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ABSTRACT: The successful synthesis of high-entropy alloy (HEA) nanoparticles, a long-
sought goal in materials science, opens a new frontier in materials science with applications
across catalysis, structural alloys, and energetic materials. Recently, a Co25Mo45Fe10Ni10Cu10
HEA made of earth-abundant elements was shown to have a high catalytic activity for
ammonia decomposition, which rivals that of state-of-the-art, but prohibitively expensive,
ruthenium catalysts. Using a computational approach based on first-principles calculations in
conjunction with data analytics and machine learning, we build a model to rapidly compute
the adsorption energy of H, N, and NHx (x = 1, 2, 3) species on CoMoFeNiCu alloy surfaces
with varied alloy compositions and atomic arrangements. We show that the 25/45 Co/Mo
ratio identified experimentally as the most active composition for ammonia decomposition
increases the likelihood that the surface adsorbs nitrogen equivalently to that of ruthenium
while at the same time interacting moderately strongly with intermediates. Our study
underscores the importance of computational modeling and machine learning to identify and
optimize HEA alloys across their near-infinite materials design space.

The recent successful synthesis of high-entropy alloy
(HEA) nanoparticles paves the way to unexplored

opportunities in materials science.1−3 Initial findings in this
nascent field strongly suggest that HEAs may in particular
enable the design and synthesis of novel catalysts with higher
activity, lower cost, or both.4−8 For example, CrMnFeCoNi
HEA NPs are demonstrated to have an intrinsic electro-
catalytic activity for oxygen reduction which exceeds that of the
precious metal Pt.5 AuAgPtPdCu HEAs are shown to be
efficient catalysts for the electrochemical reduction of CO2.

6

However, the essentially unlimited number of HEA combina-
tions calls for the development of a science-based approach to
identify and engineer catalysts with desired activity, selectivity,
and stability.
Recently, Wang and collaborators showed that HEAs made

up of earth-abundant elements Co, Mo, Fe, Ni, and Cu can
decompose ammonia 20 times more efficiently than the state-
of-the-art precious-metal ruthenium catalysts.9 By synthesizing
five different alloys with similar concentrations for Fe, Ni, and
Cu but varied Co and Mo compositions, they showed that
Co25Mo45Fe10Ni10Cu10 had the highest catalytic activity and
confirmed from kinetic measurements that it has the lowest
reaction barrier. In addition, this study showed that the
optimum composition binds nitrogen similar to ruthenium,
while others have higher or lower nitrogen adsorption energies.
The present study uses high-throughput screening in
conjunction with data analytics based on machine learning
(ML) to rationalize the experimental results and offers a
practical approach to identify further CoMoFeNiCu alloy
candidates with high catalytic efficiency.

Ammonia is a strategic industrial chemical that, via
fertilizers, is largely responsible for sustaining the growing
global population. Currently, more than 146 million tons of
ammonia are synthesized annually via the Haber−Bosch (HB)
process, which operates at temperatures of 400−600 °C and
pressures between 100 and 300 bar to convert molecular
hydrogen and nitrogen into ammonia: 3H2(g) + N2(g) →
2NH3; ΔH = −0.96 eV. Also, ammonia represents a promising
sustainable liquid fuel as an energy carrier for mobile and
remote applications.10 However, existing catalysts for ammonia
synthesis and ammonia decompositions have severe limi-
tations. The industrial catalyst for ammonia synthesis, based on
the century-old discovery that Fe enables N2 activation, is no
longer considered sustainable despite its wide use: Its demand
for high-purity hydrogen, obtained in practice from fossil fuels
via steam reforming, results in ∼2.5% of worldwide fossil-fuel-
based CO2 emissions, equating to ∼670 million tons per
year.11 Furthermore, the relatively low activity of the Fe-based
industrial catalyst contributes to the very high energy demand
of the HB process, which is estimated to consume 1−2% of
global primary energy: The low activity requires high reaction
temperatures to achieve economical rates, which then demand
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very high operating pressure to overcome thermodynamic
limitations at these temperatures to make the process yields
economically feasible.11,12 On the other hand, the most active
known catalyst to date for ammonia synthesis and decom-
position, the precious metal Ru, is not economical due to its
prohibitive cost.13 Unsurprisingly, there is hence great interest
in finding more active and cost-effective catalysts for both
ammonia synthesis and decomposition.
Traditional approaches for catalyst design, which rely on an

“Edisonian” trial-and-error approach, are slow, expensive, and
likely to result in suboptimal catalysts. For instance, Bosch’s
technician, Alwin Mittasch, tested more than 3000 catalyst
compositions for ammonia synthesis in over 20000 experi-
ments at the beginning of the 20th century to optimize the Fe-
based catalyst.14 In contrast, computational modeling based on
quantum-mechanical density functional theory (DFT) pro-
vides a rational approach to catalyst design by uncovering the
reaction mechanism and energetics at the molecular level.15

Although ammonia decomposition operates at different
reaction conditions than ammonia synthesis,16 both reactions
share the same similar mechanisms and a volcano-type
relationship between the catalytic activity and nitrogen adsorption
energy.17−21 Thus, by use of this simple descriptor, trends from
one material to the next can be easily identified, which thus
allows for the possibility of identifying new catalysts with near-
optimal descriptor values.22

Scaling relations and the Brønsted−Evans−Polanyi (BEP)
relationship, which are widely used in catalysis, do not
generally hold for alloy surfaces.23 The standard descriptor-
based screening approach will hence provide a necessary but
not sufficient filtering.24−26 However, a recent experimental
study of ammonia decomposition unambiguously indicated
that nitrogen adsorption energy is a good descriptor for the
catalytic efficiency of CoMoFeNiCu HEAs.9 Also, a recent
study utilized binding energies as a descriptor to optimize
AgAuCuPdPt HEAs for CO2 and CO reduction,3 and results
were validated experimentally.6 Hence, we posit that a
screening based on nitrogen adsorption energy is a viable
approach to optimize HEA catalysts for ammonia decom-
position and, by extension, to ammonia synthesis. This is also
supported by the current findings that are found to be in
excellent agreement with experimental results9 for ammonia
decomposition.
The stability of alloys as a single solid solutionrather than

undesirable ordered intermetallics that dissociate into multiple
phasesis a challenge for HEA synthesis. As the name HEA
implies, it was believed that the high configurational entropy is
essential for forming a single-phase solid solution; however, it
is now generally appreciated that the definition can be broader
as numerous so-called HEAs do not have high configurational
entropies.27 Yang and Zhang empirically introduced simple
rules to assess the HEA stability similar to the classic Hume−
Rothery rules that delineate the conditions under which an
element can dissolve in metal to form a solid solution.28 More
specifically, it is empirically found that a k-element alloy will
form a stable HEA phase if δr < 6.6% and Ω = (TmΔSmix)/
|ΔHmix| > 1.1, where δr is the difference in atomic radius, Tm is
the melting temperature, ΔSmix and ΔHmix are the mixing
entropy and enthalpy, respectively, and weighted averages are
defined in terms of the concentration (ci) as δr = ∑i,j

k cicj(ri −
rj), ΔHmix = ∑i,j

k cicjHij, ΔSmix = −kB∑i
kci ln ci, and Tm =

∑i
kciTm

i .28,29 Not surprisingly, there have been exceptions to
the Yang−Zhang rules, which have prompted several

modifications such as accounting for nonrigidity of the radii
or adding more features within an ML approach.30,31

To assess the HEA stability of CoMoFeNiCu alloys, we
compute δr and Ω values for 250000 different alloys. The set is
constructed by varying the composition of the elements from
2% to 96% in 2% steps and choosing compositions that add up
to 100%. All the proposed combinations are found to satisfy
the empirical constraints for HEA stability except ∼0.04% that
are found deficient in more than two metal components. In
agreement with these findings, the previous experimental
study confirmed that the synthesized CoxMoyFe10Ni10Cu10
HEAs (x/y = 15/55, 25/45, 35/35, 45/25, and 55/15) have
homogeneous mixing of the elements with a random atom-to-
atom contrast variation based on STEM-EDS and atomistic
simulations.9 Thus, hereafter we assume that the alloys will
form a single HEA phase.
In addition, consistent with the experimental results, we

assume that the alloy will adapt a single face-centered cubic
(fcc) lattice. In our study, we calculate the lattice constant of
the HEAs as a weighted average based on the alloy
composition, following Vegard’s law for binary alloys. For
the same chemical composition that was synthesized
experimentally, the HEA lattice constant varies between 3.60
Å fo r Co5 5Mo1 5Fe 1 0N i 1 0Cu1 0 and 3 .73 Å fo r
Co15Mo55Fe10Ni10Cu10. The reported9 experimental interpla-
nar (111) spacing in the HEA is measured as 2.18 Å,
suggesting a 3.74 Å lattice constant consistent with our
estimated values.
We employ a slab approach within the (111) fcc termination

to investigate the interactions of nitrogen with HEA surfaces.
The slab model is a good approximation to describe the
catalytic activity of the relatively large ∼20 nm HEA
nanoparticles synthesized experimentally, which were reported
to have well-resolved (111) fcc planes.9 However, given the
exceeding large number of different alloy configurations (e.g.,
there are 3 × 1011 configurations for realizing a (2 × 2 × 5)
supercell of an equiatomic alloy), it is prohibitive to evaluate
nitrogen adsorption energies on all sites to statistically
determine the activity by using DFT calculations. Instead, we
follow an approach recently demonstrated by Rossmeisl and
co-workers, who developed an ML approach to model the
adsorption energy ΔEML chemical species on HEA surfaces.
ΔEML assumes a linear dependence on the number of metal
elements in the chemical environment of the adsorption site as
ΔEML = ∑z∑kCz,kNz,k. Here Nz,k is the number of metal
elements of type k in zone z and Cz,k are corresponding fitting
parameters. The zones are designed based on geometrical
distances with respect to the adsorption site. Despite its
simplicity, this ML model showed good agreement with DFT
values.3,32

Herein we follow a similar approach to build a ML model for
nitrogen adsorption energy but with important modifications
that appreciably improve its fidelity and transferability. First,
we utilize a convolutional neural network (CNN) that can
capture nonlinear correlations in the training set, offering
higher flexibility compared to the previous linear model.3,32

Second, we designed robust features that encode three levels of
domain knowledge: (1) element-specific features comprised of
ionization energy, electronegativity, electron affinity, and
number of valence electrons; (2) metal-specific features
including Wigner−Seitz radius rs, d-band center ϵd, d-band
filling fd, coupling matrix elements between adsorbate and
metal d-states Vad, d ln ϵd/d ln rs, and work function; and (3)
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chemical environment descriptors corresponding to the
identity of metals neighboring the adsorption site. Thus,
each site will yield a different adsorption energy given the wide
variations of the associated features. In our geometric neighbor
analysis, we account for the maximum information available in
the surface microstructure by including all metal atoms based
on geometrical distance from the adsorption site. The feature
set was found to saturate by including only the top three
surface layers. Clearly, this representation is equivalent to that
obtained from the spherical zone representation32 except that
it alleviates the repetitiveness of some features since some
atoms are equivalent due to periodic boundary conditions.
Additionally, in our feature description, we include the overall
composition of the alloy, which we also find to further improve
the ML model fidelity.
We perform a high-throughput DFT computation for

nitrogen adsorption on various compositions of CoMoFeNiCu
HEA (111) surfaces. We find that nitrogen adsorbs most
strongly at hexagonal-close-packed (hcp) sites, and hence we
focused our ML on this adsorption configuration (see Figure
1). In our database, we have a total of 1911 configurations that

differ in the alloy composition and arrangement of the metal
atoms. As can be seen from the histogram in Figure S1,
nitrogen binding energies in the database vary between −2.4
and 1.2 eV. The large variance in the adsorption energies is not
surprising given the large number of different chemical
environments associated with the adsorption site. However,
while the wide variations ensure that the training data set
captures a wide range of different systems, this increases the
required training time for accurate ML. Further to take
advantage of symmetry, we extended the data set by 10−25%
by including configurations related to an original configuration
by a permutation of selected surface atoms. For instance, for
the hcp site, the adsorption energies associated with different
arrangements of the three nearest-neighbor elements of the
adsorption site are nearly the same. We have used 80% of the
data set selected at random to train the CNN model and
equally split the remaining data set for validation and testing.
Cross-validation of the results is performed on five different

models based on a different selection of the training data set to
quantify the uncertainty of predictions.
Figure 2 compares the DFT calculated adsorption energies

and CNN model predictions. As seen from the figure, the
accuracy of the CNN model is notably high, achieving a mean
absolute error (MAE) of 0.05 eV/N (per nitrogen atom).
Almost all of the ML predictions are within 0.15 eV from the
DFT reference values. Importantly, we find no systematic bias
in these predictions, which makes the accuracy of these
calculations comparable to the intrinsic accuracy of the DFT
approach employed to generate the training data set.
Using the CNN model and our selected features, we

evaluate nitrogen binding energy on HEA (111) surfaces. We
focused on CoxMoyFe10Ni10Cu10 HEA compositions to
compare with experimental results where x + y = 70. For
each alloy composition defined by x and y, we compute the

average adsorption energy *̂ = ∑ * ∑E f E f/
N n N n, ,s s over a

large number of slab models generated randomly with different
atomic arrangements. Here *E N, is the ML adsorption energy
for the th configuration from the ns ensemblewe find that ns
= 800 yields converged adsorption energies (see Figure S2).
Given the molar fractions ck of the HEA, f = ∏k

5ck
Nk accounts

for the different possibilities of generating a surface micro-
structure with Nk metal atoms (here we dropped the
configuration label for clarity).3,32

Figure 3 shows the resulting Ê*,N for CoxMoyFe10Ni10Cu10
as a function of the Co concentration, x. As seen from the
figure, the Co-rich HEA surface has weak adsorption energy
while the Mo-rich surface binds nitrogen more strongly. These
trends are inherited from the pure metals: Co surface binds
nitrogen too weakly while Mo surface binds nitrogen too
strongly. To establish limiting values, we find that nitrogen
adsorption energies on Co and Mo fcc (111) are −0.56 and
−2.51 eV/N, respectively. Thus, the HEA interpolates between
the two limits. The concept of interpolation between strong
and weak adsorption sites is not new: this was the basis for
suggesting CoMo as a potential catalyst for ammonia synthesis
more than 20 years ago.18 Indeed, this prediction was verified
recently in an experimental study showing that CoMo binary
alloy with uniform distribution of the elements is a good
catalyst for ammonia synthesis.33

We also compare in Figure 3 the computed nitrogen binding
energy with the experimental results9 for the five different
compositions. To mitigate the strong binding tendency of the
PBE functional,34 we shifted all experimental values by 0.5 eV.
Experimentally, it was determined that the optimum ammonia
decomposition catalyst binds nitrogen with a strength similar
to that of Ru (0001).9 As seen from the figure, there is an
excellent correlation between the CNN-computed and
experimental nitrogen binding energies.
Importantly, the average adsorption energy Ê*,N in Figure 3

is shown to vary linearly with Co concentration x (correlation
coefficient, r2 = 0.99). This suggests that we can readily
optimize the alloy composition, i.e., x, to increase the
likelihood that the surface microstructure will bind nitrogen
optimally. For ammonia decomposition, Ru is the most
efficient catalyst. For Ru (0001), we find that the optimum
nitrogen adsorption energy is located at the short-bridge site
and has binding energy ERu*

,N = −1.27 eV/N. This agrees with
previous results.35 Figure S3 compares the PBE and revised
PBE functional that has been employed in previous studies.36

Thus, from Figure 2, we conclude that HEAs with x = 0.35−

Figure 1. Top view for adsorption configurations for different
chemical species on a representative HEA fcc(111) surface. Atoms
belonging to the top surface layer are labeled with a cross. Bonds
between adsorbates and metal atoms are shown as a red line.
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0.45 bind nitrogen with a strength equivalent to that of Ru
(0001) and are thus expected to be efficient catalysts for
ammonia decomposition. In addition, using the nitrogen
binding energies on Fe surfaces as target values, we can extend
these arguments for ammonia synthesis. For Fe (110) and Fe
(111), we investigated different adsorption sites using the
employed computational setup and found the optimum values
to be −1.82 and −1.70 eV/N, respectively. This suggests that

CoxMoyFe10Ni10Cu10 HEAs with x ∼ 0 that are mostly
depleted of Co serve as good catalysts for ammonia synthesis.
Our estimated value of the optimum value of Co

concentration for efficient ammonia decomposition x =
0.35−0.45 is overestimated compared to the experimentally
determined value, x = 0.25. While such discrepancies between
the modeling and experimental results are not uncommon, we
posit that this discrepancy is also partly because we used
nitrogen binding energy on Ru (0001) terraces as a target
value. The experimental results are obtained on nanoparticles;
hence, step edges rather than terraces should provide the target
value for optimization. In addition, it has previously been
determined that the B5 sites are the most catalytically active.37

The B5 site corresponds to an arrangement of three Ru atoms
in one layer and two further Ru atoms in the layer directly
above at a monatomic step on a Ru(0001) terrace. Using the
nitrogen binding energy on Ru step edge that is lower than the
terrace value by 0.1 eV,36 we can infer from Figure 3 that the
predicted optimum alloy composition corresponds to x =
0.25−0.35, which is in good agreement with experimental
results.9

The generally accepted mechanism for ammonia decom-
position involves the stepwise dissociation of H atoms from the
NH3 molecule on the metal catalyst surface. The reverse
hydrogenation steps comprise the prevalent process for
ammonia synthesis from H2(g) and N2(g) based on the
Haber−Bosch process. Thus, for both reactions, there are four
chemical species NH3, NH2, NH, and H interacting with the
surface in addition to nitrogen. To assess how these
intermediates interact with HEA, we developed ML adsorption
models for each species, as we did for nitrogen. The favorable
adsorption site for each species is found by inspecting different
sites for several alloy samples. We find that NH3 binds the
most strongly at the top metal sites as is in the case of Ru
(0001)36 due to bonding via the lone electron pair on the N

Figure 2. Comparison between adsorption energy predictions based on ML and DFT ground truth values on the testing set for (a) N, (b) H, (c)
NH, (d) NH2, and (e) NH3. The inset shows the distribution in the differences between the ML and DFT values. The mean absolute error (MAE)
shows the overall accuracy of the model. All energies are in eV.

Figure 3. Adsorption energies of H, N, NH, NH2, and NH3 on
CoxMoyFe10Ni10Cu10 (111) as a function of Co concentration (with x
+ y = 70). The dashed horizontal lines (color-coded) show the
corresponding adsorption energy values on Ru (0001) terraces. Also,
we show the N adsorption energy for Ru (0001) on a step edge. For
nitrogen adsorption energy, we show statistical error based on
ensemble averaging and ML uncertainty. Similar errors are expected
for other adsorption energies and are omitted for clarity. The
experimental results for nitrogen adsorption energy (shifted by 0.5
eV) are also shown for comparison.
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atom. NH2 is found to bind to a 2-fold bridge site, and NH is
found to bind to the hcp site. See Figure 1 for a schematic
illustrating these bonding configurations. All of these results
are consistent with previous findings.36 The comparison
between the ML predictions and DFT results in Figure 2
shows that the ML models achieve for all species similarly high
fidelity as for nitrogen.
Figure 3 shows the average adsorption energies for all

intermediates for CoxMoyFe10Ni10Cu10 alloys. For comparison,
we also show in the figure (dashed lines) the corresponding
adsorption values for Ru (0001). As Co concentration
increases, we see a small but noticeable increase in the
hydrogen binding energy. However, all HEA compositions are
found to adsorb hydrogen more strongly than Ru (0001). In
contrast, NHx (x = 1, 2, 3) adsorption energies strongly
decrease as the alloy becomes richer in Mo, similar to the case
of nitrogen. This behavior is also inherited from the parent
metals Co and Mo. Interestingly, as seen in the figure, the
adsorption energies of NHx are correlated to that of nitrogen.
For the pure metal surfaces, there is a strong linear relationship
between the adsorption energy of AHx (x = 1, 2, 3) for A= C,
N, S, O with that of the A atom on a range of different d-block
transition metals surfaces.21 Our results show that these scaling
relationships persist for the HEA although are weaker than on
metallic surfaces. In addition, for CoMoFeNiCu, we see a
weaker correlation with the N adsorption energies for the cases
of NH2 and NH3. This can be understood because of the
differences in the chemical environment of the adsorption
sites: N binds to an hcp site while NH2 and NH3 adapt bridge
and top configurations, respectively. NH, on the other hand,
which adapts an hcp site similar to that of N shows a stronger
correlation in its adsorption energies with the corresponding
nitrogen values. We posit that these appreciably preserved
correlations between NHx and N adsorption energies explain
in part why nitrogen is a good descriptor for ammonia
synthesis on these HEAs.
Using the computed adsorption energies for nitrogen and

the intermediates, we can examine the full energy pathway
during the dehydrogenation steps of NH3 and compare it with
the corresponding values for Ru (0001). As shown in Figure 4,

the optimum catalysts adsorb NH3 similarly to Ru (0001)
while the Co-rich HEAs adsorb NH3 weakly and Mo-rich ones
adsorb NH3 strongly. Contrastingly, the HEAs are found to
bind the intermediates more strongly than Ru, resulting in
more exothermic decomposition reactions than Ru (0001).
Interestingly, the highly catalytic step edges in Ru (0001) are
also found to bind the intermediates more strongly than the
terrace states.36 However, a strong enhancement of the
intermediates’ bonding could lead to unfavorable surface
poisoning by the intermediates and catalyst deactivation. From
Figure 3, we see that in the optimum doping range the NH2
intermediate is stabilized appreciably more than the Ru (0001)
case.
The experimental study examined a minute part of the

composition space of the HEA with equal concentrations of
Fe, Ni, and Cu, but it varied amounts for Co and Mo. Thus, it
is not clear whether the full optimization of the alloy
composition could result in an improved catalyst. Clearly,
this problem cannot be solved experimentally given the infinite
number of compositions that are expected to form a stable
HEA phase as inferred from Yang−Zhang empirical rules.
Using our developed computational approach, we can address
this challenge and narrow down potential alloy compositions.
To achieve this goal, we employ a particle swarm algorithm
(PSO) for unbiased optimization by minimizing |Ê*,N − Eopt*

,N|,
where Eopt*

,N = 1.27 for ammonia decomposition and 1.8 eV for
ammonia synthesis. The PSO is performed by using a 256
population size and 20 generations. Also, we limited the search
to alloys that have the five metal components present with a
concentration larger than 1%. The PSO identified several
potential HEAs for both reactions, including several HEAs for
ammonia decomposition with significantly lower Co content
than the previously identified HEA, such as Co0.17Mo0.25-
Fe0.30Cu0.18Ni0.10, which reduces both the Co and Mo content
(the two by far most expensive elements in the set) by almost
half while tripling the content in cheap and abundant Fe. For a
complete list, see Tables S1 and S2.
In conclusion, we have developed an approach based on

machine learning and global optimization to optimize the
activity of CoMoFeNiCu toward ammonia decomposition and

Figure 4. Ammonia decomposition energy landscape for CoxMoyFe10Ni10Cu10 corresponding to different Co/Mo concentrations. The
corresponding Ru (0001) values are shown for comparison. An asterisk (∗) corresponds to an empty adsorption site on the slab, and A* indicates a
site occupied by species A.
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ammonia synthesis. Particularly, optimizing the ratio of Co to
Mo concentrations in CoxMoyFe10Ni10Cu10 suggests that a
ratio of x:y ∼ 25:45−35:35, i.e., slightly Mo-rich compositions,
yields HEAs with a similar nitrogen binding energy to that of
Ru (0001). These findings agree with recent experimental
results, which identified Co25Mo45Fe10Ni10Cu10 as a highly
efficient ammonia decomposition catalyst. In addition, we
show that the scaling relationships between the binding
energies of NHx (x = 1, 2, 3) and N still hold in CoMoFeNiCu
similar to monometallic surfaces. These correlations explain in
part why nitrogen binding energy is a good descriptor for
ammonia decomposition and, by extension, for ammonia
synthesis on these HEAs. The developed methodology can be
applied to the discovery and optimization of HEAs for other
catalytic reactions.

■ METHODS

The DFT calculations employ the Perdew−Burke−Ernzerhof
exchange-correlation functional and projector augmented wave
(PAW) pseudopotentials38,39 as implemented in the Vienna
Ab initio Simulation Package (VASP) package. We expanded
the electronic wave functions using a plane-wave representa-
tion with a 300 eV cutoff. The slab fcc (111) models are
represented by using a 2 × 2 × 5 supercell approach. For Ru
(0001) we used a 2 × 2 × 5 supercell, while as for bcc Fe
(110) and Fe (111) models, we used 2 × 2 × 5 and 2 × 2 × 8
supercells, respectively. These slab models are expected to have
small finite-size effects based on previous investigations.36 We
sampled the Brillouin zone using a 3 × 3 × 1 shifted
Monkhorst−Pack grid with 0.2 eV Gaussian smearing. All of
the atomic coordinates belonging to the top two layers are
relaxed if all forces are <0.1 eV/Å and the energy changes are
<10−5 eV in the self-consistent electronic step. In addition, all
calculations are performed with spin-polarized orbitals.
The adsorption energy ΔEX for chemical species X is

calculated as

Δ = * − * −E E E EX X ref

where EX* is the energy of the relaxed slab with the adsorbed
species, E* is the energy of the relaxed surface, and Eref is
properly normalized energy measured with respect to H2 and
N2. The lattice parameters of the slabs are obtained from the
weighted-average DFT-calculated lattice parameters for atoms
belonging to the top layer following Vegard’s law. The
approximated lattice constants are shown to be in good
agreement with experimental values.
The CNN architecture follows our previous study.40 Briefly,

it consists of an input layer that is passed to two convolutional
layers, followed by one fully connected layer and then an
output layer. The input layer is the set of features of size 137
that encode the domain knowledge of the composition of
interest. The first convolutional layer consists of 64 filters,
employs an element-wise rectified linear activation, and uses a
one-dimensional (1D) convolutional kernel. The size of this
kernel is equal to the number of input features, which allows
the neural network to capture relationships that incorporate all
input features. The output of this layer for each filter has the
same size as the input. Then a max-pooling layer is used to
downsample the output by a factor of 2. The second
convolutional layer consists of 128 filters, employs an
element-wise rectified linear activation, and uses a 2D
convolutional kernel. The number of rows of this kernel is

equal to five, while the number of columns is set to the number
of input features divided by two. A 2D kernel is used in the
second layer rather than a 1D kernel to allow the network to
utilize the 2D output (filters and features) of the first layer.
The output of this layer for each filter has the same size as the
input divided by two due to the previous downsampling layer.
Then another max-pooling layer is used to downsample the
output by a factor of 2. Downsampling is used to help in
compressing the features between convolutional layers.41 The
fully connected layer is composed of 100 hidden neurons that
are connected to the downsampled output of the second
convolutional layer. Each neuron applies an element-wise
rectified linear activation. Then a dropout layer with a drop
rate of 0.2 is used to prevent overfitting. The last layer consists
of one neuron that takes the output of the fully connected layer
as input and estimates the adsorption energy. This neuron
applies an element-wise rectified linear activation. This deep
convolutional network design has been implemented by using
TensorFlow Python API.42
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