection about y = 0. Altogether, we have produced a
pair (u, η) solving the pure advection equation u · ∇η = f on Ω .

To complete the proof we must estimate the L2-norms of u
nd ∇η. By the up–down symmetry,

Ω

|u|2 dx ≲

∫
(Ω\Rϵ )∩{y>0}

|∇ψ1|
2 dx+

∫
Rϵ
|∇ψ2|

2 dx

≲

∫ 2π

0

∫ 1
2

2
√
3
|∂rψ1|

2
+

⏐⏐⏐⏐1r ∂θψ1

⏐⏐⏐⏐2 rdrdθ

+

∫
Rϵ

⏐⏐⏐⏐⏐ 4
√
3ϵ

12ϵ2 + (2y− 1− 4ϵ)2

⏐⏐⏐⏐⏐
2

dx

≲ log
(
1
ϵ

)
+ 1

similar calculation using the bounds |f | ≲ ϵ−2 and |∇f | ≲ ϵ−3

assumed at the start of the example gives that∫
|∇η|2 dx ≲ log

(
1
)
+ 1.
Ω ϵ

10
Plugging these estimates into (3.17) shows that⟨
|∇T |2

⟩
≲

log2(1/ϵ)
Pe2

for our pinching flow.
Using the better of the two flows — no flow or the pinching

flow — bounds the minimum thermal dissipation by

min ⟨|∇T |2⟩ ≲ min

{
log

1
ϵ
,

(
log

1
ϵ

)2 1
Pe2

}
.

The proof is complete. □

4. Asymptotic analysis of steady optimal flows

Each of the lower bounds from the previous section rearranges
to give an asymptotic result: given a sequence {(un, Tn)} solving
he advection–diffusion equation with source–sink f (x) and with
⟨|un|

2
⟩ → ∞,

lim inf
n→∞

⟨|un|
2
⟩ · ⟨|∇Tn|2⟩ ≳Ω,d ∥f ∥2H1(Ω) > 0.

The cellular and pinching flow examples from Section 3.3 give
scenarios in which this bound is sharp in its scaling with respect
to the mean kinetic energy ⟨|un|

2
⟩, as well as features of f .

otivated by this, we now ask what it takes for a sequence
f velocity fields to be ‘almost optimal’ in the sense that their
hermal dissipation is minimized at leading order. Focusing on
he fully steady case where u = u(x), f = f (x) and T = T (x), we
obtain a limiting variational problem whose minimizers encode
key asymptotic properties of almost minimizers (including min-
imizers as a special case). The minimum value of this problem
gives the sharpest possible asymptotic lower bound.

A word about setup is required, especially regarding the reg-
ularity of our velocity fields. Depending on the application, one
may wish to constrain a different norm of the velocity other than
the kinetic energy-based L2-one we have used so far (e.g., the con-
vection problem treated in Section 5 lends itself to the H1-norm).
In this section, we consider divergence-free and no-penetration
velocities u belonging to a general Banach space (X, ∥ ·∥X ), which
for a technical reason we must assume is continuously embedded
into Ld(Ω) via the inequality ∥ · ∥Ld(Ω) ≲ ∥ · ∥X . We further
assume X is a dual space, so that its unit ball ∥ · ∥X ≤ 1 is
weak-∗ compact [52]; this ensures the existence of optimizers
for the problems we consider below. Following Remark 2.4, we
let f ∈ H−1(Ω) and be mean-free.

Given this setup, we ask to take the parameter Pe → ∞ in the
sequence of minimization problems

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

?
Ω
|∇T |2 dx. (4.1)

Applying the sharp variational upper bound from Corollary 2.1,
we learn that

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

?
Ω
|∇T |2 dx

= min
u(x),η(x)
∥u∥X≤Pe

?
Ω
|∇η|2 + |∇∆−1(u · ∇η − f )|

2
dx (4.2)

where the admissible η belong to H1(Ω). The differential equation
on the left-hand side is enforced by the optimization on the right.
It follows from the right-hand formulation that optimal velocities
achieve ∥u∥X = Pe if f is not identically zero, since otherwise one
could decrease the minimum by replacing (u, η) with (λu, λ−1η)
for some λ > 1.

First, we identify a sufficient and necessary condition for the
−2
minimum to scale as Pe .
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emma 4.1. There holds

im sup
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx <∞

f and only if there exists (u0, T0) ∈ X × H1(Ω) satisfying⎧⎨⎩
u0 · ∇T0 = f in Ω
∇ · u0 = 0 in Ω
u0 · n̂ = 0 at ∂Ω.

(4.3)

roof. That the existence of (u0, T0) implies the asserted Pe−2

ound follows from the right-hand formulation of the optimiza-
ion in (4.2). Indeed, we can always assume that ∥u0∥X = 1,
nd then setting (u, η) = (Peu0, Pe−1T0) into (4.2) shows that
in
>
Ω
|∇T |2 ≤ Pe−2 >

Ω
|∇T0|2 for all Pe.

For the reverse implication, let {uPe} be an admissible se-
uence for the finite-Pe problems, with ∥uPe∥X ≤ Pe and whose
emperatures {TPe} obey

>
Ω
|∇TPe|2 ≲ Pe−2. Rescale to the vari-

bles (ũPe, T̃Pe) := (Pe−1uPe, PeTPe) to find that

uPe∥X = 1, ∥∇TPe∥L2(Ω) ≤ 1 and uPe · ∇TPe =
1
Pe
∆TPe + f

fter dropping the tildes. Applying the Banach–Alaoglu theo-
em [53] to the dual Banach space X and using our assumption
hat it is continuously embedded into Ld(Ω), hence also in L2(Ω)
ince d ≥ 2, we can extract a subsequence {uPe, TPe} (not rela-
eled) converging weakly-∗ to (u0, T0) both in X × H1(Ω) and in
2(Ω)× H1(Ω). Note

uPe · ∇TPe − f ∥H−1(Ω) =

 1
Pe
∆TPe


H−1(Ω)

=
1
Pe

∥∇TPe∥L2(Ω) ≤
1
Pe

→ 0

by the definition of the H−1-norm in 1.1. An application of the
div–curl lemma [54, Theorem 4 in §5.B] then verifies that the dot
product uPe · ∇TPe converges to u0 · ∇T0, and hence u0 · ∇T0 = f .
he incompressibility and no-penetration conditions for uPe are
lso preserved in the weak-∗ limit, so that they hold for u0. □

We come now to the main result of this section, in which we
escale the minimization problem (4.1) by Pe−2 and take Pe →

. A sequence of admissible velocities {uPe} with ∥uPe∥X ≤ Pe
s said to be almost minimizing if their corresponding (steady)
emperature fields {TPe} satisfy?
Ω
|∇TPe|2 dx = min

u(x)
∥u∥X≤Pe

u·∇T=∆T+f

?
Ω
|∇T |2 dx+ o(Pe−2) as Pe → ∞.

(4.4)

ncluded in this definition are sequences of optimizers.

heorem 4.1. Assume the pure advection system (4.3) has a solution
n X × H1(Ω). Then,

lim
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx = min

u0(x),T0(x)
∥u0∥X≤1
u0 ·∇T0=f

?
Ω
|∇T0|2 dx (4.5)

here the minimization on the right is over all solutions of (4.3) in
× H1(Ω). Also, u0 solves this limiting problem if and only if it is
weak-∗ limit point in X of a sequence {Pe−1uPe} where {uPe} is
lmost minimizing on the left.

emark 4.1. If f is not identically zero, any optimal velocity u0
n the limiting problem has unit norm, i.e., ∥u ∥ = 1. Indeed,
0 X

11
increasing the norm of u0 decreases the value of
>
Ω
|∇T0|2 dx via

the coupling u0·∇T0 = f . This is the limiting version of the similar
observation made directly after (4.2) for finite Pe.

Remark 4.2. Both the dependence of T on u in the finite-Pe
problems, and of optimal T0 on u0 at Pe = ∞ are one-to-one. The
former is the uniqueness-property of steady advection–diffusion;
the latter comes from the fact that the limiting minimization is
strictly convex in T0 when u0 is fixed, hence optimal T0 depend
uniquely on u0. A partial converse holds: if the closed unit ball
∥ · ∥X ≤ 1 of X is strictly convex, the correspondence between
optimal u0 and optimal T0 is one-to-one. To see this, note that
any two optimizers u0 and u′

0 lie on the boundary of the unit
ball (by the previous remark). But then their average (u0 + u′

0)/2
would also be optimal, which is a contradiction unless u0 = u′

0.

Remark 4.3. It is natural to ask whether the limit points of the
rescaled temperatures {PeTPe} generated by almost minimizers
{uPe} are also captured by the limiting problem. In one direction,
it follows from the proof below that the weak-H1 limit points of
{PeTPe} are always optimal for the limiting problem. The converse
holds if the space X has an additional ‘Radon–Riesz like’ property,
which requires that every sequence {un} converging weakly-∗ to
a vector u with ∥un∥X → ∥u∥X also converges strongly to u. If
X is a Hilbert space then it has this property; uniformly convex
spaces such as Lp(Ω) for p ∈ (1,∞) do as well [52]. Under
this additional assumption, one can prove that the sequence of
almost minimizing rescaled velocities {Pe−1uPe} recovering u0 as
in the statement actually converges strongly in X to u0 (they
consistently lie on the boundary of the unit ball). This and the first
part of the previous remark imply that {PeTPe} converges strongly
in H1, to the unique optimizer T0 corresponding to u0.

Proof. The proof is a tightening of the argument behind
Lemma 4.1. The upper bound

lim sup
Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx ≤ min

u0(x),T0(x)
∥u0∥X≤1
u0 ·∇T0=f

?
Ω
|∇T0|2 dx (4.6)

follows just as in the ‘if’ part of the lemma. In particular, any
admissible (u0, T0) with ∥u0∥X = 1 on the right satisfies

Pe2
?
Ω
|∇TPe|2 dx ≤

?
Ω
|∇T0|2 dx (4.7)

where TPe solves the advection–diffusion equation with uPe =

Peu0 (use η = Pe−1T0 in Corollary 2.1). The desired inequality
(4.6) follows from minimizing over (u0, T0). In particular, when
f is not identically zero we can discard the case ∥u0∥X < 1 as
being sub-optimal per Remark 4.1; if f is identically zero, there
is nothing to show.

Next, we show the lower bound

min
u0(x),T0(x)
∥u0∥X≤1
u0 ·∇T0=f

?
Ω
|∇T0|2 dx ≤ lim inf

Pe→∞

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx. (4.8)

Start by considering a general admissible sequence {uPe} on the
right, with ∥uPe∥X ≤ Pe and whose temperatures {TPe} can be
taken to obey

>
Ω
|∇TPe|2 ≲ Pe−2 as otherwise there is nothing

to show. Again following the proof of Lemma 4.1, we rescale
to {(Pe−1uPe, PeTPe)} and extract a weak-∗ limit point (u0, T0) ∈

X × H1(Ω) solving the pure advection system (4.3). Moreover,

∥u0∥X ≤ lim inf
Pe→∞

∥Pe−1uPe∥X ≤ 1, (4.9a)?
Ω
|∇T0|2 dx ≤ lim inf

Pe→∞

Pe2
?
Ω
|∇TPe|2 dx (4.9b)
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y the weak-∗ lower semi-continuity of (dual) norms. Minimizing
ver all sequences {uPe} with the above properties yields (4.8). At
his stage, it is clear that both inequalities in (4.6) and (4.8) are
ctually equalities, so (4.5) is proved.
We end with the pairing between weak-∗ limit points of

lmost minimizers {uPe}, which by definition obey (4.4), and the
olutions (u0, T0) of the limiting problem. Suppose u0 is optimal in
he limit. Going back to the proof of the upper bound (4.6), we see
hat the rescaled velocities {Peu0} must be almost minimizers. In
articular, the left-hand sides of (4.6) and the optimized version
f (4.7) are equal up to o(1) terms. Conversely, if the sequence
uPe} used in the proof of (4.8) is almost minimizing, then the
eak-∗ limit points (u0, T0) found by rescaling must be optimal

n the limit. This is because the left-hand sides of (4.8) and (4.9b)
ecome equal when the latter is applied to an almost minimizing
equence. □

. Internally heated buoyancy-driven flows

We finally come to the problem of bounding the heat trans-
ort of an internally heated buoyancy-driven flow. As usual, we
ssume the source–sink function f (x) is mean-free so that its
eating and cooling is balanced, and suppose it is not identically
ero. The velocity u(x, t) and temperature T (x, t) are required to
atisfy the equations

r−1 (∂tu+ u · ∇u) = ∆u+ RTg −∇p (5.1a)

tT + u · ∇T = ∆T + f (5.1b)

n addition to the usual divergence-free and no-penetration
oundary conditions. Here, g(x) = ∇ϕ(x) is a conservative
ravitational acceleration field with a non-constant potential ϕ ∈
1(Ω). For example, setting ϕ = z gives g = k̂ which is a
ommon choice in studies of convection.
Momentum conservation implies balance laws relating the

low’s mean enstrophy ⟨|∇u|2⟩ to the Rayleigh-like number R
easuring the strength of buoyancy relative to viscosity. These
alances laws are insensitive to the Prandtl number Pr , so it
rops out of the analysis. (See the introduction for formulas giving
and Pr in terms of dimensional parameters). Requiring u to

atisfy such balance laws should in principle significantly restrict
eat transport. We obtain a trio of lower bounds confirming
his intuition for sources and sinks that are not aligned with
ravity.

.1. Bounds on enstrophy-constrained flows

We start by deriving bounds on the heat transport achieved
y general incompressible flows in terms of their mean enstro-
hy ⟨|∇u|2⟩. These follow from Corollary 3.1 and the fact that
oincaré’s inequality allows us to relate the mean enstrophy to
he mean energy ⟨|u|2⟩. Namely,

|u|2⟩ ≤ µ⟨|∇u|2⟩ (5.2)

or all divergence-free u with u · n̂ = 0 at ∂Ω . This can be
hecked for an arbitrary bounded Lipschitz domain Ω using an
rgument-by-contradiction, with the crucial point being that the
nly constant flow satisfying no-penetration conditions is no flow
see, e.g., [55]). The optimal constant satisfies

1
µ

= min
u(x)

∫
Ω
|∇u|2 dx∫
|u|2 dx
Ω

12
with divergence-free and no-penetration conditions. Applying
(5.2) to the lower bound from Corollary 3.1 and eliminating the
test function ξ proves the following result:

Corollary 5.1. Suppose the hypotheses of Corollary 3.1 hold and let
⟨|∇u|2⟩ <∞. There are positive constants C1, C2 and C3 depending
on the domain Ω , the dimension d and the source–sink distribution
f such that

⟨|∇T |2⟩ ≥
C1

C2 + C3⟨|∇u|2⟩
. (5.3)

Remark 5.1. For flows in dimensions d = 2, 3 this result does not
require the second assumption on f in (2.2). This follows from
Remark 2.1 because flows with bounded mean enstrophy belong
to Lp(Ω) at a.e. time for p < 2d/(d−2), by the Sobolev embedding
theorem.

5.2. Balance laws

The next ingredient for deriving Rayleigh-dependent bounds
on ⟨|∇T |2⟩ is a pair of balance laws relating the mean enstrophy
⟨|∇u|2⟩ to the flux-based Rayleigh number R in the momentum
equation. The first law states that the rate of energy loss to
viscous dissipation must balance the total power supplied to drive
the flow:

⟨|∇u|2⟩ = ⟨RTg · u⟩ . (5.4)

To prove it, dot (5.1a) by u and integrate by parts in space and
ime, using the no-penetration conditions to drop the boundary
erms.

A second balance law is obtained by testing the advection–
iffusion equation (5.1b) against the gravitational potential ϕ.
ecalling that g = ∇ϕ, this yields

− ⟨f ϕ⟩ = ⟨g · (uT −∇T )⟩ . (5.5)

n the Boussinesq approximation, temperature and density vari-
tions are negatively proportional to one another (see, e.g., [56]).
hus, we can interpret this balance law as expressing a con-
ervation of total gravitational potential energy: the change in
otential energy due to the heating and cooling must balance a
imilar change from the total heat flux.
Combining (5.4) with (5.5) and applying the Cauchy–Schwarz

nequality, we deduce that

|∇u|2⟩ = R ⟨g · ∇T − f ϕ⟩

≤ R⟨|g |2⟩
1
2 ⟨|∇T |2⟩

1
2 − R ⟨f ϕ⟩ . (5.6)

This sets a Rayleigh-dependent limit on the advective intensity of
buoyancy-driven internally heated flows.

5.3. Bounds on buoyancy-driven flows

It is now an algebraic exercise to obtain lower bounds on the
heat transport of internally heated buoyancy-driven flows. Here
is the result:

Theorem 5.1. Let u(x, t) and T (x, t) solve the Boussinesq equations
(5.1) with insulating and no-penetration boundary conditions. Let
f (x) be a balanced and steady source–sink distribution satisfying the
assumptions of Corollary 3.1, and take C , C and C to be as in
1 2 3
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orollary 5.1. We have the following bounds:

1. If ⟨f ϕ⟩ > 0,

⟨|∇T |2⟩ ≥
⟨f ϕ⟩2

⟨|g |2⟩
for all R;

2. If ⟨f ϕ⟩ = 0, there exists R0 > 0 such that

⟨|∇T |2⟩ ≥

(
C1

2C3⟨|g |2⟩
1
2 R

) 2
3

for all R > R0;

3. If ⟨f ϕ⟩ < 0, there exists R1 > 0 such that

⟨|∇T |2⟩ ≥
C1

2C3 |⟨f ϕ⟩| R
for all R > R1.

emark 5.2. Theorem 5.1 actually applies to all divergence-free
nd no-penetration velocities u and temperatures T that need
ot solve the Boussinesq equations, but only satisfy the balance
aws (5.5) and the (time-averaged) energy inequality ⟨|∇u|2⟩ ≤

⟨RTg · u⟩, which is a weakening of (5.4). These conditions, and
hence our bounds, hold for Leray–Hopf solutions of (5.1) (see
[57,58] for similar comments in the context of Rayleigh–Bénard
convection).

Proof. Statement 1 is a direct consequence of estimate (5.6), the
onnegativity of ⟨|∇u|2⟩ and the assumed positivity of ⟨f ϕ⟩.
For the other two statements, start by combining (5.6) with

he general lower bound in (5.3) to deduce that

|∇T |2⟩ ≥
C1

C2 + C3R⟨|g |2⟩
1
2 ⟨|∇T |2⟩

1
2 + C3R |⟨f ϕ⟩|

. (5.7)

o prove statement 2, set ⟨f ϕ⟩ = 0 to obtain

|∇T |2⟩ ≥
C1

C2 + C3R⟨|g |2⟩
1
2 ⟨|∇T |2⟩

1
2
. (5.8)

his implies that ⟨|∇T |2⟩ ≥ C1/(2C2) if ⟨|∇T |2⟩ ≤ C2
2 /(C

2
3R

2
⟨|g |2⟩),

hich is a contradiction if R is sufficiently large. Thus we can take
|∇T |2⟩ ≥ C2

2 /(C
2
3R

2
⟨|g |2⟩), in which case a manipulation of (5.8)

proves the desired bound.
Statement 3 follows from a similar argument. Note we can as-

sume that C2 + C3R⟨|g |2⟩
1
2 ⟨|∇T |2⟩

1
2 ≤ C3R |⟨f ϕ⟩|, since otherwise

⟨|∇T |2⟩ ≥ ⟨f ϕ⟩2/(2⟨|g |2⟩) for large enough R. The desired bound
now follows from (5.7). □

We close by discussing the physical meaning of ⟨f ϕ⟩ and
its role in Theorem 5.1. As was mentioned briefly after (5.5),
n the Boussinesq approximation temperature variations δT are
egatively proportional to density variations δρ via the coefficient
f thermal expansion. So, f can be thought of not only as a
istributed heat source/sink but also as a sink/source of density.
n this light, the three cases in Theorem 5.1 have to do with
hether there is a net negative, zero or positive supply of gravita-
ional potential energy from f . With a positive supply, a strongly
onvecting and perhaps turbulent flow can result, leading to
ighly efficient heat transport consistent with our third bound
⟨f ϕ⟩ < 0). In contrast, a zero or negative potential energy supply
nhibits convection and with it heat transport. This is reflected by
he significant barriers to heat transport expressed in the first and
econd bounds (⟨f ϕ⟩ > 0 or = 0). We wonder whether, in these
ases, turbulence could in some sense be ruled out.

. Conclusion

This paper discussed heat transport by incompressible flows in
n insulated domain with a balanced distribution of heat sources
13
nd sinks. When the temperature T (x, t) is a passive scalar that
iffuses and is advected by a divergence-free and no-penetration
elocity field u(x, t), we showed in Section 3 that

|∇T |2⟩ ≥

(>
Ω
ξ f dx

)2>
Ω
|∇ξ |2 dx+ C(Ω, d)∥ξ∥2BMO(Ω)

⟨
|u|2

⟩ . (6.1)

This bound holds for mean-free and steady source–sink functions
f (x), with a constant C(Ω, d) depending on the flow domain Ω
and the dimension d ≥ 2. It involves a choice of test function ξ (x)
which can be optimized to obtain a best-case lower bound (see
Corollary 3.1, and also Remark 3.1 which discusses unsteady f and
ξ ). Actually, (6.1) derives from a more general bound on the heat
ransport of unsteady source–sink functions and flows, proved
n Section 2 with a complementary upper bound. As shown by
orollary 2.1, these bounds are sharp if both u(x) and f (x) are
teady.
We then applied our bounding framework to construct op-

imal, or at least highly competitive, flows. One example in
ection 3.3 was of a two-dimensional cellular flow adapted to
inusoidal heating and cooling. A second example involved a
inching flow between concentrated sources and sinks. The lat-
er highlighted our use of Hardy and BMO norms, which came
ith the choice to apply the div–curl inequality of Coifman,
ions, Meyers and Semmes [46] to control the non-local term
|∇∆−1(u · ∇ξ )|2⟩ in an intermediate step. This extended the esti-
ates of [19,21,37] from the setting of statistically homogeneous
nd isotropic flows in periodic domains to general flows and
omains. The Hardy space norm was pivotal for identifying the
ptimal scaling of min ⟨|∇T |2⟩ with respect to the size of the
ources and sinks, and for showing the (near) optimality of our
inching flows. The status of pinching flows for other objectives
uch as ⟨T 2

⟩, or in higher dimensions with d > 2, remains to be
een.
More generally, for a fixed distribution of heating and cooling

(x) such that the pure and steady advection equation u · ∇T = f
s solvable, we showed the convergence

min
u(x)

∥u∥X≤Pe
u·∇T=∆T+f

Pe2
?
Ω
|∇T |2 dx → min

u0(x),T0(x)
∥u0∥X≤1
u0 ·∇T0=f

?
Ω
|∇T0|2 dx as Pe → ∞

(6.2)

here the Péclet number Pe sets the maximum flow intensity
easured in a Banach space norm, ∥ · ∥X . The argument in
ection 4 showed that the minimum values converge, and also
hat the minimizers (and almost minimizers) of the finite-Pe
roblems on the left-hand side of (6.2) converge to those of the
imiting problem on its right. Whether or not the pure advection
quation is actually solvable is a fascinating and generally open
uestion, even in two dimensions (see [42] and the references
herein). Solving it was a key part of the examples in Section 3.3.

Finally, we leveraged balance laws implied by momentum
onservation to produce lower bounds on ⟨|∇T |2⟩ for buoyancy-
driven internally heated flows. Section 5 considered flows driven
by steady heating and cooling f (x) and a steady conservative
gravitational acceleration g(x) = ∇ϕ(x), with the standard setting
being ϕ = z. For asymptotically large values of the flux-based
Rayleigh number R, we proved that

⟨|∇T |2⟩ ≳Ω,d,f ,g

⎧⎨⎩
1 if ⟨f ϕ⟩ > 0
R−2/3 if ⟨f ϕ⟩ = 0
R−1 if ⟨f ϕ⟩ < 0

(6.3)

with a prefactor depending on the domain Ω , the dimension d,
the source–sink distribution f and the gravity g . The three scaling
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egimes distinguish whether the spatial arrangement of the heat
ources and sinks supplies the fluid with a net negative, zero or
ositive input of gravitational potential energy. Quite naturally, in
he first two cases buoyancy-driven flows have severely limited
eat transfer. This leaves open questions about the actual flow.
e wonder if ⟨f ϕ⟩ > 0 implies that ‘turbulence’ cannot occur,

s one might expect it to produce well-mixed temperatures with
|∇T |2⟩ ≪ 1. It should be especially interesting to investigate the
orderline case ⟨f ϕ⟩ = 0, where the possibility of turbulence may
e sensitive to the details of the setup (e.g., the shape of the flow
omain, or the fine details of the heat sources and sinks versus
he gravity).

Contrary to our lower bounds on passive advection–diffusion,
e do not know if the estimates in (6.3) are ever sharp, or even if
hey depend optimally on R. Turbulent flows in experiments and
imulations with ⟨f ϕ⟩ < 0 have ⟨|∇T |2⟩ ∼ R−1/2 [5–7,13], which
s much larger than our lower bound. This gap is in line with
he broader literature on convection. For instance, with uniformly
eated convection between cooled boundaries, the lower bound
|∇T |2⟩ ≳ R−1/3 by Lu and Doering [8] is far from the ⟨|∇T |2⟩ ∼
−1/5 scaling seen in simulations [9]. Similarly, upper-bound the-
ry for boundary-driven Rayleigh–Bénard convection proves heat
ransport bounds that grow with a ‘mixing length’ scaling [30],
hile most turbulent data displays a slower boundary-limited
caling law [59,60]. This does not mean that the bounds are never
harp — the a priori scaling bounds just mentioned are sharp up to
ossible logarithmic corrections [32] and without log-corrections
n three dimensions [61] for general enstrophy-constrained flows.
ikewise, the known bounds on imbalanced internal heating are
harp up to log-corrections [18], and this paper has produced
harp bounds for balanced heating as well. In any case, power-law
mprovements of the known a priori bounds must use information
rom the momentum equation beyond the usual balance laws.

None of this rules out the possibility that there exist other,
on-turbulent solutions of the Boussinesq equations for which
|∇T |2⟩ displays the same scaling as the lower bounds in (6.3).
n fact, an asymptotic construction and numerical simulations
n [13] produce steady flows achieving ⟨|∇T |2⟩ ∼ R−1 in a two-
imensional box with insulating vertical boundaries, isothermal
ottom boundaries and a sinusoidal heating and cooling profile.
ur bounds extend to this configuration with the same scal-
ng results, and different prefactors. Perhaps this suggests the
ounds are sharp, or perhaps there are still obstructions to sharp-
ess that have to do with the particular choice of heating and
ooling. Enunciating the conditions under which asymptotically
ptimal heat transport is achievable by momentum-conserving
lows remains an interesting open problem.
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