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Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential
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Various industrial/commercial applications use Al-Mg alloys, yet the Mg added to Al materials, to improve
strength, is susceptible to surface segregation and oxidation, leaving behind a softer and Al-enriched bulk
alloy. To better understand this process and provide a systematic methodology for investigating dopants that
can mitigate corrosion, we have developed a robust atomistic deep neural net potential (DNP) using a dataset
generated with first-principles density-functional theory (DFT). The potential, validated systematically against
DFT values, has been shown to have a high fidelity in calculating different elemental and intermetallic Al-Mg
systems’ properties. Our calculations predict a linear trend in the formation energy of the Al-Mg alloy and its
density as a function of temperature, consistent with experimental literature. Employing the DNP within a hybrid
Monte Carlo and molecular dynamics (MC/MD) approach, we predict anisotropic surface segregation for Al-Mg
alloys such that (111)<(100)<(110), with (111) surfaces displaying the lowest segregation enthalpies and Mg
enrichment. Furthermore, we model the segregation tendencies by adapting a recently introduced isotherm model
for grain boundary segregation. Our results show that this model describes the MC/MD segregation profiles with

higher fidelity than the McLean and Fowler-Guggenheim isotherm models.

DOI: 10.1103/PhysRevMaterials.00.003800

I. INTRODUCTION

Aluminum is the most abundant metal in the Earth’s crust
at ~8.3% by weight [1,2]. Homogeneous Al materials are
relatively soft, limiting their use in most engineering applica-
tions where high-strength mechanical properties are required.
Doping with Mg can strengthen Al-based alloys for light-mass
applications [3]. Commercial and industrial applications, such
as the automotive and aerospace industries [4—8], use these
strain-hardened Al-Mg alloys with a high strength-to-weight
ratio as materials in vehicles.

As is true in many metal materials, corrosion mitigation is
an issue of great importance; the U.S. spends a few percent of
its gross national product per year to address corrosion issues
[9,10]. Pure Al materials are resistive to corrosion due to the
spontaneous formation of a slowly growing, thermodynami-
cally stable Al O3 scale that acts as a surface diffusion barrier
to prevent further oxidation [11]. However, this is not the case
for the Al-Mg alloy as Mg segregates to the material’s surface.
When this alloy is heated or exposed to the atmosphere, Mg
preferentially oxidizes to MgO, which forms a poor barrier to
further oxidation. MgO can readily be mechanically removed
from the Al-Mg alloy’s surface, leaving behind an enriched
softer Al material [12,13]. Thus, it is crucial to understand
Mg’s segregation behavior in Al-Mg alloyed surfaces and
whether segregation tendency varies with temperature, Mg
concentration, and surface termination [14,15].

To date, the design of oxidation-resistant alloys and coat-
ings has been a highly empirical process, where the chosen

“alsaidi @pitt.edu

2475-9953/2021/00(0)/003800(11)

003800-1

solution is often arrived at by a basic trial-and-error approach
that is not optimum (e.g., the performance of commercial
alloys can vary dramatically within a specification range).
First-principles density-functional theory (DFT) calculations
are an attractive alternative and have the potential of provid-
ing a robust and rigorous approach for accurately predicting
protective oxidation. These DFT approaches’ success has
enormous technical impacts on the design, tuning, and op-
timization of Al-Mg for various applications [6-8,16,17].
However, the computational cost of standard DFT methods
has limited the investigations of alloys to simplistic mod-
els that often differ from experiments, as environmentally
specific parameters, which are often excluded from these cal-
culations [18,19]. Previous studies have relied on classical
atomistic potentials that can be applied to materials under var-
ious environmental conditions to model real-world behavior
[20]. The embedded-atom method (EAM) or modified EAM
(MEAM) potentials are generally used to study the dynamics
of Al-Mg binary systems [21-23]. These potentials are fitted
to experimental data and a quantum-mechanical database of
atomic forces and energies at finite temperatures. While these
classical potentials have been successful for studying simple
elemental systems, the design of these potentials for alloys
and complex interactions is nontrivial and relies on a laborious
and user-intensive process.

This work utilizes a machine learning (ML) based on deep
neural networks to approach DFT accuracy but at a fraction
of its computational cost, thus accelerating time to obtain
tangible results [2,24-27]. The developed ML force field’s
success shows that these methods have the flexibility and
nonlinearity necessary to describe complex potential energy
surfaces [28-34]. ML potentials suffer from transferabil-
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ity errors associated with atomic environments not included
in the training, similar to traditional classical force-fields.
However, in contrast to most classical potentials, ML po-
tentials can systematically learn and improve the potential
for different properties and regions of the material’s phase
space. In the present study, we develop a deep neural net
potential (DNP) for the Al-Mg binary alloy system via the
DeepPot-SE approach [35] as implemented in DEEPMD-KIT
[36,37], and DEEPPOT to systematically analyze its fidelity
describing a wide range of properties. We follow an adaptive
iterative-learning approach to augment the training dataset to
circumvent data extrapolation in regions of the phase space
that are of interest and are not adequately sampled throughout
the ML process. We demonstrate that our DNP describes or-
dered and disordered Al-Mg systems with near-DFT accuracy
as we have observed in other bimetallic systems [38,39].

Further, we apply the potential to study the impact of
temperature, Mg concentration, and surface termination on
potential element segregation processes. Due to the complex-
ity of various types of surfaces (e.g., grain boundaries) present
in physical alloys, it is infeasible to comprehensively eval-
uate each surface’s effect on the degree of segregation and
the fracture properties with presently available methods. A
simple way to gain insight into this complicated problem is to
study or simulate segregation at different low-index Al alloy
surfaces such as (100), (110), and (111). We compare our
predicted segregation results with previously reported EAM
and experimental results to further demonstrate the predictive
accuracy of this DNP.

As a compliment to simulation-based analysis, thermo-
dynamic modeling elicits a deeper understanding of first-
principles physics and allows us to make surface solute
concentration predictions. The classic McLean model is the
foundational equation for predicting an interface’s solute con-
centration from the bulk solute concentration and average
segregation energy [40]. Fowler and Guggenheim later im-
proved this model by considering the effects of solute-solute
interactions with the interaction term, w [41]. A negative
interaction term indicates that solutes interact repulsively, and
thus their segregation will be reduced in highly concentrated
regions. A positive term suggests that solutes will preferen-
tially migrate toward other, nearby solutes. Recently, Wagih
and Schuh have proposed further changes to the model for
grain boundary solute segregation [42]. An assumption made
in the classical approaches is that the bulk solute concen-
tration is approximate to the total solute concentration. The
new approach argues that this approximation is inaccurate
for nanocrystalline systems, which contain a high share of
boundary positions relative to bulk positions [42]. They in-
stead proposed a mixture rule, solved self-consistently, to
obtain the solute concentration. This new model also incor-
porates a piecewise function to represent solute interactions,
which is needed to account for the absence of interactions
with few nearby solute atoms [42]. Herein, we test the pre-
cision for each evolution of the solute segregation model
by fitting them to solute concentration results from our
Monte Carlo and molecular-dynamics (MC/MD) simulations.
In adapting the Wagih-Schuh modeling method for surface
solute segregation, we show that the revised isotherm yields

the best surface concentration predictions in agreement with
MC/MD data.

II. COMPUTATIONAL METHODS
A. DFT calculations

The DFT database was generated using the Vienna Ab
initio Simulation Package (VASP) [43-46], employing the
Perdew-Burke-Ernzerhof exchange-correlational functional
[47] to solve the Kohn-Sham equations within periodic
boundary conditions. The electron-nucleus interactions are
described using the projector augmented wave (PAW) method
as implemented in VASP [48,49]. In the PAW representation,
Al is represented with an s>p' valence configuration, while
Mg is represented with s?p°. Single-particle orbitals are ex-
panded in plane waves generated within a cutoff of 400 eV. We
use a dense gamma-centered k grid with a 0.24-A~" spacing
between k points, equivalent to 8 x 8 x 8 mesh for bulk Al
with a conventional four-atom face-centered cubic (fcc) unit
cell. To aid in the k-grid convergence, we use Methfessel-
Paxton [50] of order 1 with a 0.15-eV smearing width. We
terminate the electronic self-consistent loop using a 103-eV
energy-change tolerance to ensure good convergence of ener-
gies and forces.

B. DNP training database

We aim to build a DNP that can equally describe the
crystalline and amorphous phases of Al-Mg alloys, we con-
structed a training database that includes bulk, surfaces, and
amorphous phases. The total number of configurations in the
database amounts to ~250 k configurations. Most configura-
tions (~100 k) were obtained for the small Al-Mg ordered
compounds with less than 10 atoms per unit cell after applying
different distortions to the system. The total number of Al-Mg
slab models was ~30 k, primarily using (100), (111), and
(110) orientations employing supercells with 20-80 atoms.
The alloys’ surface configurations are obtained using fcc lat-
tice with an Al/Mg random occupancy. The database was
mainly populated from ab initio molecular-dynamics (AIMD)
trajectories within an NVT ensemble (fixed number of atoms,
volume, and temperature) at a temperature that ranges be-
tween 100 and 1000 K. We employed a relatively large
2—-4-femtosecond time step in the AIMD simulations to de-
crease the correlations in the configurations along the AIMD
trajectory. Using the DFT database, the training dataset com-
prises all energies and atomic forces.

C. Al-Mg DNP model and fitting

The DNP was developed with the DeepPot-SE approach
[35] using DEEPMD-KIT [36,37], as described in detail else-
where [38,39]. We used a cutoff radius of 6.0 A for neighbor
searching with 2.0 A as the smooth cutoff. The maximum
number of neighbors within the cutoff radius was set at 180
though a smaller value of ~120 yielded similar accuracy po-
tentials. The dimensions of the embedding and fitting nets are
setat 25 x 50 x 100 and 120 x 120 x 120, respectively. The
neural net is trained using Adam stochastic gradient descent
method with a learning rate that decreases exponentially from
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the starting value of 0.00; see Supplemental Material (SM)
for further detail [51]. The input data are split into train-
ing and testing sets where the testing data are not used for
optimizing the weights of the network but rather employed as
an independent test for cross validation.

D. Validation of Al-Mg DNP

The validation of the Al-Mg DNP potential is described
below for selected figures of merit and, in greater detail, in
the SM with comparisons to literature [21-23,27,52—-65] val-
ues. We utilized the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS, 16 Mar 2018 version) [66] for
all of our atomic calculations with the DNP and initial struc-
tures were created with ATOMSK [67] unless otherwise noted.
Vacancy mobility energy barriers were determined using the
nudged elastic band method [68].

E. Bulk crystal lattice constant and atomic energy

Before investigating defects, optimized lattice constants
and cohesive energy (Eon) are determined for the bulk crystal
models. For elemental Al and Mg systems, we computed the
cohesive energy per atom using E.n = Eg — Eyom, Where
Ep is the bulk energy per atom and Eyon, is the energy of
the corresponding isolated atom. Thus, with this definition, a
negative E.q, indicates that the system is thermodynamically
stable.

F. Elastic constants

In the DFT and the atomistic calculations, the elastic con-
stants are calculated by performing 12 distortions of the lattice
and then fully relaxing the system’s atomic coordinates. The
elastic constants are then computed using strain-stress rela-
tionships. The bulk moduli (e.g., bulk, shear, Young’s moduli,
and Poisson’s ratios) are computed using the crystal lattice
specific equations detailed in the SM [51].

G. Surface energies and planar defects

The free-surface formation energy, ys, is computed using
ys = (E — NEg)/(2A), where E is the energy of the slab
model, and A is the surface area perpendicular to the slab
direction. The factor of 2 is included to account for the two
different surfaces in the slab models. We calculated Al surface
energy for all terminated surfaces with Miller indices less than
4. The same approach was used for the planar defects; how-
ever, we used the DFT optimized structures from the material
project database (MPDB), and compared them to the surface
energies listed for these calculations.

H. Molecular-dynamics simulations

The molecular-dynamics simulations are carried out using
LAMMPS [66]. First, models starting from initial ideal fcc
structures are equilibrated in the NPT ensemble (fixed number
of atoms, pressure, and temperature) to allow the volume
to change to minimize the pressure at a given temperature.
After this equilibration, the lattice and lattice constants are
fixed, and we carried simulations in the NVT ensemble for
data collection (100 ps). We employed a 1-fs time step in all

TABLE I. Comparison of general bulk properties of Al.

Property Experiment DNP DFT
fcca 4.05 [53] 4.04 4.04
fce Econ —3.49 [54] -3.75 —3.655 [27]
Vo 16.5 [55] 16.51 16.47
Cn 114.3 [60] 118 104
Ci 61.9 [60] 65 73
Cy 31.6 [60] 38 32
Bulk modulus (Ky) 79.4 [60] 82 83
Shear modulus (Gy) 29.4 [60] 33 24
Young’s modulus (Ey) 78.51 [60] 88 68
Poisson’s ratio (v) 0.33 [61] 0.32 0.37

All DFT values are from MPDB [52], mp-131 unless otherwise
noted. Lattice parameters are in A, Vo in A3 /atom, C,, and elastic
moduli in GPa.

4Calculated from literature reference values.

simulations. For the alloys, we attempted a Monte Carlo (MC)
swap between Al and Mg at random sites every 20 MD steps,
after which the swap is accepted with a Metropolis probabil-
ity. In total 400 k MD steps were run. The bulk systems are
represented using an 8 x 8 x 8 supercell of the conventional
unit cell corresponding to 2048 atoms with periodic boundary
conditions. The surface models are constructed using a 6 x 6
surface supercell for the (100) and (110) surfaces and a 6 x
5 supercell for the (111) terminations. The number of layers
in the slab models is 80, 64, and 96 for the (100), (110), and
(111) slabs, resulting in 2880 atoms for (100) and (111) slabs
and 2304 for the (110) slab.

III. RESULTS AND DISCUSSION

We report the results of iteratively training Al-Mg DNP
model, the DNP accuracy reproducing bulk Al and Mg figures
of merit relative to DFT and description/comparison of Al-
Mg surface segregation dynamics with DFT and experimental
reference values. The description and quantified accuracy of
the DNP predictions, with reference DFT values, establish the
general utility, flexibility and versatility of this DNP for use in
modeling Al-Mg, Al or Mg materials in future works.

A. Force-field validation

The Al-Mg DNP was validated by comparing to commonly
known physical properties based on our calculations using
DFT or obtained from the literature. For each metal, we com-
pared our DNP calculated values for lattice parameter and
cohesive energy (face-centered cubic, body-center cubic, sim-
ple cubic, diamond, hexagonal close-packed), point defects
(vacancies and interstitial atoms), elastic constants (bulk mod-
ulus, Young’s modulus, shear modulus, and Poisson’s ratio),
surface energy, to list a few in Tables I and II (see Tables SI
and SII for entire list [S1]). The DFT calculations are carried
out using an equivalent computational setup as employed to
generate the training dataset.

The general bulk properties of Al and Mg agree well with
the values found in MPDB [52] in addition to the elastic con-
stants (see SM [51] for more details). We also observe good
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TABLE II. Comparison of general bulk properties of Mg.

Properties Experiment DNP DFT
hep 3.209 [69] 3.18 3.203
Chep 5.211 [69] 5.25 5.127
hep Econ —1.51[62] —1.50 —1.49 [27]
Vo 23.24 [63] 23.05 23.04
Ch 63.5 [65] 78 58
Cp 25.9 [65] 28 30
Cis 21.7 [65] 20 22
Cs3 66.5 [65] 74 66
(om 18.4 [65] 15 20
Ces 18.8 [65] 22 14
Kv 36.9 [65] 41 37
Kr 36 37
Bulk modulus (Ky) 38 37
Young’s modulus (Ep) 45 [65] 51 46°
Gy 19.4 [65] 21 18
Gr 19 17
Shear modulus (Gy) 20 18
Poisson’s ratio (v) 0.295 [61] 0.28 0.29

All DFT values are from the MPDB [52], mp-153 unless otherwise
noted. Lattice parameters are in A, EyineV, V, in A? /atom, Cy, and
elastic moduli in GPa.

4Calculated from literature reference values.

agreement with experimentally measured values in Tables I
and II for Al and Mg with the DNP and literature DFT values.
Further, the high-fidelity reproduction of the elastic constants
and associated moduli is a good indication of a potential’s
accuracy [70]. We note that some of the DNP mechanical
properties are over- or underestimations of the DFT literature
values. These differences between the DNP and DFT results
are likely due to differences in the computational setup em-
ployed by MPDB and in generating DNP training set (e.g.,
energy cutoff energies 520 and 400 eV, respectively). In ad-
dition, these differences could be in part due to inaccuracies
of the DNP. Similar over and underestimations in these values
are noted when comparing the EAM and MEAM potentials
(see Tables SI and SII [51]).

B. Surface energies and planar defects

We used optimized DFT structures from the MPDB and
their reported surface energies for comparison with DNP,
EAMI [23], EAM2 [21], EAM3 [22], and literature values
[27] from a MEAM [71] potential. The calculated EAM2 and
EAM3 surface energies are reported in Table S1 but were
excluded from Fig. 1 due to their poor accuracy compared
to DFT reference values. Comparison of the surface energies
for terminated Al surfaces with Miller indices less than 4 are
in excellent agreement [<6% energy difference, using Eqgs.
(S1) and (S2) with DFT values [51]] (Fig. 1 and Table SI). In
addition to the idealized surfaces listed in Fig. 1 and Table SI,
we also investigated a small set of grain boundaries defects
that are commonly found in real-world materials.

Although we did not explicitly include these planar de-
fect structures in the training dataset, the DNP predicts the
expected DFT energies of these defects relatively well (Ta-
ble IIT). We observe satisfactory agreement of the DNP with
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FIG. 1. Al surface energies (eV/nm?) for terminations with
Miller indices <4 computed using optimized DFT structures
(MPDB, mp-131) with DNP, EAM1, and MEAM literature values
[27].

our DFT calculations for Al planar defects structures and
the surfaces (Fig. 1 and Table III). We note that this current
version of the DNP fails to accurately describe the X7(111)
planar defect energy (~75.4% difference) compared to DFT
values. Nevertheless, the DNP’s accuracy is remarkable at
reproducing DFT values not included in the training set.

C. Al-Mg DNP validation summary

Detailed descriptions of these bulk property calculations
and corresponding DFT values can be found in the SM [51],
a total of 46 properties for Al and Mg, respectively (Tables
SI and SII, and Fig. S1). In general, our DNP agrees well
with DFT values (%Epirr) by 8.12, 14.8, and 11.2% for all
Al, all Mg, and all Al and Mg, respectively (see SM [51] for
details). We compared these benchmark properties to values
calculated using three well-described AI-Mg EAMs [21-23]
and literature values calculated with MEAM style [27] poten-

TABLE III. Comparison of DNP bulk Al planar defects surfaces
energies (eV/nm?) with DFT. N.B., this class of structures were not
included in DNP training.

Defect Rotation ¥s Al
Sigma  plane plane Rotation DNP DFT [52] % Epigr
3 (11D (110) 180.0 206 193 6.45
5 (013) (100) 53.13 310 300 3.33
5 (021) (100) 36.87 345 331 4.34
5 (100) (100) 36.87 213 237 10.3
7 (111) (111) 36.87 142 811 75.4
7 (321) (111) 38.21 322 312 3.20
9 (110) (110) 38.94 427 443 3.66
9 221) (110) 38.94 285 268 6.05

All DFT values are taken from the MPDB mp-131 dataset.
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FIG. 2. Bulk properties of the Al-Mg (Mg = 0, 4, 12, and 20%) alloy from DNP: (a) formation energy as a function of temperature;
(b) density as a function of temperature (200 to 800 K); (c) density as a function of Mg concentration. Error bars indicate twice the standard

deviation (20°).

tials. Overall of the examined properties, our DNP potential
is more accurate than the EAM/MEAMs at reproducing the
literature DFT results. This observation is not surprising as
the EAM/MEAM potentials generally are optimized using
both DFT structures and experimentally determined figures
of merit, which results in a deviation from DFT-only cal-
culations. Additionally, EAMs generally do not have good
accuracy outside of their training sets [72].

D. Bulk properties of Al-Mg alloy system

Before investigating Mg surface segregation, we calculated
the formation energy of the Al-Mg alloy (Mg = 0, 4, 12, and
20% atomic ratio) and its density as a function of temperature
(K) using a hybrid Monte Carlo/molecular dynamics scheme
via LAMMPS software package (Fig. 2). Mg’s cohesive energy
is smaller than Al (see Tables I and II), which explains
the decrease in the formation of the energy of Al-Mg with
increasing Mg concentration. The slope of the fitted lines
increases nonlinearly for 0, 4, 12, and 20% Mg at 0.33 £ 0.2,
0.33 +£ 0.2, 0.35 £ 0.2, and 0.36 £ 0.2 eV/K, respectively.
This observation could be related to physical phenomena such
as reducing the alloy melting point [73]. Additionally, we
observe a linear trend [Fig. 2(b), adjusted R? > 0.991] [74] in
the Al-Mg density as a function of temperature [Fig. 2(b)] and
also atomic Mg% [Fig. 2(c)], both observations have negative
slopes, a trend which is consistent with the experimental
literature [74,75]. The alloy’s density and its formation

energy are also observed to decrease linearly (adjusted
R? > 0.998) as a function of %Mg for all the temperatures
simulated [Figs. 2(b) and 2(c)], which are also consistent with
experimental observations in the literature [74,76].

E. Surface segregation

The heat of segregation at 7 = 0K for Mg impurities in
Al slabs is shown in Fig. 3. The segregation energy is defined
as the energy difference between placing an impurity atom in
the bulklike layers away from the surface versus top surface
layers. Here the lattice is fixed as in the bulk configuration. We
have investigated surface segregation for all distinct surfaces
with a Miller index no larger than 3. Solute substitution at
the top layer is the most favorable for all surfaces, indicating
Mg’s tendency to segregate to the top layers. For example,
Mg is favorable to substitute Al on the top layer by ~0.4 eV
compared to that in a “bulklike” environment away from the
surface. Among the low-index flat surfaces, (111) surface has
the weakest segregation tendency though the energy differ-
ence is not significant. We find that Mg segregation prefers
step edge for stepped surfaces while the terrace sites also
show segregation tendency. However, regardless of the surface
termination, the DFT results suggest that Mg segregates to the
surface. The surface segregation tendency depends on several
factors, including atomic size, cohesive energy, and surface
energy [77]. Mg atomic size is ~12% larger than that of Al
atom, and its cohesive energy is 60% smaller than that of Al.
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FIG. 3. Mg heat of segregation at 0 K (eV /atom) for Al surfaces with Miller indices no larger than 3. The solute’s energies are shown to
occupy layers of increasing depth from the surface from left to right for each surface. (a) Comparison between DFT filled circles/solid line and
DNP open circles/dashed line using 2 x 2 surface supercells. (b) Comparison between DNP with 2 x 2 (open) circles, dashed/line and 8 x 8
(open) squares, dashed line, surface supercells. Lines are added to guide the eye.

As a result, Mg prefers to segregate to the top surface layers.
From geometrical inspection of the optimized structures, the
larger Mg atoms are accommodated on the top surface layers
by moving ~0.3 A along the z axis, while Mg atom from the
subsurface or subsubsurface layers shows a smaller ~0.1-A
outward movement.

Figure 3(a) compares the DFT segregation energies with
the DNP results on the same surface models. As seen from
the figure, we have an excellent agreement between DFT
and DNP results. Because of the high computational cost of
DFT simulations for large systems, all surface calculations
in Fig. 3(a) are done using a relatively small 2 x 2 surface
supercell (see Table SIII [51]). We carried out additional cal-
culations using an 8 x 8 surface supercell utilizing our DNP to
investigate the impact of finite-size effects. Figure 3(b) shows
an excellent agreement between the small and larger super-
cells suggesting relatively small finite-size effects. Our results
compare well previous results by Liu et al., who reported
energies of the Mg heat of segregation [21]. While Deng et al.
modified analytic EAM (MAEAM) potential [78] observes a
similar trend in heats of Mg segregation energies, the reported
values are significantly different for all terminations. Both Liu
et al. and our DNP are similar to the experimentally calculated
value of —0.21 eV for the (111) plane [79]. The values are
distinct for predictions of Mg heat of segregation energy for
(100) and (110) terminations due to these potentials’ assump-
tions and training parameters. Our DNP and DFT Mg surface
segregation enthalpy results are consistent with each other and
distinct from these EAM potentials.

We have carried out hybrid MC/MD simulations based
on energies and forces computed using the DNP to inves-
tigate the segregation at finite temperature and higher Mg
substitutions. This scheme involves short molecular-dynamics
runs and random exchange between atoms at different loca-
tions, in which the last configuration is accepted or rejected
using a standard Metropolis algorithm. MC/MD is advanta-
geous as it automatically accounts for impurity-impurity or
impurity-host interactions, temperature, configurational en-
tropy, and atomic vibrations. Using the optimized lattice
constants determined before, from the NPT simulations, we
constructed slab models for the (100), (110), and (111)
surfaces with thicknesses of 80, 64, and 96 layers, re-
spectively. Following MC/MD simulations, we obtained the

slabs’ equilibrium structures at various temperatures and Mg
compositions.

As the simulation temperature is increased from 200 to
800 K, we observe decreased Mg concentrations at the top
layers, as seen in Fig. 4 and Fig. 5. Mg surface segregation
is observed to be the largest for (110) surfaces, for all tem-
peratures and Mg compositions, and at temperatures below
800 K [Figs. 4(a), 4(b), and 4(c)]. Comparatively, surface
segregation tendency is weakest for the (111) termination
across all temperatures and Mg compositions [Fig. 4(c)]. In
good agreement with literature reports obtained using EAM?2
[21], the termination-dependent segregation tendency follows
the ordering: (111)<(100)<(110) [Figs. 4(a) and 4(b)]. We
also observe expected decreases in Mg surface enrichment
as the temperature increases from 200 to 800 K for all sur-
faces [Fig. 4(d)], with (111) and (100) showing the lowest
and highest Mg enrichment, respectively. Lastly, the surface
enrichment results show that a significant proportion of solute
atoms are in the surface layer at low total Mg compositions
and low temperatures.

As expected, we observe a more significant mixing of Al
and Mg in the slab’s interior as temperature increases, and
an increase in the interior Mg concentration occurs (Fig. S2
[51]). We also observe that Mg segregation is restricted to
the 4-5 topmost layers. Mg concentration in these subsurface
layers increases linearly with increasing temperature relative
to the interior, as is observed in the surface layers at each
composition 4, 12, and 20% of all terminations (Fig. S3 [51]).
Analysis of the slopes of these fitted lines from Fig. S3 dis-
plays the overall changes in the interior Mg concentration
of the Al-Mg slabs (Mg = 4, 12,20%) surface termination
dependent with the largest change observed in the order of
(100)>(110)>(111) (Fig. S4 [51]). These observations, of the
interior Mg concentration, further support that there is less of
adriving force for Mg segregation in the (111) terminated slab
as temperature and Mg concentration change, e.g., internal
Mg concentrations remain relatively high compared to (100)
and (110) slabs. Interestingly, regardless of the Al-Mg slab
% Mg concentration, the concentrations of the Mg surface
(and subsurface) remain relatively consistent for each temper-
ature for a given termination (Fig. 5 and Fig. S3). To directly
compare with Liu et al. (4% composition) results, we looked
at the ratio of surface % Mg to the interior [Fig. 4(d)]. We
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FIG. 4. Mg concentration in the surface layer computed using MC/MD simulations with the DNP at 7" = 200, 400, 600, 800 K for (a) (100),
(b) (110), and (c) (111) surfaces, and (d) Mg surface enrichment relative to the bulk (black/dots = (100), red/dashed (110), and cyan/dots =

(111)). Error bars indicate the standard deviation (o).

observe good agreement with Liu et al. for the (100) termi-
nation, but weaker agreement in the ratio is observed for the
(111) termination. We also note that for the (110) termination,
the subsurface (second layer) Mg concentration approaches
surface concentration at 800 K for all AI-Mg slabs examined.

Ideally, a further quantitative comparison to experimental
results would support our computational models; however,
this comparison is difficult because of experimental parame-
ters that inhibit comparison at elevated temperatures. Auger

400K 600 K 800
FIG. 5. Geometrical structures of Al-Mg alloy (111) surface with
different Mg ratios (Mg = 4, 12, and 20%) at 200, 400, 600, and
800 K using MC/MD and the DNP. The blue circles are Mg, and the

red circles are Al.

200 K

electron spectroscopy (AES) investigations provide an ex-
cellent method for Mg surface segregations examination as
the Auger electrons have lower penetration depth in a mate-
rial compared to x-ray photoelectron spectroscopy. An AES
study of Al-0.88at%Mg alloy found a surface enrichment
of Mg about 10.5 at. % at 473 K [80]. Bloch et al. also
found Mg’s surface segregation for Al-1.45 at. %Mg alloys
using optical second-harmonic generation, and Mg was ob-
served to decrease beyond 510 K due to evaporation [81].
The Mg’s evaporation is favorable under the ultrahigh-vacuum
(<1 x 107 Torr) conditions required for AES; however, Mg
evaporation is not included in our MC/MD models. Therefore,
we do not expect to see consistent agreement between these
types of high-temperature experimental data for Mg surface
concentration.

Nevertheless, these experimental challenges at elevated
temperatures highlight the importance of theoretical models
that can elucidate the temperature-dependent dynamics of Al-
Mg alloys (and other materials); see Fig. 4. The fraction of
Mg (Fig. S2) suggests that Al-Mg alloys with (111) exposed
surfaces (visualized in Fig. 4) are ideal for corrosion resis-
tance as these have the weakest tendency to segregate Mg to
the surface and lower potential of Mg loss via oxidation to
MgO [23]. A similar observation of the (111) Al-Mg surface
using a MAEAM potential was reported by Deng et al. [78].
Therefore, we suggest that our hybrid MC/MD approach is
qualitatively consistent with the experimental results.

Figure 6 shows the pair distribution function (PDF) for
the three alloy surfaces with 4% Mg doping concentration
at three different temperatures (7" = 400, 600, and 800 K).
The PDF g(r) = (3", Z#i 8(r — rij))mc/mp is obtained from
the ensemble average of the configurations generated using
the MC/MD approach. As seen from the figure, the Al-Al,
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FIG. 6. The ensemble-averaged radial distribution function for
(a) Al-Al, (b) Mg-Mg, and (c) Al-Mg for the Al-4%Mg alloy surfaces
at three different temperatures and the three different surfaces using
MC/MD and the DNP.

Mg-Mg, and Al-Mg PDFs show a dominant first peak at r ~
2.85,3.1,and 2.9 A, respectively, which is consistent with the
nearest-neighbor distance in the fcc lattice. The larger values
for Mg-Mg and Al-Mg are consistent with Mg’s larger ionic
size compared to Al. As shown in Fig. 4, at low temperatures,
Mg atoms mostly occupy the top surface layer. The Al-Mg
increased intensity compared to Mg-Mg indicates that Mg is
likely coordinated with Al (not Mg). Indeed, we have verified
based on DFT calculations that two Mg atoms do not prefer
to be nearest neighbors, likely because of the increase in the
misfit strain. Expectantly, the temperature has a smoothening
effect on the peaks that are most noted for the open (110)
surface for Mg-Mg. The reduction of the peak intensities and
boarding concerning temperature indicates a transition from
the crystalline fcc state to a more disordered and likely a liquid
state [82]. Of all Al-Mg interactions, the (100) surface is the
least impacted by temperature, presumably because most Mg
has migrated to the surface, segregated, and the phase change
is small.

The MC/MD surface segregation results are also valuable
in developing a new thermodynamic model, which may pro-
vide superior predictions of the surface solute concentration
over the standard literature methods. The traditional isotherm
used to describe solute segregation, developed by McLean,
utilizes statistical mechanics to relate the atomic fraction of
solutes in a system’s bulk and interface regions [40]. This
method for obtaining solute concentrations postrelaxation is
applicable to surface interfaces, as presented in Eq. (1):

Xsurf Xbulk exp (_ AEseg > . (1)

1 - Xsurf B 1 - Xbulk kT

The surface segregation concentration, Xy, is described as
a function of the bulk solute concentration, Xy, Boltzmann’s
constant, k, and temperature, 7. The isotherm incorporates an
average segregation energy term, AE,, which is the energy
difference between a single solute atom in the surface layer
and a bulk layered solute atom. The segregation energy is
highly dependent on the configurational energy and elastic

strain energy changes during atom exchange [83]. A funda-
mental assumption made by McLean is that the total solute
concentration of the system, Xy, is equal to Xy, allowing
one to produce X,s from X.

Fowler and Guggenheim [41] later adapted the McLean
isotherm to account for the interaction between segregating
solutes by adding a solute-solute interaction term w. As so-
lutes continue to segregate to the surface layers of a system,
the energetic attraction or repulsion between them increases.
In Al-Mg alloy, we verified that the segregation tendency
declines in the case of a repulsive solute interaction. Adding
the solute interaction term to the McLean isotherm, we arrive
at Eq. (2):

Xsurf Xoulk AEseg + o - Xourt
= exp| ———— 5+ ). 2)
1 — Xourt 1 — Xpuik kT

Most recently, novel additions to the McLean-Fowler-
Guggenheim model were proposed by Wagih and Schuh [42]
for grain boundary segregation. In this model, the improve-
ments to the Fowler-Guggenheim isotherm are seen in its
superior ability to extend a single set of fitted parameters
to a wide temperature and composition space. Although the
Wagih-Schuh study is focused at decoupling the effects of
grain boundary site spectrality from the model, their other
innovations can be applied to surface solute segregation as
well. Namely, relevant to our study are their suggestions to
cast the Fowler-Guggenheim isotherm with a mixture rule and
represent the solute interaction as a piecewise energy term,
AE?®, dependent on the dilute limit of the system.

The mixture rule consideration is needed as a system with
a low total solute concentration contains a significantly large
proportion of solutes located within its surface layers after
segregation. As a result, the earlier models’ approximation,
Xiot = Xpulk, 18 incorrect, and a substitution of the X, utiliz-
ing the surface site fraction, f, or ratio surface lattice positions
to total lattice positions, should be applied. Our experimental
results presented in Fig. 4(d) show that the low-temperature,
4% total Mg systems, contain significantly higher proportions
of solutes in the surface layers than in the bulk, confirming
this step’s physical necessity. Poor predictions in the low
total solute concentration region arise in the absence of this
correction. Thus, we substitute out Xg,s in Eq. (2) using the
mixture rule, Eq. (3), and rewrite, resulting in Eq. (4).

Xiot = (1 - fsurf)Xbulk + fsuersurf» (3)

Xtot = (1 - fﬁurf )Xbulk

- -1

1 — X AE, AE®

bulk exp seg + - (4)
Xoulk kT

Equation (4) is solved self-consistently to determine Xpyx
from X, which simultaneously solves Xyt via Eq. (3).
The segregation energy, AE.,, and solute interaction energy,
AE®, are determined by fitting the equations to experimental
results.

Further, adopting the Wagih-Schuh approach for surfaces
is accomplished by evaluating the solute interaction energy
as a piecewise function. As presented in Eq. (5), the interac-
tion energy is 0 below the dilute limit, and a linear function
above it, which is necessary as the solute interaction energy

+ ﬂurf|:1 +
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FIG. 7. MC/MD simulation data and fitted predictions of the
McLean [Eq. (1)] [40], Fowler-Guggenheim [Eq. (2)] [41], and
Wagih-Schuh [Egs. (3), (4), and (5)] [42] models for the (100)
surface at 200 K. Error bars indicate the standard deviation (o).

is negligible at low total concentrations (<10% Xgu,¢) due to
neighboring solute atoms being too distant to interact given
the interatomic potential [42]

Xsurf g XO

. Q)
Xsurf > XO

0
AL Kiurt) {w(xsurf — Xo)

The surface-adapted Wagih-Schuh model shows a sig-
nificant improvement in its predictive capabilities over the
Fowler-Guggenheim and McLean models. Average predic-
tion errors, or the mean of differences between MC/MD data
points and fitted isotherm predictions, are reduced, especially
around the low total solute concentration region (<2% Mg).
Figure 7 displays one such fitting of each isotherm for the
(100) surface at 200 K, in which the Wagih-Schuh model’s
prediction error is 50% that of the Fowler-Guggenheim model
and 33.3% of the McLean model, Fig. 8.

The average prediction errors for the entire temperature
and surface termination space are presented in Fig. 8. Over-
all, the Wagih-Schuh model displays the lowest errors, with
the most noticeable differences in the (100) surface termina-

g
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FIG. 8. Average prediction errors of each model with simulation
results. The difference between each model’s fitted curves and ac-
tual simulation points is averaged along with the entire composition
range. The errors for each temperature and surface termination com-
bination are labeled according to the colormap bar on the right.

tion. The improved predictive capabilities are attributed to the
piecewise function accounting for the low concentration re-
gion where solutes do not interact, as instead, solutes separate
beyond their interaction distance. The mixture rule casting of
the Fowler-Guggenheim model also enables a better repre-
sentation of the low surface concentration region since most
solute atoms are in the surface layer. Full parameter fitting
results from each isotherm are found in Table SIV [51].
Consistent with our simulation results, the isotherm predic-
tions of the (111) surface show the lowest concentrations and
segregation energies. A possible explanation is that the higher
packing density of (111) improves the likelihood that neigh-
boring solute atoms fall within the interatomic potential’s
interaction distance. A shorter average separation between so-
lutes increases the likelihood that each solute atom will inter-
act with more than one neighboring solute [42]. Given that the
interaction’s nature is repulsive, this limits solute migration
to the highly concentrated surface. The radial distributions
shown in Fig. 6 support this correlation; the (111) surface con-
tains the largest variance of solute pair radii and the largest so-
lute separation. Additionally, the close packing of (111) may
enhance the misfit strain between paired solutes, spreading en-
ergetically favorable surface positions. It remains unclear the
relation between the dilute limit of the system and the surface
termination. A variable dilute limit would affect the piecewise
solute interaction energy term in determining which concen-
tration solute interactions begin. Further testing of the ther-
modynamic model is needed to determine the dilute limit’s
physical nature, enabling more efficient parameter fitting.

IV. CONCLUSIONS

We have developed a robust atomistic potential based on
machine learning principles using the DeepPot-SE approach.
Our DNP was validated against DFT values in the literature
or calculated by us, confirming that that the developed Al-Mg
DNP has high fidelity for calculating Al and Mg’s general
bulk properties. Furthermore, our DNP can reproduce DFT
benchmarks for volume, density, and Al-Mg alloy systems’
formation energy using a MC/MD approach. Additionally,
we can accurately model Mg surface segregation behavior
in larger simulation cells (8 x 8 x 8) while maintaining
DFT accuracy. Our results suggest that the (111) surface is
ideal for optimal corrosion resistance as Mg segregation is the
lowest compared to the (100) and (110) surfaces. Surprisingly,
careful selection of the Al-Mg alloy’s Mg composition also
impacts the surface segregation where 12-20% total Mg con-
centration shows the weakest segregation at the surface and a
more uniform Mg distribution throughout. A thermodynamic
model of Mg surface segregation in Al-Mg systems was devel-
oped, by adapting the isotherm by Wagih-Schuh to accurately
predict surface solute concentrations in coordination with
these results, which was achieved by eliminating the bulk so-
lute approximation made in earlier models and incorporating a
piecewise solute interaction energy term. The thermodynamic
model’s predictions also support the (111) surface having
the lowest surface segregation energy of all studied termina-
tions, which is explained by the higher packing density of
(111), causing a smaller average separation between solute
atoms and thus an increased misfit strain which spreads apart
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energetically favorable surface positions. Future work is
needed to mathematically describe the termination depen-
dency of the dilute limit to enable faster parameter fitting of
the isotherm. This work will help accelerate the selection and
real-world testing of Al-Mg alloys that are more resistant to
corrosion by serving as the basis for developing of DNP to
evaluate the addition of dopants, such as beryllium [84].

The training database and the potential are freely available
[85].
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