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Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential2
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Various industrial/commercial applications use Al-Mg alloys, yet the Mg added to Al materials, to improve
strength, is susceptible to surface segregation and oxidation, leaving behind a softer and Al-enriched bulk
alloy. To better understand this process and provide a systematic methodology for investigating dopants that
can mitigate corrosion, we have developed a robust atomistic deep neural net potential (DNP) using a dataset
generated with first-principles density-functional theory (DFT). The potential, validated systematically against
DFT values, has been shown to have a high fidelity in calculating different elemental and intermetallic Al-Mg
systems’ properties. Our calculations predict a linear trend in the formation energy of the Al-Mg alloy and its
density as a function of temperature, consistent with experimental literature. Employing the DNP within a hybrid
Monte Carlo and molecular dynamics (MC/MD) approach, we predict anisotropic surface segregation for Al-Mg
alloys such that (111)<(100)<(110), with (111) surfaces displaying the lowest segregation enthalpies and Mg
enrichment. Furthermore, we model the segregation tendencies by adapting a recently introduced isothermmodel
for grain boundary segregation. Our results show that this model describes the MC/MD segregation profiles with
higher fidelity than the McLean and Fowler-Guggenheim isotherm models.
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I. INTRODUCTION22

Aluminum is the most abundant metal in the Earth’s crust23

at ∼8.3% by weight [1,2]. Homogeneous Al materials are24

relatively soft, limiting their use in most engineering applica-25

tions where high-strength mechanical properties are required.26

Doping withMg can strengthen Al-based alloys for light-mass27

applications [3]. Commercial and industrial applications, such28

as the automotive and aerospace industries [4–8], use these29

strain-hardened Al-Mg alloys with a high strength-to-weight30

ratio as materials in vehicles.31

As is true in many metal materials, corrosion mitigation is32

an issue of great importance; the U.S. spends a few percent of33

its gross national product per year to address corrosion issues34

[9,10]. Pure Al materials are resistive to corrosion due to the35

spontaneous formation of a slowly growing, thermodynami-36

cally stable Al2O3 scale that acts as a surface diffusion barrier37

to prevent further oxidation [11]. However, this is not the case38

for the Al-Mg alloy as Mg segregates to the material’s surface.39

When this alloy is heated or exposed to the atmosphere, Mg40

preferentially oxidizes to MgO, which forms a poor barrier to41

further oxidation. MgO can readily be mechanically removed42

from the Al-Mg alloy’s surface, leaving behind an enriched43

softer Al material [12,13]. Thus, it is crucial to understand44

Mg’s segregation behavior in Al-Mg alloyed surfaces and45

whether segregation tendency varies with temperature, Mg46

concentration, and surface termination [14,15].47

To date, the design of oxidation-resistant alloys and coat-48

ings has been a highly empirical process, where the chosen49
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solution is often arrived at by a basic trial-and-error approach 50

that is not optimum (e.g., the performance of commercial 51

alloys can vary dramatically within a specification range). 52

First-principles density-functional theory (DFT) calculations 53

are an attractive alternative and have the potential of provid- 54

ing a robust and rigorous approach for accurately predicting 55

protective oxidation. These DFT approaches’ success has 56

enormous technical impacts on the design, tuning, and op- 57

timization of Al-Mg for various applications [6–8,16,17]. 58

However, the computational cost of standard DFT methods 59

has limited the investigations of alloys to simplistic mod- 60

els that often differ from experiments, as environmentally 61

specific parameters, which are often excluded from these cal- 62

culations [18,19]. Previous studies have relied on classical 63

atomistic potentials that can be applied to materials under var- 64

ious environmental conditions to model real-world behavior 65

[20]. The embedded-atom method (EAM) or modified EAM 66

(MEAM) potentials are generally used to study the dynamics 67

of Al-Mg binary systems [21–23]. These potentials are fitted 68

to experimental data and a quantum-mechanical database of 69

atomic forces and energies at finite temperatures. While these 70

classical potentials have been successful for studying simple 71

elemental systems, the design of these potentials for alloys 72

and complex interactions is nontrivial and relies on a laborious 73

and user-intensive process. 74

This work utilizes a machine learning (ML) based on deep 75

neural networks to approach DFT accuracy but at a fraction 76

of its computational cost, thus accelerating time to obtain 77

tangible results [2,24–27]. The developed ML force field’s 78

success shows that these methods have the flexibility and 79

nonlinearity necessary to describe complex potential energy 80

surfaces [28–34]. ML potentials suffer from transferabil- 81
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ity errors associated with atomic environments not included82

in the training, similar to traditional classical force-fields.83

However, in contrast to most classical potentials, ML po-84

tentials can systematically learn and improve the potential85

for different properties and regions of the material’s phase86

space. In the present study, we develop a deep neural net87

potential (DNP) for the Al-Mg binary alloy system via the88

DeepPot-SE approach [35] as implemented in DEEPMD-KIT89

[36,37], and DEEPPOT to systematically analyze its fidelity90

describing a wide range of properties. We follow an adaptive91

iterative-learning approach to augment the training dataset to92

circumvent data extrapolation in regions of the phase space93

that are of interest and are not adequately sampled throughout94

the ML process. We demonstrate that our DNP describes or-95

dered and disordered Al-Mg systems with near-DFT accuracy96

as we have observed in other bimetallic systems [38,39].97

Further, we apply the potential to study the impact of98

temperature, Mg concentration, and surface termination on99

potential element segregation processes. Due to the complex-100

ity of various types of surfaces (e.g., grain boundaries) present101

in physical alloys, it is infeasible to comprehensively eval-102

uate each surface’s effect on the degree of segregation and103

the fracture properties with presently available methods. A104

simple way to gain insight into this complicated problem is to105

study or simulate segregation at different low-index Al alloy106

surfaces such as (100), (110), and (111). We compare our107

predicted segregation results with previously reported EAM108

and experimental results to further demonstrate the predictive109

accuracy of this DNP.110

As a compliment to simulation-based analysis, thermo-111

dynamic modeling elicits a deeper understanding of first-112

principles physics and allows us to make surface solute113

concentration predictions. The classic McLean model is the114

foundational equation for predicting an interface’s solute con-115

centration from the bulk solute concentration and average116

segregation energy [40]. Fowler and Guggenheim later im-117

proved this model by considering the effects of solute-solute118

interactions with the interaction term, ω [41]. A negative119

interaction term indicates that solutes interact repulsively, and120

thus their segregation will be reduced in highly concentrated121

regions. A positive term suggests that solutes will preferen-122

tially migrate toward other, nearby solutes. Recently, Wagih123

and Schuh have proposed further changes to the model for124

grain boundary solute segregation [42]. An assumption made125

in the classical approaches is that the bulk solute concen-126

tration is approximate to the total solute concentration. The127

new approach argues that this approximation is inaccurate128

for nanocrystalline systems, which contain a high share of129

boundary positions relative to bulk positions [42]. They in-130

stead proposed a mixture rule, solved self-consistently, to131

obtain the solute concentration. This new model also incor-132

porates a piecewise function to represent solute interactions,133

which is needed to account for the absence of interactions134

with few nearby solute atoms [42]. Herein, we test the pre-135

cision for each evolution of the solute segregation model136

by fitting them to solute concentration results from our137

Monte Carlo and molecular-dynamics (MC/MD) simulations.138

In adapting the Wagih-Schuh modeling method for surface139

solute segregation, we show that the revised isotherm yields140

the best surface concentration predictions in agreement with 141

MC/MD data. 142

II. COMPUTATIONAL METHODS 143

A. DFT calculations 144

The DFT database was generated using the Vienna Ab 145

initio Simulation Package (VASP) [43–46], employing the 146

Perdew-Burke-Ernzerhof exchange-correlational functional 147

[47] to solve the Kohn-Sham equations within periodic 148

boundary conditions. The electron-nucleus interactions are 149

described using the projector augmented wave (PAW) method 150

as implemented in VASP [48,49]. In the PAW representation, 151

Al is represented with an s2p1 valence configuration, while 152

Mg is represented with s2p0. Single-particle orbitals are ex- 153

panded in plane waves generated within a cutoff of 400 eV.We 154

use a dense gamma-centered k grid with a 0.24-Å–1 spacing 155

between k points, equivalent to 8 × 8 × 8 mesh for bulk Al 156

with a conventional four-atom face-centered cubic (fcc) unit 157

cell. To aid in the k-grid convergence, we use Methfessel- 158

Paxton [50] of order 1 with a 0.15-eV smearing width. We 159

terminate the electronic self-consistent loop using a 10–8-eV 160

energy-change tolerance to ensure good convergence of ener- 161

gies and forces. 162

B. DNP training database 163

We aim to build a DNP that can equally describe the 164

crystalline and amorphous phases of Al-Mg alloys, we con- 165

structed a training database that includes bulk, surfaces, and 166

amorphous phases. The total number of configurations in the 167

database amounts to ∼250 k configurations. Most configura- 168

tions (∼100 k) were obtained for the small Al-Mg ordered 169

compounds with less than 10 atoms per unit cell after applying 170

different distortions to the system. The total number of Al-Mg 171

slab models was ∼30 k, primarily using (100), (111), and 172

(110) orientations employing supercells with 20–80 atoms. 173

The alloys’ surface configurations are obtained using fcc lat- 174

tice with an Al/Mg random occupancy. The database was 175

mainly populated from ab initiomolecular-dynamics (AIMD) 176

trajectories within an NVT ensemble (fixed number of atoms, 177

volume, and temperature) at a temperature that ranges be- 178

tween 100 and 1000 K. We employed a relatively large 179

2–4-femtosecond time step in the AIMD simulations to de- 180

crease the correlations in the configurations along the AIMD 181

trajectory. Using the DFT database, the training dataset com- 182

prises all energies and atomic forces. 183

C. Al-Mg DNP model and fitting 184

The DNP was developed with the DeepPot-SE approach 185

[35] using DEEPMD-KIT [36,37], as described in detail else- 186

where [38,39]. We used a cutoff radius of 6.0 Å for neighbor 187

searching with 2.0 Å as the smooth cutoff. The maximum 188

number of neighbors within the cutoff radius was set at 180 189

though a smaller value of ∼120 yielded similar accuracy po- 190

tentials. The dimensions of the embedding and fitting nets are 191

set at 25 × 50 × 100 and 120 × 120 × 120, respectively. The 192

neural net is trained using Adam stochastic gradient descent 193

method with a learning rate that decreases exponentially from 194
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the starting value of 0.00; see Supplemental Material (SM)195

for further detail [51]. The input data are split into train-196

ing and testing sets where the testing data are not used for197

optimizing the weights of the network but rather employed as198

an independent test for cross validation.199

D. Validation of Al-Mg DNP200

The validation of the Al-Mg DNP potential is described201

below for selected figures of merit and, in greater detail, in202

the SM with comparisons to literature [21–23,27,52–65] val-203

ues. We utilized the Large-scale Atomic/Molecular Massively204

Parallel Simulator (LAMMPS, 16 Mar 2018 version) [66] for205

all of our atomic calculations with the DNP and initial struc-206

tures were created with ATOMSK [67] unless otherwise noted.207

Vacancy mobility energy barriers were determined using the208

nudged elastic band method [68].209

E. Bulk crystal lattice constant and atomic energy210

Before investigating defects, optimized lattice constants211

and cohesive energy (Ecoh) are determined for the bulk crystal212

models. For elemental Al and Mg systems, we computed the213

cohesive energy per atom using Ecoh = EB − Eatom, where214

EB is the bulk energy per atom and Eatom is the energy of215

the corresponding isolated atom. Thus, with this definition, a216

negative Ecoh indicates that the system is thermodynamically217

stable.218

F. Elastic constants219

In the DFT and the atomistic calculations, the elastic con-220

stants are calculated by performing 12 distortions of the lattice221

and then fully relaxing the system’s atomic coordinates. The222

elastic constants are then computed using strain-stress rela-223

tionships. The bulk moduli (e.g., bulk, shear, Young’s moduli,224

and Poisson’s ratios) are computed using the crystal lattice225

specific equations detailed in the SM [51].226

G. Surface energies and planar defects227

The free-surface formation energy, γ s, is computed using228

γ s = (E − NEB)/(2A), where E is the energy of the slab229

model, and A is the surface area perpendicular to the slab230

direction. The factor of 2 is included to account for the two231

different surfaces in the slab models. We calculated Al surface232

energy for all terminated surfaces with Miller indices less than233

4. The same approach was used for the planar defects; how-234

ever, we used the DFT optimized structures from the material235

project database (MPDB), and compared them to the surface236

energies listed for these calculations.237

H. Molecular-dynamics simulations238

The molecular-dynamics simulations are carried out using239

LAMMPS [66]. First, models starting from initial ideal fcc240

structures are equilibrated in the NPT ensemble (fixed number241

of atoms, pressure, and temperature) to allow the volume242

to change to minimize the pressure at a given temperature.243

After this equilibration, the lattice and lattice constants are244

fixed, and we carried simulations in the NVT ensemble for245

data collection (100 ps). We employed a 1-fs time step in all246

TABLE I. Comparison of general bulk properties of Al.

Property Experiment DNP DFT

fcc a 4.05 [53] 4.04 4.04
fcc Ecoh −3.49 [54] −3.75 −3.655 [27]
V0 16.5 [55] 16.51 16.47
C11 114.3 [60] 118 104
C12 61.9 [60] 65 73
C44 31.6 [60] 38 32
Bulk modulus (KH ) 79.4 [60] 82 83
Shear modulus (GH ) 29.4 [60] 33 24
Young’s modulus (EH ) 78.51 [60] 88 68a

Poisson’s ratio (v) 0.33 [61] 0.32 0.37

All DFT values are from MPDB [52], mp-131 unless otherwise
noted. Lattice parameters are in Å, V0 in Å3/atom, Cxx and elastic
moduli in GPa.
aCalculated from literature reference values.

simulations. For the alloys, we attempted a Monte Carlo (MC) 247

swap between Al and Mg at random sites every 20 MD steps, 248

after which the swap is accepted with a Metropolis probabil- 249

ity. In total 400 k MD steps were run. The bulk systems are 250

represented using an 8 × 8 × 8 supercell of the conventional 251

unit cell corresponding to 2048 atoms with periodic boundary 252

conditions. The surface models are constructed using a 6 × 6 253

surface supercell for the (100) and (110) surfaces and a 6 × 254

5 supercell for the (111) terminations. The number of layers 255

in the slab models is 80, 64, and 96 for the (100), (110), and 256

(111) slabs, resulting in 2880 atoms for (100) and (111) slabs 257

and 2304 for the (110) slab. 258

III. RESULTS AND DISCUSSION 259

We report the results of iteratively training Al-Mg DNP 260

model, the DNP accuracy reproducing bulk Al and Mg figures 261

of merit relative to DFT and description/comparison of Al- 262

Mg surface segregation dynamics with DFT and experimental 263

reference values. The description and quantified accuracy of 264

the DNP predictions, with reference DFT values, establish the 265

general utility, flexibility and versatility of this DNP for use in 266

modeling Al-Mg, Al or Mg materials in future works. 267

A. Force-field validation 268

The Al-Mg DNPwas validated by comparing to commonly 269

known physical properties based on our calculations using 270

DFT or obtained from the literature. For each metal, we com- 271

pared our DNP calculated values for lattice parameter and 272

cohesive energy (face-centered cubic, body-center cubic, sim- 273

ple cubic, diamond, hexagonal close-packed), point defects 274

(vacancies and interstitial atoms), elastic constants (bulk mod- 275

ulus, Young’s modulus, shear modulus, and Poisson’s ratio), 276

surface energy, to list a few in Tables I and II (see Tables SI 277

and SII for entire list [51]). The DFT calculations are carried 278

out using an equivalent computational setup as employed to 279

generate the training dataset. 280

The general bulk properties of Al and Mg agree well with 281

the values found in MPDB [52] in addition to the elastic con- 282

stants (see SM [51] for more details). We also observe good 283
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TABLE II. Comparison of general bulk properties of Mg.

Properties Experiment DNP DFT

ahcp 3.209 [69] 3.18 3.203
chcp 5.211 [69] 5.25 5.127
hcp Ecoh −1.51 [62] −1.50 −1.49 [27]
V0 23.24 [63] 23.05 23.04
C11 63.5 [65] 78 58
C12 25.9 [65] 28 30
C13 21.7 [65] 20 22
C33 66.5 [65] 74 66
C44 18.4 [65] 15 20
C66 18.8 [65] 22 14
Kv 36.9 [65] 41 37
KR 36 37
Bulk modulus (KH ) 38 37
Young’s modulus (EH ) 45 [65] 51 46a

GV 19.4 [65] 21 18
GR 19 17
Shear modulus (GH ) 20 18
Poisson’s ratio (v) 0.295 [61] 0.28 0.29

All DFT values are from the MPDB [52], mp-153 unless otherwise
noted. Lattice parameters are in Å, E0 in eV, V0 in Å3/atom, Cxx and
elastic moduli in GPa.
aCalculated from literature reference values.

agreement with experimentally measured values in Tables I284

and II for Al and Mg with the DNP and literature DFT values.285

Further, the high-fidelity reproduction of the elastic constants286

and associated moduli is a good indication of a potential’s287

accuracy [70]. We note that some of the DNP mechanical288

properties are over- or underestimations of the DFT literature289

values. These differences between the DNP and DFT results290

are likely due to differences in the computational setup em-291

ployed by MPDB and in generating DNP training set (e.g.,292

energy cutoff energies 520 and 400 eV, respectively). In ad-293

dition, these differences could be in part due to inaccuracies294

of the DNP. Similar over and underestimations in these values295

are noted when comparing the EAM and MEAM potentials296

(see Tables SI and SII [51]).297

B. Surface energies and planar defects298

We used optimized DFT structures from the MPDB and299

their reported surface energies for comparison with DNP,300

EAM1 [23], EAM2 [21], EAM3 [22], and literature values301

[27] from a MEAM [71] potential. The calculated EAM2 and302

EAM3 surface energies are reported in Table S1 but were303

excluded from Fig. 1 due to their poor accuracy compared304

to DFT reference values. Comparison of the surface energies305

for terminated Al surfaces with Miller indices less than 4 are306

in excellent agreement [<6% energy difference, using Eqs.307

(S1) and (S2) with DFT values [51]] (Fig. 1 and Table SI). In308

addition to the idealized surfaces listed in Fig. 1 and Table SI,309

we also investigated a small set of grain boundaries defects310

that are commonly found in real-world materials.311

Although we did not explicitly include these planar de-312

fect structures in the training dataset, the DNP predicts the313

expected DFT energies of these defects relatively well (Ta-314

ble III). We observe satisfactory agreement of the DNP with315

FIG. 1. Al surface energies (eV/nm2) for terminations with
Miller indices <4 computed using optimized DFT structures
(MPDB, mp-131) with DNP, EAM1, and MEAM literature values
[27].

our DFT calculations for Al planar defects structures and 316

the surfaces (Fig. 1 and Table III). We note that this current 317

version of the DNP fails to accurately describe the �7(111) 318

planar defect energy (∼75.4% difference) compared to DFT 319

values. Nevertheless, the DNP’s accuracy is remarkable at 320

reproducing DFT values not included in the training set. 321

C. Al-Mg DNP validation summary 322

Detailed descriptions of these bulk property calculations 323

and corresponding DFT values can be found in the SM [51], 324

a total of 46 properties for Al and Mg, respectively (Tables 325

SI and SII, and Fig. S1). In general, our DNP agrees well 326

with DFT values (%EDIFF) by 8.12, 14.8, and 11.2% for all 327

Al, all Mg, and all Al and Mg, respectively (see SM [51] for 328

details). We compared these benchmark properties to values 329

calculated using three well-described Al-Mg EAMs [21–23] 330

and literature values calculated with MEAM style [27] poten- 331

TABLE III. Comparison of DNP bulk Al planar defects surfaces
energies (eV/nm2) with DFT. N.B., this class of structures were not
included in DNP training.

Defect Rotation γs Al

Sigma plane plane Rotation DNP DFT [52] %EDiff

3 (11̄1̄) (110) 180.0 206 193 6.45
5 (01̄3̄) (100) 53.13 310 300 3.33
5 (02̄1̄) (100) 36.87 345 331 4.34
5 (100) (100) 36.87 213 237 10.3
7 (111) (111) 36.87 142 811 75.4
7 (32̄1̄) (111) 38.21 322 312 3.20
9 (110) (110) 38.94 427 443 3.66
9 (22̄1̄) (110) 38.94 285 268 6.05

All DFT values are taken from the MPDB mp-131 dataset.
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FIG. 2. Bulk properties of the Al-Mg (Mg = 0, 4, 12, and 20%) alloy from DNP: (a) formation energy as a function of temperature;
(b) density as a function of temperature (200 to 800 K); (c) density as a function of Mg concentration. Error bars indicate twice the standard
deviation (2σ ).

tials. Overall of the examined properties, our DNP potential332

is more accurate than the EAM/MEAMs at reproducing the333

literature DFT results. This observation is not surprising as334

the EAM/MEAM potentials generally are optimized using335

both DFT structures and experimentally determined figures336

of merit, which results in a deviation from DFT-only cal-337

culations. Additionally, EAMs generally do not have good338

accuracy outside of their training sets [72].339

D. Bulk properties of Al-Mg alloy system340

Before investigating Mg surface segregation, we calculated341

the formation energy of the Al-Mg alloy (Mg = 0, 4, 12, and342

20% atomic ratio) and its density as a function of temperature343

(K) using a hybrid Monte Carlo/molecular dynamics scheme344

via LAMMPS software package (Fig. 2). Mg’s cohesive energy345

is smaller than Al (see Tables I and II), which explains346

the decrease in the formation of the energy of Al-Mg with347

increasing Mg concentration. The slope of the fitted lines348

increases nonlinearly for 0, 4, 12, and 20% Mg at 0.33 ± 0.2,349

0.33 ± 0.2, 0.35 ± 0.2, and 0.36 ± 0.2 eV/K, respectively.350

This observation could be related to physical phenomena such351

as reducing the alloy melting point [73]. Additionally, we352

observe a linear trend [Fig. 2(b), adjusted R2 > 0.991] [74] in353

the Al-Mg density as a function of temperature [Fig. 2(b)] and354

also atomic Mg% [Fig. 2(c)], both observations have negative355

slopes, a trend which is consistent with the experimental356

literature [74,75]. The alloy’s density and its formation357

energy are also observed to decrease linearly (adjusted 358

R2 > 0.998) as a function of %Mg for all the temperatures 359

simulated [Figs. 2(b) and 2(c)], which are also consistent with 360

experimental observations in the literature [74,76]. 361

E. Surface segregation 362

The heat of segregation at T = 0K for Mg impurities in 363

Al slabs is shown in Fig. 3. The segregation energy is defined 364

as the energy difference between placing an impurity atom in 365

the bulklike layers away from the surface versus top surface 366

layers. Here the lattice is fixed as in the bulk configuration. We 367

have investigated surface segregation for all distinct surfaces 368

with a Miller index no larger than 3. Solute substitution at 369

the top layer is the most favorable for all surfaces, indicating 370

Mg’s tendency to segregate to the top layers. For example, 371

Mg is favorable to substitute Al on the top layer by ∼0.4 eV 372

compared to that in a “bulklike” environment away from the 373

surface. Among the low-index flat surfaces, (111) surface has 374

the weakest segregation tendency though the energy differ- 375

ence is not significant. We find that Mg segregation prefers 376

step edge for stepped surfaces while the terrace sites also 377

show segregation tendency. However, regardless of the surface 378

termination, the DFT results suggest that Mg segregates to the 379

surface. The surface segregation tendency depends on several 380

factors, including atomic size, cohesive energy, and surface 381

energy [77]. Mg atomic size is ∼12% larger than that of Al 382

atom, and its cohesive energy is 60% smaller than that of Al. 383
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FIG. 3. Mg heat of segregation at 0 K (eV/atom) for Al surfaces with Miller indices no larger than 3. The solute’s energies are shown to
occupy layers of increasing depth from the surface from left to right for each surface. (a) Comparison between DFT filled circles/solid line and
DNP open circles/dashed line using 2 × 2 surface supercells. (b) Comparison between DNP with 2 × 2 (open) circles, dashed/line and 8 × 8
(open) squares, dashed line, surface supercells. Lines are added to guide the eye.

As a result, Mg prefers to segregate to the top surface layers.384

From geometrical inspection of the optimized structures, the385

larger Mg atoms are accommodated on the top surface layers386

by moving ∼0.3 Å along the z axis, while Mg atom from the387

subsurface or subsubsurface layers shows a smaller ∼0.1-Å388

outward movement.389

Figure 3(a) compares the DFT segregation energies with390

the DNP results on the same surface models. As seen from391

the figure, we have an excellent agreement between DFT392

and DNP results. Because of the high computational cost of393

DFT simulations for large systems, all surface calculations394

in Fig. 3(a) are done using a relatively small 2 × 2 surface395

supercell (see Table SIII [51]). We carried out additional cal-396

culations using an 8× 8 surface supercell utilizing our DNP to397

investigate the impact of finite-size effects. Figure 3(b) shows398

an excellent agreement between the small and larger super-399

cells suggesting relatively small finite-size effects. Our results400

compare well previous results by Liu et al., who reported401

energies of the Mg heat of segregation [21]. While Deng et al.402

modified analytic EAM (MAEAM) potential [78] observes a403

similar trend in heats of Mg segregation energies, the reported404

values are significantly different for all terminations. Both Liu405

et al. and our DNP are similar to the experimentally calculated406

value of −0.21 eV for the (111) plane [79]. The values are407

distinct for predictions of Mg heat of segregation energy for408

(100) and (110) terminations due to these potentials’ assump-409

tions and training parameters. Our DNP and DFT Mg surface410

segregation enthalpy results are consistent with each other and411

distinct from these EAM potentials.412

We have carried out hybrid MC/MD simulations based413

on energies and forces computed using the DNP to inves-414

tigate the segregation at finite temperature and higher Mg415

substitutions. This scheme involves short molecular-dynamics416

runs and random exchange between atoms at different loca-417

tions, in which the last configuration is accepted or rejected418

using a standard Metropolis algorithm. MC/MD is advanta-419

geous as it automatically accounts for impurity-impurity or420

impurity-host interactions, temperature, configurational en-421

tropy, and atomic vibrations. Using the optimized lattice422

constants determined before, from the NPT simulations, we423

constructed slab models for the (100), (110), and (111)424

surfaces with thicknesses of 80, 64, and 96 layers, re-425

spectively. Following MC/MD simulations, we obtained the426

slabs’ equilibrium structures at various temperatures and Mg 427

compositions. 428

As the simulation temperature is increased from 200 to 429

800 K, we observe decreased Mg concentrations at the top 430

layers, as seen in Fig. 4 and Fig. 5. Mg surface segregation 431

is observed to be the largest for (110) surfaces, for all tem- 432

peratures and Mg compositions, and at temperatures below 433

800 K [Figs. 4(a), 4(b), and 4(c)]. Comparatively, surface 434

segregation tendency is weakest for the (111) termination 435

across all temperatures and Mg compositions [Fig. 4(c)]. In 436

good agreement with literature reports obtained using EAM2 437

[21], the termination-dependent segregation tendency follows 438

the ordering: (111)<(100)<(110) [Figs. 4(a) and 4(b)]. We 439

also observe expected decreases in Mg surface enrichment 440

as the temperature increases from 200 to 800 K for all sur- 441

faces [Fig. 4(d)], with (111) and (100) showing the lowest 442

and highest Mg enrichment, respectively. Lastly, the surface 443

enrichment results show that a significant proportion of solute 444

atoms are in the surface layer at low total Mg compositions 445

and low temperatures. 446

As expected, we observe a more significant mixing of Al 447

and Mg in the slab’s interior as temperature increases, and 448

an increase in the interior Mg concentration occurs (Fig. S2 449

[51]). We also observe that Mg segregation is restricted to 450

the 4–5 topmost layers. Mg concentration in these subsurface 451

layers increases linearly with increasing temperature relative 452

to the interior, as is observed in the surface layers at each 453

composition 4, 12, and 20% of all terminations (Fig. S3 [51]). 454

Analysis of the slopes of these fitted lines from Fig. S3 dis- 455

plays the overall changes in the interior Mg concentration 456

of the Al-Mg slabs (Mg = 4, 12, 20%) surface termination 457

dependent with the largest change observed in the order of 458

(100)>(110)>(111) (Fig. S4 [51]). These observations, of the 459

interior Mg concentration, further support that there is less of 460

a driving force for Mg segregation in the (111) terminated slab 461

as temperature and Mg concentration change, e.g., internal 462

Mg concentrations remain relatively high compared to (100) 463

and (110) slabs. Interestingly, regardless of the Al-Mg slab 464

% Mg concentration, the concentrations of the Mg surface 465

(and subsurface) remain relatively consistent for each temper- 466

ature for a given termination (Fig. 5 and Fig. S3). To directly 467

compare with Liu et al. (4% composition) results, we looked 468

at the ratio of surface % Mg to the interior [Fig. 4(d)]. We 469
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FIG. 4. Mg concentration in the surface layer computed usingMC/MD simulations with the DNP at T = 200, 400, 600, 800 K for (a) (100),
(b) (110), and (c) (111) surfaces, and (d) Mg surface enrichment relative to the bulk (black/dots = (100), red/dashed (110), and cyan/dots =
(111)). Error bars indicate the standard deviation (σ ).

observe good agreement with Liu et al. for the (100) termi-470

nation, but weaker agreement in the ratio is observed for the471

(111) termination. We also note that for the (110) termination,472

the subsurface (second layer) Mg concentration approaches473

surface concentration at 800 K for all Al-Mg slabs examined.474

Ideally, a further quantitative comparison to experimental475

results would support our computational models; however,476

this comparison is difficult because of experimental parame-477

ters that inhibit comparison at elevated temperatures. Auger478

FIG. 5. Geometrical structures of Al-Mg alloy (111) surface with
different Mg ratios (Mg = 4, 12, and 20%) at 200, 400, 600, and
800 K using MC/MD and the DNP. The blue circles are Mg, and the
red circles are Al.

electron spectroscopy (AES) investigations provide an ex- 479

cellent method for Mg surface segregations examination as 480

the Auger electrons have lower penetration depth in a mate- 481

rial compared to x-ray photoelectron spectroscopy. An AES 482

study of Al-0.88at%Mg alloy found a surface enrichment 483

of Mg about 10.5 at. % at 473 K [80]. Bloch et al. also 484

found Mg’s surface segregation for Al-1.45 at. %Mg alloys 485

using optical second-harmonic generation, and Mg was ob- 486

served to decrease beyond 510 K due to evaporation [81]. 487

TheMg’s evaporation is favorable under the ultrahigh-vacuum 488

(<1 × 10–9 Torr) conditions required for AES; however, Mg 489

evaporation is not included in our MC/MDmodels. Therefore, 490

we do not expect to see consistent agreement between these 491

types of high-temperature experimental data for Mg surface 492

concentration. 493

Nevertheless, these experimental challenges at elevated 494

temperatures highlight the importance of theoretical models 495

that can elucidate the temperature-dependent dynamics of Al- 496

Mg alloys (and other materials); see Fig. 4. The fraction of 497

Mg (Fig. S2) suggests that Al-Mg alloys with (111) exposed 498

surfaces (visualized in Fig. 4) are ideal for corrosion resis- 499

tance as these have the weakest tendency to segregate Mg to 500

the surface and lower potential of Mg loss via oxidation to 501

MgO [23]. A similar observation of the (111) Al-Mg surface 502

using a MAEAM potential was reported by Deng et al. [78]. 503

Therefore, we suggest that our hybrid MC/MD approach is 504

qualitatively consistent with the experimental results. 505

Figure 6 shows the pair distribution function (PDF) for 506

the three alloy surfaces with 4% Mg doping concentration 507

at three different temperatures (T = 400, 600, and 800 K). 508

The PDF g(r) = 〈∑i

∑
j �=i δ(r − ri j )〉MC/MD is obtained from 509

the ensemble average of the configurations generated using 510

the MC/MD approach. As seen from the figure, the Al-Al, 511

003800-7



ANDOLINA, WRIGHT, DAS, AND SAIDI PHYSICAL REVIEW MATERIALS 00, 003800 (2021)

FIG. 6. The ensemble-averaged radial distribution function for
(a) Al-Al, (b) Mg-Mg, and (c) Al-Mg for the Al-4%Mg alloy surfaces
at three different temperatures and the three different surfaces using
MC/MD and the DNP.

Mg-Mg, and Al-Mg PDFs show a dominant first peak at r ∼512

2.85, 3.1, and 2.9 Å, respectively, which is consistent with the513

nearest-neighbor distance in the fcc lattice. The larger values514

for Mg-Mg and Al-Mg are consistent with Mg’s larger ionic515

size compared to Al. As shown in Fig. 4, at low temperatures,516

Mg atoms mostly occupy the top surface layer. The Al-Mg517

increased intensity compared to Mg-Mg indicates that Mg is518

likely coordinated with Al (not Mg). Indeed, we have verified519

based on DFT calculations that two Mg atoms do not prefer520

to be nearest neighbors, likely because of the increase in the521

misfit strain. Expectantly, the temperature has a smoothening522

effect on the peaks that are most noted for the open (110)523

surface for Mg-Mg. The reduction of the peak intensities and524

boarding concerning temperature indicates a transition from525

the crystalline fcc state to a more disordered and likely a liquid526

state [82]. Of all Al-Mg interactions, the (100) surface is the527

least impacted by temperature, presumably because most Mg528

has migrated to the surface, segregated, and the phase change529

is small.530

The MC/MD surface segregation results are also valuable531

in developing a new thermodynamic model, which may pro-532

vide superior predictions of the surface solute concentration533

over the standard literature methods. The traditional isotherm534

used to describe solute segregation, developed by McLean,535

utilizes statistical mechanics to relate the atomic fraction of536

solutes in a system’s bulk and interface regions [40]. This537

method for obtaining solute concentrations postrelaxation is538

applicable to surface interfaces, as presented in Eq. (1):539

Xsurf

1 − Xsurf
= Xbulk

1 − Xbulk
exp

(
−�Ēseg

kT

)
. (1)

The surface segregation concentration, Xsurf , is described as540

a function of the bulk solute concentration, Xbulk, Boltzmann’s541

constant, k, and temperature, T. The isotherm incorporates an542

average segregation energy term, �Ēseg, which is the energy543

difference between a single solute atom in the surface layer544

and a bulk layered solute atom. The segregation energy is545

highly dependent on the configurational energy and elastic546

strain energy changes during atom exchange [83]. A funda- 547

mental assumption made by McLean is that the total solute 548

concentration of the system, Xtot, is equal to Xbulk, allowing 549

one to produce Xsurf from Xtot. 550

Fowler and Guggenheim [41] later adapted the McLean 551

isotherm to account for the interaction between segregating 552

solutes by adding a solute-solute interaction term ω. As so- 553

lutes continue to segregate to the surface layers of a system, 554

the energetic attraction or repulsion between them increases. 555

In Al-Mg alloy, we verified that the segregation tendency 556

declines in the case of a repulsive solute interaction. Adding 557

the solute interaction term to the McLean isotherm, we arrive 558

at Eq. (2): 559

Xsurf

1 − Xsurf
= Xbulk

1 − Xbulk
exp

(
−�Ēseg + ω · Xsurf

kT

)
. (2)

Most recently, novel additions to the McLean-Fowler- 560

Guggenheim model were proposed by Wagih and Schuh [42] 561

for grain boundary segregation. In this model, the improve- 562

ments to the Fowler-Guggenheim isotherm are seen in its 563

superior ability to extend a single set of fitted parameters 564

to a wide temperature and composition space. Although the 565

Wagih-Schuh study is focused at decoupling the effects of 566

grain boundary site spectrality from the model, their other 567

innovations can be applied to surface solute segregation as 568

well. Namely, relevant to our study are their suggestions to 569

cast the Fowler-Guggenheim isotherm with a mixture rule and 570

represent the solute interaction as a piecewise energy term, 571

�Eω, dependent on the dilute limit of the system. 572

The mixture rule consideration is needed as a system with 573

a low total solute concentration contains a significantly large 574

proportion of solutes located within its surface layers after 575

segregation. As a result, the earlier models’ approximation, 576

Xtot = Xbulk, is incorrect, and a substitution of the Xsurf , utiliz- 577

ing the surface site fraction, f , or ratio surface lattice positions 578

to total lattice positions, should be applied. Our experimental 579

results presented in Fig. 4(d) show that the low-temperature, 580

4% total Mg systems, contain significantly higher proportions 581

of solutes in the surface layers than in the bulk, confirming 582

this step’s physical necessity. Poor predictions in the low 583

total solute concentration region arise in the absence of this 584

correction. Thus, we substitute out Xsurf in Eq. (2) using the 585

mixture rule, Eq. (3), and rewrite, resulting in Eq. (4). 586

Xtot = (1 − fsurf )Xbulk + fsurfXsurf , (3)

Xtot = (1 − fsurf )Xbulk

+ fsurf

[
1 + 1 − Xbulk

Xbulk
exp

(
�Ēseg + �Eω

kT

)]−1

. (4)

Equation (4) is solved self-consistently to determine Xbulk 587

from Xtot , which simultaneously solves Xsurf via Eq. (3). 588

The segregation energy, �Ēseg, and solute interaction energy, 589

�Eω, are determined by fitting the equations to experimental 590

results. 591

Further, adopting the Wagih-Schuh approach for surfaces 592

is accomplished by evaluating the solute interaction energy 593

as a piecewise function. As presented in Eq. (5), the interac- 594

tion energy is 0 below the dilute limit, and a linear function 595

above it, which is necessary as the solute interaction energy 596
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FIG. 7. MC/MD simulation data and fitted predictions of the
McLean [Eq. (1)] [40], Fowler-Guggenheim [Eq. (2)] [41], and
Wagih-Schuh [Eqs. (3), (4), and (5)] [42] models for the (100)
surface at 200 K. Error bars indicate the standard deviation (σ ).

is negligible at low total concentrations (<10%Xsurf ) due to597

neighboring solute atoms being too distant to interact given598

the interatomic potential [42]599

�Eω(Xsurf ) =
{
0 Xsurf � X0

ω(Xsurf − X0) Xsurf > X0
. (5)

The surface-adapted Wagih-Schuh model shows a sig-600

nificant improvement in its predictive capabilities over the601

Fowler-Guggenheim and McLean models. Average predic-602

tion errors, or the mean of differences between MC/MD data603

points and fitted isotherm predictions, are reduced, especially604

around the low total solute concentration region (�2% Mg).605

Figure 7 displays one such fitting of each isotherm for the606

(100) surface at 200 K, in which the Wagih-Schuh model’s607

prediction error is 50% that of the Fowler-Guggenheim model608

and 33.3% of the McLean model, Fig. 8.609

The average prediction errors for the entire temperature610

and surface termination space are presented in Fig. 8. Over-611

all, the Wagih-Schuh model displays the lowest errors, with612

the most noticeable differences in the (100) surface termina-613

FIG. 8. Average prediction errors of each model with simulation
results. The difference between each model’s fitted curves and ac-
tual simulation points is averaged along with the entire composition
range. The errors for each temperature and surface termination com-
bination are labeled according to the colormap bar on the right.

tion. The improved predictive capabilities are attributed to the 614

piecewise function accounting for the low concentration re- 615

gion where solutes do not interact, as instead, solutes separate 616

beyond their interaction distance. The mixture rule casting of 617

the Fowler-Guggenheim model also enables a better repre- 618

sentation of the low surface concentration region since most 619

solute atoms are in the surface layer. Full parameter fitting 620

results from each isotherm are found in Table SIV [51]. 621

Consistent with our simulation results, the isotherm predic- 622

tions of the (111) surface show the lowest concentrations and 623

segregation energies. A possible explanation is that the higher 624

packing density of (111) improves the likelihood that neigh- 625

boring solute atoms fall within the interatomic potential’s 626

interaction distance. A shorter average separation between so- 627

lutes increases the likelihood that each solute atom will inter- 628

act with more than one neighboring solute [42]. Given that the 629

interaction’s nature is repulsive, this limits solute migration 630

to the highly concentrated surface. The radial distributions 631

shown in Fig. 6 support this correlation; the (111) surface con- 632

tains the largest variance of solute pair radii and the largest so- 633

lute separation. Additionally, the close packing of (111) may 634

enhance the misfit strain between paired solutes, spreading en- 635

ergetically favorable surface positions. It remains unclear the 636

relation between the dilute limit of the system and the surface 637

termination. A variable dilute limit would affect the piecewise 638

solute interaction energy term in determining which concen- 639

tration solute interactions begin. Further testing of the ther- 640

modynamic model is needed to determine the dilute limit’s 641

physical nature, enabling more efficient parameter fitting. 642

IV. CONCLUSIONS 643

We have developed a robust atomistic potential based on 644

machine learning principles using the DeepPot-SE approach. 645

Our DNP was validated against DFT values in the literature 646

or calculated by us, confirming that that the developed Al-Mg 647

DNP has high fidelity for calculating Al and Mg’s general 648

bulk properties. Furthermore, our DNP can reproduce DFT 649

benchmarks for volume, density, and Al-Mg alloy systems’ 650

formation energy using a MC/MD approach. Additionally, 651

we can accurately model Mg surface segregation behavior 652

in larger simulation cells (8 × 8 × 8) while maintaining 653

DFT accuracy. Our results suggest that the (111) surface is 654

ideal for optimal corrosion resistance as Mg segregation is the 655

lowest compared to the (100) and (110) surfaces. Surprisingly, 656

careful selection of the Al-Mg alloy’s Mg composition also 657

impacts the surface segregation where 12–20% total Mg con- 658

centration shows the weakest segregation at the surface and a 659

more uniform Mg distribution throughout. A thermodynamic 660

model of Mg surface segregation in Al-Mg systems was devel- 661

oped, by adapting the isotherm by Wagih-Schuh to accurately 662

predict surface solute concentrations in coordination with 663

these results, which was achieved by eliminating the bulk so- 664

lute approximation made in earlier models and incorporating a 665

piecewise solute interaction energy term. The thermodynamic 666

model’s predictions also support the (111) surface having 667

the lowest surface segregation energy of all studied termina- 668

tions, which is explained by the higher packing density of 669

(111), causing a smaller average separation between solute 670

atoms and thus an increased misfit strain which spreads apart 671
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energetically favorable surface positions. Future work is672

needed to mathematically describe the termination depen-673

dency of the dilute limit to enable faster parameter fitting of674

the isotherm. This work will help accelerate the selection and675

real-world testing of Al-Mg alloys that are more resistant to676

corrosion by serving as the basis for developing of DNP to677

evaluate the addition of dopants, such as beryllium [84].678

The training database and the potential are freely available679

[85].680
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