
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Zheng Y, Niloy I, Tobasco I,
Celli P, Plucinsky P. 2023 Modelling planar
kirigami metamaterials as generalized elastic
continua. Proc. R. Soc. A 479: 20220665.
https://doi.org/10.1098/rspa.2022.0665

Received: 13 October 2022
Accepted: 1 March 2023

Subject Areas:
mechanics, mechanical engineering

Keywords:
metamaterials, kirigami, continuum
modelling, finite-element method

Author for correspondence:
P. Plucinsky
e-mail: plucinsk@usc.edu

Modelling planar kirigami
metamaterials as generalized
elastic continua
Y. Zheng1, I. Niloy2, I. Tobasco3, P. Celli2 and

P. Plucinsky1

1Aerospace and Mechanical Engineering, University of Southern
California, Los Angeles, CA 90089, USA
2Civil Engineering, Stony Brook University, Stony Brook, NY 11794,
USA
3Mathematics, Statistics, and Computer Science, University of
Illinois Chicago, Chicago, IL 60607, USA

IT, 0000-0003-3618-8036; PP, 0000-0003-2060-8657

Kirigami metamaterials dramatically change their
shape through a coordinated motion of nearly
rigid panels and flexible slits. Here, we study a
model system for mechanism-based planar kirigami
featuring periodic patterns of quadrilateral panels
and rhombi slits, with the goal of predicting their
engineering scale response to a broad range of
loads. We develop a generalized continuum model
based on the kirigami’s effective (cell-averaged)
nonlinear deformation, along with its slit actuation
and gradients thereof. The model accounts for three
sources of elasticity: a strong preference for the
effective fields to match those of a local mechanism,
inter-panel stresses arising from gradients in slit
actuation, and distributed hinge bending. We provide
a finite-element formulation of this model and
implement it using the commercial software Abaqus.
Simulations of the model agree quantitatively with
experiments across designs and loading conditions.

1. Introduction
Mechanical metamaterials are solids whose global
response is dominated by geometry and topology,
rather than material physics. A typical mechanical
metamaterial, like the Miura-Origami [1] or the rotating-
squares lattice [2], is built from a pattern of repeating unit
cells. Each cell is composed of stiff and flexible elements,
whose layout enables for a bulk shape-morphing

2023 The Author(s) Published by the Royal Society. All rights reserved.
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(a) (b) (c)

Figure 1. (a) Rotating-squares mechanical metamaterial in its undeformed configuration. (b) Uniform response of the
metamaterial to homogeneous loading. (c) Non-uniform, locally mechanistic response to inhomogeneous loading.

response to stimuli. The geometric rules linking design to deformation in such systems have
captivated theorists [3–5]. In parallel, the embrace of shape-morphing in modern engineering—
for the design of stents [6,7], soft robotic grippers [8,9], deployable space structures [10,11]
and the like—has drawn applied researchers to these systems in an effort to demonstrate new
functionalities. Thus, mechanical metamaterials sit at the intersection of engineering design and
mechanics, where new paradigms are needed to realize their full potential.

This paper concerns one such paradigm, namely, how to best model the engineering scale
response of a shape-morphing mechanical metamaterial under a broad range of loads. To
illustrate the challenges, consider the example in figure 1. The pattern, a rotating-squares
architecture, is composed of a repeating unit cell of four quadrilateral panels, shown in figure 1a.
This design exhibits a single mechanism [2], which counter-rotates the panels periodically and
results in an effectively uniform overall motion in response to homogeneous loads (figure 1b).
However, when subjected to inhomogeneous loads (figure 1c), the slits actuate in a non-uniform
way—one that is locally mechanistic rather than globally so—reflecting the interaction between the
design of the unit cell and the choice of applied loads.

Behind this response is a complex interplay between geometry and elasticity. Two modelling
approaches are common in the literature, the first of which is purely geometric: panels
are taken to be rigid and connected by ideal hinges (folds, in origami), with the goal of
characterizing rigid deformations and mechanisms using kinematic compatibility. This approach,
first popularized in the origami literature [12–14], has rationalized the design of mechanical
metamaterials and illuminated their basic mechanisms [15–22]. However, it does not include
elasticity.

The second modelling approach is based on long-established structural mechanics ideas
[23,24] exemplified in recent literature by the bar-hinge method [25,26] and related spring
methods [27,28]. This approach replaces the metamaterial with assemblies of bars and hinges,
whose geometric arrangement encodes desired morphing attributes. Elasticity is accounted for
by modelling bars/hinges as linear/torsional springs, and the structure’s response is analysed
using standard numerical methods. While this approach is versatile and convenient for systems
composed of a small number of building blocks, it can become computationally expensive for
larger systems with many unit cells. Additionally, fitting spring stiffnesses to yield accurate global
behaviours can be challenging.

Recently, a third approach has emerged from the idea of finding effective, coarse-grained
models for the deformations of origami and kirigami [29–35]. In this approach, the metamaterial
is modelled as an effectively continuum object, with the aim of capturing the collective response
of its cells through averaging. Supporting this idea is the heuristic that origami and kirigami
have many soft modes, as in figure 1c, that resemble mechanisms locally but describe global,
non-mechanistic shape change. Focusing on kirigami, we highlight the works [28,32,34] which
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domain wall

(a) (b) (c)

Figure 2. Example of ‘micro’-incompatibilities, inspired by Deng et al. [28]. (a) The reference configuration is the open state of
a rotating-squares pattern. (b) Forcing the pattern into opposite ‘red’ and ‘blue’ phases at the top and bottom leads to a domain
wall. (c) Incompatible microstructures can have the same cell-averaged response.

are closest to what we do here. The works of Czajkowski et al. and McMahan et al. embrace
the soft modes heuristic by introducing elastic models whose stresses drive the kirigami’s
effective deformations towards cell-averaged local mechanisms. These models account for the
geometric nonlinearity inherent to soft modes. However, they are based solely on deformations,
and miss the fact that some sources of elastic frustration in kirigami arise instead from ‘micro’-
incompatibilities.

To illustrate this point, consider the ‘domain wall’ drawn in figure 2, which we base on an
experiment in [28]. An initially open rotating-squares specimen (figure 2a) has two symmetry-
related slit actuations that result in the same cell-averaged deformation, the ‘red’ and ‘blue’
phases in figure 2b,c. Forcing opposite phases to coexist leads to elastic frustration and to the
appearance of a domain wall motif familiar from other materials applications [36–38]. This
frustration is due to the microscale incompatibility of the two phases, which are nevertheless
macroscopically compatible from the viewpoint of their effective deformations (both phases
achieve the same overall shape change in figure 2c). Thus, domain walls cannot be captured with
a model based only on cell-averaged deformations. The fix is to introduce an angle into the model
that distinguishes between the two slit-actuations of the incompatible phases. In this way, Deng
et al. predict a one-dimensional profile for the slit actuation across the wall, for sufficiently small
displacements allowing the two-dimensional character of the wall to be neglected. We embrace
the key insight of including the actuation, and incorporate it here into a nonlinear model.

Elastic continuum models with additional fields are known as generalized elastic continua. Such
models were proposed by the Cosserat brothers in the late 1800s, and later codified in great
detail in the works of Eringen (in [39] and references therein). Popular incarnations include
micropolar and micromorophic elasticity; in general, a microcontinuum model uses auxilliary
continuum fields to capture mechanical rearrangements at the microscale with consequences for
elasticity at larger scales. For this reason, perhaps, recent research on metamaterials has made
connections to this classical subject [40–42]. Nevertheless, the most familiar microcontinuum
models do not appear to apply broadly to mechanical metamaterials, whose micro-motions
are generally nonlinear. On a related note, there has been a systematic effort to coarse-grain
the linear response of discrete truss structures including the Pantographic lattice [43–46],
with the aim of setting strain-gradient and higher order effective continuum models on
rigorous grounds. However, these results are limited to small displacements and linear elastic
responses.

A key task in the continuum modelling of mechanism-based metamaterials is to link the
(fundamentally nonlinear) micro-motions of the panels in a soft mode to the effective, macro-scale
shape change. Our recent work [47] accomplishes this for planar kirigami with a nonlinear partial
differential equation (PDE) relating the micro- and macro-scale motions. However, enforcing this
PDE as a purely geometric constraint on the effective deformation neglects higher-order elastic
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effects present at the micro-scale, which contain information needed to formulate and solve elastic
boundary value problems. We address this issue in this paper by positing a second-gradient
like (actually mechanism gradient) generalized continuum model that enables us to solve for
the response of the kirigami to general boundary conditions and loads.

Specifically, we present a generalized elastic continuum model for planar kirigami that
accounts for the geometric nonlinearity of its soft modes. For concreteness and simplicity, we
focus on a model system termed rhombi-slit krigami as it features periodic patterns of quad
panels and rhombi slits. All such patterns possess a periodic mechanism fully parametrized by
a quantity we call the slit actuation; all such patterns also exhibit locally mechanistic soft modes,
whose effective description is captured by the PDE derived in [47]. Here, we build the PDE into a
constitutive model with a bulk elastic energy that vanishes on its solutions, yielding an effective
stress that vanishes on soft modes. The model also includes two higher-order sources of elasticity
of physical origin [27,32], which we model using the slit actuation field: its gradient accounts
for deviations from a pure mechanism, while its value accounts for hinge bending. Altogether,
these three terms furnish a generalized elastic continuum model for rhombi-slit krigami in
the plane. This new continuum constitutive model provides a versatile framework for solving
elastic boundary value problems using a standard FEM platform (Abaqus). We demonstrate this
versatility by comparing simulations to experiments across designs and loading conditions.

The rest of this paper is organized as follows. Section 2 describes the geometry of rhombi-
slit kirigami and parametrizes their mechanisms. Section 3 introduces our generalized elastic
continuum model. Section 4 derives its equilibrium equations and provides a finite-element
formulation. Section 5 compares simulations of the model to experiments; the model reproduces
heterogeneous displacement fields as well as a force–displacement curve. Section 6 ends with
concluding remarks.

2. Kirigami patterns and their mechanisms
To introduce the design and kinematic variables of our model, we first treat the kirigami’s simplest
modes of deformation: its pure mechanisms.

(a) Rhombi-slit kirigami designs
We consider planar kirigami metamaterials consisting of a periodic array of unit cells, each having
four quadrilateral panels and four rhombi-slits, as in figure 3a. In such designs, the four panels
of the cell have identical shape and are mirrors of each other across the slit-axes. We use edge
lengths a, b and c and two sector angles θab and θac to describe the shape of the quadrilateral
panels. We also denote by ξ0 the half opening angle of the central slit of the cell in its reference
configuration. These six parameters are sketched in figure 3a and fully parameterize the unit cell,
up to a rigid motion. This family of metamaterials has a large design space: it includes the well-
known rotating-squares patterns (a= b= c, θab = θac = π/2) in its closed state (ξ0 = 0) or open state
(ξ0 = π/4).

(b) Effective description of kirigami mechanisms
Each rhombi-slit kirigami possesses a single degree-of-freedom planar mechanism. We now recall
the relevant results from [47], which link the kirigami’s effective deformation to its slit actuation.

Let e1 and e2 denote the standard two-dimensional Cartesian basis. The vectors s0 and t0
in figure 3a are Bravais lattice vectors reflecting the periodicity of the pattern in its reference
configuration. They can be written explicitly in terms of the cell parameters as

s0 = 2(a cos ξ0 + b cos (π − θab − ξ0))e1,

t0 = 2
(
a sin ξ0 + c cos

(π

2
− θac + ξ0

))
e2.

(2.1)
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A(ξ)

b

aθab
θac

c

A(ξ)

ξ + ξ0
ξ + ξ0

ξ0

s(ξ)

t(ξ)

s(ξ)e1

(a) (b) (c)

Figure 3. Effective deformation of a planar kirigami metamaterial made of periodic arrays of a unit cell featuring four quad
panels and four rhombi-slits. (a) Reference configuration, with detail of a unit cell and its characteristic dimensions. Panels
have side lengths a, b, c and internal angles θab and θac . The central slit has an initial opening angle 2ξ0. (b,c) Instances of the
pure mechanismmotion of the metamaterial in (a). During the mechanismmotion, the unit cell represented by Bravais lattice
vectors s0 and t0 in (a) is stretched and rotated, according to the stretch tensor A(ξ ), where 2ξ is the change of opening angle
of the central slit. Correspondingly, the lattice vectors deform to s(ξ ) and t(ξ ).

Now replace ξ0 by ξ0 + ξ and observe from figure 3b,c that this change results in a deformed
configuration of the pattern, where the central slit of each cell opens by an angle 2ξ and the panels
counter-rotate to accommodate this actuation. In other words, slit actuation by ξ parametrizes a
mechanism deformation of the pattern. As shown, the deformed configuration has the Bravais
lattice vectors

s(ξ ) = 2(a cos (ξ0 + ξ ) + b cos (π − θab − ξ0 − ξ ))e1,

t(ξ ) = 2
(
a sin (ξ0 + ξ ) + c cos

(π

2
− θac + ξ0 + ξ

))
e2.

(2.2)

To track the shape-change associated with this mechanism, we introduced a shape tensor A(ξ ).
This 2 × 2 tensor is defined as the unique linear transformation taking the reference Bravais lattice
vectors to their deformed counterparts. It is determined as a function of the slit actuation ξ via

s(ξ ) =A(ξ )s0 and t(ξ ) =A(ξ )t0. (2.3)

The explicit formula for A(ξ ) in the case of rhombi-slit kirigami is

A(ξ ) = (cos ξ − α sin ξ )e1 ⊗ e1 + (cos ξ + β sin ξ )e2 ⊗ e2,

α = a sin ξ0 − b sin (θab + ξ0)
a cos ξ0 − b cos (θab + ξ0)

, β = −c cos (θac − ξ0) + a cos ξ0

c sin (θac − ξ0) + a sin ξ0
.

(2.4)

Likewise, to coarse-grain the panel motions we introduced a two-dimensional effective deformation
yeff(x) per the Cauchy–Born rule. Since all cells deform identically in a mechanism, the associated
yeff(x) is homogeneous. Its 2 × 2 deformation gradient Feff is constant, and is parametrized by the
shape tensor up to a rigid rotation. We showed that

(pure mechanism:) (Feff)
TFeff =A2(ξ ) (2.5)

thereby quantifying the link between the effective deformation of a mechanism and its slit
actuation, ξ . By varying ξ , one obtains a compact description of the effective shape change.

Finding the shape tensor of a periodic mechanical metamaterial is a general way of linking
its micro-scale motion to its macro-scale deformations, which we have just demonstrated for the
pure mechanisms of rhombi-slit kirigami. The same approach applies to the more general family
of parallelogram-slit kirigami, and goes beyond its mechanisms to capture its soft modes [47].
Certain generalized Miura–Ori origami patterns have been similarly coarse-grained in [33,35].
We focus on the class of rhombi-slit kirigami here because we think it strikes a balance between
breadth and simplicity. Its simplicity is reflected in the fact that its shape tensor is diagonal
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(equation (2.4)), reflecting a locally bi-axial shape change. Its breadth will become clearer as we
go on to describe a model for predicting the wealth of non-homogeneous soft modes.

3. A generalized continuummodel for planar kirigami
We now present a constitutive model for the elasticity of rhombi-slit kirigami, based on
the effective description of its mechanisms recalled in the previous section. As noted in the
introduction, the basic experimental observation is that for a large class of loading conditions,
the kirigami exhibits a soft response that cannot be captured by any single mechanism. Instead,
its cells deform by an approximately locally mechanistic response, with an actuation that varies
slowly from cell to cell, and with panel deformations that appear to oscillate about some smooth
continuum deformation. We therefore build a generalized continuum model to predict the
deformation and its underlying actuation.

(a) Statement of the model
For a rhombi-slit kirigami filling a two-dimensional reference domain Ω , let yeff : Ω →R

2 denote
its effective deformation and ξ : Ω →R its slit actuation, both of which we understand as
continuum fields. Building off equation (2.5), our general idea is to choose an energy whose
leading order behaviour prefers approximate local mechanisms. That is, we will require the model
to produce the response

(approx. locally mechanistic:) (∇yeff(x))T∇yeff(x) ≈A2(ξ (x)). (3.1)

The pattern’s slit actuation ξ will be treated as an auxiliary field variable governed by higher-
order sources of elasticity in addition to this leading-order constraint.

Proceeding to details, we assume that the fields (yeff, ξ ) describing the kirigami’s response to
loads are (local) minimizers of the potential energy function

E(yeff, ξ ) =
∫
Ω

W(∇yeff(x), ξ (x), ∇ξ (x)) dA −
∫
∂tΩ

tR(x) · y(x) dΓ

subject to yeff(x) = yb(x) on ∂Ω \ ∂tΩ ,

(3.2)

where tR denotes a prescribed ‘reference’ traction on the boundary component ∂tΩ ⊂ ∂Ω , and yb
prescribes the deformation on the rest of the boundary. We use the strain energy density

W(F, θ ,p) = c0W0(FA−1(θ )) + c1θ
2 + c2|p|2. (3.3)

Its first term, W0, takes the form of a standard isotropic two-dimensional hyperelastic model

W0(G) =
(

1
JG

|G|2 − 2
)

+ (JG − 1)2 (3.4)

up to the decomposition G= FA−1(θ ). Here A(θ ) is the shape tensor, encoding the geometry of
the reference pattern from §2a; it is invertible for any physical value of slit actuation. Note JG =
detG for short. Finally, the parameters c0, c1, c2 are elastic moduli which we anticipate fitting to
experiments.

(b) Physical origin of the model
Using figure 4 as a guide, we now discuss the physical origin of the three terms in the energy
density. Each term is a distinct and natural consequence of the disparity of lengthscales in the
pattern. As sketched in figure 4a,c–f, L is the sample lengthscale, 
 the unit cell lengthscale, and
δ the hinge lengthscale. Though our model can be generally applied, it is most relevant when
δ � 
 � L, i.e. when the number of unit cells in the sample is large, and the hinges are small as
compared to the panels. We make this assumption throughout.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 Ju

ne
 2

02
3 



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220665

..........................................................

(a) (b)
(e)

( f )

L
� δ

�

(c)

(d )

Figure 4. Illustration of the characteristic lengthscales of a rhombi-slit kirigami metamaterial. (a) Reference, undeformed
configuration, indicating the sample lengthscale L. (b) Same pattern, subjected to heterogeneous loading. (c,d) Zoom-in on
slightly deformed and significantly deformed regions of the specimen, through awindow of dimensions comparable to the unit
cell lengthscale 
. (e,f ) Zoom-in on the hinges, indicating the hinge lengthscale δ.

The first term in equation (3.3), W0, arises as follows. Suppose we focus solely on regions
of length ∼
 under typical loading, like those in figure 4c,d. The local response is then nearly
indistinguishable from that of a pure mechanism; the heterogeneity, as seen in figure 4b, only
emerges at a much larger scale. Because of this feature, we choose W0 to be a bulk elastic energy
that is minimized and zero whenever (yeff, ξ ) coincides with a coarse-grained local mechanism,

(locally mechanistic:) (∇yeff(x))T∇yeff(x) =A2(ξ (x)). (3.5)

Choosing W0 as such introduces stress proportional to the modulus c0 to penalize deviations from
local mechanisms. This stress should be significant. In fact, as was described in the electronic
supplementary material of our previous work [47], a coarse-grained kirigami deformation that
fails to be locally mechanistic is accompanied by distortions of the panels and hinges comparable
to the characteristic length of the panels (∼
). As such, c0 should scale with the shear modulus
μ of the material used to fabricate the kirigami (possibly with some weak dependence on 
/L or
δ/
).

The other two terms in the energy density equation (3.3) account for higher order effects related
to localized elastic distortions in and nearby the hinges. The second term (with modulus c1) is the
simplest possible model that approximates the bending energy of the hinges when slits open or
close. In the effective description, it depends only on the slit actuation angle ξ . This actuation
counter-rotates the panels to yield the bending, as shown in figure 4d,f. Large actuation causes
localized strains ∼|ξ | nearby the hinges, which give a bending energy per cell ∼μ|ξ |2δ2 since the
hinges occupy an area ∼δ2. As the cell area is ∼
2, the corresponding modulus c1 in equation (3.3)
scales as c1 ∼ μδ2/
2.

The final term in the energy density equation (3.3) regularizes the actuation field, and
corresponds to the simplest elastic model for resisting inhomogeneous actuation in a locally
mechanistic response (i.e. ‘mechanism gradients’). This term is akin to the strain-gradient term
in [32] and the plate bending term from McMahan et al. [34], which, respectively, regularize
mechanism gradients via second gradients of the effective in- and out-of-plane displacements.
By contrast, our model depends directly on the actuation gradient ∇ξ . As such, it accounts
for all possible micro-incompatibilities, including those that lead to a homogeneous effective
displacement, and that would be spuriously assigned no strain-gradient/plate bending energy.
Figure 2 from the introduction gives an example.

Our mechanism gradient term also has physical origins [27]. Where the kirigami’s response
deviates from a single mechanism, elastic distortions are required to preserve the connectivity of
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the pattern. For a locally mechanistic deformation with a smoothly varying actuation field ξ , one
expects the required distortions to be ∼
2|∇ξ | in magnitude, and to be accompanied by panel
strains ∼
|∇ξ | [47]. (In fact, there is a subtle logarithmic correction to these scalings involving a
self-similar spreading of strains which will be the topic of forthcoming work [48].) This argument
gives an energy per cell ∼μ
2|∇ξ |2
2 since each cell has area ∼
2. The corresponding modulus
c2 in equation (3.3) scales as c2 ∼ μ
2. Postponing the detailed derivation of the fully tensorial
mechanism gradient term to future work [48], we simply choose to model it here using a
straightforward constitutive model that contains all the necessary sources of elasticity.

(c) Effective stress and effectively stress-free configurations
Having written down an effective model, we proceed to determine the effective stress measures
it imposes, and derive and discuss some properties of effectively stress-free configurations. The
first Piola–Kirichhoff stress P is obtained by differentiating the strain energy density W in F. From
equation (3.3),

P(F, θ ) = P0(FA−1(θ ))A−T(θ ) (3.6)

for the two-dimensional hyperelastic first Piola–Kirchhoff stress

P0(G) := c0
∂W0(G)

∂G
= c0

JG
(2G + (2(J3G − J2G) − |G|2)G−T). (3.7)

We also introduce the so-called Kirchhoff stress [49], as it will be useful later on for numerics. This
stress is defined as

τ (F, θ ) := P(F, θ )FT = P0(FA−1(θ ))(FA−1(θ ))T = τ 0(FA−1(θ )) (3.8)

for the two-dimensional hyperelastic Kirchhoff stress

τ 0(G) := P0(G)GT = c0

JG
(2GGT + (2(J3G − J2G) − |G|2)I). (3.9)

In a traditional elastic continuum, the stress-free configurations are rigid body motions.
Indeed, τ 0(G) = 0 if and only if G is a rotation. By contrast, our generalized continuum model
has a much richer family of effectively stress-free configurations: for the fields (yeff, ξ ) on Ω ,

τ (∇yeff(x), ξ (x)) = 0 ⇔ (∇yeff(x))T∇yeff(x) =A2(ξ (x)). (3.10)

The latter equation is the condition for a coarse-grained local mechanism discussed above
(equation (3.5)). It constrains the metric tensor (right Cauchy–Green tensor) of the effective
deformation yeff in terms of the slit actuation field ξ , which reflects the fact that the effective
fields must vary in a coordinated way to represent a locally mechanistic soft mode of rhombi-slit
kirigami in the plane.

In our previous work [47], we showed that there are broad classes of deformations and slit
actuations that solve this metric constraint, and that these fields capture the behaviour of soft
deformations observed experimentally. We also derived an important link between the metric
constraint and the effective Poisson’s ratio of the pattern. We present a brief description of this
link here, as it illuminates a fundamental dichotomy in the qualitative features of the slit actuation
in this model, and will help to clarify the choices we make later on in the simulations and
experiments.

Consider any effectively stress-free configuration (yeff, ξ ), i.e. one with τ = 0. Since the
deformation is planar, it trivially has zero Gauss curvature. As the Gauss curvature is
fundamentally linked to its metric tensor through Gauss’s remarkable theorem [50], we find that
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the slit actuation solves a PDE of the form[
∂2

2 −
(

μ1(ξ (x))
μ2(ξ (x))

)2
ν21(ξ (x))∂2

1

]
ξ (x) = g(ξ (x), ∇ξ (x)), (3.11)

for g(θ ,p) a function whose explicit form is lengthy and not important for the discussion at hand.
The function ν21(θ ), introduced in this PDE, turns out to be the effective Possion’s ratio of the
pattern. It satisfies

ν21(θ ) = (cos θ − α sin θ )
(sin θ + α cos θ )

(− sin θ + β cos θ )
(cos θ + β sin θ )

(3.12)

where α and β quantify the reference rhombi-slit cell via equation (2.4).
The PDE in equation (3.11) is second order and quasi-linear, which means that its so-called type

has a standard classification from PDE theory [51]: the PDE is elliptic for solutions ξ that satisfy
ν21(ξ (x)) < 0 on Ω , is hyperbolic for solutions that satisfy ν21(ξ (x)) > 0 on Ω , and is of mixed type
if the solution’s Poisson’s ratio changes sign on some part of the domain. In other words, the PDE
is elliptic if the unit cell is auxetic and hyperbolic if it is non-auxetic.

These results have important modelling implications. In the typical setting, where c0 
 c1,2
in equation (3.3), we expect a large family of ‘slightly stressed’ equilibrium solutions of our
model. Each such solution, then, approximately solves the metric constraint, with a ξ field that
closely resembles one obeying the PDE in equation (3.11). Given this observation, we identify
rhombi-slit kirigami as elliptic or hyperbolic based on the sign of its effective Poisson’s ratio
at equilibrium. We expect this identification to indicate certain qualitative properties of the
kirigami’s response to loads: elliptic kirigami with auxetic cells should exhibit a decay in slit
actuation away from the boundary loads. By contrast, hyperbolic kirigami with non-auxetic cells
should exhibit comparatively persistent slit actuation under the same loading conditions. We
highlight this dichotomy in further detail with the examples to come.

4. Equilibrium equations and finite-element formulation
Next, we derive the equilibrium equations and natural boundary conditions of our model.
The equilibrium equations are a coupled PDE system that includes the familiar divergence-
free condition on the effective stress, as well as an auxiliary PDE enforcing equilibrium for the
slit actuation. We finish this section with an FEM formulation of the model, and discuss its
implementation in Abaqus.

(a) Derivation of equilibrium equations
We first derive the equilibrium equations. Let (yeff, ξ ) be a local minimizer to the potential energy
in equation (3.2). Then, by taking the first variation of the energy functional,

0 = d
dε

E(yeff + εw, ξ + εη)
∣∣
ε=0

=
∫
Ω

P(∇yeff(x), ξ (x)) : ∇w(x) dA −
∫
∂tΩ

tR(x) · w(x) dΓ

+
∫
Ω

{Wθ (∇yeff(x), ξ (x), ∇ξ (x))η(x) + Wp(∇yeff(x), ξ (x), ∇ξ (x)) · ∇η(x)} dA (4.1)

for all sufficiently smooth w : Ω →R
2 satisfying w(x) = 0 on ∂Ω \ ∂tΩ , and η : Ω →R. Here and

throughout, we use a colon to denote the contraction of square matrices S : T= Tr(STT). In
addition, Wθ and Wp denote the partial derivatives of W(F, θ ,p) with respect to θ and p. Observe
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that

Wθ (F, θ ,p) = −P0(FA−1(θ )) : (FA−1(θ )A′(θ )A−1(θ )) + 2c1θ︸ ︷︷ ︸
=:fact(F,θ )

,

Wp(F, θ ,p) = 2c2p.

(4.2)

We show below that fact(F, θ ) provides a driving force for heterogeneous actuation within the
model.

We substitute these formulae into equation (4.1), let Pyeff,ξ (x) := P(∇yeff(x), ξ (x)) and apply the
divergence theorem with the usual localization arguments to conclude the following equilibrium
equations on Ω :

∇ · (PT
yeff,ξ

(x)) = 0,

fact(∇yeff(x), ξ (x)) = 2c2∇2ξ (x).
(4.3)

The terminology for fact can now be understood, since the actuation at equilibrium is
heterogeneous (∇ξ �= 0) whenever fact is non-zero. Likewise, we derive the boundary conditions⎧⎪⎪⎨⎪⎪⎩

Pyeff,ξ (x)nR(x) = tR(x) on ∂tΩ

yeff(x) = yb(x) on ∂Ω \ ∂tΩ

∇ξ (x) · nR(x) = 0 on ∂Ω

(4.4)

where nR(x) denotes the outwards-pointing unit normal at a point x on the boundary of Ω .

(b) Finite-element formulation
To solve these equations, we use the finite-element method (FEM). Equations (4.3) and (4.4) give
the strong form of the boundary value problem for the effective deformation yeff and slit actuation
field ξ . FEM formulations are instead based on the weak form, in equation (4.1). Using equation
(4.2), we can conveniently rewrite the weak form as

∫
Ω

P(∇yeff(x), ξ (x)) : ∇w(x) dA −
∫
∂tΩ

tR(x) · w(x) dΓ = 0,

∫
Ω

{fact(∇yeff(x), ξ (x))η(x) + 2c2∇ξ (x) · ∇η(x)} dA= 0
(4.5)

for all sufficiently smooth w(x) with w(x) = 0 on ∂Ω \ ∂tΩ and all η(x).
To numerically approximate a solution of equation (4.5), we mesh Ω and set

yeff(x) = x +
∑
A

uANA(x), w(x) =
∑
A

wANA(x),

ξ (x) =
∑
A

ξANA(x), η(x) =
∑
A

ηANA(x).
(4.6)

The quantities uA,wA ∈R
2, and ξA, ηA ∈R denote the nodal values of the respective fields at

the mesh points xA ∈ Ω , indexed by A; NA(x) is the corresponding shape function with standard
properties. For organizational purposes, we list all the nodal values uA and ξA as arrays u and ξ .

We substitute equation (4.6) into equation (4.5) and use that each ηA is arbitrary and each wA is
arbitrary for xA /∈ ∂Ω \ ∂tΩ . After some standard manipulations, we conclude that u and ξ should
ideally satisfy

rAforce(u, ξ ) = 0 for all A such that xA /∈ ∂Ω \ ∂tΩ ,

rAact(u, ξ ) = 0 for all A.
(4.7)
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The residual force and actuation are given by

rAforce(u, ξ ) = −
∫
Ω

P(F̃(x,u), θ̃ (x, ξ ))∇NA(x) dA +
∫
∂tΩ

tR(x)NA(x) dΓ ,

rAact(u, ξ ) = −
∫
Ω

{fact(F̃(x,u), θ̃ (x, ξ ))NA(x) + 2c2p̃(x, ξ ) · ∇NA(x)} dA
(4.8)

and the arguments for P(·), fact(·), and so on in these formulae are defined as

F̃(x,u) := I +
∑
B

uB ⊗ ∇NB(x), θ̃ (x, ξ ) :=
∑
B

ξBNB(x),

p̃(x, ξ ) :=
∑
B

ξB∇NB(x).
(4.9)

In practice, we do not solve for the arrays (u, ξ ) by making the residuals vanish. Instead, a
Newton–Raphson scheme is employed in the FEM solver, which chooses nodal quantities by
iterative linearization in an effort to make the residuals sufficiently small. The solver in Abaqus
takes as input explicit functions of the derivatives of the residuals, i.e. the tangents

KAB
disp(u, ξ ) := −∂rAforce(u, ξ )

∂uB
, kABdisp(u, ξ ) := −∂rAact(u, ξ )

∂uB
,

kABact (u, ξ ) := −∂rAact(u, ξ )
∂ξB

, kAB
act (u, ξ ) := −∂rAforce(u, ξ )

∂ξB
.

(4.10)

Explicit formulae for these tangents are in appendix A.
Equation (4.8) and the formulae for equation (4.10) are integrals calculated numerically using

Gaussian quadrature. The formulae for the shape functions, Gaussian quadrature, and the surface
traction term are all standard, and not discussed here. We implement this FEM formulation into
Abaqus using a user-element subroutine (UEL) [52]. The UEL is called for each element for each
iteration. The initial nodal coordinates and current nodal variables (u, ξ ) are input. The nodal
residuals in equation (4.8) and tangents in equation (4.10) are output. The UEL can be used for
linear/quadratic and triangular/quadrilateral elements.

5. Experiments and simulations
To validate our model, we compare its predictions with experiments for two designs, namely,
the auxetic rotating-squares sample and another that is strictly non-auxetic and is described just
below. We define the geometry of the samples, including hinge regions, and explain how to extract
a representative rhombi-slit cell for each design to facilitate a reasonable comparison between
model and experiment. We study the simple example of uniform stretch, and then turn to complex
examples involving heterogeneous loads.

(a) Experimental samples and their idealized unit cells
Figure 5a,b shows the two specimens used in our work. One is a classical rotating-squares pattern.
The other—which we term as a ‘hyperbolic pattern’ for reasons explained below—features two
alternating slits with the same width in the horizontal direction and different height. Figure 5c,d
shows portions of the patterns that were used for laser cutting; the fabricated samples include
hinge regions designed to be of length d= 
/20 and height h= 
/80, as shown. The actual hinge
dimensions vary from the designed ones due to variability associated with laser cutting rubber.

To convert the two cut pattern designs into idealized rhombi-slit designs, we treat the centroid
of each hinge as a corner point. Tracing out the lines connecting neighbouring corner points leads
to a desired rhombi-slit pattern. We use these ‘traced’ rhombi-slit cells as inputs to the simulations.
The parameters for both patterns are displayed in figure 5. Recalling equation (2.4), the rotating-
squares pattern satisfies (α, β) = (−0.9, 0.9), while the hyperbolic pattern satisfies (α, β) = (−0.9, 0).
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a = b = c
θab = θac = π/2
ξ0 = arctan (1/19)

b = c = a
θac = arctan (1.9) + arctan (0.1)
θab = π – θac
ξ0 = arctan (1/10)

(α, β) = (–0.9, 0.9)

(α, β) = (–0.9, 0)

461/101

/80

/20

/80

/20

b

a
θab θac

c

b

aθab

θac

c

(a) (b)

(c) (d)

Figure 5. From fabricated patterns to idealized rhombi-slit cells. (a) Rotating-squares sample (elliptic). (b) Non-auxetic sample
(hyperbolic). (c,d) Portions of the patterns fed to the laser cutter to fabricate specimens (a,b). To avoid issues during cutting,
hinges are shaped as rectangular blocks. We highlight idealized unit cells in red and report their dimensions.

Substituting these parameters into equation (3.12) for the cell’s effective Poisson’s ratio gives

(Rotating-Squares:) ν21(ξ ) = −1,

(Hyperbolic Pattern:) ν21(ξ ) =
(− cos ξ + 0.9 sin ξ

−0.9 cos ξ + sin ξ

)
tan ξ

|ξ |�1≈ 1.11ξ .
(5.1)

As discussed in §3c, Poisson’s ratio describes important qualitative features of each pattern’s
response, in addition to its auxeticity.

The rotating-squares pattern is auxetic and, more specifically, purely dilational, since Poisson’s
ratio indicates equal principal strains independent of the slit actuation. It therefore belongs to
the special class of patterns known as conformal [32,47], which is a subclass of the more general
elliptic kirigami discussed previously. We expect this pattern’s actuation to generally decay away
from boundary loads. By contrast, the hyperbolic pattern is non-auxetic, thus hyperbolic, for ξ ∈
(0, 0.23π ). The sample is termed hyperbolic because the slit actuation is always observed to be in
the hyperbolic range for tension type boundary conditions. (By contrast, compressing the sample
can lead to buckling, which we do not discuss here; see [34] for ideas in this direction.) Guided by
its hyperbolicity, we expect this pattern’s actuation to persist far away from boundary loads.

(b) Uniform stretch
The simple loading condition of uniform stretch allows us to investigate the interplay between
hinge elasticity and the purely mechanistic response, both experimentally and in the elastic
energy in equation (3.3). For the demonstration, we focus on the auxetic rotating-squares example.
Experimentally, similarly to what is done in [53], we induce free transverse expansion under
uniaxial loading by connecting the boundary slits on the left and right edges of the specimen
to a rod by means of hooks, as illustrated in figure 6a. This connection allows transverse motion
at little resistance. The experimental results, comparing stretch to slit actuation, are marked with
circles in figure 6b.
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2ξ = 0

2ξ

(i) (ii) (iii)

(iv) (v) (vi)

π/6 π/3
c1/c0 = 0

c1/c0 = 1 � 10–3

c1/c0 = 1 � 10–2

c1/c0 = 1 � 10–1

experiments

π/2

π/3

π/6

0

(i)
(ii)

(iii)
(iv)

(v)

(vi)

1.0 1.1 1.2
λ

1.3 1.4

(a) (b)

L = 22.4 cm

Figure 6. Uniform stretch of the rotating-squares sample. (a) Colour maps of the slit actuation, determined by the method
described in appendix B. L is the undeformed sample length. (b) Slit actuation ξ plotted as a function of horizontal stretch λ.
Solid lines display the model results with varying c1/c0.

The experimental pattern displays a mostly uniform actuation under this loading, especially
in the centre of the sample as indicated. We therefore consider the elastic energy of the
(α, β) = (−0.9, 0.9) rotating-squares pattern under a homogeneous effective deformation gradient
∇yeff(x) = F(λ, λ2) = λe1 ⊗ e1 + λ2e2 ⊗ e2 and slit actuation ξ (x) = ξ . For a given stretch λ,
equilibrium is achieved by minimizing W(F(λ, λ2), ξ , 0) with respect to λ2 and ξ . Setting w(λ, ξ ) :=
minλ2 W(F(λ, λ2), ξ , 0), the slit actuation at equilibrium is

ξ (λ) = arg min
ξ

{w(λ, ξ )}. (5.2)

The actuation depends implicitly on the ratio c1/c0, reflecting the relative influence of bulk and
hinge elasticity in the model.

In figure 6b, we plot (λ, 2ξ (λ)) for c1/c0 = 0, 10−1, 10−2 and 10−3. The bulk elastic term
dominates at small values of stretch, since the plot is essentially independent of c1/c0 in this
regime. As the stretch increases, hinge elasticity becomes more pronounced; the curve shows a
particularly strong dependence on c1/c0 in the large stretch regime (λ > 1.2). We note, generally,
that the slit actuation decreases monotonically as a function of increasing c1/c0, and hinge
elasticity cannot be ignored at large values of stretch for this sample. Also, the ratio c1/c0 = 10−2

provides a good fit to our experimental data. We use c1/c0 = 10−2 from here on when comparing
the deformed rotating-squares sample to analogous simulations.

(c) Heterogeneous loading
We turn now to a comparison between FEM simulations of the model and experiments under
complex loading conditions. We perform the FEM simulations in Abaqus/Standard using the
UEL subroutine developed in §4b: a two-dimensional square domain non-dimensionalized to
have unit length is meshed by 1600 (8 node quadratic quadrilateral) user elements and is subjected
to various displacement boundary conditions. The model has three moduli c0, c1, c2 which need
to be supplied for the two samples, along with the cell parameters α and β from figure 5. We
normalize the elasticity by c0; this choice influences the overall magnitude of the stresses, but not
the predicted deformation. As a side note, the need to fit c0 will present itself in §5d. Lastly,
we fit the ratios c1/c0 and c2/c0 so as to accurately capture the response of a broad range of
experiments. For simplicity, the fit is done by trial and error for a variety of boundary conditions.
Each simulation typically takes less than minute on a standard laptop, so this approach is not
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L = 22.4 cm

ex
pe

rim
en

t
FE

M

(a) (b) (c)

2ξ

2ξ

π/2

π/3

π/6

0

π/2

π/3

π/6

0

Figure 7. Experiments and simulations of rotating-squares sample. Three boundary conditions are applied: (a) pulling along
diagonal line; (b) pulling along centreline; (c) pulling a centre point with opposite corner points fixed. L is the undeformed
sample length. Colour maps show the slit actuation angle ξ , extracted from the experiment per appendix B.

tedious or difficult. In the following comparison, we use

(Rotating-Squares:)
c1

c0
= 10−2,

c2

c0
= 5 × 10−5,

(Hyperbolic Pattern:)
c1

c0
= 3 × 10−2,

c2

c0
= 10−4.

(5.3)

One should not extrapolate these values to other samples. We expect c1/c0 and c2/c0 to vary for
patterns fabricated with a different number of cells or hinge-panel dimensions, even if the unit
cell geometry and underlying material are otherwise the same. As discussed in §3a, basic physical
reasoning suggests the scalings c1/c0 ∼ δ2/
2 and c2/c0 ∼ 
2 [27,32,47] (up to a log factor [48]).

With figures 7 and 8, we demonstrate numerical simulations that accurately capture the
heterogeneous engineering scale response of the two kirigami patterns under complex boundary
conditions. We consider, in particular, three boundary conditions: pulling along diagonal line
(figures 7 and 8a), pulling along centreline (figures 7 and 8b), and pulling a centre point with the
opposite corner points fixed (figures 7 and 8c). Each such loading leads to a soft response in the
two experimental patterns, far from any pure mechanism.

Some general features emerge from the experiments. In the rotating-squares sample, slit
actuation quickly decays in arcs around the loading points. In the hyperbolic sample, slit actuation
instead radiates from the loaded boundary, yielding large bands of actuation within the sample’s
bulk. This ‘decay versus persistence’ in actuation affirms the link to Poisson’s ratio derived in
[47] and discussed in §3c and §5a. Our simulations capture these general features, as well as finer
details.

With the moduli parameters of the model given by equation (5.3), we carry out simulations
by matching the boundary conditions of the three experiments for each sample. (These boundary
conditions include the displacements where the sample is loaded, as well as the natural traction-
free and ξ boundary conditions in equation (4.4)). The simulations are shown on the bottom
row of figure 7 and figure 8, and each recovers the pattern’s engineering scale response on the
top row. As the figures highlight, the solved-for slit actuation agrees qualitatively with that of
the experiments. Table 1 also compares various metrics of the normed difference in boundary
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L = 22.4 cm

Figure 8. Experiments and simulations of the hyperbolic sample. Three boundary conditions are applied: (a) pulling along
diagonal line; (b) pulling along centreline; (c) pulling a centre point with opposite corner points fixed. L is the undeformed
sample length. Colour maps show the slit actuation angle ξ , extracted from the experiment per appendix B.

Table 1. Comparison of the normed difference of boundary displacements between experimental and simulated samples.
Three metrics of this boundary value comparison are shown: the root mean squared deviation, the max, and the mean. Each is
normalized by the unit cell length 
 from figure 5, which is 1.4 cm for all experimental samples.

boundary displacement comparison
∣∣∣RMS/
 Max/
 Mean/


rotating-squares, figure 7a 0.16 0.33 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotating-squares, figure 7b 0.13 0.28 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotating-squares, figure 7c 0.27 0.45 0.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hyperbolic, figure 8a 0.24 0.36 0.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hyperbolic, figure 8b 0.11 0.20 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hyperbolic, figure 8c 0.25 0.38 0.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

displacement between the experimental and simulation results. The agreement is quantitatively
excellent. Each pattern is subject to roughly 10−30% engineering strain, yet the boundary
discrepancies are but a fraction of the length of a unit cell.

(d) Force–displacement curves
As a final demonstration of the capabilities of our model, we compare an experimental force–
displacement curve to analogous simulations. We focus on the rotating squares architecture and
the centre-pulling loading condition for the demonstration. The experimental sample, introduced
in figure 5a, is loaded along its centreline using a string and weights, as illustrated in figure 9a. For
each value of applied force, the total stretch of the specimen along the same centreline is recorded
via image processing. Additional details on the experimental set-up are reported in appendix B.

The loading and unloading experimental curves are plotted in red in figure 9b, where the
solid line indicates the average and the shaded area encompasses the standard deviation from
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Figure 9. (a) Schematic of our experimental setup for force–displacement measurement. The specimen rests on a smooth
surface and is restrained using fixtures connected to an outer frame. Forces are applied to the specimen (here, at a point
where the centreline meets the boundary) through strings and weights. (b) Normalized force as a function of the centreline
stretch λ. The experimental data is red, with the continuous line giving the average of three measurements and the shaded
area showing the standard deviation. The solid black curve is the theoretical curve found by simulating the effective model. For
comparison, the dashed curve shows the theoretical response to uniform loading, using the same fitting parameters.

three tests. In the plot, the force is non-dimensionalized by the thickness of the sample t=
0.15 cm, its width L= 22.4 cm and the shear modulus of the material μ = 0.38 MPa (obtained from
experimental data on the behaviour of natural rubber gum in [53]). Friction clearly plays a role
in the experiment. While the sample remains elastic throughout the entire loading and unloading
process, friction causes stretches to be smaller than in a frictionless case during loading, and larger
during unloading. Despite this behaviour, it is still illuminating to compare this experiment to
simulations of our effective (and frictionless) model.

The black curve in figure 9b plots the simulated force–displacement curve for the
heterogeneous loading shown in the bottom pane of figure 7b (the centre-pulling case). The
simulation is carried out using the rotating squares parameters α, β, c1/c0, c2/c0 fitted previously.
The modulus c0, which has yet to be prescribed, acts as an effective shear modulus that sets the
overall magnitude of the force but does not affect the shape of the curve. We choose it as c0 =
μ/3.5 so that the simulated curve is approximately in the middle of the loading and unloading
experimental curve. This prescription is an attempt to capture the frictionless behaviour of the
sample, which should fall somewhere within the width of the hysteresis loop. We note that the
simulated sample is displacement-controlled rather than force-controlled (the former is easier to
implement in our Abaqus UEL). Its forces are computed using a version of Castigliano’s method
described in appendix C. We expect an analogous force-controlled simulation to produce the same
force–displacement curve.

The experimental and simulated curves exhibit the same trends and are quantitatively
consistent. Both are nonlinear and convex, and the modulus used in the model (c0 = μ/3.5) is
physically reasonable. In the simulation, the forces emerge from stresses due to the nonlinear bulk
elastic term at a given applied displacement. This term attempts to relax some of the actuation
ξ of the linear hinge bending term. However, there is geometric frustration in this process; the
effective deformation and slit actuation must approximate a local mechanism via equation (3.1).
This frustration increases as the boundary displacement increases, leading to the convex nature of
the curve. That the experimental curve displays a similar convex profile is another demonstration
of the quality of our generalized continuum model.

Adding to the discussion, the dashed black line in figure 9b plots the analytical force–
displacement curve for the uniform stretch case described in §5b using the same parameters as
the simulation. Compared to the centre-pulling case, the curve has a larger value of force at each
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given stretch, which is expected since much more of the boundary is loaded at the same value of
stretch. The curve also increases dramatically at high values of stretch, where the entire pattern
has begun to exhaust its soft mechanistic response. At this stage, the hinges must stretch as well
as bend, which fully engages the bulk elastic term in the model. Interestingly, the same level
of actuation in the centre-pulling case—actuation warranting significant hinge stretching—only
occurs in localized regions near the loading location. This feature appears to delay the inevitable
sharp change in the overall force response.

6. Conclusion
This paper modelled the class of planar, rhombi-slit kirigami metamaterials as generalized elastic
continua. We first described how to obtain the cell-averaged response of the pattern’s mechanism
deformations. Then we formulated an elastic energy that drove the pattern’s effective deformation
and slit actuation towards this cell-averaged response locally, and treated the slit actuation as an
auxiliary field variable to account for additional physically relevant sources of elasticity. Through
implementation in Abaqus, we demonstrated a model capable of predicting the response of
kirigami metamaterials across designs and loading conditions.

Although we only discussed a specific energy formula for a specific family of kirigami, our
method can be generalized to a wide range of kirigami metamaterials. For instance, by modifying
the shape tensor in equation (2.4), we can model planar kirigami with parallelogram slits [47], and
presumably any other periodic and planar kirigami with periodic mechanisms to be discovered.
We can also account for spatial variations of unit cell design, as in [53], by allowing the design
parameters in the model to vary. Finally, while our constitutive choices in equations (3.3) and
(3.4) were simple by design, they can be easily updated to enrich the model to account for more
nuanced features of the kirigami’s response than those discussed here.

Taking a broader view, our results suggest that modelling mechanical metamaterials as
generalized elastic continua is a powerful approach to understanding their nonlinear response—
one potentially capable of efficiently navigating the design space of these materials, while
remaining predictive under a wide range of loads. By focusing on rhombi-slit kirigami, we took
a purposefully concrete and simple approach to modelling. We hope this choice makes our work
widely accessible and paves the way for broad generalization going forward.
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Appendix A. Explicit tangent formulas for Abaqus FEM implementation
Here, we develop explicit formulae for the tangents in equation (4.10) to complete the description
of the FEM formulation for Abaqus implementation. The formulae reference functions introduced
in §§3 and 4 which we do not repeat here. They also make use of shape functions defined on the
current configuration ÑA : yeff(Ω) →R via ÑA ◦ yeff(x) =NA(x), for which the gradients transform

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 Ju

ne
 2

02
3 

https://github.com/yzheng29/kirigami-metamaterial_UEL
https://github.com/yzheng29/kirigami-metamaterial_UEL


18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220665

..........................................................

as
∇ÑA ◦ yeff(x) = (F̃(x,u))−T∇NA(x). (A 1)

This transformation is a convenient way of bringing out certain symmetries in the parts of these
tangents associated with the bulk elastic term W0. ([49, ch 8.4] has a detailed exposition on
hyperelastic tangent formulae, where this transformation is employed.) In brief, we find that

[KAB
disp(u, ξ )]ab =

∫
Ω

{[Cdisp(F̃(x,u)A−1(θ̃ (x, ξ )))]abcd[∇ÑA ◦ yeff(x)]c[∇ÑB ◦ yeff(x)]d} dA,

[kAB
disp(u, ξ )]a = [kBA

act (u, ξ )]a =
∫
Ω

{[Cmix(F̃(x,u), θ̃ (x, ξ )))]ab[∇ÑB ◦ yeff(x)]bN
A(x)} dA,

kABact (u, ξ ) =
∫
Ω

{
∂

∂θ
[fact(F̃(x,u), θ̃ (x, ξ ))]NA(x)NB(x) + 2c2∇NA(x) · ∇NB(x)} dA

(A 2)

in two-dimensional index notation with repeated indices summed. The moduli in these formulae
are associated with partial derivatives of W(F, θ ,p). Structurally, they are of the form

[Cdisp(G)]abcd =
[

∂τ 0(G)
∂G

]
bdal

[G]cl − [τ 0(G)]bc[I]ad,

Cmix(F, θ ) := C̃mix(FA−1(θ ),A′(θ )A−1(θ )),

C̃mix(G,H) := −∂τ 0(G)
∂G

: (GH),

∂

∂θ
fact(F, θ ) = − d

dθ
[P0(G(θ )) : (G(θ)H(θ ))] + 2c1

=: cact(G(θ ),H(θ ),H′(θ )),

(A 3)

where the arguments of cact(·) are defined as G(θ ) := FA−1(θ ) and H(θ) :=A′(θ )A−1(θ ). Each
moduli can also be expressed in terms of elementary functions as

[Cdisp(G)]abcd = 2c0

JG
{[I]ba[GGT]dc − [GGT]bd[I]ac

− [I]bd[GGT]ac + (2J3G − J2G)[I]bd[I]ac}

+ 2c0

JG

{
−(J3G − J2G)[I]bc[I]ad + 1

2
|G|2([I]bd[I]ac + [I]bc[I]ad)

}
,

C̃mix(G,H) = −2c0

JG
(2 sym(GHGT) − Tr(GHGT)I

+ Tr(H)
{(

1
2
|G|2 + 2J3G − J2G

)
I − GGT

})
,

cact(G,H,M) = 2c0

JG
(|GH|2 + Tr(G(H2 − M)GT) − 2 Tr(GHGT) Tr(H))

+ 2c0

JG

({
2J3G − J2G + 1

2
|G|2

}
(Tr(H))2

+
{

1
2
|G|2 − J3G + J2G

}
Tr(M)

)
+ 2c1,

(A 4)

where sym(·) denotes the symmetric part of a square matrix.

Appendix B. Materials and methods
We cut the kirigami specimens out of 1.5 mm-thick natural rubber sheets (McMaster-Carr
8633K71) using an 80 Watt Epilog Fusion Pro 32 laser cutter. During the fabrication, the laser
cutter is focused on the bottom face of the rubber sheet to avoid burning the specimens and to
produce clean cuts. The specimens are painted with white primer paint to create high contrast
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with a black background, which facilitates image processing. Images of the samples are recorded
by means of a FLIR 5-megapixel 35 fps camera with Edmund Optics lenses.

Our method for characterizing the slit actuation in the deformed experimental samples is
similar to our previous work [47] and to that of others [28]. We obtain quantitative information
on the deformation through digital image processing in MATLAB. After converting the images
to binary (using the imbinarize function), we obtain the centroid c(i,j), semi-major axis a(i,j)

and semi-minor axis b(i,j) of the central slit of each (i, j)-cell using the regionprops function.
Then, using d= 
/20 from §5a and ξ0 from figure 5c,d, we calculate ξ (i,j) from tan(ξ (i,j) + ξ0) =
(|a(i,j)| + d/2)/(|b(i,j)| + d/2) and take γ (i,j) as the inclination of the major axis with respect to the
horizontal. Since we know the dimensions of the panels in the sample, we overlay a ξ colour
map of each idealized deformed unit cell (with angles (ξ (i,j),γ (i,j))) onto the experimental pattern,
centred at the slit centroid c(i,j).

The force–displacement data are obtained with the setup illustrated in figure 9a. The specimen
rests on a smooth surface (Slippery UHMW Polyethylene). For anchoring and positioning
purposes, we build a frame of T-slotted rails and use a three-dimensionally-printed hook to pin
down the specimen onto the surface. At the desired loading location, we tie a nylon string to the
specimen. The string then passes through a three-dimensionally-printed positioning device tied
to the frame, and is connected to a bucket. We add known weights to the bucket and calculate the
force that the weights impart onto the specimen. These experiments are force-controlled: we apply
a weight and measure the specimen’s stretch along a desired direction. The stretch is measured
with the same camera mentioned previously in this section. The deformed length of the specimen
is measured through an automated pixel counting process in MATLAB.

Appendix C. Castigliano’s method to obtain forces
The theoretical forces in figure 9 are calculated by differentiating the equilibrium energy with
respect to the overall displacement, using our generalized elastic continuum model. This is
essentially Castigliano’s method from structural mechanics. Here, we give a brief justification
of this approach.

We assume that the effective reference domain of the kirigami pattern is Ω = (−L/2,L/2)2

and focus on the centre-pulling case, where the pattern’s effective deformation yeff(x) and slit
actuation ξ (x) solve the equilibrium equations in equation (4.3) subject to the boundary conditions⎧⎪⎪⎨⎪⎪⎩

yeff(x) = x ± q
2e1 for x · e1 = ±L/2, x · e2 ∈ (−ε, ε)

Pyeff,ξ (x)nR(x) = 0 on the rest of the boundary ∂Ω

∇ξ (x) · nR(x) = 0 on all of ∂Ω .

(C 1)

The parameter ε > 0 idealizes the width where the sample is gripped and displaced on centre-
pulling. The parameter q≥ 0 is the overall displacement of the horizontal centreline as the sample
is monotonically loaded. It starts at the value q= 0 and increases monotonically to achieve a
maximum stretch λ = 1 + q/L≈ 1.35 in both the simulation and experiment in figure 9. Of course,
yeff and ξ depend on q.

As in Castigliano’s method, we differentiate the equilibrium value of the generalized elastic
continuum energy

U (q) := t
∫
Ω

W(∇yeff(x), ξ (x), ∇ξ (x)) dA (C 2)

with respect to the overall displacement q. Note t> 0 is the thickness of the sample. Passing the
derivative under the integral sign and using the definitions from §§3 and 4, there follows:

dU
dq

= t
∫
Ω

{
Pyeff,ξ (x) : ∇

(
∂yeff(x)

∂q

)
+ fact(∇yeff(x), ξ (x))

∂ξ (x)
∂q

+2c2∇ξ (x) · ∇
(

∂ξ (x)
∂q

)}
dA. (C 3)
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By the divergence theorem,

dU
dq

= t
∫
Ω

{
−(∇ · PT

yeff,ξ
(x)) · ∂yeff(x)

∂q

+ (fact(∇yeff(x), ξ (x)) − 2c2∇2ξ (x))
∂ξ (x)
∂q

}
dA

+ t
∫
∂Ω

{
(Pyeff,ξ (x)nR(x)) · ∂yeff(x)

∂q
+ (2c2∇ξ (x) · nR(x))

∂ξ (x)
∂q

}
dΓ . (C 4)

The equilibrium equations in equation (4.3) imply that the first integral above vanishes.
Concerning the second, let x±(s) = ±(L/2)e1 + se2 parametrize the boundaries of the applied
displacement. By the boundary conditions in equation (C 1),

dU
dq

= t
∫ ε

−ε

{
Pyeff,ξ (x+(s))e1 · ∂

∂q

(
x+(s) + q

2
e1

)
−Pyeff,ξ (x−(s))e1 · ∂

∂q

(
x−(s) − q

2
e1

)}
ds

= t
2

∫ ε

−ε

e1 · Pyeff,ξ (x+(s))e1 ds︸ ︷︷ ︸
:=(1/2)f+

+ t
2

∫ ε

−ε

e1 · Pyeff,ξ (x−(s))e1 ds︸ ︷︷ ︸
:=(1/2)f−

. (C 5)

The terms f+ and f− give the tensile force applied to the right and left boundary, respectively. As
these are equal by force balance, i.e. f+ = f− = F, we conclude that

dU
dq

= F. (C 6)

In summary, the force in the centre-pulling set-up can be found by differentiating the
equilibrium energy with respect to the overall displacement. equation (C 6) also holds for the
homogeneous set-up in figure 9. The justification of this result is similar and is left to the reader.
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