
Graphene Activation Explains the Enhanced Hydrogen Evolution on
Graphene-Coated Molybdenum Carbide Electrocatalysts
Timothy T. Yang and Wissam A. Saidi*

Cite This: J. Phys. Chem. Lett. 2020, 11, 2759−2764 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Molybdenum carbides (MoxC) have shown high catalytic
activities toward hydrogen evolution reaction (HER) when coupled with
graphene. Herein, we use density functional theory (DFT) calculations in
conjunction with ab initio thermodynamics and electrochemical modeling on γ-
MoC supported graphene to determine the origin of the enhanced HER
activities. In addition to previous claims that graphene’s main role is to prevent
agglomeration of MoxC nanoparticles, we show that the interplay between γ-
MoC coupling and graphene defect chemistry activates graphene for the HER.
For γ-MoC supported graphene systems, the HER mechanism follows the
Volmer−Heyrovsky pathway with the Heyrovsky reaction as the rate-
determining step. To simulate the electrochemical linear sweep voltammetry at
the device level, we develop a computational current model purely from the
thermodynamic and kinetics descriptors obtained using DFT. This model shows
that γ-MoC supported graphene with divacancies is optimum for HER with an
exchange current density of ∼1 × 10−4 A/cm2 and Tafel slope of ∼50 mV/dec−1, which are in good agreement with experimental
results.

Water electrolysis is a promising approach for hydrogen
production with no greenhouse gas emissions as long as

renewable energy resources are used to drive water splitting.
For this case, hydrogen is generated at the cathode site through
hydrogen evolution reaction (HER). Despite the promise of
molecular hydrogen for electrochemical energy storage and
conversion, the high cost of the optimum catalyst, platinum,
has been the bottleneck of wide-scale deployment for
electrochemical hydrogen production.1,2 Molybdenum carbide
(MoxC) is an attractive catalyst for HER because of its low cost
and high stability.3,4 Recent studies have demonstrated a good
HER catalytic activity of MoxC in various structures including
nanowires,5 microspheres,6 hierarchically porous architecture,7

or nano-octahedrons.8 It is generally believed that Mo2C
phases such as β-Mo2C exhibit excellent HER electrochemical
catalytic behaviors5,9 because their Mo−C mixed bands across
the Fermi level provide a platinum-like metallic d-band
structure.10,11 On the other hand, MoC phases in hcp, fcc,
or WC structure (γ-MoC) are less favored for catalytic
activities owing to their covalent or mixed ionic−covalent
characters.3,10

Several studies have shown that the catalytic activities of
MoxC nanoparticles can be further enhanced by coupling to
carbon-based materials.12−18 To date, the main role of
graphene in MoxC/graphene heterostructures is not clear.
Because graphene is extremely inert to HER,19 it is generally
believed that graphene hinders the aggregation of MoxC
nanoparticles, therefore maximizing the number of active

sites.6,8,15,17,20 However, previous studies showed that HER
activities can also be induced at the interface of hetero-
structures21−23 such as nitrogen-doped graphene/g-C3N4

24

and graphene/MoS2.
19,25 This raises the question whether the

coupling of graphene to MoxC functionalizes graphene toward
HER. Moreover, if this is the case, then a fundamental
understanding on the coupling behavior at the nanoscale can
provide an opportunity to further enhance the HER activity.
Herein we use first-principles density functional theory

(DFT) calculations in conjunction with ab initio thermody-
namics and electrochemical methods to study the HER
mechanism on γ-MoC supported graphene in acidic environ-
ments. Our main finding is that the coupling of graphene with
γ-MoC induces new catalytic sites on graphene although
graphene is inert in isolation. Further, we show that the HER
activity of the coupled system is tunable with graphene defect
chemistry, achieving an optimum value with divacancy defects.
Thus, our studies suggest that the experimentally observed
enhanced HER activity due to the coupling between MoxC
nanoparticles and carbon-based materials12−18,26 is not due to
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only preventing agglomeration of MoxC but is also due to an
increase in the number of HER active sites. Further, to build a
linkage with analytical electrochemistry, we use first-principles
results to develop an electrochemical model for linear sweep
voltammetry to quantify the HER activity under electro-
chemical conditions. This model shows that the exchange
current density on the γ-MoC supported graphene with
divacancy defects is at least 1 × 10−4 A/cm2, which is
comparable to experimental results and that of advanced HER
catalysts.
We use the Vienna Ab Initio Simulation Package

(VASP)27,28 for the DFT calculations in conjunction with
Perdew−Burke−Ernzerhof (PBE)29 exchange−correlation
functional and Tkatchenko−Scheffler30,31 van der Waals
corrections. The Zur and McGill scheme32 is applied to
build a supercell model for the heterostructure employing a
small lattice misfit between γ-MoC Mo-terminated (001) and
graphene. γ-MoC(001) termination is chosen as this is a stable
termination with low surface energy.4,10,33 The optimum
interface structure was determined from the minimum of the
potential energy surface constructed by shifting graphene with
respect to the Mo- or C-terminated γ-MoC (001) and relaxing
all atomic coordinates. Using this approach, we find that the
Mo-terminated interface is the most stable with Mo sitting
atop C sites of graphene. Using the same interface model, in
addition to pristine graphene (MoC-G), we have investigated
graphene with Stone−Wales (MoC-SW), monovacancy
(MoC-MV), and divacancy (MoC-DV) defects. We find that
graphene and γ-MoC (001) form a stable interface. The
adhesion energies are relatively large and vary between −1.73
and −2.82 J/m2 for graphene with or without defects (see the
Supporting Information). We note that these defects can be
controlled by chemical treatments and irradiation techniques.34

To study hydrogen adsorption on the surfaces, we use a
single hydrogen atom to probe all possible adsorption sites to
obtain the hydrogen adsorption energy

E E E E0.5n nH H( ) H( 1) H2
Δ = − −− (1)

where EH(n) and EH(n−1) are the total energies of the system
with n and n − 1 adsorbed hydrogen H*, and EH2

is the energy
of H2 molecule. Figure 1 shows ΔEH on all the possible

adsorption sites schematically. On MoC-G, H* is located only
on atop C sites whereas hollow and bridge sites are unlikely to
be occupied. For MoC-MV and MoC-DV, the most stable sites
(ΔEH = −0.3 and −0.7 eV) correspond to carbon atoms with
dangling bonds. Also, on MoC-SW, a strong adsorption site
(ΔEH = −0.7 eV) appears at the apex of a pentagon carbon
ring. In addition to the direct interaction of H* with C, the Mo
d-band orbitals of subsurface Mo layers also affect hydrogen
bonding. For example, on MoC-G, the ΔEH of H* at the atop
sites of C which is supported on top of subsurface Mo is about
1 eV weaker than that at C which is at Mo bridge sites. Overall,
the filling sequence of these sites follows the adsorption
strength: sites having strong interaction with H* are occupied
first. This is similar to the β-Mo2C surface as we have verified
before.35 Further, the induced-curvature of graphene due to its
interaction with MoC causes sp2−sp3 hybridization also affects
hydrogen adsorption strength,36−38 which causes small
variations of ΔEH on some symmetric sites especially for
MoC-DV.
We compute the hydrogen adsorption free energy ΔGH

(obtained from ΔEH after adding phonon contributions, see
the Supporting Information) to study HER thermodynami-
cally. For ΔGH > 0, HER is endothermic while it is an
exothermic process for ΔGH < 0. The optimum HER activity
corresponds to ΔGH ≅ 0, i.e., the smallest free energy is
needed for hydrogen to switch from gas state to adsorbed state
or vice versa.39 Figure 2a shows ΔGH for different hydrogen
coverage CH (defined as number of H* per surface area).
While ΔGH increases monotonically with CH for MoC-G and
MoC-SW because of repulsive H−H interactions, ΔGH
oscillates at low CH for MoC-MV and MoC-DV because of
mesomeric effect and compensation of dangling bonds. The
mesomeric effect is caused by hydrogen adsorption that breaks
graphene π bonds and delocalizes the electrons of H* at
neighboring sites (ortho or para sites). These sites then
become favored sites for subsequent hydrogen adsorption.40

To determine the hydrogen coverage under different
electrochemical environments, we compute the total hydrogen
adsorption free energy ΔGtot with considerations of pH and
external potential U (see the Supporting Information).41

Figure 2b shows ΔGtot of the four coupled systems; the
most favored CH has the lowest ΔGtot, and the corresponding
ΔGH for different CH is shown in Figure 2a. On MoC-G, H*
interacts weakly with the surface (ΔGH = 0.21 eV) at CH =
1.15 H*/nm2 from 0 to −0.3 V. In contrast, hydrogen
adsorption is stronger on MoC-SW and MoC-MV at 1.15 H*/
nm2 (ΔGH = −0.27 eV) and 2.30 H*/nm2 (ΔGH = −0.32 eV)
below −0.1 V, respectively. Surprisingly, MoC-DV is predicted
to have a strong HER activity (ΔGH = −0.14 eV) at 5.76 H*/
nm2 with only a small overpotential of −0.05 V. This will be
also validated by examining the exchange current density, as
will be discussed later.
The overall HER reaction H+ + e− → H1

2 2 takes place via

two possible pathways, namely, the Volmer−Heyrovsky or the
Volmer−Tafel. In an acidic solution, the three elementary
steps can be written as

H O e H H O (Volmer)

H O e H H O H (Heyrovsky)

H H H (Tafel)

3 2

3 2 2

2

+ ↔ * +

+ + * ↔ +

* + * ↔

+ −

+ −

Figure 1. Hydrogen adsorption energies ΔEH of the HER activation
sites on γ-MoC supported graphene with graphene defects. The
adsorption sites are located on atop sites of the carbon atoms of
surface graphene. These surface carbon atoms are color coded to
represent the hydrogen adsorption energy. The supporting sublayer
Mo atoms of γ-MoC are shown as dashed circles.
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The Volmer reaction refers to hydrogen deposition from liquid
water to the surface. To form H2(g), H* can react either with
H+ in solution through the Heyrovsky reaction or with another
H* on the surface through the Tafel reaction. Figure 3 shows
that the Volmer−Heyrovsky pathway is preferred for all
structures with an activation barrier Eavt less than 0.3 eV for the
Volmer reaction and 0.9 eV for the Heyrovsky reaction. Thus,
the Heyrovsky reaction is the rate-determining step (rds). In
contrast, the Volmer−Tafel pathway is hindered by the large
activation barriers (Eavt > 2.4 eV) of the Tafel reaction. For
comparison, we also show the corresponding activation
barriers on Pt (111) where both of the Volmer−Heyrovsky
and the Volmer−Tafel pathways are accessible with Eavt less
than ∼0.7 eV.42 We also use an extrapolation scheme43,44 to
eliminate finite-size effect for reaction energy and activation
energy, but our conclusions did not change that the Volmer−
Heyrovsky is the favorable route with the Heyrovsky reaction
as the rds for all systems (see the Supporting Information for
calculation details and Table S2 for the corrected Eavt).
The overall HER with the Heyrovsky reaction as the rds can

be described from the current−potential45

j nFk C fexp( )0 totθ β η= − (2)

where f = F/RT with F Faraday’s constant and R the gas
constant; the temperature T is chosen to be room temperature
(298 K). n is the total electrons involved per active site, and k0
is the rate constant. Ctot is the concentration of H* and H+

near the electrode, which is approximated as the number of
active sites per surface area. The overpotential η = U − USHE is
the difference between the external potential, U, and the
equilibrium potential, USHE, that is theoretically defined as 0 V
vs standard hydrogen electrode (SHE). The symmetry factor β
is defined as the fraction of the activation barrier induced by
the overpotential η.46,47 For each γ-MoC supported graphene
system, we compute β by evaluating the change of excess
charge between transition and initial states using Bader
analysis, as suggested by Chan et al.43 See the Supporting
Information and Table S2. We find that β = 0.1−0.35. β < 0.5
indicates that the transition state of a reaction is final-state-like
rather than initial-state-like.47 Thus, for the coupled systems,
the transition states are final-state-like, as can be also verified
from examining the C−H bond length shown in Figure 3(b).

Figure 2. (a) Hydrogen adsorption free energy, ΔGH, as a function of hydrogen coverage, CH. The red-dashed line indicates ΔGH = 0 for the
optimum HER rate. (b) Total hydrogen adsorption free energy, ΔGtot, as a function of external potential, U, at different hydrogen coverages, CH.
See Figure S2 for 3D representations of the adsorption configurations near 0 vs SHE. For panels a and b, we show only the values at the hydrogen
coverages that are relevant to the HER potential window from 0 to −0.5 V vs SHE.

Figure 3. Minimum-energy pathways for the (a) Volmer, (b) Heyrovsky, and (c) Tafel reactions. The reaction pathway is gauged using the
bonding distance between C and H in panels a and b or the distance between two hydrogen atoms that are involved in the formation of H2 in panel
c. The hydrogen coverage for each reaction is selected at U = −0.05 V, as shown in Figure 2b. The dots indicate the images employed in the NEB
simulations.
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Near the electrode surface, the fraction of hydrogen atoms
that are involved in HER can be written as

l

m

ooooooo

n

ooooooo

K f
G

K
f K

G

1
exp( ) 1

for 0

exp( )
for 0

V

V

V

H

H

θ
η

η

=
+

Δ <

+
Δ >

(3)

where KV = exp(−ΔGH/kBT) with the averaged ΔGH among
all adsorption sites corresponding to the hydrogen coverage
near zero overpotential (see the detailed discussion for ΔGH
and the derivation of θ in the Supporting Information).39 For η
= 0, θ is of the form of a Langmuir model that has been applied
widely to study HER on various catalytists.39,45,48 θ rapidly
increases with η attaining 1 when η is negatively away from 0.
Thus, as expected, more hydrogen atoms are involved in HER
at negative potentials that can be understood from the
enhanced stabilization of H+ on electrode surface with negative
potential. This behavior of θ is also consistent with the trend of
increasing CH with negative potential from the ab initio
thermodynamics results in Figure 2b. Furthermore, H+ that
comes to the surface at higher CH is more likely to form H2 as
can be seen from Figure 2a that ΔGH increases with increasing
CH. Note that ΔGH is an intrinsic property that is independent
of η as defined in eq S3.
The rate constant k0 ≈ 200 site−1 s−1 is universal for ideal

HER catalysts.39 To validate that this value of k0 is also
applicable on the MoxC supported graphene systems, we fit eq
2 to various experimental currents on similar systems (see the
Supporting Information). We find excellent fits with k0 from
162 to 383 site−1s−1. The obtained range for k0 is consistent
with the previous estimate of ∼200 site−1 s−1 on transition
metals and β-Mo2C surfaces.35,39 In addition, the curvature of
the experimental currents corresponds to β = 0.3−0.4, which is
in good agreement with our computed values from DFT β =
0.1−0.35 for the different γ-MoC supported graphene systems.
Figure 4a depicts the HER polarization curves from eqs 2

and 3. For comparison, we also reproduce the curves of
isolated pure graphene, γ-MoC bulk, and 20 wt % Pt on carbon
black (Pt−C) obtained from experiments.4,15,49 We show
clearly that the coupling of γ-MoC and graphene enhances the
HER activity, which are sluggish on graphene or γ-MoC bulk
in their isolated form. Further, the presence of graphene defect
chemistry modulates the HER activities of the coupled
systems: MoC-SW shows a similar HER activity with MoC-

G, whereas MoC-MV and MoC-DV display enhanced
activities. Using eqs 2 and 3, we calculate the exchange
current densities, j0, at zero external potential; these are
reported in the Supporting Information. The MoC-DV has the
highest j0 of ∼1 × 10−4 A/cm2 that is comparable to the
optimum HER catalysts.39

To further compare with experimental studies, we measure
the Tafel slopes dη/d log(j), which is often used to determine
the HER mechanism. Figure 4b shows the Tafel slopes as
obtained numerically from the currents in Figure 4a or in a
closed form dη/d log(j) = −2.303RT/F(1 + β) that can be
derived from eqs 2 and 3. As seen from the figure, the Tafel
slope ranges from 45 to 53 mV/dec−1 for the γ-MoC
supported graphene systems, suggesting that the Heyrovsky
reaction is the rds.50 This corroborates the NEB calculations. It
should be noted that even though there is debate in the
literature on whether the Tafel slope can be evaluated using
dη/d log (j) = −2.303RT/ F(1 + β),51 such an expression
follows from the exchange current model of eq 2 that is a very
good fit to experimental results as discussed before.
Experimentally, enhanced HER activities have been reported

on several graphene-coated MoxC catalysts with nitrogen- or
phosphorus-doped graphene or reduced graphene
oxide.15,26,52,53 Our study shows that the optimization of
these catalysts requires a fine-tuning between MoxC supports
and graphene bonding chemistry. Such interplay between both
effects ultimately would stabilize hydrogen on graphene that is
otherwise inert. The underpinning of this stabilization is due to
the charge-transfer effect. Extra electrons (holes) on graphene
will occupy graphene’s antibonding π* (bonding π) bands,
which weakens graphene π bonding and increases hydrogen
stabilization as less energy is required to break the graphene π
bonds.53,54 While MoxC in previous experiments belonged to
different phases such as Mo2C (JCPDS 15-0457,15 65-8766,52

and 01-079-074455) and MoC (PDF 65-3558),26 and
graphene is modified in different ways, there are two main
factors that makes our findings general. First, charge donation
from MoxC to graphene is expected to be from Mo irrespective
of MoxC phase, as carbon-terminated surfaces are not favorable
with graphene. Second, the doping nature of graphene can be
characterized by charge buildup or depletion irrespective of the
defect chemistry, which directly impacts the bonding of the
hydrogen adsorbates.56,57 These factors explain why our results
on γ-MoC supported graphene are similar to experimental
results on graphene-coated MoxC catalysts13,26,52 in terms of
displaying similar HER exchange rates 1 × 10−4 A/cm2 and in

Figure 4. (a) Polarization curves for γ-MoC supported graphene systems. For comparison, we show experimental Pt−C from ref 15, as well as
computed currents for isolated γ-MoC from ref 4 and pure graphene (PG) from ref 49. The computed curves are obtained using eqs 2 and 3 with
k0 = 200 site−1 s−1. (b) Tafel slopes of the corresponding γ-MoC supported graphene systems in panel a.
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having the Volmer−Heyrovsky as preferred HER mechanism
with the Heyrovsky reaction as rds.
Using first-principles calculations, we have investigated the

HER on γ-phase MoC supported graphene with graphene
defects including Stone−Wales, monovacancies, and divacan-
cies. We show that the reaction processes take place via the
fast-rate Volmer reaction followed by the Heyrovsky reaction
as the rate-limiting step, while the Tafel reaction experiences
high activation barrier over 2 eV. We have used a computa-
tional approach to obtain electrochemical linear sweep
voltammetry and to quantify the overall HER rate using
kinetic and thermodynamic variables obtained from first-
principles calculations. We show that the supported γ-phase
MoC and divacancy defects play a role to modulate the
hydrogen adsorption events resulting in an exchange current
density of 1 × 10−4 A/cm2. This study provides atomistic
insights on general graphene-coated MoxC electrocatalysts.
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