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A B S T R A C T   

Human-robot collaboration (HRC) is an emerging research area that has gained tremendous attention in both 
academia and industry. Yet, the feature that humans and robots sharing the workplace has led to safety concerns. 
In particular, the mental stress or safety awareness of human teammates during HRC remains unclear but is also 
of great importance to workplace safety. In this manuscript, we reviewed twenty-five studies for understanding 
the relationships between HRC and workers’ mental stress or safety awareness. Specifically, we aimed to un
derstand: (1) robot-related factors that may affect human workers’ mental stress or safety awareness, (2) a 
number of measurements that could be used to evaluate workers’ mental stress in HRC, and (3) various methods 
for measuring safety awareness that had been adopted or could be applied in HRC. According to our literature 
review, robot-related factors including robot characteristics, social touching and trajectory have relationships 
with workers’ mental stress or safety awareness. For the measurement of mental stress and safety awareness, 
each method mentioned has its validity and rationality. Additionally, a discussion related to the potential co- 
robot actions to lower mental stress or improve safety awareness as well as future implications were provided.   

1. Introduction 

In recent years, the concept of human-robot collaboration (HRC), 
defined as collaborative processes in which robots and humans work 
together to achieve common goals, has gained acceptance in a variety of 
industries such as warehousing, healthcare, manufacturing, etc. In HRC, 
a human worker and a robot share a workplace and work together in a 
collaborative way. HRC takes advantage of the flexibility of humans and 
the endurance of robots to substantially improve productivity (Villani 
et al., 2018). A robot adopted in HRC is typically referred to as a 
collaborative robot or a co-robot. Traditional industrial robots are 
designed to perform a task at a distance from workers. Common types of 
robots include manipulator arms, autonomous mobile robots, gantry 
models and so on. They are often used to process an item in a single way: 
drilling, welding, picking and placing, loading and unloading and so on. 
These industrial robots are heavy, large, and fast, which makes the ro
bots dangerous for workers and requires them to be isolated from 
workers. Since traditional robots work independently of the workers, 
they work in parallel rather than in a collaborative manner. Compared 
to traditional robots, a co-robot is defined as “a method and apparatus 
and for direct physical interaction between a general-purpose 

manipulator controlled by a computer and a person” (Colgate and 
Peshkin, 1999). Co-robots and human workers can work on the same 
task in the same physical area at the same time, such as a work cell or 
station. Compared to traditional industrial robots, co-robots are mainly 
mobile robots or robot arms, some with humanoid screens, and are 
designed to give the highest priority to human safety. Multiple engi
neering features (Michalos et al., 2015), such as limited end effector 
speed (International Organization for Standardization (ISO), 2016), 
torque sensors (Heinzmann and Zelinsky, 2003), and flexible exterior 
material (Pang et al., 2018) have been implemented in co-robot design 
in order to physically ensure human workers’ safety. 

Co-robots also affect the psychological states of workers in addition 
to the physical collision, as workers tend to view their co-robot team
mate as a social entity (Sauppé and Mutlu, 2015). A psychological state 
is a person’s state of mind which comprises a diverse class, including 
pain experience, perception, desire, belief, intention, emotion, and 
memory (Martin, 1990). A co-robot can evoke fears, surprise, and anx
iety if it looks robust enough to harm humans or it moves at a rapid 
speed with a sharp end-effector or in an unpredictable trajectory. An 
important component of the co-robots design is to take human person
ality and human engagement into account when adapting a co-robot’s 
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behavior (Celiktutan et al., 2019). Therefore, it is important to ensure 
that co-robots are human-friendly and psychologically acceptable 
(Kokabe et al., 2008). Human-friendly means that the co-robots are both 
safe and in a good performance, and psychologically acceptable means 
co-robots should meet the functional expectations of human workers. To 
achieve these goals, the movements of the co-robots must be perceptible, 
comprehensible, and predictable without imposing mental stress. For 
example, in common industrial practice, the movement trajectory cri
terion is set to minimize the integral of the end effector jerk (a derivative 
of acceleration) or to minimize the total execution time (Gasparetto and 
Zanotto, 2008). Such trajectories could appear unpredictable to workers 
and may confuse them in the early stages of the movement (Dragan 
et al., 2015), and potentially cause mental stress to workers. Previous 
studies have revealed that humans and robots can communicate 
emotionally during collaboration with robots or machines (Andreasson 
et al., 2018; Li et al., 2021). With regard to the relationship between 
negative emotions and stress, some studies have shown that they are 
closely related to each other. Some negative emotions such as anger, 
fear, and anxiety are usually triggered by stress, which shows a rela
tionship between stress and emotions (Epel et al., 2018). Here, mental 
stress is defined as a feeling of emotional pressure and strain in psy
chology, which is a kind of psychological pain (Rastogi, 2018). For 
example, a previous study (Fiedler et al., 2005) found that stress can 
significantly affect anxiety symptoms. In most articles on mental stress, 
participants are required to self-assess levels of anxiety, surprise and fear 
to represent their stress levels. 

Another important psychological aspect of workers during HRC is 
safety awareness. Safety awareness is a concept derived from situation 
awareness that emphasizes workers’ perception, comprehension, and 
projection of the safety-related elements and events at work (Stanton 
and Piggott, 2017). Situation awareness is the perception of elements in 
the environment and events in relation to time or space, the under
standing of their meaning, as well as the projection of their status in the 
near future (Endsley and Kiris, 1995). To date, a large number of studies 
have been conducted in various fields such as aviation and ground 
transportation and proved situation awareness is of great importance to 
system safety (Kaber and Endsley, 1998). In HRC, safety awareness re
fers to workers’ understanding of potential hazards related to the loca
tion, activities, and status of co-robots (Murashov et al., 2016). From a 
hazard control perspective, safety awareness is as important as engi
neering approaches, which refer to the engineering intervention to 
remove hazardous conditions at the workplace (Tweedy, 2005). For 
example, if a worker walks quickly toward a co-robot, depending on the 
walking speed, the co-robot’s automatic obstacle avoidance function 
may not have enough time to retract its end effector and avoid the 
approaching worker. Serious injuries can still occur when workers are 
not aware of the existence of a co-robot in the shared workspace. Ac
cident records of Occupational Safety and Health Administration 
(OSHA) have shown that multiple fatal and nonfatal injuries associated 
with robots are due in part to workers’ low safety awareness (e.g., OSHA 
Accident Report, 202475737, 2009). In addition, some studies have 
shown that higher stress levels were significantly associated with lower 
safety awareness (Hancock and Szalma, 2008; Sneddon et al., 2013). 

Since workers may be stressed or have low safety awareness during 
HRC, it is important to understand workers’ mental stress or safety 
awareness to improve the safety conditions during HRC. To date, a 
number of approaches to assessing the mental stress or safety awareness 
of people have been proposed and applied in the literature. The main 
approaches include direct measurements and indirect physiological 
measurements. Direct measurements are those that can quantitively or 
qualitatively measure workers’ mental stress or safety awareness 
directly through self-reports, questionnaires, or observations. For 
example, Or et al. (2009) examined the effects of moving speed and size 
of an industrial robot on workers’ mental workload with subjective 
questionnaires. Indirect measurements are those that estimate workers’ 
mental stress or safety awareness based on their performance or 

physiological data obtained through specialized sensors or devices. 
Performance is usually evaluated by response time or error in 
completing a task. Physiological data could be heart-beat rate (from 
electrocardiogram signal), skin conductance (from electrodermal ac
tivity signal), muscle current (from electromyography signal), and brain 
activity (from electroencephalography signal). 

Previous review studies (Epel et al., 2018; Zhang et al., 2020) mainly 
focused on direct and indirect measurements of mental stress or safety 
awareness in applications that were not in the context of human-robot 
collaboration. For those limited review articles that are related to the 
use of physiological measures in human-robot collaboration (Bethel 
et al., 2007; Rani et al., 2007), the robot-related factors that may affect 
mental stress or safety awareness were not well examined. In the current 
study, we seek to cover 1) the measurements for both mental stress and 
safety awareness that have been or can be used in human-robot 
collaboration, and 2) the robot-related factors that may affect mental 
stress or safety awareness. 

Three research questions were addressed in this review: 
Research Question 1 – What robot-related factors affect workers’ 

mental stress or safety awareness? Co-robots have been studied across a 
number of domains, but workers’ mental safety has not been explicitly 
and fully considered. Identifying the potential relationship between co- 
robots and workers’ mental stress or safety awareness could be of value 
to workers’ mental health in the future of work. 

Research Question 2 – What measurements can be used to measure 
mental stress during HRC? A number of methods have been used to 
determine the correlation between mental stress and possible indicators 
such as performance, physiological signals, and self-reports. Measure
ments that can be used to test the mental stress during HRC have not 
been thoroughly examined. 

Research Question 3 – What measurements can be used to measure 
safety awareness during HRC? Researchers currently test workers’ safety 
awareness mainly through direct measures. Only a small number of 
studies have adopted indirect measures to understand participants’ 
safety awareness. Measurements that can be used to measure workers’ 
safety awareness during HRC have not been fully explored. 

The rest of this manuscript was organized as follows: In Section 2, the 
review methodology was explained. Section 3 presented the results of 
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses) procedures. In Section 4, robot-related factors that affect 
workers’ mental stress or safety awareness were summarized. Section 5 
and 6 presented various methods for measuring the mental stress and 
safety awareness that had been adopted or could be applied in HRC, 
respectively. Section 7 discussed potential co-robot actions that might 
lower mental stress and/or improve safety awareness. Section 7 also 
discussed the limitations of this review. Section 8 presented the con
clusions and future work. 

2. Methods 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) method were used in this review to select literature. Four 
databases were searched, including Compendex, Web of Science, 
PubMed and Ergonomics Abstract. These databases provided diverse 
and comprehensive studies involving a number of subjects and domains. 

2.1. Literature selection 

The search syntax used in each database followed the expression: 
“((psychological states OR mental stress OR psychological stress OR 
situation awareness OR anxiety) AND (social touch OR trajectory OR 
speed OR robot size) AND robot) OR (stress AND physiological AND 
robot) OR (situation awareness AND (EEG OR human-robot collabora
tion OR eye-tracking))”. During the title and abstract screening stage 
and full-text review stage, the following criteria were used: 
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• At least one direct measurement was used.  
• The studies selected must measure short-term psychological change 

induced by robot movement or appearance rather than long-term 
change.  

• The participants should be healthy adults.  
• If a study used indirect measurements, this study needed to perform 

an analysis that can provide insight into the relationship between the 
direct and indirect measurements. 

The database Compendex, Web of Science and PubMed was searched 
on October 6, 2021, and Ergonomic Abstract was searched on March 1, 
2022. Two of our team members were assigned for doing a literature 
search and study screening independently. Disagreements that arose in 
this process were discussed and resolved by consensus after referring to 
the protocol. If they cannot reach a consensus, a third team member 
should be consulted. A team member created a database using Excel and 
then removed the duplicate entries automatically. 

2.2. Data extraction 

The following information was extracted from each article.  

- Research objectives. Clear research objectives from each literature 
were extracted for each research question.  

- Study designs. Study design and methodology were extracted from the 
experimental design described in each literature. Particularly the 
following information was examined: what the independent vari
ables and dependent variables were, how different comparative 
conditions were obtained, what measurements were used for mental 
stress or safety awareness, how the data were obtained and analyzed 
and possible results.  

- Outcomes: Comparative results were extracted from each literature. 
Results from each literature can confirm or reject the research 
problem underpinning the study. In this review, when the relation
ships between robot-related factors or other comparative conditions 
and workers’ mental stress or safety awareness were examined, a p- 
value of 0.05 is used to verify if an experimental condition has a 

significant effect on workers’ psychological states. Furthermore, the 
correlation between different measurements for a psychological state 
was also examined. 

3. Results from PRISMA procedures 

The PRISMA procedures and the number of obtained articles were 
shown in Fig. 1. This figure also presents the number of articles retrieved 
from each database. It resulted in 2347 articles after duplicates were 
removed. Following the screening criteria, 153 articles were kept for the 
full-text review. 25 articles were included in this final review. 

4. Robot-related factors that affect worker’s mental stress or 
safety awareness 

Workers’ mental stress and safety awareness can be affected by a 
variety of factors. A co-robot can be a stressor to evoke feelings of fear, 
anxiety or surprise when it appears as if it can hurt humans. For 
example, if a co-robot with a sharp end-effector moves towards a worker 
swiftly, or a co-robot moves unpredictably, the worker may feel fear 
because the robot appears to harm him or her. In this section, we pro
vided a review of robot-related factors that may affect workers’ mental 
stress or safety awareness including robot characteristics, social 
touching and trajectories. A total of 11 articles were included in the final 
analysis. Table 1 lists details about these articles. 

4.1. Robot characteristics 

Certain characteristics such as dimensions and speed of co-robots 
have been verified to have effects on human psychological states (Arai 
et al., 2010; Rahimi and Karwowski, 1990). Rahimi and Karwowski 
(1990) performed two experiments to assess participants’ perception of 
safe robot speed and idle time, respectively. Participants were asked to 
verbally express the adjustment of the robot’s speed of motion so that 
the preferred robot’s safe speed was confirmed. In the second experi
ment, participants were required to enter a work envelope when they 
perceived a programmed idle was caused by a malfunction. These 

Fig. 1. PRISMA process used to identify and select studies.  
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experiments certified that robot speed and idle time affected workers’ 
psychological states and safety behaviors. They further verified that 
robot size, moving speed and angle of approach had significant effects 
on workers’ safety awareness (Karwowski et al., 1991). In this experi
ment, participants were asked to approach a robot along with one of the 
six angles to a point at which they felt it was the maximum reach of the 
arm of the robot. The perceived maximum reach of the arm of the robot 
was used as the dependent variable to measure the effects of robot size, 
moving speed and angle of approach. Arai et al. (2010) selected three 
design parameters to evaluate the effects of co-robot motions on human 
mental stress, which were the distance from the end-effector to a worker, 
moving speed and advance notice of co-robot motion, respectively. Both 
physiological and questionnaire results have shown high mental stress 
was caused when co-robots moved close to the workers or moved to
wards workers at high speed. 

Or et al. (2009) replicated similar settings and experimental pro
cedures as Rahimi and Karwowski (1990) in a virtual reality environ
ment. The results confirmed that robot size and speed were significantly 
associated with workers’ safety awareness in virtual reality as well. This 
study also validated the feasibility of measuring human psychological 
states in a virtual reality environment. 

4.2. Social touching 

As a teammate of a worker at the workplace, a co-robot should be 
able to cooperate and communicate with a worker like a human. Social 
touching is commonly seen in human-human communication and 
interaction and plays an important role in changing human psycholog
ical states and behavior (Calinon et al., 2010). Social touching is most 
commonly used to comfort people who are experiencing mental stress or 

suffering (Dolin and Booth-Butterfield, 1993). Derived from heuristics of 
human-human interaction, social touching motion can be designed to 
increase the social attribute of a co-robot, making it collaborate with 
workers more effectively. 

Studies in the field of HRC have revealed that touching a soft robotic 
seal reduces one’s depression, pain and stress (Hoffmann, 2017). Re
searchers also developed therapy robots based on tactile interaction 
such as touching, for psychological therapy (Schaefer, 2004; Shibata and 
Wada, 2011). These therapy robots validated the beneficial effects of 
touch on human’s well-being. Based on the studies in the realm of robot 
therapy, Hoffmann examined the effects of touching on participants’ 
psychological states (Hoffmann, 2017). Consequently, participants 
touched by the robot felt better during the human-robot conversation, 
then their negative effect lowered. This indicated that touch was able to 
improve one’s psychological state compared to the participants who had 
the same interaction without touch. 

Willemse and van Erp (2019) also investigated whether the robot’s 
social touching could elicit positive responses in the participants from 
the viewpoint of psychological states. In their experiment, a thriller 
movie was used as a stressor. Participants watched the movie and were 
occasionally touched by a robot. Their findings implied robotic touches 
could reduce mental stress no matter with or without prior bonding, 
which is mainly reflected by the reduced heart rate during the interac
tion moments. 

4.3. Co-robot movement trajectory 

Trajectory planning is of great importance in HRC as unpredictable 
trajectories of a co-robot’s end-effector can make a worker feel as if he or 
she may be hurt (A. D. Dragan et al., 2015; Gurgul, 2018) or confuse 
workers in the early phase of the movement (Dragan and Srinivasa, 
2014). In industry practice, the objective functions of end-effector tra
jectory optimization include minimizing the total execution time, 
minimizing energy or minimizing the integral of end effector jerk (a 
derivative of acceleration) (Gasparetto and Zanotto, 2008). The 
minimum-time algorithm was proposed due to the need for productivity 
as well as the limited capability of actuators (Bobrow et al., 1985). 
Minimum-energy techniques produce natural-looking and smooth tra
jectories that are easy to track and reduce the force exerted on the ac
tuators and manipulator structure. Minimum jerk techniques (Martin 
and Bobrow, 1999) generate trajectories that do not need sudden torque 
change, which can also result in a natural motion. Furthermore, 
minimum-jerk approaches can reduce the errors during tracking, the 
force exerted on the actuators and mechanical structure as well as 
excitation of resonance frequencies of robots (Kyriakopoulos and Sar
idis, 1988). Minimum-energy and minimum-jerk techniques can yield 
smooth interaction in HRC, which is able to improve workers’ physical 
comfort to some extent. However, solely focusing on the adaptation and 
functionality of trajectories may decrease the predictability of the 
movements of robots. Trajectories generated from these criteria are less 
predictable and may confuse workers in the early phase of the move
ment, and possibly impose mental stress on workers (Dehais et al., 
2011). 

In HRC, workers need to clearly understand the intentions of co- 
robots. A co-robot should be able to plan the trajectories that are psy
chologically acceptable, predictable and legible to the workers. To make 
robot trajectories psychologically accepted by humans, Kokabe et al. 
(2008) examined human-to-human handing motions under different 
psychological feelings of the deliverer. In other words, the deliverer did 
hand-over motions with different feelings they need to express, and 
receivers did natural motions without knowing the adjective feelings. 
The authors then proposed an algorithm to generate co-robot handing 
motions simulating the motions of the human deliverer. By changing the 
parameters, psychologically acceptable co-robot handing movement can 
be realized. 

Dehais et al. (2011) designed three co-robot motions with different 

Table 1 
Studies selected for robot-related factors that may affect psychological states.  

Authors Sample 
Size 

Examined Factors Dependent Variables 

Rahimi & 
Karwowski 
(1990) 

30/24 Robot size, speed 
and accident 
exposure 

Perceived maximum safe 
speeds 

Karwowski 
et al. (1991) 

12 Robot size, speed, 
and approach angle 

Perception of maximum 
reach of robot’s arm, selected 
distances from the robot 

Or et al. (2009) 32 Robot size, speed, 
gende and 
simulated accident 
exposure 

The length of time the 
participants waited before 
entering the robot work 
envelop 

Hoffmann 
(2017) 

84 Social touch Self-reported questionnaire 
ratings 

Willemse & van 
Erp (2019) 

67 Social touch Galvanic Skin Response 
(GSR), Heart Rate (HR), 
Heart Rate Variability 
(HRV), Respiration Rate (RR) 
and questionnaire ratings 

Kokabe et al. 
(2008) 

20 Trajectory Subjective evaluations 

Dehais et al. 
(2011) 

12 Trajectory Self-reports of legibility, 
safety and physical comfort, 
SCR and EMG 

Dragan et al. 
(2013) 

432 Trajectory Subjective scaling and time 
were taken to predict 

Dragan et al. 
(2015) 

18 Trajectory Questionnaire, coordination 
time, total task time, and 
concurrent motion time 

Koppenborg 
et al. (2017) 

28 Trajectory Performance (response times 
and percentage of correct 
answers), subjective scaling, 
and physiological signal 

Arai et al. 
(2010) 

5 Distance, speed 
and notice 

EDA 

Note. GSR = galvanic skin response; HR = heart rate; HRV = heart rate vari
ability; RR = respiration rate; SCR = skin conductance response; EMG =

electromyogram. 
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levels of safety, legibility and physical comfort values. Participants were 
asked to rate different motions and three physiological signals were 
measured simultaneously. It has appeared that unpredictable motion led 
to higher galvanic skin response and negative subjective ratings. On the 
contrary, no such effects were found when the co-robot motion appeared 
safe, legible and comfortable. However, no data on task performance 
was measured in this experiment. 

In previous studies, predictability and legibility were usually bound 
as a couple of desirable attributes of robot movements. Dragan et al. 
(2013) distinguished the predictability and legibility for the first time. In 
their study, predictable trajectories matched the expectation of a human 
when a target object was given, while legible trajectories enabled a 
worker to predict a target object confidently and quickly. They further 
investigated how different types of trajectories affected physical col
laborations between co-robots and humans, which included functional 
motion, predictable motion and legible motion (Dragan et al., 2015). A 
functional motion was introduced as an unpredictable and erratic mo
tion to be compared with a predictable and legible motion. In their ex
periments, the co-robot started to reach one of the objects along with 
different types of trajectories. The participants then predicted the 
co-robot’s intention and gathered corresponding objects, and both 
co-robot and participants put their items on the same tray. Task per
formance data were measured as well as self-ratings. The results indi
cated functional motion was not suitable for human-robot collaborative 
tasks as it increased the amount of time to complete the task and 
decreased coordination fluency. Legible motion is preferable to pre
dictable motion in HRC because it can express robot’s intent more 
clearly and is in line with worker’s expectations. 

Koppenborg et al. (2017) experimentally investigated the effects of 
path predictability of an industrial collaborating co-robot on the worker. 
Participants completed tasks together with a co-robot in an industrial 
workplace simulated in virtual reality. The results have shown that a 
lower level of predictability and a higher level of speed increased the 
demands on workers, resulting in higher mental workload, anxiety, risk 
perception and a loss of task performance. 

5. Methods to measure mental stress in human-robot 
collaboration 

A total of 11 articles were included in the final analysis. Table 2 lists 
details about the 11 articles for methods to measure mental stress in 
human-robot collaboration. 

5.1. Direct measurements 

Self-report is the most commonly used direct method of psycholog
ical estimate. One can design a questionnaire based on psychological 
knowledge and then compute the stress index by the results. Or et al. 
(2009) examined the effects of moving speed and size of an industrial 
robot on workers’ mental workload. The effects on workers were then 

estimated by subjective questionnaires. It was noted that when workers 
encountered a larger robot or a robot with a higher end effector speed, 
they perceived a significantly higher mental workload. One limitation of 
the direct measures is that participants may answer the questions in a 
way that they think the researchers want them to answer. Another issue 
is that to some extent the participant’s responses depend on his or her 
mood on the day of the experiment (Bethel et al., 2007). The self-reports 
were commonly used as a reference to build the connection between 
participants’ subjective stress levels and the objective physiological 
data. 

5.2. Indirect measurements 

Indirect measurements to estimate mental stress are mainly divided 
into psychological signals and facial expression recognition. 

The major systems in the human body that respond to mental stress 
are the autonomic nervous system (ANS) and hypothalamic-pituitary- 
adrenal (HPA) axis. HPA is a neuroendocrine system that adjusts stress 
response, but the response is slow and not intuitionistic. Therefore, ANS 
response is more suitable for examining workers’ mental stress (Park 
and Kim, 2018). Common physiological signals for ANS include blood 
pressure, cardiac response, electrodermal activity (EDA), Electroen
cephalogram (EEG) and electromyographic (EMG). 

5.2.1. Cardiac response 
Heart Rate Variability (HRV) affects determining the role of the 

human autonomic nervous system fluctuations. Increased sympathetic 
nervous system activity results in an acceleration of heart rate while an 
increased parasympathetic nervous system activity causes a decrease in 
the heart rate. Under mental stress, it is commonly observed that the 
parasympathetic activity of the heart decreases and the sympathetic 
activity increases. Rani et al. (2002) exploited this feature of heart rate 
variability to detect stress. They used video games to induce stress and 
acquire the electrocardiogram (ECG) waveforms, and then both Fourier 
Transform and Wavelet Transform were used to process the signals. 
These signals were then adopted to infer the stress condition based on 
the level of activation of the sympathetic and parasympathetic nervous 
systems using fuzzy logic. 

5.2.2. Electrodermal Activity (EDA) 
The change of skin electrical properties is referred to as electro

dermal activity (EDA). EDA is affected by the sweat secreted by eccrine 
sweat glands (Safta and Grigore, 2011). Eccrine sweating is known as 
emotional sweating, which is a kind of sympathetic nervous activity 
involved with mental stress. EDA is divided into exosomatic measure
ment and endosomatic measurement (Bari et al., 2018). Exosomatic 
methodology mainly includes Skin Conductance Response (SCR), 
Galvanic Skin Response (GSR) and Skin Resistance Response (SRR). 
Endosomatic methodology mainly includes Skin Potential Response 
(SPR), Galvanic Skin Potential (GSP) and Skin Potential Level (SPL) (A. 

Table 2 
Studies selected for the method to measure mental stress.  

Authors Sample Size Application Domain/Environment Measurements Independent Variables 

Or et al. (2009) 32 Virtual reality industrial environment Only subjective questionnaire Robot size, speed, exposure to a simulated accident 
Rani et al. (2002) / Visual field ECG / 
Dehais et al. (2011) 12 Human-robot collaboration EDA Three robot motions 
Arai et al. (2010) 5 Human-robot collaboration EDA Distance, speed and notice 
Al-Shargie et al. (2016) 12 Montreal imaging stress task EEG Arithmetic problems at three levels 
Wijsman et al. (2013) 30 Visual field EMG Three different stress conditions 
Orguc et al. (2018b) 10 Classification of facial gestures EMG / 
Lerner et al. (2007) 92 / Facial expression Three stress-challenge tasks 
(Bueno and González-Fierro, 2013) / Human-robot collaboration Facial expression / 
Rani et al. (2007) 6 Human-machine collaboration Multimodal Anagrams of varying difficulty 
Pourmohammadi & Maleki (2020) 34 Medical diagnosis and analysis Multimodal Increasing difficulty of tasks 

Note. ECG = electrocardiogram; EDA = electrodermal Activity; EEG = electroencephalogram; EMG = electromyogram. 
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Affanni and Chiorboli, 2014). Most research use GSR or SCR to analyze 
mental stress based on EDA. Dehais et al. (2011) examined the effects of 
the different types of co-robot trajectories on galvanic skin conductance 
response. The results suggested that a strong GSR was observed when a 
participant was surprised by a quickly approaching co-robot. 

SPR signal is more difficult to obtain because it needs complicated 
and high-cost instrumentations (Antonio Affanni et al., 2018). However, 
endosomatic methodology exhibits a faster response to stress stimuli 
than exosomatic methodology, which makes exosomatic methodology 
more suitable to measure mental stress in time. Arai et al. (2010) 
investigated mental stress of workers when they are working together 
with a moving co-robot by measuring the SPR. The results showed that 
when a worker felt high mental stress at a condition the co-robot moved 
too near to them or the moving speed was too fast, the rate of occurrence 
of spike of SPR was greater. 

5.2.3. Electroencephalogram (EEG) 
EEG is an imaging technique that detects the electrical activities 

generated by the brain (Teplan, 2002). EEG signal is an effective signal 
to represent the changes in autonomic nervous system. To gain useful 
information, the decomposition of EEG signals in some frequency bands 
is extracted using a band filter (alpha (8–13 Hz), beta (14–30 Hz), theta 
(4–8 Hz) and delta (0.5–4 Hz)) (Saidatul et al., 2011). The increased or 
decreased level of brain activities in frequency band often reflects the 
level of mental stress (Yang et al., 2010). Al-Shargie et al. (2016) utilized 
arithmetic tasks as stress stimuli to induce different levels of mental 
stress and classified the stress based on the EEG signals. The results 
demonstrated that participants appeared less attentive and could not 
relax under a high level of stress based on the analysis of alpha and beta 
rhythm power values. In general, the studies revealed EEG was an 
effective method to detect mental stress and the right prefrontal cortex 
played a leading role in mental stress. 

5.2.4. Electromyogram (EMG) 
The electromyogram (EMG) measures the electrical activity related 

to muscle contraction level. In stressful situations, the EMG activity in 
some muscles increases compared to non-stressful situations. Wijsman 
et al. (2013) measured EMG signals generated by the upper trapezius 
muscle in three different stressful conditions. The results have shown 
that the amplitude of the EMG signal during stress situations was much 
higher than in rest situations. The relative time with gaps decreased 
during stressful conditions because fewer gaps would occur during 
stressful situations than during rest. The results suggested that EMG was 
a useful method to detect stress. Orguc et al. (2018) adopted an 
EMG-based facial gesture recognition system that could classify different 
jaw movements. They used discrete wavelet transforms to extract fea
tures and a support vector machine to classify jaw movements at 
different stress levels. 

5.2.5. Facial expressions 
From the psychological perspective, facial expression is a highly 

reliable measure to infer mental stress (Mauss and Robinson, 2009). 
There are two main techniques to measure emotional facial expressions 
(Höfling et al., 2020). One is recording the activities of specific muscles 
with EMG, as mentioned in the previous section. The other technique is 
by applying computer vision algorithms to face images to infer human 
stress levels in real-time (Mollahosseini et al., 2017). 

For example, an intelligent tutoring system uses facial expressions of 
a student to decide whether a student is confused and needs more 
practice or is ready to proceed to more difficult concepts. Lerner et al. 
(2007) experimentally revealed the facial expressions corresponded 
with the biological stress response. The participants were required to 
perform stress-challenge tasks, during which the facial expressions, as 
well as several other physiological signals and subjective emotional 
experiences, were evaluated. As the results have shown, the facial 
expression of fear was positively associated with stress whereas the 

facial expression of anger and disgust was negatively associated with 
stress. 

Bueno and González-Fierro (2013) proposed a method of emotional 
interaction between a robot and a human. The robot could recognize the 
human emotion changes based on Neural Evolution Algorithm and 
Active Appearance Models and then perform adaptive actions to miti
gate workers’ negative emotions. 

5.3. Multimodal measurements 

Although each physiological indicator to measure mental stress has 
its validity and rationality, two main concerns need to be considered 
when these methods are applied. One is the large individual difference 
in physiological response, and the other is that the same physiological 
signal may be triggered by a range of psychological states (Kulić and 
Croft, 2003). For these reasons, some studies sought to compare the 
stress level derived from different methods and infer mental stress in a 
multimodal way. 

Pourmohammadi at el. (2020) classified stress levels by detecting the 
EMG signal of right and left erector spinal muscles and the right and left 
trapezius muscles and ECG signal. ECG signal was applied as a reference 
to evaluate the efficiency of EMG signals for stress detection. The results 
indicated EMG and ECG signals together could successfully classify 
stress into multiple levels with satisfactory accuracy. It has also been 
shown that the EMG signal of the right trapezius muscle recognized 
stress better than other muscles. Rani et al. (2007) focused on jointly 
detecting and recognizing stress through ECG, blood volume pulse 
(BVP), pulse transit time (PTT), SCR, skin temperature and EMG signal 
from both corrugators supercilii muscle (eyebrow) and masseter muscle 
(jaw). The results were compared with the participant’s self-reported 
psychological state. The physiological data were classified using fuzzy 
logic along with decision tree learning. It was concluded that this 
approach was able to detect affective states reliably. 

To summarize this section, it is concluded that each measure 
reviewed in this paper has its validity and rationality, and a combination 
of different methods may provide a more comprehensive and accurate 
assessment. 

6. Methods to measure safety awareness in human-robot 
collaboration 

A total of 6 articles were included in the final analysis. Table 3 lists 
details about the 6 articles for methods to measure safety awareness in 
human-robot collaboration. 

6.1. Direct measurements 

Safety awareness can be evaluated through questionnaires or reports, 
which are direct approaches to determine a person’s situation awareness 
regarding safety. The most commonly applied measures are Situational 
Awareness Rating Technique (SART) (Taylor, 2017), Situation Aware
ness Global Assessment Technique (SAGAT) (Endsley and Kiris, 1995) 
and Situational Present Assessment Method (SPAM) (Durso et al., 2004). 
As a subjective method, SART outcomes are easy to obtain as the queries 
are genetic. SART measures one’s situation awareness from ten di
mensions, each of these dimensions has a seven points rating scale. Both 
SAGAT and SPAM are objective measures, which provide an unbiased 
estimation of a worker’s situation awareness (Endsley, 2019). The 
queries for SAGAT and SPAM are specially designed according to the 
situation, and the questions can be scored correct or false objectively 
and are asked during live missions. 

SART questionnaire is provided after the trial, and it is based on 
subjective estimation of situation awareness of the worker. de Merwe 
et al. (2019) developed a VR mediated HRC framework for 
non-professional workers. They compared workers’ situation awareness 
and attentional demand under the full information and preprocessed 
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information context based on the answers to SART questionnaire. The 
results suggested that there was no significant difference in workers’ 
situation awareness between the two information contexts. However, 
attentional demand scores were significantly greater for the full infor
mation context. 

SAGAT is a popular freeze probe technique. A task is interrupted 
when the SAGAT is applied, and participants are required to answer the 
questions regarding the current situation. Unhelkar et al. (2014) eval
uated workers’ awareness of a mobile robotic assistant in a task envi
ronment through SAGAT. The designed questions were about the 
features of robotic assistants and human assistants. The results showed 
that participants were significantly more aware of the tray’s color after 
delivery was performed by a robotic assistant. In contrast, the back
ground environment was noticed better by participants after delivery 
was performed by a human assistant. This suggests that the co-robot may 
have a transitory distracting effect that degrades situation awareness, 
even after the robot left the participant. 

SPAM questionnaire is performed in real-time but with no freeze 
while the participants carry out their operational tasks. Yeo et al. (2017) 
used four parameters obtained from SPAM to measure situation 
awareness and workload in an air traffic control context. The percentage 
of correct responses and the latency of the response were two parameters 
to measure the situation awareness while the time taken to be ready and 
the number of ready responses were used as workload measures. It is 
suggested to conduct nine situation awareness probes at a 6-min 
interval. 

Although the self-report methods are easy to apply, they also have 
some limitations (Zhang et al., 2020). SART is subject to memory decay 
since participants must complete the questionnaire at the end of the task 
(Gatsoulis et al., 2010). SAGAT requires interrupting tasks, which limits 
its application in case the task cannot be stopped (Sneddon et al., 2013). 
SPAM requires participants to answer questions while performing tasks, 
which could have a negative effect on the participant’s performance. 
Furthermore, the obtained data from SPAM may suffer from bias 
because participants’ attention may be oriented to the relevant situation 
awareness elements due to the questionnaire (Salmon et al., 2006). 

6.2. Indirect measurements 

There are only a limited number of studies examining using indirect 
measures to infer situation awareness. Eye-tracking is the most 
commonly used physiological measure and accounts for the majority of 
the relevant literature. Another commonly used physiological method is 
EEG. 

6.2.1. Eye-tracking 
Eye-tracking is an approach to measuring situation awareness un

obtrusively in an environment where multiple tasks exist. The situation 
awareness can be estimated by locating human gaze. Dini et al. (2017) 
developed a methodology to measure situation awareness from gaze 
interaction with objects of interest in the context of human-robot 
handover events. Their research question was whether SAGAT or 
SART questionnaire could be replaced by 3D-gaze tracking. The results 
showed that fixation distribution analysis significantly served the 

purpose to measure situation awareness. Besides, the look rate, average 
dwell time and turn rate were all features considered in the frame. 
Although not all the metrics had significant correlations with situation 
awareness, discriminative features were selected to predict situation 
awareness and made successful estimations. 

6.2.2. Electroencephalogram (EEG) 
Brain wave activities in the beta band are related to active thoughts 

and problem-solving (Yeo et al., 2017). It has been demonstrated by 
some studies that there is a negative correlation between workload and 
situation awareness while a positive correlation exists between situation 
awareness and performance (Dini et al., 2017; Schuster et al., 2012). 
EEG is widely deployed to examine the pilot or driver’s brain activities 
during their driving tasks and what correlations are built between the 
brain activities and situation awareness (Borghini et al., 2014). Cath
erwood et al. (2014) recorded participants’ brain activities with EEG 
during the loss of situation awareness. They required participants to 
identify target patterns or “threats” in urban scenes and then changed 
the target to enforce a loss of situation awareness. By analyzing the EEG 
data obtained from different brain areas, it is concluded that there was a 
co-activity in visual and high-order perception regions during a loss of 
situation awareness. Kästle et al. (2021) proposed a novel analytical 
methodology to correlate EEG signals to situation awareness. Partici
pants completed the situation awareness test in Psychology Experiment 
Building Language (PEBL). PEBL is a psychological assessment frame
work containing a situation awareness test based on SAGAT technique. 
EEG data were collected throughout the whole test process. After pro
cessing the EEG data, the features were extracted and classified into high 
and low situation awareness categories. A correlation was found be
tween the beta and gamma frequency bands and situation awareness. 

7. Discussion 

7.1. Potential co-robot actions to lower mental stress or improve safety 
awareness 

The factors affecting workers’ mental stress or safety awareness and 
methods to measure mental stress and safety awareness have been 
presented in the previous sections. In general, the robot types in the 
selected papers were mainly manipulator arms, mobile robots and per
sonal robots. Manipulator arms are usually used to conduct tasks such as 
pick and place or handover and can be found in a wide range of tasks 
such as assembly and sorting. Mobile robots are usually served as de
livery robots for transporting items from one location to another. For the 
measurements of mental stress, skin response is the most commonly 
used objective method because it responds rapidly and can be measured 
in a non-intrusive way. Some other measurements, such as EMG, have 
also been used for quantifying mental stress levels, but the number of 
literature is limited. The measurements of safety awareness mainly rely 
on direct measurements such as SAGAT, SPAM or SART. The most used 
physiological measurements are eye-tracking and EEG. 

Below we provided a review of potential co-robot actions to reduce 
mental stress or improve safety awareness. One strategy to reduce 
mental stress and improve safety awareness is to notify workers before 

Table 3 
Studies selected for the methods to measure safety awareness.  

Authors Sample Size Application Domain SA Measurements Physiological Measurements Independent Variables 

de Merwe et al. (2019) 20 Human-robot collaboration SART / full information or preprocessed context 
Unhelkar et al. (2014) 24 Human-robot collaboration SAGAT / Human assistant or robotic assistant 
Yeo et al. (2017) 36 Flight SPAM EEG Conditions of conflict resolution 
Dini et al. (2017) 20 Human-robot collaboration SAGAT/SART Eye-tracking / 
Catherwood et al. (2014) 10/15 Visual field QASA EEG / 
Kästle et al. (2021) 32 Visual field PEBL based on SAGAT EEG / 

Note. SART = situational awareness rating technique; SAGAT = situation awareness global assessment technique; SPAM = situational present assessment method; EEG 
= electroencephalogram; PEBL = Psychology Experiment Building Language; QASA = quantitative analysis of situation awareness. 
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performing high-risk activities. This could be a simple strategy because 
notification of high-risk motion is open-loop control, which from the 
design perspective, is less complicated than a closed-loop control where 
robots detect workers’ mental stress or safety awareness through sen
sors. Advance notice of robot motion is able to reduce mental stress and 
improve safety awareness effectively. The most commonly used signals 
are visual and audible signals. Arai et al. (2010) evaluate the effects of 
advance notice of co-robot motions on human mental stress. Compara
tive experiment outcomes showed that advance notice of the maximum 
speed of co-robot motion can reduce workers’ mental stress. 

An alternative way to reduce mental stress or increase safety 
awareness is to enable a co-robot to take mitigation actions in response 
to the worker’s psychological states. During HRC, information exchange 
between humans and co-robots is bidirectional and equally important in 
terms of workflow for both humans and robots (Murashov et al., 2016). 
Not only do humans respond to co-robot actions, but also co-robots also 
need to respond to human behaviors to form a communication channel 
between workers and co-robots. As mentioned in Section 3 and Section 
4, mental stress and safety awareness can be recognized and classified by 
various measures. Assume that workers’ mental stress or safety aware
ness information along with other environmental inputs can be observed 
and processed by co-robots, co-robots may be able to infer workers’ 
internal mental stress or safety awareness and adjust their actions to 
improve mental safety during HRC. For example, when high mental 
stress or distraction is detected, a co-robot can reduce the speed, touch 
the worker or alternate end-effector trajectory. Yet, very few studies 
have applied customized co-robot actions in response to workers’ 
mental stress or safety awareness during collaborative tasks. 

7.2. Limitations and future implications 

This paper describes the robot-related factors that may affect mental 
stress or safety awareness and methods for measuring mental stress and 
safety awareness. Much effort has been made to reveal the relationships 
between robot-related factors and mental stress or situation awareness. 
However, there are still several research gaps that need to be filled. First, 
physiological data can be affected by environmental conditions. While 
one can keep the laboratory environment stable, the real-world in
dustry-specific environment can change from time to time and affect the 
quality of physiological signals. In addition, most laboratory-based 
studies have focused on short time recording from seconds to minutes. 
If the mental stress or safety awareness of workers needs to be monitored 
for hours in a real-world environment, the data collection could be 
challenging. For example, the airtight sticker of GSR sensors can result in 
sweating, so that the skin conductance can be artificially altered without 
stress level changes. Special attention needs to be paid to how to obtain 
stable and high-quality physiological signals in real-world environ
ments. Second, researchers have endeavored to find the stress-related or 
situation awareness-related features from physiological signals. Yet, the 
extracted features are mainly in the time domain. While time-domain 
analysis can provide information about how a signal changes over 
time, frequency-domain analysis can reveal how the signal’s energy is 
distributed over a range of frequencies. Only a few papers have exam
ined the features in frequency domain. Future works need to examine 
which feature combinations across time domain and frequency domain 
from physiological signals are the most correlated with mental stress or 
situation awareness. Third, the number of studies examining the rela
tionship between mental stress and safety awareness was limited. 
Although the measurements for both mental stress and safety awareness 
overlap to some degree, the correlation between mental stress and safety 
awareness remains less studied. 

8. Conclusions and future directions 

This manuscript provided a brief review regarding the robot-related 
factors affecting mental stress or safety awareness and possible methods 

for assessing mental stress and safety awareness during HRC. According 
to our literature review, some robot-related factors, such as size and 
moving speed, are associated with a worker’s mental stress or safety 
awareness. A number of measurements can be adopted to measure 
mental stress or safety awareness, including self-reports and physio
logical signals. In general, experiments that have been carried out in 
HRC scenarios employed both indirect physiological measurements and 
direct self-report measurements. These measurements together provide 
a full picture of mental stress or safety awareness. Future work is needed 
to explore solutions to measure the physiological signal in the real-world 
working environment and to investigate the most relevant features 
extracted from the signals in both the time and frequency domains. 
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Sauppé, A., Mutlu, B., 2015. The social impact of a robot co-worker in industrial settings. 
In: Conference on Human Factors in Computing Systems - Proceedings, 2015-April, 
pp. 3613–3622. https://doi.org/10.1145/2702123.2702181. 

Schaefer, K., 2004. The Perception and Measurement of Human-Robot Trust. http://libr 
ary.ucf.edu. 

Schuster, D., Keebler, J.R., Zuniga, J., Jentsch, F., 2012. Individual differences in SA 
measurement and performance in human-robot teaming. 2012 IEEE Int. Multi- 
Discipl. Conf. Cognit. Methods Situat. Awareness Decis. Support, CogSIMA 187–190. 
https://doi.org/10.1109/CogSIMA.2012.6188378, 2012.  

Shibata, T., Wada, K., 2011. Robot therapy: a new approach for mental healthcare of the 
elderly - a mini-review. Gerontology 57 (4), 378–386. https://doi.org/10.1159/ 
000319015. 

Sneddon, A., Mearns, K., Flin, R., 2013. Stress, fatigue, situation awareness and safety in 
offshore drilling crews. Saf. Sci. 56, 80–88. https://doi.org/10.1016/j. 
ssci.2012.05.027. 

Stanton, N.A., Piggott, J., 2017. Situational awareness and safety situational awareness 
and safety, 7535, pp. 189–204. https://doi.org/10.1016/S0925-7535(01)00010-8. 
December 2001.  

Taylor, R.M., 2017. Situational awareness rating technique (SART): the development of a 
tool for aircrew systems design. In: In Situational Awareness. Routledge, 
pp. 111–128. 

Teplan, M., 2002. Fundamental of EEG measurement. Meas. Sci. Rev. 2. 
Tweedy, J.T., 2005. Healthcare Hazard Control and Safety Management. Taylor \& 

Francis. https://books.google.com/books?id=cWzLBQAAQBAJ. 
Unhelkar, V.V., Siu, H.C., Shah, J.A., 2014. Comparative performance of human and 

mobile robotic assistants in collaborative fetch-and-deliver tasks. ACM/IEEE Int. 
Conf. Human-Robot Interact. 82–89. https://doi.org/10.1145/2559636.2559655. 

Villani, V., Pini, F., Leali, F., Secchi, C., 2018. Survey on human–robot collaboration in 
industrial settings: safety, intuitive interfaces and applications. Mechatronics 55 
(February), 248–266. https://doi.org/10.1016/j.mechatronics.2018.02.009. 

L. Lu et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0003-6870(22)00155-7/sref15
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref15
https://doi.org/10.1016/j.apergo.2010.12.005
https://doi.org/10.1109/IROS.2017.8206301
https://doi.org/10.1080/01463379309369899
https://doi.org/10.1080/01463379309369899
https://doi.org/10.1145/2696454.2696473
https://doi.org/10.1109/HRI.2013.6483603
https://doi.org/10.1109/HRI.2013.6483603
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref21
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref21
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref22
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref22
https://doi.org/10.1177/0018720819875376
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref24
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref24
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref24
https://doi.org/10.1016/j.yfrne.2018.03.001
https://doi.org/10.1016/j.yfrne.2018.03.001
https://doi.org/10.1289/ehp.8132
https://doi.org/10.1016/j.rcim.2007.04.001
https://doi.org/10.1016/j.rcim.2007.04.001
https://doi.org/10.1518/155534310X495591
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref29
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref29
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref30
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref31
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref31
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-43096/Hoffmann_Laura_Diss.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-43096/Hoffmann_Laura_Diss.pdf
https://doi.org/10.3389/fpsyg.2020.01388
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref34
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref34
https://doi.org/10.1002/prs.680170110
https://doi.org/10.1002/prs.680170110
https://doi.org/10.1016/0169-8141(91)90006-8
https://doi.org/10.1016/j.neucom.2020.12.026
https://doi.org/10.1016/j.neucom.2020.12.026
https://doi.org/10.1109/SICE.2008.4654706
https://doi.org/10.1002/hfm.20703
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref40
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref40
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref41
https://doi.org/10.1016/j.biopsych.2006.08.016
https://doi.org/10.1109/TAFFC.2021.3063387
https://doi.org/10.1177/027836499901800206
http://www.ncbi.nlm.nih.gov/books/NBK320/
http://www.ncbi.nlm.nih.gov/books/NBK320/
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref46
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref46
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref47
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref47
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref47
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref48
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref48
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref48
https://doi.org/10.1080/15459624.2015.1116700
https://doi.org/10.1016/j.ergon.2009.01.003
https://doi.org/10.1016/j.ergon.2009.01.003
https://doi.org/10.1109/EMBC.2018.8512781
https://doi.org/10.1109/EMBC.2018.8512781
https://doi.org/10.1109/EMBC.2018.8512781
https://doi.org/10.1109/EMBC.2018.8512781
https://doi.org/10.3390/mi9110576
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref54
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref54
https://doi.org/10.1016/j.cmpb.2020.105482
https://doi.org/10.1016/j.cmpb.2020.105482
https://doi.org/10.1080/01449299008924252
https://doi.org/10.1016/j.aei.2006.11.009
https://doi.org/10.1016/j.aei.2006.11.009
https://doi.org/10.1017/S0263574702004484
https://www.researchgate.net/publication/326710205
https://www.researchgate.net/publication/326710205
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref60
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref60
https://doi.org/10.1109/ICCSCE.2011.6190573
https://doi.org/10.1109/ICCSCE.2011.6190573
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref62
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref62
https://doi.org/10.1145/2702123.2702181
http://library.ucf.edu
http://library.ucf.edu
https://doi.org/10.1109/CogSIMA.2012.6188378
https://doi.org/10.1159/000319015
https://doi.org/10.1159/000319015
https://doi.org/10.1016/j.ssci.2012.05.027
https://doi.org/10.1016/j.ssci.2012.05.027
https://doi.org/10.1016/S0925-7535(01)00010-8
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref69
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref69
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref69
http://refhub.elsevier.com/S0003-6870(22)00155-7/sref70
https://books.google.com/books?id=cWzLBQAAQBAJ
https://doi.org/10.1145/2559636.2559655
https://doi.org/10.1016/j.mechatronics.2018.02.009


Applied Ergonomics 105 (2022) 103832

10

Wijsman, J., Grundlehner, B., Penders, J., Hermens, H., 2013. Trapezius muscle EMG as 
predictor of mental stress. Trans. Embed. Comput. Syst. 12 (4), 1–20. https://doi. 
org/10.1145/2485984.2485987. 

Willemse, C.J., van Erp, J.B., 2019. Social touch in human–robot interaction: robot- 
initiated touches can induce positive responses without extensive prior bonding. Int. 
J. Soc. Robot. 11 (2), 285–304. https://doi.org/10.1007/s12369-018-0500-9. 

Yang, Q., Jiang, D., Sun, J., Tong, S., 2010. Cortical synchrony change under mental 
stress due to time pressure. In: Proceedings - 2010 3rd International Conference on 
Biomedical Engineering and Informatics, BMEI 2010, 5(Bmei), pp. 2004–2007. 
https://doi.org/10.1109/BMEI.2010.5639664. 

Yeo, L.G., Sun, H., Liu, Y., Trapsilawati, F., Sourina, O., Chen, C.H., Mueller-Wittig, W., 
Ang, W.T., 2017. Mobile EEG-based situation awareness recognition for air traffic 
controllers. In: 2017 IEEE International Conference on Systems, Man, and 
Cybernetics, SMC 2017, 2017-Janua, pp. 3030–3035. https://doi.org/10.1109/ 
SMC.2017.8123090. 

Zhang, T., Yang, J., Liang, N., Pitts, B.J., Prakah-Asante, K.O., Curry, R., Duerstock, B.S., 
Wachs, J.P., Yu, D., 2020. Physiological measurements of situation awareness: a 
systematic review. Hum. Factors 3, 1–22. https://doi.org/10.1177/ 
0018720820969071. 

L. Lu et al.                                                                                                                                                                                                                                        

https://doi.org/10.1145/2485984.2485987
https://doi.org/10.1145/2485984.2485987
https://doi.org/10.1007/s12369-018-0500-9
https://doi.org/10.1109/BMEI.2010.5639664
https://doi.org/10.1109/SMC.2017.8123090
https://doi.org/10.1109/SMC.2017.8123090
https://doi.org/10.1177/0018720820969071
https://doi.org/10.1177/0018720820969071

	Mental stress and safety awareness during human-robot collaboration - Review
	1 Introduction
	2 Methods
	2.1 Literature selection
	2.2 Data extraction

	3 Results from PRISMA procedures
	4 Robot-related factors that affect worker’s mental stress or safety awareness
	4.1 Robot characteristics
	4.2 Social touching
	4.3 Co-robot movement trajectory

	5 Methods to measure mental stress in human-robot collaboration
	5.1 Direct measurements
	5.2 Indirect measurements
	5.2.1 Cardiac response
	5.2.2 Electrodermal Activity (EDA)
	5.2.3 Electroencephalogram (EEG)
	5.2.4 Electromyogram (EMG)
	5.2.5 Facial expressions

	5.3 Multimodal measurements

	6 Methods to measure safety awareness in human-robot collaboration
	6.1 Direct measurements
	6.2 Indirect measurements
	6.2.1 Eye-tracking
	6.2.2 Electroencephalogram (EEG)


	7 Discussion
	7.1 Potential co-robot actions to lower mental stress or improve safety awareness
	7.2 Limitations and future implications

	8 Conclusions and future directions
	Declaration of competing interest
	Acknowledgment
	References


