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Human-robot collaboration (HRC) is an emerging research area that has gained tremendous attention in both
academia and industry. Yet, the feature that humans and robots sharing the workplace has led to safety concerns.
In particular, the mental stress or safety awareness of human teammates during HRC remains unclear but is also
of great importance to workplace safety. In this manuscript, we reviewed twenty-five studies for understanding
the relationships between HRC and workers’ mental stress or safety awareness. Specifically, we aimed to un-
derstand: (1) robot-related factors that may affect human workers’ mental stress or safety awareness, (2) a
number of measurements that could be used to evaluate workers’ mental stress in HRC, and (3) various methods
for measuring safety awareness that had been adopted or could be applied in HRC. According to our literature
review, robot-related factors including robot characteristics, social touching and trajectory have relationships
with workers’ mental stress or safety awareness. For the measurement of mental stress and safety awareness,
each method mentioned has its validity and rationality. Additionally, a discussion related to the potential co-
robot actions to lower mental stress or improve safety awareness as well as future implications were provided.

1. Introduction

In recent years, the concept of human-robot collaboration (HRC),
defined as collaborative processes in which robots and humans work
together to achieve common goals, has gained acceptance in a variety of
industries such as warehousing, healthcare, manufacturing, etc. In HRC,
a human worker and a robot share a workplace and work together in a
collaborative way. HRC takes advantage of the flexibility of humans and
the endurance of robots to substantially improve productivity (Villani
et al., 2018). A robot adopted in HRC is typically referred to as a
collaborative robot or a co-robot. Traditional industrial robots are
designed to perform a task at a distance from workers. Common types of
robots include manipulator arms, autonomous mobile robots, gantry
models and so on. They are often used to process an item in a single way:
drilling, welding, picking and placing, loading and unloading and so on.
These industrial robots are heavy, large, and fast, which makes the ro-
bots dangerous for workers and requires them to be isolated from
workers. Since traditional robots work independently of the workers,
they work in parallel rather than in a collaborative manner. Compared
to traditional robots, a co-robot is defined as “a method and apparatus
and for direct physical interaction between a general-purpose
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manipulator controlled by a computer and a person” (Colgate and
Peshkin, 1999). Co-robots and human workers can work on the same
task in the same physical area at the same time, such as a work cell or
station. Compared to traditional industrial robots, co-robots are mainly
mobile robots or robot arms, some with humanoid screens, and are
designed to give the highest priority to human safety. Multiple engi-
neering features (Michalos et al., 2015), such as limited end effector
speed (International Organization for Standardization (ISO), 2016),
torque sensors (Heinzmann and Zelinsky, 2003), and flexible exterior
material (Pang et al., 2018) have been implemented in co-robot design
in order to physically ensure human workers’ safety.

Co-robots also affect the psychological states of workers in addition
to the physical collision, as workers tend to view their co-robot team-
mate as a social entity (Sauppe and Mutlu, 2015). A psychological state
is a person’s state of mind which comprises a diverse class, including
pain experience, perception, desire, belief, intention, emotion, and
memory (Martin, 1990). A co-robot can evoke fears, surprise, and anx-
iety if it looks robust enough to harm humans or it moves at a rapid
speed with a sharp end-effector or in an unpredictable trajectory. An
important component of the co-robots design is to take human person-
ality and human engagement into account when adapting a co-robot’s

Received 6 July 2021; Received in revised form 14 June 2022; Accepted 15 June 2022

Available online 27 June 2022
0003-6870/© 2022 Elsevier Ltd. All rights reserved.


mailto:xxu@ncsu.edu
www.sciencedirect.com/science/journal/00036870
https://www.elsevier.com/locate/apergo
https://doi.org/10.1016/j.apergo.2022.103832
https://doi.org/10.1016/j.apergo.2022.103832
https://doi.org/10.1016/j.apergo.2022.103832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apergo.2022.103832&domain=pdf

L. Luetal

behavior (Celiktutan et al., 2019). Therefore, it is important to ensure
that co-robots are human-friendly and psychologically acceptable
(Kokabe et al., 2008). Human-friendly means that the co-robots are both
safe and in a good performance, and psychologically acceptable means
co-robots should meet the functional expectations of human workers. To
achieve these goals, the movements of the co-robots must be perceptible,
comprehensible, and predictable without imposing mental stress. For
example, in common industrial practice, the movement trajectory cri-
terion is set to minimize the integral of the end effector jerk (a derivative
of acceleration) or to minimize the total execution time (Gasparetto and
Zanotto, 2008). Such trajectories could appear unpredictable to workers
and may confuse them in the early stages of the movement (Dragan
et al., 2015), and potentially cause mental stress to workers. Previous
studies have revealed that humans and robots can communicate
emotionally during collaboration with robots or machines (Andreasson
et al., 2018; Li et al., 2021). With regard to the relationship between
negative emotions and stress, some studies have shown that they are
closely related to each other. Some negative emotions such as anger,
fear, and anxiety are usually triggered by stress, which shows a rela-
tionship between stress and emotions (Epel et al., 2018). Here, mental
stress is defined as a feeling of emotional pressure and strain in psy-
chology, which is a kind of psychological pain (Rastogi, 2018). For
example, a previous study (Fiedler et al., 2005) found that stress can
significantly affect anxiety symptoms. In most articles on mental stress,
participants are required to self-assess levels of anxiety, surprise and fear
to represent their stress levels.

Another important psychological aspect of workers during HRC is
safety awareness. Safety awareness is a concept derived from situation
awareness that emphasizes workers’ perception, comprehension, and
projection of the safety-related elements and events at work (Stanton
and Piggott, 2017). Situation awareness is the perception of elements in
the environment and events in relation to time or space, the under-
standing of their meaning, as well as the projection of their status in the
near future (Endsley and Kiris, 1995). To date, a large number of studies
have been conducted in various fields such as aviation and ground
transportation and proved situation awareness is of great importance to
system safety (Kaber and Endsley, 1998). In HRC, safety awareness re-
fers to workers’ understanding of potential hazards related to the loca-
tion, activities, and status of co-robots (Murashov et al., 2016). From a
hazard control perspective, safety awareness is as important as engi-
neering approaches, which refer to the engineering intervention to
remove hazardous conditions at the workplace (Tweedy, 2005). For
example, if a worker walks quickly toward a co-robot, depending on the
walking speed, the co-robot’s automatic obstacle avoidance function
may not have enough time to retract its end effector and avoid the
approaching worker. Serious injuries can still occur when workers are
not aware of the existence of a co-robot in the shared workspace. Ac-
cident records of Occupational Safety and Health Administration
(OSHA) have shown that multiple fatal and nonfatal injuries associated
with robots are due in part to workers’ low safety awareness (e.g., OSHA
Accident Report, 202475737, 2009). In addition, some studies have
shown that higher stress levels were significantly associated with lower
safety awareness (Hancock and Szalma, 2008; Sneddon et al., 2013).

Since workers may be stressed or have low safety awareness during
HRC, it is important to understand workers’ mental stress or safety
awareness to improve the safety conditions during HRC. To date, a
number of approaches to assessing the mental stress or safety awareness
of people have been proposed and applied in the literature. The main
approaches include direct measurements and indirect physiological
measurements. Direct measurements are those that can quantitively or
qualitatively measure workers’ mental stress or safety awareness
directly through self-reports, questionnaires, or observations. For
example, Or et al. (2009) examined the effects of moving speed and size
of an industrial robot on workers’ mental workload with subjective
questionnaires. Indirect measurements are those that estimate workers’
mental stress or safety awareness based on their performance or
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physiological data obtained through specialized sensors or devices.
Performance is usually evaluated by response time or error in
completing a task. Physiological data could be heart-beat rate (from
electrocardiogram signal), skin conductance (from electrodermal ac-
tivity signal), muscle current (from electromyography signal), and brain
activity (from electroencephalography signal).

Previous review studies (Epel et al., 2018; Zhang et al., 2020) mainly
focused on direct and indirect measurements of mental stress or safety
awareness in applications that were not in the context of human-robot
collaboration. For those limited review articles that are related to the
use of physiological measures in human-robot collaboration (Bethel
et al., 2007; Rani et al., 2007), the robot-related factors that may affect
mental stress or safety awareness were not well examined. In the current
study, we seek to cover 1) the measurements for both mental stress and
safety awareness that have been or can be used in human-robot
collaboration, and 2) the robot-related factors that may affect mental
stress or safety awareness.

Three research questions were addressed in this review:

Research Question 1 — What robot-related factors affect workers’
mental stress or safety awareness? Co-robots have been studied across a
number of domains, but workers’ mental safety has not been explicitly
and fully considered. Identifying the potential relationship between co-
robots and workers’ mental stress or safety awareness could be of value
to workers’ mental health in the future of work.

Research Question 2 — What measurements can be used to measure
mental stress during HRC? A number of methods have been used to
determine the correlation between mental stress and possible indicators
such as performance, physiological signals, and self-reports. Measure-
ments that can be used to test the mental stress during HRC have not
been thoroughly examined.

Research Question 3 — What measurements can be used to measure
safety awareness during HRC? Researchers currently test workers’ safety
awareness mainly through direct measures. Only a small number of
studies have adopted indirect measures to understand participants’
safety awareness. Measurements that can be used to measure workers’
safety awareness during HRC have not been fully explored.

The rest of this manuscript was organized as follows: In Section 2, the
review methodology was explained. Section 3 presented the results of
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) procedures. In Section 4, robot-related factors that affect
workers’ mental stress or safety awareness were summarized. Section 5
and 6 presented various methods for measuring the mental stress and
safety awareness that had been adopted or could be applied in HRC,
respectively. Section 7 discussed potential co-robot actions that might
lower mental stress and/or improve safety awareness. Section 7 also
discussed the limitations of this review. Section 8 presented the con-
clusions and future work.

2. Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method were used in this review to select literature. Four
databases were searched, including Compendex, Web of Science,
PubMed and Ergonomics Abstract. These databases provided diverse
and comprehensive studies involving a number of subjects and domains.

2.1. Literature selection

The search syntax used in each database followed the expression:
“((psychological states OR mental stress OR psychological stress OR
situation awareness OR anxiety) AND (social touch OR trajectory OR
speed OR robot size) AND robot) OR (stress AND physiological AND
robot) OR (situation awareness AND (EEG OR human-robot collabora-
tion OR eye-tracking))”. During the title and abstract screening stage
and full-text review stage, the following criteria were used:
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o At least one direct measurement was used.

e The studies selected must measure short-term psychological change
induced by robot movement or appearance rather than long-term
change.

e The participants should be healthy adults.

o If a study used indirect measurements, this study needed to perform
an analysis that can provide insight into the relationship between the
direct and indirect measurements.

The database Compendex, Web of Science and PubMed was searched
on October 6, 2021, and Ergonomic Abstract was searched on March 1,
2022. Two of our team members were assigned for doing a literature
search and study screening independently. Disagreements that arose in
this process were discussed and resolved by consensus after referring to
the protocol. If they cannot reach a consensus, a third team member
should be consulted. A team member created a database using Excel and
then removed the duplicate entries automatically.

2.2. Data extraction
The following information was extracted from each article.

- Research objectives. Clear research objectives from each literature
were extracted for each research question.

Study designs. Study design and methodology were extracted from the
experimental design described in each literature. Particularly the
following information was examined: what the independent vari-
ables and dependent variables were, how different comparative
conditions were obtained, what measurements were used for mental
stress or safety awareness, how the data were obtained and analyzed
and possible results.

Outcomes: Comparative results were extracted from each literature.
Results from each literature can confirm or reject the research
problem underpinning the study. In this review, when the relation-
ships between robot-related factors or other comparative conditions
and workers’ mental stress or safety awareness were examined, a p-
value of 0.05 is used to verify if an experimental condition has a
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significant effect on workers’ psychological states. Furthermore, the
correlation between different measurements for a psychological state
was also examined.

3. Results from PRISMA procedures

The PRISMA procedures and the number of obtained articles were
shown in Fig. 1. This figure also presents the number of articles retrieved
from each database. It resulted in 2347 articles after duplicates were
removed. Following the screening criteria, 153 articles were kept for the
full-text review. 25 articles were included in this final review.

4. Robot-related factors that affect worker’s mental stress or
safety awareness

Workers’ mental stress and safety awareness can be affected by a
variety of factors. A co-robot can be a stressor to evoke feelings of fear,
anxiety or surprise when it appears as if it can hurt humans. For
example, if a co-robot with a sharp end-effector moves towards a worker
swiftly, or a co-robot moves unpredictably, the worker may feel fear
because the robot appears to harm him or her. In this section, we pro-
vided a review of robot-related factors that may affect workers’ mental
stress or safety awareness including robot characteristics, social
touching and trajectories. A total of 11 articles were included in the final
analysis. Table 1 lists details about these articles.

4.1. Robot characteristics

Certain characteristics such as dimensions and speed of co-robots
have been verified to have effects on human psychological states (Arai
et al., 2010; Rahimi and Karwowski, 1990). Rahimi and Karwowski
(1990) performed two experiments to assess participants’ perception of
safe robot speed and idle time, respectively. Participants were asked to
verbally express the adjustment of the robot’s speed of motion so that
the preferred robot’s safe speed was confirmed. In the second experi-
ment, participants were required to enter a work envelope when they
perceived a programmed idle was caused by a malfunction. These

Compendex PubMed Web of Science Ergonomics abstracts
n=2907

s (n=1634) (n=487) (n=711) (n=75)
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£, Records after duplicates removed
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Records screened Records excluded

2 (n=2347) (n=2194)

=

[}

o

A : —

Full-text article assessed for eligibility Full-text article excluded with reasons:
(n=153) 1. At least one direct measurement was used.
— 2. The studies selected must measure short-term
psychological change induced by robot movement

(n=25)

Studies included in qualitative synthesis

or appearance rather than long-term change.
3. The participants should be healthy adults.
4. If the studies used indirect measurements, then

should performed analysis that can provide insight
into the relationship between the direct and
indirect measurements.

Fig. 1. PRISMA process used to identify and select studies.
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Table 1
Studies selected for robot-related factors that may affect psychological states.

Authors Sample Examined Factors Dependent Variables
Size
Rahimi & 30/24 Robot size, speed Perceived maximum safe
Karwowski and accident speeds
(1990) exposure
Karwowski 12 Robot size, speed, Perception of maximum
et al. (1991) and approach angle  reach of robot’s arm, selected

distances from the robot

Or et al. (2009) 32 Robot size, speed, The length of time the

gende and participants waited before
simulated accident entering the robot work
exposure envelop
Hoffmann 84 Social touch Self-reported questionnaire
(2017) ratings
Willemse & van 67 Social touch Galvanic Skin Response
Erp (2019) (GSR), Heart Rate (HR),
Heart Rate Variability
(HRV), Respiration Rate (RR)
and questionnaire ratings
Kokabe et al. 20 Trajectory Subjective evaluations
(2008)
Dehais et al. 12 Trajectory Self-reports of legibility,
(2011) safety and physical comfort,
SCR and EMG
Dragan et al. 432 Trajectory Subjective scaling and time
(2013) were taken to predict
Dragan et al. 18 Trajectory Questionnaire, coordination
(2015) time, total task time, and
concurrent motion time
Koppenborg 28 Trajectory Performance (response times
et al. (2017) and percentage of correct
answers), subjective scaling,
and physiological signal
Arai et al. 5 Distance, speed EDA
(2010) and notice

Note. GSR = galvanic skin response; HR = heart rate; HRV = heart rate vari-
ability; RR = respiration rate; SCR = skin conductance response; EMG =
electromyogram.

experiments certified that robot speed and idle time affected workers’
psychological states and safety behaviors. They further verified that
robot size, moving speed and angle of approach had significant effects
on workers’ safety awareness (Karwowski et al., 1991). In this experi-
ment, participants were asked to approach a robot along with one of the
six angles to a point at which they felt it was the maximum reach of the
arm of the robot. The perceived maximum reach of the arm of the robot
was used as the dependent variable to measure the effects of robot size,
moving speed and angle of approach. Arai et al. (2010) selected three
design parameters to evaluate the effects of co-robot motions on human
mental stress, which were the distance from the end-effector to a worker,
moving speed and advance notice of co-robot motion, respectively. Both
physiological and questionnaire results have shown high mental stress
was caused when co-robots moved close to the workers or moved to-
wards workers at high speed.

Or et al. (2009) replicated similar settings and experimental pro-
cedures as Rahimi and Karwowski (1990) in a virtual reality environ-
ment. The results confirmed that robot size and speed were significantly
associated with workers’ safety awareness in virtual reality as well. This
study also validated the feasibility of measuring human psychological
states in a virtual reality environment.

4.2. Social touching

As a teammate of a worker at the workplace, a co-robot should be
able to cooperate and communicate with a worker like a human. Social
touching is commonly seen in human-human communication and
interaction and plays an important role in changing human psycholog-
ical states and behavior (Calinon et al., 2010). Social touching is most
commonly used to comfort people who are experiencing mental stress or
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suffering (Dolin and Booth-Butterfield, 1993). Derived from heuristics of
human-human interaction, social touching motion can be designed to
increase the social attribute of a co-robot, making it collaborate with
workers more effectively.

Studies in the field of HRC have revealed that touching a soft robotic
seal reduces one’s depression, pain and stress (Hoffmann, 2017). Re-
searchers also developed therapy robots based on tactile interaction
such as touching, for psychological therapy (Schaefer, 2004; Shibata and
Wada, 2011). These therapy robots validated the beneficial effects of
touch on human’s well-being. Based on the studies in the realm of robot
therapy, Hoffmann examined the effects of touching on participants’
psychological states (Hoffmann, 2017). Consequently, participants
touched by the robot felt better during the human-robot conversation,
then their negative effect lowered. This indicated that touch was able to
improve one’s psychological state compared to the participants who had
the same interaction without touch.

Willemse and van Erp (2019) also investigated whether the robot’s
social touching could elicit positive responses in the participants from
the viewpoint of psychological states. In their experiment, a thriller
movie was used as a stressor. Participants watched the movie and were
occasionally touched by a robot. Their findings implied robotic touches
could reduce mental stress no matter with or without prior bonding,
which is mainly reflected by the reduced heart rate during the interac-
tion moments.

4.3. Co-robot movement trajectory

Trajectory planning is of great importance in HRC as unpredictable
trajectories of a co-robot’s end-effector can make a worker feel as if he or
she may be hurt (A. D. Dragan et al., 2015; Gurgul, 2018) or confuse
workers in the early phase of the movement (Dragan and Srinivasa,
2014). In industry practice, the objective functions of end-effector tra-
jectory optimization include minimizing the total execution time,
minimizing energy or minimizing the integral of end effector jerk (a
derivative of acceleration) (Gasparetto and Zanotto, 2008). The
minimum-time algorithm was proposed due to the need for productivity
as well as the limited capability of actuators (Bobrow et al., 1985).
Minimum-energy techniques produce natural-looking and smooth tra-
jectories that are easy to track and reduce the force exerted on the ac-
tuators and manipulator structure. Minimum jerk techniques (Martin
and Bobrow, 1999) generate trajectories that do not need sudden torque
change, which can also result in a natural motion. Furthermore,
minimum-jerk approaches can reduce the errors during tracking, the
force exerted on the actuators and mechanical structure as well as
excitation of resonance frequencies of robots (Kyriakopoulos and Sar-
idis, 1988). Minimum-energy and minimum-jerk techniques can yield
smooth interaction in HRC, which is able to improve workers’ physical
comfort to some extent. However, solely focusing on the adaptation and
functionality of trajectories may decrease the predictability of the
movements of robots. Trajectories generated from these criteria are less
predictable and may confuse workers in the early phase of the move-
ment, and possibly impose mental stress on workers (Dehais et al.,
2011).

In HRC, workers need to clearly understand the intentions of co-
robots. A co-robot should be able to plan the trajectories that are psy-
chologically acceptable, predictable and legible to the workers. To make
robot trajectories psychologically accepted by humans, Kokabe et al.
(2008) examined human-to-human handing motions under different
psychological feelings of the deliverer. In other words, the deliverer did
hand-over motions with different feelings they need to express, and
receivers did natural motions without knowing the adjective feelings.
The authors then proposed an algorithm to generate co-robot handing
motions simulating the motions of the human deliverer. By changing the
parameters, psychologically acceptable co-robot handing movement can
be realized.

Dehais et al. (2011) designed three co-robot motions with different



L. Luetal

levels of safety, legibility and physical comfort values. Participants were
asked to rate different motions and three physiological signals were
measured simultaneously. It has appeared that unpredictable motion led
to higher galvanic skin response and negative subjective ratings. On the
contrary, no such effects were found when the co-robot motion appeared
safe, legible and comfortable. However, no data on task performance
was measured in this experiment.

In previous studies, predictability and legibility were usually bound
as a couple of desirable attributes of robot movements. Dragan et al.
(2013) distinguished the predictability and legibility for the first time. In
their study, predictable trajectories matched the expectation of a human
when a target object was given, while legible trajectories enabled a
worker to predict a target object confidently and quickly. They further
investigated how different types of trajectories affected physical col-
laborations between co-robots and humans, which included functional
motion, predictable motion and legible motion (Dragan et al., 2015). A
functional motion was introduced as an unpredictable and erratic mo-
tion to be compared with a predictable and legible motion. In their ex-
periments, the co-robot started to reach one of the objects along with
different types of trajectories. The participants then predicted the
co-robot’s intention and gathered corresponding objects, and both
co-robot and participants put their items on the same tray. Task per-
formance data were measured as well as self-ratings. The results indi-
cated functional motion was not suitable for human-robot collaborative
tasks as it increased the amount of time to complete the task and
decreased coordination fluency. Legible motion is preferable to pre-
dictable motion in HRC because it can express robot’s intent more
clearly and is in line with worker’s expectations.

Koppenborg et al. (2017) experimentally investigated the effects of
path predictability of an industrial collaborating co-robot on the worker.
Participants completed tasks together with a co-robot in an industrial
workplace simulated in virtual reality. The results have shown that a
lower level of predictability and a higher level of speed increased the
demands on workers, resulting in higher mental workload, anxiety, risk
perception and a loss of task performance.

5. Methods to measure mental stress in human-robot
collaboration

A total of 11 articles were included in the final analysis. Table 2 lists
details about the 11 articles for methods to measure mental stress in
human-robot collaboration.

5.1. Direct measurements

Self-report is the most commonly used direct method of psycholog-
ical estimate. One can design a questionnaire based on psychological
knowledge and then compute the stress index by the results. Or et al.
(2009) examined the effects of moving speed and size of an industrial
robot on workers’ mental workload. The effects on workers were then

Table 2
Studies selected for the method to measure mental stress.
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estimated by subjective questionnaires. It was noted that when workers
encountered a larger robot or a robot with a higher end effector speed,
they perceived a significantly higher mental workload. One limitation of
the direct measures is that participants may answer the questions in a
way that they think the researchers want them to answer. Another issue
is that to some extent the participant’s responses depend on his or her
mood on the day of the experiment (Bethel et al., 2007). The self-reports
were commonly used as a reference to build the connection between
participants’ subjective stress levels and the objective physiological
data.

5.2. Indirect measurements

Indirect measurements to estimate mental stress are mainly divided
into psychological signals and facial expression recognition.

The major systems in the human body that respond to mental stress
are the autonomic nervous system (ANS) and hypothalamic-pituitary-
adrenal (HPA) axis. HPA is a neuroendocrine system that adjusts stress
response, but the response is slow and not intuitionistic. Therefore, ANS
response is more suitable for examining workers’ mental stress (Park
and Kim, 2018). Common physiological signals for ANS include blood
pressure, cardiac response, electrodermal activity (EDA), Electroen-
cephalogram (EEG) and electromyographic (EMG).

5.2.1. Cardiac response

Heart Rate Variability (HRV) affects determining the role of the
human autonomic nervous system fluctuations. Increased sympathetic
nervous system activity results in an acceleration of heart rate while an
increased parasympathetic nervous system activity causes a decrease in
the heart rate. Under mental stress, it is commonly observed that the
parasympathetic activity of the heart decreases and the sympathetic
activity increases. Rani et al. (2002) exploited this feature of heart rate
variability to detect stress. They used video games to induce stress and
acquire the electrocardiogram (ECG) waveforms, and then both Fourier
Transform and Wavelet Transform were used to process the signals.
These signals were then adopted to infer the stress condition based on
the level of activation of the sympathetic and parasympathetic nervous
systems using fuzzy logic.

5.2.2. Electrodermal Activity (EDA)

The change of skin electrical properties is referred to as electro-
dermal activity (EDA). EDA is affected by the sweat secreted by eccrine
sweat glands (Safta and Grigore, 2011). Eccrine sweating is known as
emotional sweating, which is a kind of sympathetic nervous activity
involved with mental stress. EDA is divided into exosomatic measure-
ment and endosomatic measurement (Bari et al., 2018). Exosomatic
methodology mainly includes Skin Conductance Response (SCR),
Galvanic Skin Response (GSR) and Skin Resistance Response (SRR).
Endosomatic methodology mainly includes Skin Potential Response
(SPR), Galvanic Skin Potential (GSP) and Skin Potential Level (SPL) (A.

Authors Sample Size  Application Domain/Environment Measurements Independent Variables

Or et al. (2009) 32 Virtual reality industrial environment ~ Only subjective questionnaire =~ Robot size, speed, exposure to a simulated accident
Rani et al. (2002) / Visual field ECG /

Dehais et al. (2011) 12 Human-robot collaboration EDA Three robot motions

Arai et al. (2010) 5 Human-robot collaboration EDA Distance, speed and notice
Al-Shargie et al. (2016) 12 Montreal imaging stress task EEG Arithmetic problems at three levels
Wijsman et al. (2013) 30 Visual field EMG Three different stress conditions
Orguc et al. (2018b) 10 Classification of facial gestures EMG /

Lerner et al. (2007) 92 / Facial expression Three stress-challenge tasks
(Bueno and Gonzalez-Fierro, 2013) / Human-robot collaboration Facial expression /

Rani et al. (2007) 6 Human-machine collaboration Multimodal Anagrams of varying difficulty
Pourmohammadi & Maleki (2020) 34 Medical diagnosis and analysis Multimodal Increasing difficulty of tasks

Note. ECG = electrocardiogram; EDA = electrodermal Activity; EEG = electroencephalogram; EMG = electromyogram.
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Affanni and Chiorboli, 2014). Most research use GSR or SCR to analyze
mental stress based on EDA. Dehais et al. (2011) examined the effects of
the different types of co-robot trajectories on galvanic skin conductance
response. The results suggested that a strong GSR was observed when a
participant was surprised by a quickly approaching co-robot.

SPR signal is more difficult to obtain because it needs complicated
and high-cost instrumentations (Antonio Affanni et al., 2018). However,
endosomatic methodology exhibits a faster response to stress stimuli
than exosomatic methodology, which makes exosomatic methodology
more suitable to measure mental stress in time. Arai et al. (2010)
investigated mental stress of workers when they are working together
with a moving co-robot by measuring the SPR. The results showed that
when a worker felt high mental stress at a condition the co-robot moved
too near to them or the moving speed was too fast, the rate of occurrence
of spike of SPR was greater.

5.2.3. Electroencephalogram (EEG)

EEG is an imaging technique that detects the electrical activities
generated by the brain (Teplan, 2002). EEG signal is an effective signal
to represent the changes in autonomic nervous system. To gain useful
information, the decomposition of EEG signals in some frequency bands
is extracted using a band filter (alpha (8-13 Hz), beta (14-30 Hz), theta
(4-8 Hz) and delta (0.5-4 Hz)) (Saidatul et al., 2011). The increased or
decreased level of brain activities in frequency band often reflects the
level of mental stress (Yang et al., 2010). Al-Shargie et al. (2016) utilized
arithmetic tasks as stress stimuli to induce different levels of mental
stress and classified the stress based on the EEG signals. The results
demonstrated that participants appeared less attentive and could not
relax under a high level of stress based on the analysis of alpha and beta
rhythm power values. In general, the studies revealed EEG was an
effective method to detect mental stress and the right prefrontal cortex
played a leading role in mental stress.

5.2.4. Electromyogram (EMG)

The electromyogram (EMG) measures the electrical activity related
to muscle contraction level. In stressful situations, the EMG activity in
some muscles increases compared to non-stressful situations. Wijsman
et al. (2013) measured EMG signals generated by the upper trapezius
muscle in three different stressful conditions. The results have shown
that the amplitude of the EMG signal during stress situations was much
higher than in rest situations. The relative time with gaps decreased
during stressful conditions because fewer gaps would occur during
stressful situations than during rest. The results suggested that EMG was
a useful method to detect stress. Orguc et al. (2018) adopted an
EMG-based facial gesture recognition system that could classify different
jaw movements. They used discrete wavelet transforms to extract fea-
tures and a support vector machine to classify jaw movements at
different stress levels.

5.2.5. Facial expressions

From the psychological perspective, facial expression is a highly
reliable measure to infer mental stress (Mauss and Robinson, 2009).
There are two main techniques to measure emotional facial expressions
(Hofling et al., 2020). One is recording the activities of specific muscles
with EMG, as mentioned in the previous section. The other technique is
by applying computer vision algorithms to face images to infer human
stress levels in real-time (Mollahosseini et al., 2017).

For example, an intelligent tutoring system uses facial expressions of
a student to decide whether a student is confused and needs more
practice or is ready to proceed to more difficult concepts. Lerner et al.
(2007) experimentally revealed the facial expressions corresponded
with the biological stress response. The participants were required to
perform stress-challenge tasks, during which the facial expressions, as
well as several other physiological signals and subjective emotional
experiences, were evaluated. As the results have shown, the facial
expression of fear was positively associated with stress whereas the

Applied Ergonomics 105 (2022) 103832

facial expression of anger and disgust was negatively associated with
stress.

Bueno and Gonzalez-Fierro (2013) proposed a method of emotional
interaction between a robot and a human. The robot could recognize the
human emotion changes based on Neural Evolution Algorithm and
Active Appearance Models and then perform adaptive actions to miti-
gate workers’ negative emotions.

5.3. Multimodal measurements

Although each physiological indicator to measure mental stress has
its validity and rationality, two main concerns need to be considered
when these methods are applied. One is the large individual difference
in physiological response, and the other is that the same physiological
signal may be triggered by a range of psychological states (Kuli¢ and
Croft, 2003). For these reasons, some studies sought to compare the
stress level derived from different methods and infer mental stress in a
multimodal way.

Pourmohammadi at el. (2020) classified stress levels by detecting the
EMG signal of right and left erector spinal muscles and the right and left
trapezius muscles and ECG signal. ECG signal was applied as a reference
to evaluate the efficiency of EMG signals for stress detection. The results
indicated EMG and ECG signals together could successfully classify
stress into multiple levels with satisfactory accuracy. It has also been
shown that the EMG signal of the right trapezius muscle recognized
stress better than other muscles. Rani et al. (2007) focused on jointly
detecting and recognizing stress through ECG, blood volume pulse
(BVP), pulse transit time (PTT), SCR, skin temperature and EMG signal
from both corrugators supercilii muscle (eyebrow) and masseter muscle
(jaw). The results were compared with the participant’s self-reported
psychological state. The physiological data were classified using fuzzy
logic along with decision tree learning. It was concluded that this
approach was able to detect affective states reliably.

To summarize this section, it is concluded that each measure
reviewed in this paper has its validity and rationality, and a combination
of different methods may provide a more comprehensive and accurate
assessment.

6. Methods to measure safety awareness in human-robot
collaboration

A total of 6 articles were included in the final analysis. Table 3 lists
details about the 6 articles for methods to measure safety awareness in
human-robot collaboration.

6.1. Direct measurements

Safety awareness can be evaluated through questionnaires or reports,
which are direct approaches to determine a person’s situation awareness
regarding safety. The most commonly applied measures are Situational
Awareness Rating Technique (SART) (Taylor, 2017), Situation Aware-
ness Global Assessment Technique (SAGAT) (Endsley and Kiris, 1995)
and Situational Present Assessment Method (SPAM) (Durso et al., 2004).
As a subjective method, SART outcomes are easy to obtain as the queries
are genetic. SART measures one’s situation awareness from ten di-
mensions, each of these dimensions has a seven points rating scale. Both
SAGAT and SPAM are objective measures, which provide an unbiased
estimation of a worker’s situation awareness (Endsley, 2019). The
queries for SAGAT and SPAM are specially designed according to the
situation, and the questions can be scored correct or false objectively
and are asked during live missions.

SART questionnaire is provided after the trial, and it is based on
subjective estimation of situation awareness of the worker. de Merwe
et al. (2019) developed a VR mediated HRC framework for
non-professional workers. They compared workers’ situation awareness
and attentional demand under the full information and preprocessed
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Table 3
Studies selected for the methods to measure safety awareness.
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Authors Sample Size Application Domain SA Measurements Physiological Measurements Independent Variables

de Merwe et al. (2019) 20 Human-robot collaboration SART / full information or preprocessed context
Unhelkar et al. (2014) 24 Human-robot collaboration SAGAT / Human assistant or robotic assistant
Yeo et al. (2017) 36 Flight SPAM EEG Conditions of conflict resolution

Dini et al. (2017) 20 Human-robot collaboration SAGAT/SART Eye-tracking /

Catherwood et al. (2014) 10/15 Visual field QASA EEG /

Kastle et al. (2021) 32 Visual field PEBL based on SAGAT EEG /

Note. SART = situational awareness rating technique; SAGAT = situation awareness global assessment technique; SPAM = situational present assessment method; EEG
= electroencephalogram; PEBL = Psychology Experiment Building Language; QASA = quantitative analysis of situation awareness.

information context based on the answers to SART questionnaire. The
results suggested that there was no significant difference in workers’
situation awareness between the two information contexts. However,
attentional demand scores were significantly greater for the full infor-
mation context.

SAGAT is a popular freeze probe technique. A task is interrupted
when the SAGAT is applied, and participants are required to answer the
questions regarding the current situation. Unhelkar et al. (2014) eval-
uated workers’ awareness of a mobile robotic assistant in a task envi-
ronment through SAGAT. The designed questions were about the
features of robotic assistants and human assistants. The results showed
that participants were significantly more aware of the tray’s color after
delivery was performed by a robotic assistant. In contrast, the back-
ground environment was noticed better by participants after delivery
was performed by a human assistant. This suggests that the co-robot may
have a transitory distracting effect that degrades situation awareness,
even after the robot left the participant.

SPAM questionnaire is performed in real-time but with no freeze
while the participants carry out their operational tasks. Yeo et al. (2017)
used four parameters obtained from SPAM to measure situation
awareness and workload in an air traffic control context. The percentage
of correct responses and the latency of the response were two parameters
to measure the situation awareness while the time taken to be ready and
the number of ready responses were used as workload measures. It is
suggested to conduct nine situation awareness probes at a 6-min
interval.

Although the self-report methods are easy to apply, they also have
some limitations (Zhang et al., 2020). SART is subject to memory decay
since participants must complete the questionnaire at the end of the task
(Gatsoulis et al., 2010). SAGAT requires interrupting tasks, which limits
its application in case the task cannot be stopped (Sneddon et al., 2013).
SPAM requires participants to answer questions while performing tasks,
which could have a negative effect on the participant’s performance.
Furthermore, the obtained data from SPAM may suffer from bias
because participants’ attention may be oriented to the relevant situation
awareness elements due to the questionnaire (Salmon et al., 2006).

6.2. Indirect measurements

There are only a limited number of studies examining using indirect
measures to infer situation awareness. Eye-tracking is the most
commonly used physiological measure and accounts for the majority of
the relevant literature. Another commonly used physiological method is
EEG.

6.2.1. Eye-tracking

Eye-tracking is an approach to measuring situation awareness un-
obtrusively in an environment where multiple tasks exist. The situation
awareness can be estimated by locating human gaze. Dini et al. (2017)
developed a methodology to measure situation awareness from gaze
interaction with objects of interest in the context of human-robot
handover events. Their research question was whether SAGAT or
SART questionnaire could be replaced by 3D-gaze tracking. The results
showed that fixation distribution analysis significantly served the

purpose to measure situation awareness. Besides, the look rate, average
dwell time and turn rate were all features considered in the frame.
Although not all the metrics had significant correlations with situation
awareness, discriminative features were selected to predict situation
awareness and made successful estimations.

6.2.2. Electroencephalogram (EEG)

Brain wave activities in the beta band are related to active thoughts
and problem-solving (Yeo et al., 2017). It has been demonstrated by
some studies that there is a negative correlation between workload and
situation awareness while a positive correlation exists between situation
awareness and performance (Dini et al., 2017; Schuster et al., 2012).
EEG is widely deployed to examine the pilot or driver’s brain activities
during their driving tasks and what correlations are built between the
brain activities and situation awareness (Borghini et al., 2014). Cath-
erwood et al. (2014) recorded participants’ brain activities with EEG
during the loss of situation awareness. They required participants to
identify target patterns or “threats” in urban scenes and then changed
the target to enforce a loss of situation awareness. By analyzing the EEG
data obtained from different brain areas, it is concluded that there was a
co-activity in visual and high-order perception regions during a loss of
situation awareness. Kastle et al. (2021) proposed a novel analytical
methodology to correlate EEG signals to situation awareness. Partici-
pants completed the situation awareness test in Psychology Experiment
Building Language (PEBL). PEBL is a psychological assessment frame-
work containing a situation awareness test based on SAGAT technique.
EEG data were collected throughout the whole test process. After pro-
cessing the EEG data, the features were extracted and classified into high
and low situation awareness categories. A correlation was found be-
tween the beta and gamma frequency bands and situation awareness.

7. Discussion

7.1. Potential co-robot actions to lower mental stress or improve safety
awareness

The factors affecting workers’ mental stress or safety awareness and
methods to measure mental stress and safety awareness have been
presented in the previous sections. In general, the robot types in the
selected papers were mainly manipulator arms, mobile robots and per-
sonal robots. Manipulator arms are usually used to conduct tasks such as
pick and place or handover and can be found in a wide range of tasks
such as assembly and sorting. Mobile robots are usually served as de-
livery robots for transporting items from one location to another. For the
measurements of mental stress, skin response is the most commonly
used objective method because it responds rapidly and can be measured
in a non-intrusive way. Some other measurements, such as EMG, have
also been used for quantifying mental stress levels, but the number of
literature is limited. The measurements of safety awareness mainly rely
on direct measurements such as SAGAT, SPAM or SART. The most used
physiological measurements are eye-tracking and EEG.

Below we provided a review of potential co-robot actions to reduce
mental stress or improve safety awareness. One strategy to reduce
mental stress and improve safety awareness is to notify workers before
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performing high-risk activities. This could be a simple strategy because
notification of high-risk motion is open-loop control, which from the
design perspective, is less complicated than a closed-loop control where
robots detect workers’ mental stress or safety awareness through sen-
sors. Advance notice of robot motion is able to reduce mental stress and
improve safety awareness effectively. The most commonly used signals
are visual and audible signals. Arai et al. (2010) evaluate the effects of
advance notice of co-robot motions on human mental stress. Compara-
tive experiment outcomes showed that advance notice of the maximum
speed of co-robot motion can reduce workers’ mental stress.

An alternative way to reduce mental stress or increase safety
awareness is to enable a co-robot to take mitigation actions in response
to the worker’s psychological states. During HRC, information exchange
between humans and co-robots is bidirectional and equally important in
terms of workflow for both humans and robots (Murashov et al., 2016).
Not only do humans respond to co-robot actions, but also co-robots also
need to respond to human behaviors to form a communication channel
between workers and co-robots. As mentioned in Section 3 and Section
4, mental stress and safety awareness can be recognized and classified by
various measures. Assume that workers’ mental stress or safety aware-
ness information along with other environmental inputs can be observed
and processed by co-robots, co-robots may be able to infer workers’
internal mental stress or safety awareness and adjust their actions to
improve mental safety during HRC. For example, when high mental
stress or distraction is detected, a co-robot can reduce the speed, touch
the worker or alternate end-effector trajectory. Yet, very few studies
have applied customized co-robot actions in response to workers’
mental stress or safety awareness during collaborative tasks.

7.2. Limitations and future implications

This paper describes the robot-related factors that may affect mental
stress or safety awareness and methods for measuring mental stress and
safety awareness. Much effort has been made to reveal the relationships
between robot-related factors and mental stress or situation awareness.
However, there are still several research gaps that need to be filled. First,
physiological data can be affected by environmental conditions. While
one can keep the laboratory environment stable, the real-world in-
dustry-specific environment can change from time to time and affect the
quality of physiological signals. In addition, most laboratory-based
studies have focused on short time recording from seconds to minutes.
If the mental stress or safety awareness of workers needs to be monitored
for hours in a real-world environment, the data collection could be
challenging. For example, the airtight sticker of GSR sensors can result in
sweating, so that the skin conductance can be artificially altered without
stress level changes. Special attention needs to be paid to how to obtain
stable and high-quality physiological signals in real-world environ-
ments. Second, researchers have endeavored to find the stress-related or
situation awareness-related features from physiological signals. Yet, the
extracted features are mainly in the time domain. While time-domain
analysis can provide information about how a signal changes over
time, frequency-domain analysis can reveal how the signal’s energy is
distributed over a range of frequencies. Only a few papers have exam-
ined the features in frequency domain. Future works need to examine
which feature combinations across time domain and frequency domain
from physiological signals are the most correlated with mental stress or
situation awareness. Third, the number of studies examining the rela-
tionship between mental stress and safety awareness was limited.
Although the measurements for both mental stress and safety awareness
overlap to some degree, the correlation between mental stress and safety
awareness remains less studied.

8. Conclusions and future directions

This manuscript provided a brief review regarding the robot-related
factors affecting mental stress or safety awareness and possible methods
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for assessing mental stress and safety awareness during HRC. According
to our literature review, some robot-related factors, such as size and
moving speed, are associated with a worker’s mental stress or safety
awareness. A number of measurements can be adopted to measure
mental stress or safety awareness, including self-reports and physio-
logical signals. In general, experiments that have been carried out in
HRC scenarios employed both indirect physiological measurements and
direct self-report measurements. These measurements together provide
a full picture of mental stress or safety awareness. Future work is needed
to explore solutions to measure the physiological signal in the real-world
working environment and to investigate the most relevant features
extracted from the signals in both the time and frequency domains.
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