

2 Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential

3 Christopher M. Andolina¹, Jacob G. Wright,¹ Nishith Das^{1,2}, and Wissam A. Saidi^{1,*}4 ¹Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA5 ²National Institute of Technology, Sendai College, Natori Campus, Natori 981-1239, Japan

7 (Received 22 March 2021; revised 15 July 2021; accepted 30 July 2021; published xxxxxxxxx)

8 Various industrial/commercial applications use Al-Mg alloys, yet the Mg added to Al materials, to improve
9 strength, is susceptible to surface segregation and oxidation, leaving behind a softer and Al-enriched bulk
10 alloy. To better understand this process and provide a systematic methodology for investigating dopants that
11 can mitigate corrosion, we have developed a robust atomistic deep neural net potential (DNP) using a dataset
12 generated with first-principles density-functional theory (DFT). The potential, validated systematically against
13 DFT values, has been shown to have a high fidelity in calculating different elemental and intermetallic Al-Mg
14 systems' properties. Our calculations predict a linear trend in the formation energy of the Al-Mg alloy and its
15 density as a function of temperature, consistent with experimental literature. Employing the DNP within a hybrid
16 Monte Carlo and molecular dynamics (MC/MD) approach, we predict anisotropic surface segregation for Al-Mg
17 alloys such that (111)<(100)<(110), with (111) surfaces displaying the lowest segregation enthalpies and Mg
18 enrichment. Furthermore, we model the segregation tendencies by adapting a recently introduced isotherm model
19 for grain boundary segregation. Our results show that this model describes the MC/MD segregation profiles with
20 higher fidelity than the McLean and Fowler-Guggenheim isotherm models.

21 DOI: 10.1103/PhysRevMaterials.00.003800

22 I. INTRODUCTION

23 Aluminum is the most abundant metal in the Earth's crust
24 at $\sim 8.3\%$ by weight [1,2]. Homogeneous Al materials are
25 relatively soft, limiting their use in most engineering applications
26 where high-strength mechanical properties are required.
27 Doping with Mg can strengthen Al-based alloys for light-mass
28 applications [3]. Commercial and industrial applications, such
29 as the automotive and aerospace industries [4–8], use these
30 strain-hardened Al-Mg alloys with a high strength-to-weight
31 ratio as materials in vehicles.32 As is true in many metal materials, corrosion mitigation is
33 an issue of great importance; the U.S. spends a few percent of
34 its gross national product per year to address corrosion issues
35 [9,10]. Pure Al materials are resistive to corrosion due to the
36 spontaneous formation of a slowly growing, thermodynamically
37 stable Al_2O_3 scale that acts as a surface diffusion barrier
38 to prevent further oxidation [11]. However, this is not the case
39 for the Al-Mg alloy as Mg segregates to the material's surface.
40 When this alloy is heated or exposed to the atmosphere, Mg
41 preferentially oxidizes to MgO , which forms a poor barrier to
42 further oxidation. MgO can readily be mechanically removed
43 from the Al-Mg alloy's surface, leaving behind an enriched
44 softer Al material [12,13]. Thus, it is crucial to understand
45 Mg's segregation behavior in Al-Mg alloyed surfaces and
46 whether segregation tendency varies with temperature, Mg
47 concentration, and surface termination [14,15].48 To date, the design of oxidation-resistant alloys and coatings
49 has been a highly empirical process, where the chosen50 solution is often arrived at by a basic trial-and-error approach
51 that is not optimum (e.g., the performance of commercial
52 alloys can vary dramatically within a specification range).
53 First-principles density-functional theory (DFT) calculations
54 are an attractive alternative and have the potential of providing
55 a robust and rigorous approach for accurately predicting
56 protective oxidation. These DFT approaches' success has
57 enormous technical impacts on the design, tuning, and optimization
58 of Al-Mg for various applications [6–8,16,17].
59 However, the computational cost of standard DFT methods
60 has limited the investigations of alloys to simplistic models
61 that often differ from experiments, as environmentally
62 specific parameters, which are often excluded from these
63 calculations [18,19]. Previous studies have relied on classical
64 atomistic potentials that can be applied to materials under various
65 environmental conditions to model real-world behavior
66 [20]. The embedded-atom method (EAM) or modified EAM
67 (MEAM) potentials are generally used to study the dynamics
68 of Al-Mg binary systems [21–23]. These potentials are fitted
69 to experimental data and a quantum-mechanical database of
70 atomic forces and energies at finite temperatures. While these
71 classical potentials have been successful for studying simple
72 elemental systems, the design of these potentials for alloys
73 and complex interactions is nontrivial and relies on a laborious
74 and user-intensive process.75 This work utilizes a machine learning (ML) based on deep
76 neural networks to approach DFT accuracy but at a fraction
77 of its computational cost, thus accelerating time to obtain
78 tangible results [2,24–27]. The developed ML force field's
79 success shows that these methods have the flexibility and
80 nonlinearity necessary to describe complex potential energy
81 surfaces [28–34]. ML potentials suffer from transferabil-

*alsaidi@pitt.edu

82 ity errors associated with atomic environments not included
 83 in the training, similar to traditional classical force-fields.
 84 However, in contrast to most classical potentials, ML po-
 85 tentials can systematically learn and improve the potential
 86 for different properties and regions of the material's phase
 87 space. In the present study, we develop a deep neural net
 88 potential (DNP) for the Al-Mg binary alloy system via the
 89 DeepPot-SE approach [35] as implemented in DEEPMOD-KIT
 90 [36,37], and DEEPPOT to systematically analyze its fidelity
 91 describing a wide range of properties. We follow an adaptive
 92 iterative-learning approach to augment the training dataset to
 93 circumvent data extrapolation in regions of the phase space
 94 that are of interest and are not adequately sampled throughout
 95 the ML process. We demonstrate that our DNP describes or-
 96 dered and disordered Al-Mg systems with near-DFT accuracy
 97 as we have observed in other bimetallic systems [38,39].

98 Further, we apply the potential to study the impact of
 99 temperature, Mg concentration, and surface termination on
 100 potential element segregation processes. Due to the complex-
 101 ity of various types of surfaces (e.g., grain boundaries) present
 102 in physical alloys, it is infeasible to comprehensively eval-
 103 uate each surface's effect on the degree of segregation and
 104 the fracture properties with presently available methods. A
 105 simple way to gain insight into this complicated problem is to
 106 study or simulate segregation at different low-index Al alloy
 107 surfaces such as (100), (110), and (111). We compare our
 108 predicted segregation results with previously reported EAM
 109 and experimental results to further demonstrate the predictive
 110 accuracy of this DNP.

111 As a compliment to simulation-based analysis, thermo-
 112 dynamic modeling elicits a deeper understanding of first-
 113 principles physics and allows us to make surface solute
 114 concentration predictions. The classic McLean model is the
 115 foundational equation for predicting an interface's solute con-
 116 centration from the bulk solute concentration and average
 117 segregation energy [40]. Fowler and Guggenheim later im-
 118 proved this model by considering the effects of solute-solute
 119 interactions with the interaction term, ω [41]. A negative
 120 interaction term indicates that solutes interact repulsively, and
 121 thus their segregation will be reduced in highly concentrated
 122 regions. A positive term suggests that solutes will preferen-
 123 tially migrate toward other, nearby solutes. Recently, Wagih
 124 and Schuh have proposed further changes to the model for
 125 grain boundary solute segregation [42]. An assumption made
 126 in the classical approaches is that the bulk solute concen-
 127 tration is approximate to the total solute concentration. The
 128 new approach argues that this approximation is inaccurate
 129 for nanocrystalline systems, which contain a high share of
 130 boundary positions relative to bulk positions [42]. They in-
 131 stead proposed a mixture rule, solved self-consistently, to
 132 obtain the solute concentration. This new model also incor-
 133 porates a piecewise function to represent solute interactions,
 134 which is needed to account for the absence of interactions
 135 with few nearby solute atoms [42]. Herein, we test the pre-
 136 cision for each evolution of the solute segregation model
 137 by fitting them to solute concentration results from our
 138 Monte Carlo and molecular-dynamics (MC/MD) simulations.
 139 In adapting the Wagih-Schuh modeling method for surface
 140 solute segregation, we show that the revised isotherm yields

141 the best surface concentration predictions in agreement with
 142 MC/MD data.

II. COMPUTATIONAL METHODS

A. DFT calculations

143 The DFT database was generated using the Vienna *Ab*
 144 *initio* Simulation Package (VASP) [43–46], employing the
 145 Perdew-Burke-Ernzerhof exchange-correlational functional
 146 [47] to solve the Kohn-Sham equations within periodic
 147 boundary conditions. The electron-nucleus interactions are
 148 described using the projector augmented wave (PAW) method
 149 as implemented in VASP [48,49]. In the PAW representation,
 150 Al is represented with an s^2p^1 valence configuration, while
 151 Mg is represented with s^2p^0 . Single-particle orbitals are ex-
 152 panded in plane waves generated within a cutoff of 400 eV. We
 153 use a dense gamma-centered k grid with a $0.24\text{-}\text{\AA}^{-1}$ spacing
 154 between k points, equivalent to $8 \times 8 \times 8$ mesh for bulk Al
 155 with a conventional four-atom face-centered cubic (fcc) unit
 156 cell. To aid in the k -grid convergence, we use Methfessel-
 157 Paxton [50] of order 1 with a 0.15-eV smearing width. We
 158 terminate the electronic self-consistent loop using a 10^{-8} -eV
 159 energy-change tolerance to ensure good convergence of ener-
 160 gies and forces.

B. DNP training database

163 We aim to build a DNP that can equally describe the
 164 crystalline and amorphous phases of Al-Mg alloys, we con-
 165 structed a training database that includes bulk, surfaces, and
 166 amorphous phases. The total number of configurations in the
 167 database amounts to ~ 250 k configurations. Most configura-
 168 tions (~ 100 k) were obtained for the small Al-Mg ordered
 169 compounds with less than 10 atoms per unit cell after applying
 170 different distortions to the system. The total number of Al-Mg
 171 slab models was ~ 30 k, primarily using (100), (111), and
 172 (110) orientations employing supercells with 20–80 atoms.
 173 The alloys' surface configurations are obtained using fcc lat-
 174 tice with an Al/Mg random occupancy. The database was
 175 mainly populated from *ab initio* molecular-dynamics (AIMD)
 176 trajectories within an *NVT* ensemble (fixed number of atoms,
 177 volume, and temperature) at a temperature that ranges be-
 178 between 100 and 1000 K. We employed a relatively large
 179 2–4-femtosecond time step in the AIMD simulations to de-
 180 crease the correlations in the configurations along the AIMD
 181 trajectory. Using the DFT database, the training dataset com-
 182 prises all energies and atomic forces.

C. Al-Mg DNP model and fitting

184 The DNP was developed with the DeepPot-SE approach
 185 [35] using DEEPMOD-KIT [36,37], as described in detail else-
 186 where [38,39]. We used a cutoff radius of 6.0 \AA for neighbor
 187 searching with 2.0 \AA as the smooth cutoff. The maximum
 188 number of neighbors within the cutoff radius was set at 180
 189 though a smaller value of ~ 120 yielded similar accuracy po-
 190 tentials. The dimensions of the embedding and fitting nets are
 191 set at $25 \times 50 \times 100$ and $120 \times 120 \times 120$, respectively. The
 192 neural net is trained using Adam stochastic gradient descent
 193 method with a learning rate that decreases exponentially from

195 the starting value of 0.00; see Supplemental Material (SM)
 196 for further detail [51]. The input data are split into training
 197 and testing sets where the testing data are not used for
 198 optimizing the weights of the network but rather employed as
 199 an independent test for cross validation.

D. Validation of Al-Mg DNP

200 The validation of the Al-Mg DNP potential is described
 201 below for selected figures of merit and, in greater detail, in
 202 the SM with comparisons to literature [21–23,27,52–65] val-
 203 ues. We utilized the Large-scale Atomic/Molecular Massively
 204 Parallel Simulator (LAMMPS, 16 Mar 2018 version) [66] for
 205 all of our atomic calculations with the DNP and initial struc-
 206 tures were created with ATOMSK [67] unless otherwise noted.
 207 Vacancy mobility energy barriers were determined using the
 208 nudged elastic band method [68].

E. Bulk crystal lattice constant and atomic energy

210 Before investigating defects, optimized lattice constants
 211 and cohesive energy (E_{coh}) are determined for the bulk crystal
 212 models. For elemental Al and Mg systems, we computed the
 213 cohesive energy per atom using $E_{coh} = E_B - E_{atom}$, where
 214 E_B is the bulk energy per atom and E_{atom} is the energy of
 215 the corresponding isolated atom. Thus, with this definition, a
 216 negative E_{coh} indicates that the system is thermodynamically
 217 stable.

F. Elastic constants

220 In the DFT and the atomistic calculations, the elastic con-
 221 stants are calculated by performing 12 distortions of the lattice
 222 and then fully relaxing the system's atomic coordinates. The
 223 elastic constants are then computed using strain-stress rela-
 224 tionships. The bulk moduli (e.g., bulk, shear, Young's moduli,
 225 and Poisson's ratios) are computed using the crystal lattice
 226 specific equations detailed in the SM [51].

G. Surface energies and planar defects

227 The free-surface formation energy, γ_s , is computed using
 228 $\gamma_s = (E - NE_B)/(2A)$, where E is the energy of the slab
 229 model, and A is the surface area perpendicular to the slab
 230 direction. The factor of 2 is included to account for the two
 231 different surfaces in the slab models. We calculated Al surface
 232 energy for all terminated surfaces with Miller indices less than
 233 4. The same approach was used for the planar defects; how-
 234 ever, we used the DFT optimized structures from the material
 235 project database (MPDB), and compared them to the surface
 236 energies listed for these calculations.

H. Molecular-dynamics simulations

238 The molecular-dynamics simulations are carried out using
 239 LAMMPS [66]. First, models starting from initial ideal fcc
 240 structures are equilibrated in the *NPT* ensemble (fixed number
 241 of atoms, pressure, and temperature) to allow the volume
 242 to change to minimize the pressure at a given temperature.
 243 After this equilibration, the lattice and lattice constants are
 244 fixed, and we carried simulations in the *NVT* ensemble for
 245 data collection (100 ps). We employed a 1-fs time step in all

TABLE I. Comparison of general bulk properties of Al.

Property	Experiment	DNP	DFT
fcc a	4.05 [53]	4.04	4.04
fcc E_{coh}	−3.49 [54]	−3.75	−3.655 [27]
V_0	16.5 [55]	16.51	16.47
C_{11}	114.3 [60]	118	104
C_{12}	61.9 [60]	65	73
C_{44}	31.6 [60]	38	32
Bulk modulus (K_H)	79.4 [60]	82	83
Shear modulus (G_H)	29.4 [60]	33	24
Young's modulus (E_H)	78.51 [60]	88	68 ^a
Poisson's ratio (ν)	0.33 [61]	0.32	0.37

All DFT values are from MPDB [52], mp-131 unless otherwise noted. Lattice parameters are in Å, V_0 in Å³/atom, C_{xx} and elastic moduli in GPa.

^aCalculated from literature reference values.

247 simulations. For the alloys, we attempted a Monte Carlo (MC)
 248 swap between Al and Mg at random sites every 20 MD steps,
 249 after which the swap is accepted with a Metropolis probability.
 250 In total 400 k MD steps were run. The bulk systems are
 251 represented using an 8 × 8 × 8 supercell of the conventional
 252 unit cell corresponding to 2048 atoms with periodic boundary
 253 conditions. The surface models are constructed using a 6 × 6
 254 surface supercell for the (100) and (110) surfaces and a 6 ×
 255 5 supercell for the (111) terminations. The number of layers
 256 in the slab models is 80, 64, and 96 for the (100), (110), and
 257 (111) slabs, resulting in 2880 atoms for (100) and (111) slabs
 258 and 2304 for the (110) slab.

III. RESULTS AND DISCUSSION

259 We report the results of iteratively training Al-Mg DNP
 260 model, the DNP accuracy reproducing bulk Al and Mg figures
 261 of merit relative to DFT and description/comparison of Al-
 262 Mg surface segregation dynamics with DFT and experimental
 263 reference values. The description and quantified accuracy of
 264 the DNP predictions, with reference DFT values, establish the
 265 general utility, flexibility and versatility of this DNP for use in
 266 modeling Al-Mg, Al or Mg materials in future works.

A. Force-field validation

268 The Al-Mg DNP was validated by comparing to commonly
 269 known physical properties based on our calculations using
 270 DFT or obtained from the literature. For each metal, we com-
 271 pared our DNP calculated values for lattice parameter and
 272 cohesive energy (face-centered cubic, body-center cubic, sim-
 273 ple cubic, diamond, hexagonal close-packed), point defects
 274 (vacancies and interstitial atoms), elastic constants (bulk mod-
 275 ulus, Young's modulus, shear modulus, and Poisson's ratio),
 276 surface energy, to list a few in Tables I and II (see Tables SI
 277 and SII for entire list [51]). The DFT calculations are carried
 278 out using an equivalent computational setup as employed to
 279 generate the training dataset.

280 The general bulk properties of Al and Mg agree well with
 281 the values found in MPDB [52] in addition to the elastic con-
 282 stants (see SM [51] for more details). We also observe good

TABLE II. Comparison of general bulk properties of Mg.

Properties	Experiment	DNP	DFT
a_{hcp}	3.209 [69]	3.18	3.203
c_{hcp}	5.211 [69]	5.25	5.127
$\text{hcp } E_{\text{coh}}$	-1.51 [62]	-1.50	-1.49 [27]
V_0	23.24 [63]	23.05	23.04
C_{11}	63.5 [65]	78	58
C_{12}	25.9 [65]	28	30
C_{13}	21.7 [65]	20	22
C_{33}	66.5 [65]	74	66
C_{44}	18.4 [65]	15	20
C_{66}	18.8 [65]	22	14
K_V	36.9 [65]	41	37
K_R		36	37
Bulk modulus (K_H)		38	37
Young's modulus (E_H)	45 [65]	51	46 ^a
G_V	19.4 [65]	21	18
G_R		19	17
Shear modulus (G_H)		20	18
Poisson's ratio (ν)	0.295 [61]	0.28	0.29

All DFT values are from the MPDB [52], mp-153 unless otherwise noted. Lattice parameters are in Å, E_0 in eV, V_0 in Å³/atom, C_{xx} and elastic moduli in GPa.

^aCalculated from literature reference values.

agreement with experimentally measured values in Tables I and II for Al and Mg with the DNP and literature DFT values. Further, the high-fidelity reproduction of the elastic constants and associated moduli is a good indication of a potential's accuracy [70]. We note that some of the DNP mechanical properties are over- or underestimations of the DFT literature values. These differences between the DNP and DFT results are likely due to differences in the computational setup employed by MPDB and in generating DNP training set (e.g., energy cutoff energies 520 and 400 eV, respectively). In addition, these differences could be in part due to inaccuracies of the DNP. Similar over and underestimations in these values are noted when comparing the EAM and MEAM potentials (see Tables SI and SII [51]).

B. Surface energies and planar defects

We used optimized DFT structures from the MPDB and their reported surface energies for comparison with DNP, EAM1 [23], EAM2 [21], EAM3 [22], and literature values [27] from a MEAM [71] potential. The calculated EAM2 and EAM3 surface energies are reported in Table S1 but were excluded from Fig. 1 due to their poor accuracy compared to DFT reference values. Comparison of the surface energies for terminated Al surfaces with Miller indices less than 4 are in excellent agreement [$<6\%$ energy difference, using Eqs. (S1) and (S2) with DFT values [51]] (Fig. 1 and Table SI). In addition to the idealized surfaces listed in Fig. 1 and Table SI, we also investigated a small set of grain boundaries defects that are commonly found in real-world materials.

Although we did not explicitly include these planar defect structures in the training dataset, the DNP predicts the expected DFT energies of these defects relatively well (Table III). We observe satisfactory agreement of the DNP with

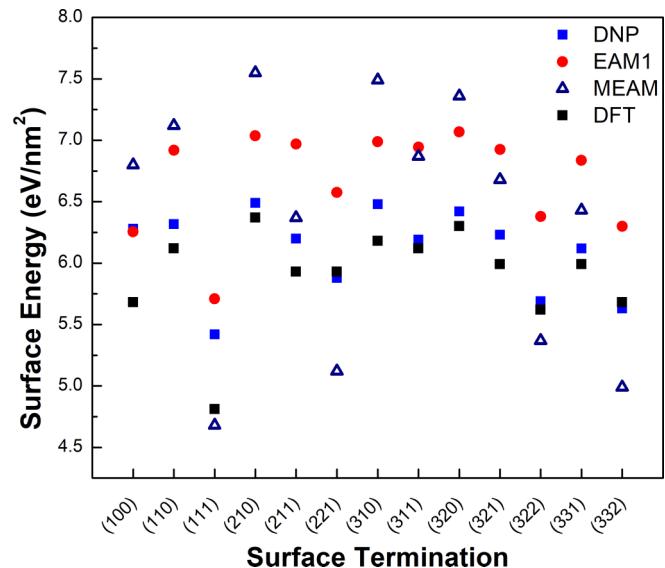


FIG. 1. Al surface energies (eV/nm²) for terminations with Miller indices <4 computed using optimized DFT structures (MPDB, mp-131) with DNP, EAM1, and MEAM literature values [27].

our DFT calculations for Al planar defects structures and the surfaces (Fig. 1 and Table III). We note that this current version of the DNP fails to accurately describe the $\Sigma 7(111)$ planar defect energy ($\sim 75.4\%$ difference) compared to DFT values. Nevertheless, the DNP's accuracy is remarkable at reproducing DFT values not included in the training set.

C. Al-Mg DNP validation summary

Detailed descriptions of these bulk property calculations and corresponding DFT values can be found in the SM [51], a total of 46 properties for Al and Mg, respectively (Tables SI and SII, and Fig. S1). In general, our DNP agrees well with DFT values ($\%E_{\text{Diff}}$) by 8.12, 14.8, and 11.2% for all Al, all Mg, and all Al and Mg, respectively (see SM [51] for details). We compared these benchmark properties to values calculated using three well-described Al-Mg EAMs [21–23] and literature values calculated with MEAM style [27] poten-

TABLE III. Comparison of DNP bulk Al planar defects surfaces energies (eV/nm²) with DFT. N.B., this class of structures were not included in DNP training.

Sigma	Defect plane	Rotation plane	Rotation	γ_s Al		
				DNP	DFT [52]	% E_{Diff}
3	(11̄1)	(110)	180.0	206	193	6.45
5	(01̄3)	(100)	53.13	310	300	3.33
5	(02̄1)	(100)	36.87	345	331	4.34
5	(100)	(100)	36.87	213	237	10.3
7	(111)	(111)	36.87	142	811	75.4
7	(32̄1)	(111)	38.21	322	312	3.20
9	(110)	(110)	38.94	427	443	3.66
9	(22̄1)	(110)	38.94	285	268	6.05

All DFT values are taken from the MPDB mp-131 dataset.

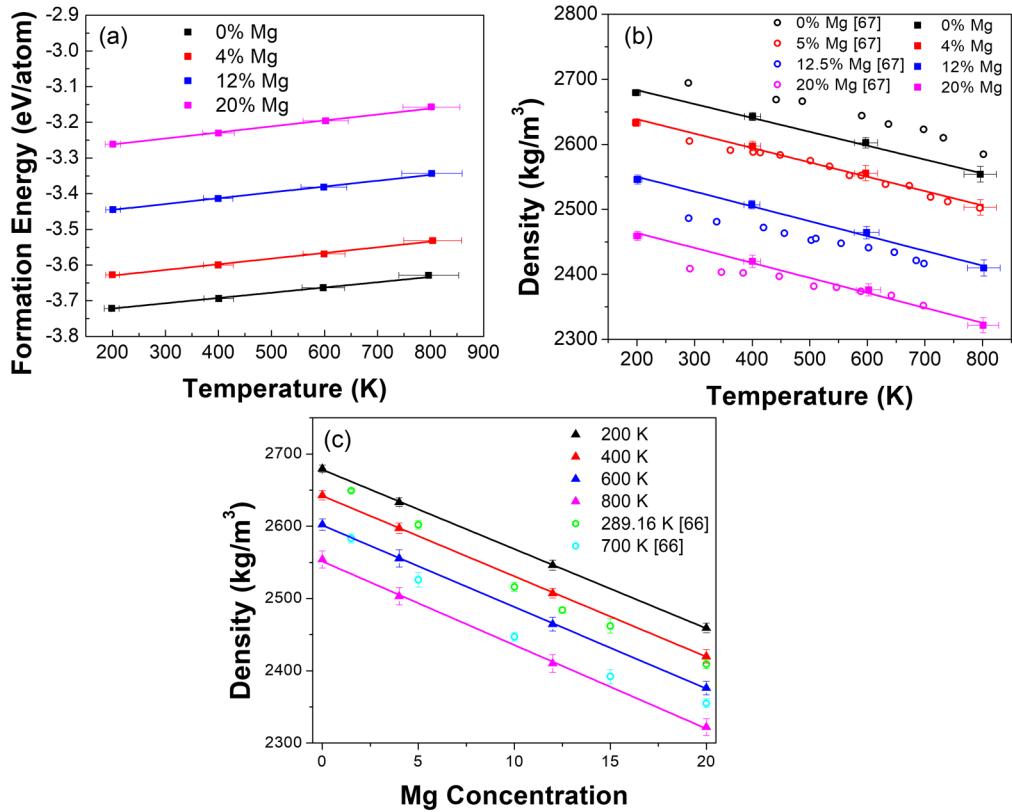


FIG. 2. Bulk properties of the Al-Mg (Mg = 0, 4, 12, and 20%) alloy from DNP: (a) formation energy as a function of temperature; (b) density as a function of temperature (200 to 800 K); (c) density as a function of Mg concentration. Error bars indicate twice the standard deviation (2σ).

tials. Overall of the examined properties, our DNP potential is more accurate than the EAM/MEAMs at reproducing the literature DFT results. This observation is not surprising as the EAM/MEAM potentials generally are optimized using both DFT structures and experimentally determined figures of merit, which results in a deviation from DFT-only calculations. Additionally, EAMs generally do not have good accuracy outside of their training sets [72].

D. Bulk properties of Al-Mg alloy system

Before investigating Mg surface segregation, we calculated the formation energy of the Al-Mg alloy (Mg = 0, 4, 12, and 20% atomic ratio) and its density as a function of temperature (K) using a hybrid Monte Carlo/molecular dynamics scheme via LAMMPS software package (Fig. 2). Mg's cohesive energy is smaller than Al (see Tables I and II), which explains the decrease in the formation of the energy of Al-Mg with increasing Mg concentration. The slope of the fitted lines increases nonlinearly for 0, 4, 12, and 20% Mg at 0.33 ± 0.2 , 0.33 ± 0.2 , 0.35 ± 0.2 , and 0.36 ± 0.2 eV/K, respectively. This observation could be related to physical phenomena such as reducing the alloy melting point [73]. Additionally, we observe a linear trend [Fig. 2(b)], adjusted $R^2 > 0.991$ [74] in the Al-Mg density as a function of temperature [Fig. 2(b)] and also atomic Mg% [Fig. 2(c)], both observations have negative slopes, a trend which is consistent with the experimental literature [74,75]. The alloy's density and its formation

energy are also observed to decrease linearly (adjusted $R^2 > 0.998$) as a function of %Mg for all the temperatures simulated [Figs. 2(b) and 2(c)], which are also consistent with experimental observations in the literature [74,76].

E. Surface segregation

The heat of segregation at $T = 0$ K for Mg impurities in Al slabs is shown in Fig. 3. The segregation energy is defined as the energy difference between placing an impurity atom in the bulklike layers away from the surface versus top surface layers. Here the lattice is fixed as in the bulk configuration. We have investigated surface segregation for all distinct surfaces with a Miller index no larger than 3. Solute substitution at the top layer is the most favorable for all surfaces, indicating Mg's tendency to segregate to the top layers. For example, Mg is favorable to substitute Al on the top layer by ~ 0.4 eV compared to that in a “bulklike” environment away from the surface. Among the low-index flat surfaces, (111) surface has the weakest segregation tendency though the energy difference is not significant. We find that Mg segregation prefers step edge for stepped surfaces while the terrace sites also show segregation tendency. However, regardless of the surface termination, the DFT results suggest that Mg segregates to the surface. The surface segregation tendency depends on several factors, including atomic size, cohesive energy, and surface energy [77]. Mg atomic size is $\sim 12\%$ larger than that of Al atom, and its cohesive energy is 60% smaller than that of Al.

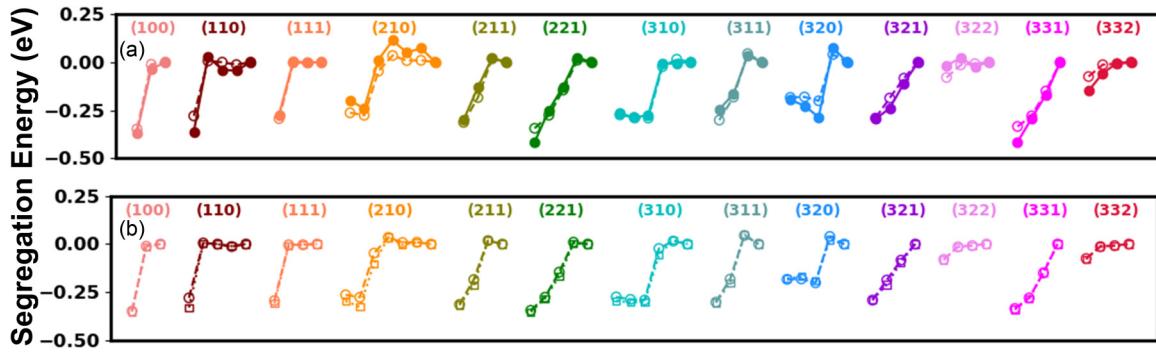


FIG. 3. Mg heat of segregation at 0 K (eV/atom) for Al surfaces with Miller indices no larger than 3. The solute's energies are shown to occupy layers of increasing depth from the surface from left to right for each surface. (a) Comparison between DFT filled circles/solid line and DNP open circles/dashed line using 2×2 surface supercells. (b) Comparison between DNP with 2×2 (open) circles, dashed/line and 8×8 (open) squares, dashed line, surface supercells. Lines are added to guide the eye.

As a result, Mg prefers to segregate to the top surface layers. From geometrical inspection of the optimized structures, the larger Mg atoms are accommodated on the top surface layers by moving ~ 0.3 Å along the z axis, while Mg atom from the subsurface or subsubsurface layers shows a smaller ~ 0.1 -Å outward movement.

Figure 3(a) compares the DFT segregation energies with the DNP results on the same surface models. As seen from the figure, we have an excellent agreement between DFT and DNP results. Because of the high computational cost of DFT simulations for large systems, all surface calculations in Fig. 3(a) are done using a relatively small 2×2 surface supercell (see Table SIII [51]). We carried out additional calculations using an 8×8 surface supercell utilizing our DNP to investigate the impact of finite-size effects. Figure 3(b) shows an excellent agreement between the small and larger supercells suggesting relatively small finite-size effects. Our results compare well previous results by Liu *et al.*, who reported energies of the Mg heat of segregation [21]. While Deng *et al.* modified analytic EAM (MAEAM) potential [78] observes a similar trend in heats of Mg segregation energies, the reported values are significantly different for all terminations. Both Liu *et al.* and our DNP are similar to the experimentally calculated value of -0.21 eV for the (111) plane [79]. The values are distinct for predictions of Mg heat of segregation energy for (100) and (110) terminations due to these potentials' assumptions and training parameters. Our DNP and DFT Mg surface segregation enthalpy results are consistent with each other and distinct from these EAM potentials.

We have carried out hybrid MC/MD simulations based on energies and forces computed using the DNP to investigate the segregation at finite temperature and higher Mg substitutions. This scheme involves short molecular-dynamics runs and random exchange between atoms at different locations, in which the last configuration is accepted or rejected using a standard Metropolis algorithm. MC/MD is advantageous as it automatically accounts for impurity-impurity or impurity-host interactions, temperature, configurational entropy, and atomic vibrations. Using the optimized lattice constants determined before, from the *NPT* simulations, we constructed slab models for the (100), (110), and (111) surfaces with thicknesses of 80, 64, and 96 layers, respectively. Following MC/MD simulations, we obtained the

slabs' equilibrium structures at various temperatures and Mg compositions.

As the simulation temperature is increased from 200 to 800 K, we observe decreased Mg concentrations at the top layers, as seen in Fig. 4 and Fig. 5. Mg surface segregation is observed to be the largest for (110) surfaces, for all temperatures and Mg compositions, and at temperatures below 800 K [Figs. 4(a), 4(b), and 4(c)]. Comparatively, surface segregation tendency is weakest for the (111) termination across all temperatures and Mg compositions [Fig. 4(c)]. In good agreement with literature reports obtained using EAM2 [21], the termination-dependent segregation tendency follows the ordering: (111) $<$ (100) $<$ (110) [Figs. 4(a) and 4(b)]. We also observe expected decreases in Mg surface enrichment as the temperature increases from 200 to 800 K for all surfaces [Fig. 4(d)], with (111) and (100) showing the lowest and highest Mg enrichment, respectively. Lastly, the surface enrichment results show that a significant proportion of solute atoms are in the surface layer at low total Mg compositions and low temperatures.

As expected, we observe a more significant mixing of Al and Mg in the slab's interior as temperature increases, and an increase in the interior Mg concentration occurs (Fig. S2 [51]). We also observe that Mg segregation is restricted to the 4–5 topmost layers. Mg concentration in these subsurface layers increases linearly with increasing temperature relative to the interior, as is observed in the surface layers at each composition 4, 12, and 20% of all terminations (Fig. S3 [51]). Analysis of the slopes of these fitted lines from Fig. S3 displays the overall changes in the interior Mg concentration of the Al-Mg slabs (Mg = 4, 12, 20%) surface termination dependent with the largest change observed in the order of (100) $>$ (110) $>$ (111) (Fig. S4 [51]). These observations, of the interior Mg concentration, further support that there is less of a driving force for Mg segregation in the (111) terminated slab as temperature and Mg concentration change, e.g., internal Mg concentrations remain relatively high compared to (100) and (110) slabs. Interestingly, regardless of the Al-Mg slab % Mg concentration, the concentrations of the Mg surface (and subsurface) remain relatively consistent for each temperature for a given termination (Fig. 5 and Fig. S3). To directly compare with Liu *et al.* (4% composition) results, we looked at the ratio of surface % Mg to the interior [Fig. 4(d)]. We

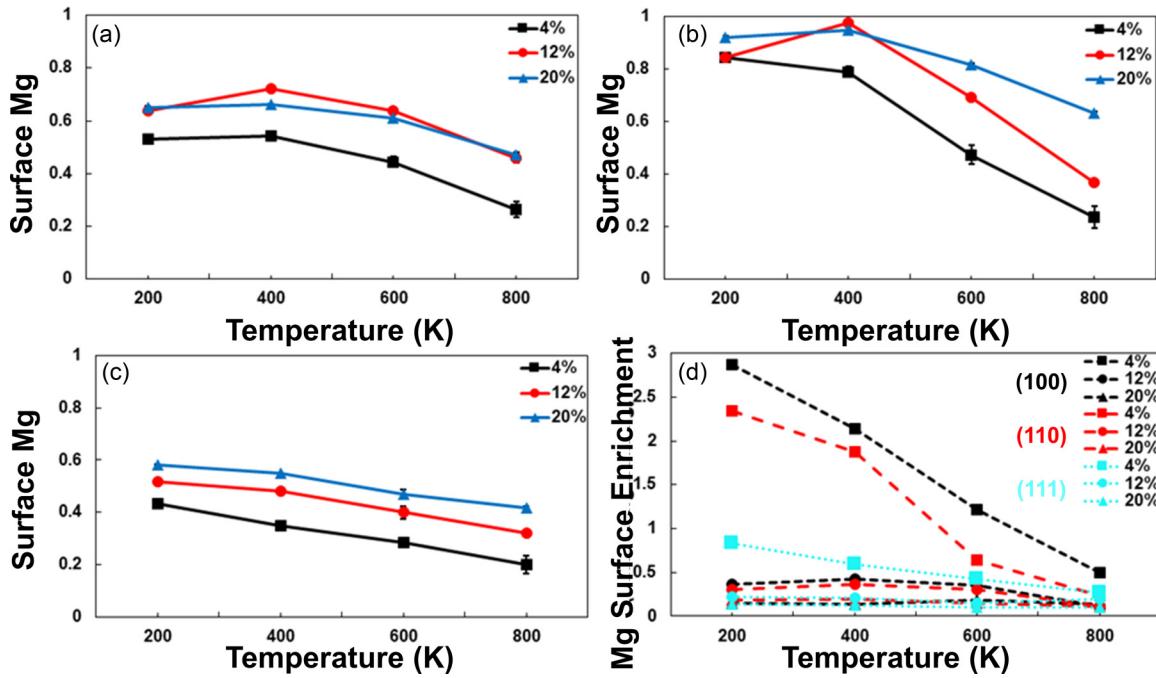


FIG. 4. Mg concentration in the surface layer computed using MC/MD simulations with the DNP at $T = 200, 400, 600, 800$ K for (a) (100), (b) (110), and (c) (111) surfaces, and (d) Mg surface enrichment relative to the bulk (black/dots = (100), red/dashed = (110), and cyan/dots = (111)). Error bars indicate the standard deviation (σ).

470 observe good agreement with Liu *et al.* for the (100) termination,
 471 but weaker agreement in the ratio is observed for the (111) termination.
 472 We also note that for the (110) termination,
 473 the subsurface (second layer) Mg concentration approaches
 474 surface concentration at 800 K for all Al-Mg slabs examined.

475 Ideally, a further quantitative comparison to experimental
 476 results would support our computational models; however,
 477 this comparison is difficult because of experimental parameters
 478 that inhibit comparison at elevated temperatures. Auger

479 electron spectroscopy (AES) investigations provide an ex-
 480 cellent method for Mg surface segregations examination as
 481 the Auger electrons have lower penetration depth in a mate-
 482 rial compared to x-ray photoelectron spectroscopy. An AES
 483 study of Al-0.88at%Mg alloy found a surface enrichment
 484 of Mg about 10.5 at. % at 473 K [80]. Bloch *et al.* also
 485 found Mg's surface segregation for Al-1.45 at. %Mg alloys
 486 using optical second-harmonic generation, and Mg was ob-
 487 served to decrease beyond 510 K due to evaporation [81].
 488 The Mg's evaporation is favorable under the ultrahigh-vacuum
 489 ($<1 \times 10^{-9}$ Torr) conditions required for AES; however, Mg
 490 evaporation is not included in our MC/MD models. Therefore,
 491 we do not expect to see consistent agreement between these
 492 types of high-temperature experimental data for Mg surface
 493 concentration.

494 Nevertheless, these experimental challenges at elevated
 495 temperatures highlight the importance of theoretical models
 496 that can elucidate the temperature-dependent dynamics of Al-
 497 Mg alloys (and other materials); see Fig. 4. The fraction of
 498 Mg (Fig. S2) suggests that Al-Mg alloys with (111) exposed
 499 surfaces (visualized in Fig. 4) are ideal for corrosion resis-
 500 tance as these have the weakest tendency to segregate Mg to
 501 the surface and lower potential of Mg loss via oxidation to
 502 MgO [23]. A similar observation of the (111) Al-Mg surface
 503 using a MAEAM potential was reported by Deng *et al.* [78].
 504 Therefore, we suggest that our hybrid MC/MD approach is
 505 qualitatively consistent with the experimental results.

506 Figure 6 shows the pair distribution function (PDF) for
 507 the three alloy surfaces with 4% Mg doping concentration
 508 at three different temperatures ($T = 400, 600$, and 800 K).
 509 The PDF $g(r) = \langle \sum_i \sum_{j \neq i} \delta(r - r_{ij}) \rangle_{\text{MC/MD}}$ is obtained from
 510 the ensemble average of the configurations generated using
 511 the MC/MD approach. As seen from the figure, the Al-Al,

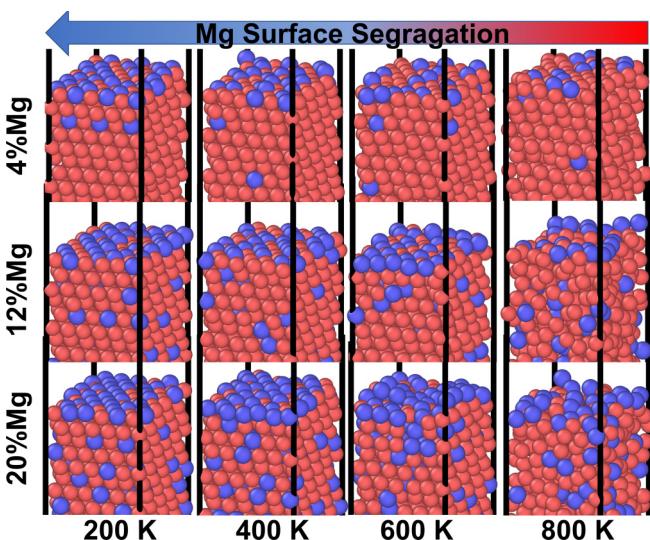


FIG. 5. Geometrical structures of Al-Mg alloy (111) surface with different Mg ratios (Mg = 4, 12, and 20%) at 200, 400, 600, and 800 K using MC/MD and the DNP. The blue circles are Mg, and the red circles are Al.

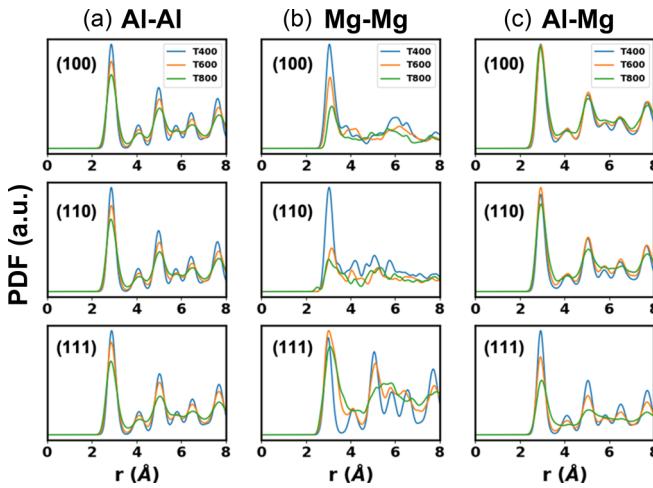


FIG. 6. The ensemble-averaged radial distribution function for (a) Al-Al, (b) Mg-Mg, and (c) Al-Mg for the Al-4%Mg alloy surfaces at three different temperatures and the three different surfaces using MC/MD and the DNP.

Mg-Mg, and Al-Mg PDFs show a dominant first peak at $r \sim 2.85, 3.1$, and 2.9 \AA , respectively, which is consistent with the nearest-neighbor distance in the fcc lattice. The larger values for Mg-Mg and Al-Mg are consistent with Mg's larger ionic size compared to Al. As shown in Fig. 4, at low temperatures, Mg atoms mostly occupy the top surface layer. The Al-Mg increased intensity compared to Mg-Mg indicates that Mg is likely coordinated with Al (not Mg). Indeed, we have verified based on DFT calculations that two Mg atoms do not prefer to be nearest neighbors, likely because of the increase in the misfit strain. Expectantly, the temperature has a smoothening effect on the peaks that are most noted for the open (110) surface for Mg-Mg. The reduction of the peak intensities and boarding concerning temperature indicates a transition from the crystalline fcc state to a more disordered and likely a liquid state [82]. Of all Al-Mg interactions, the (100) surface is the least impacted by temperature, presumably because most Mg has migrated to the surface, segregated, and the phase change is small.

The MC/MD surface segregation results are also valuable in developing a new thermodynamic model, which may provide superior predictions of the surface solute concentration over the standard literature methods. The traditional isotherm used to describe solute segregation, developed by McLean, utilizes statistical mechanics to relate the atomic fraction of solutes in a system's bulk and interface regions [40]. This method for obtaining solute concentrations postrelaxation is applicable to surface interfaces, as presented in Eq. (1):

$$\frac{X_{\text{surf}}}{1 - X_{\text{surf}}} = \frac{X_{\text{bulk}}}{1 - X_{\text{bulk}}} \exp\left(-\frac{\Delta\bar{E}_{\text{seg}}}{kT}\right). \quad (1)$$

The surface segregation concentration, X_{surf} , is described as a function of the bulk solute concentration, X_{bulk} , Boltzmann's constant, k , and temperature, T . The isotherm incorporates an average segregation energy term, $\Delta\bar{E}_{\text{seg}}$, which is the energy difference between a single solute atom in the surface layer and a bulk layered solute atom. The segregation energy is highly dependent on the configurational energy and elastic

strain energy changes during atom exchange [83]. A fundamental assumption made by McLean is that the total solute concentration of the system, X_{tot} , is equal to X_{bulk} , allowing one to produce X_{surf} from X_{tot} .

Fowler and Guggenheim [41] later adapted the McLean isotherm to account for the interaction between segregating solutes by adding a solute-solute interaction term ω . As solutes continue to segregate to the surface layers of a system, the energetic attraction or repulsion between them increases. In Al-Mg alloy, we verified that the segregation tendency declines in the case of a repulsive solute interaction. Adding the solute interaction term to the McLean isotherm, we arrive at Eq. (2):

$$\frac{X_{\text{surf}}}{1 - X_{\text{surf}}} = \frac{X_{\text{bulk}}}{1 - X_{\text{bulk}}} \exp\left(-\frac{\Delta\bar{E}_{\text{seg}} + \omega \cdot X_{\text{surf}}}{kT}\right). \quad (2)$$

Most recently, novel additions to the McLean-Fowler-Guggenheim model were proposed by Wagih and Schuh [42] for grain boundary segregation. In this model, the improvements to the Fowler-Guggenheim isotherm are seen in its superior ability to extend a single set of fitted parameters to a wide temperature and composition space. Although the Wagih-Schuh study is focused at decoupling the effects of grain boundary site spectrality from the model, their other innovations can be applied to surface solute segregation as well. Namely, relevant to our study are their suggestions to cast the Fowler-Guggenheim isotherm with a mixture rule and represent the solute interaction as a piecewise energy term, ΔE^ω , dependent on the dilute limit of the system.

The mixture rule consideration is needed as a system with a low total solute concentration contains a significantly large proportion of solutes located within its surface layers after segregation. As a result, the earlier models' approximation, $X_{\text{tot}} = X_{\text{bulk}}$, is incorrect, and a substitution of the X_{surf} , utilizing the surface site fraction, f , or ratio surface lattice positions to total lattice positions, should be applied. Our experimental results presented in Fig. 4(d) show that the low-temperature, 4% total Mg systems, contain significantly higher proportions of solutes in the surface layers than in the bulk, confirming this step's physical necessity. Poor predictions in the low total solute concentration region arise in the absence of this correction. Thus, we substitute out X_{surf} in Eq. (2) using the mixture rule, Eq. (3), and rewrite, resulting in Eq. (4):

$$X_{\text{tot}} = (1 - f_{\text{surf}})X_{\text{bulk}} + f_{\text{surf}}X_{\text{surf}}, \quad (3)$$

$$X_{\text{tot}} = (1 - f_{\text{surf}})X_{\text{bulk}}$$

$$+ f_{\text{surf}} \left[1 + \frac{1 - X_{\text{bulk}}}{X_{\text{bulk}}} \exp\left(\frac{\Delta\bar{E}_{\text{seg}} + \Delta E^\omega}{kT}\right) \right]^{-1}. \quad (4)$$

Equation (4) is solved self-consistently to determine X_{bulk} from X_{tot} , which simultaneously solves X_{surf} via Eq. (3). The segregation energy, $\Delta\bar{E}_{\text{seg}}$, and solute interaction energy, ΔE^ω , are determined by fitting the equations to experimental results.

Further, adopting the Wagih-Schuh approach for surfaces is accomplished by evaluating the solute interaction energy as a piecewise function. As presented in Eq. (5), the interaction energy is 0 below the dilute limit, and a linear function above it, which is necessary as the solute interaction energy

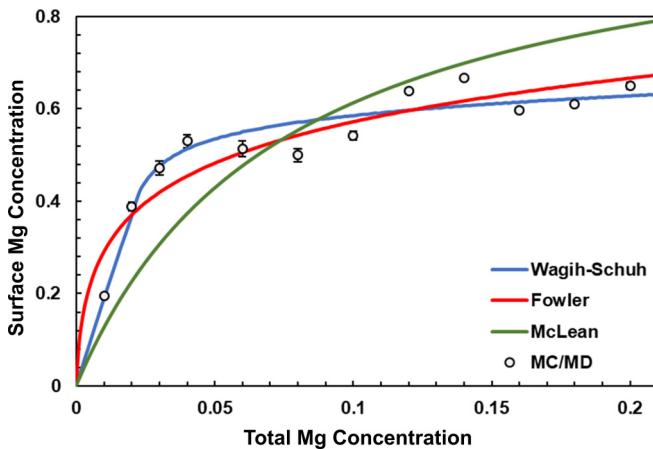


FIG. 7. MC/MD simulation data and fitted predictions of the McLean [Eq. (1)] [40], Fowler-Guggenheim [Eq. (2)] [41], and Wagih-Schuh [Eqs. (3), (4), and (5)] [42] models for the (100) surface at 200 K. Error bars indicate the standard deviation (σ).

is negligible at low total concentrations ($<10\% X_{\text{surf}}$) due to neighboring solute atoms being too distant to interact given the interatomic potential [42]

$$\Delta E^\omega(X_{\text{surf}}) = \begin{cases} 0 & X_{\text{surf}} \leq X_0 \\ \omega(X_{\text{surf}} - X_0) & X_{\text{surf}} > X_0 \end{cases} \quad (5)$$

The surface-adapted Wagih-Schuh model shows a significant improvement in its predictive capabilities over the Fowler-Guggenheim and McLean models. Average prediction errors, or the mean of differences between MC/MD data points and fitted isotherm predictions, are reduced, especially around the low total solute concentration region ($\leq 2\% \text{ Mg}$). Figure 7 displays one such fitting of each isotherm for the (100) surface at 200 K, in which the Wagih-Schuh model's prediction error is 50% that of the Fowler-Guggenheim model and 33.3% of the McLean model, Fig. 8.

The average prediction errors for the entire temperature and surface termination space are presented in Fig. 8. Overall, the Wagih-Schuh model displays the lowest errors, with the most noticeable differences in the (100) surface termina-

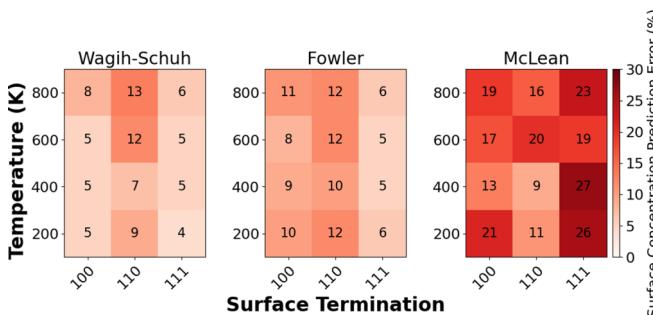


FIG. 8. Average prediction errors of each model with simulation results. The difference between each model's fitted curves and actual simulation points is averaged along with the entire composition range. The errors for each temperature and surface termination combination are labeled according to the colormap bar on the right.

tion. The improved predictive capabilities are attributed to the piecewise function accounting for the low concentration region where solutes do not interact, as instead, solutes separate beyond their interaction distance. The mixture rule casting of the Fowler-Guggenheim model also enables a better representation of the low surface concentration region since most solute atoms are in the surface layer. Full parameter fitting results from each isotherm are found in Table SIV [51].

Consistent with our simulation results, the isotherm predictions of the (111) surface show the lowest concentrations and segregation energies. A possible explanation is that the higher packing density of (111) improves the likelihood that neighboring solute atoms fall within the interatomic potential's interaction distance. A shorter average separation between solutes increases the likelihood that each solute atom will interact with more than one neighboring solute [42]. Given that the interaction's nature is repulsive, this limits solute migration to the highly concentrated surface. The radial distributions shown in Fig. 6 support this correlation; the (111) surface contains the largest variance of solute pair radii and the largest solute separation. Additionally, the close packing of (111) may enhance the misfit strain between paired solutes, spreading energetically favorable surface positions. It remains unclear the relation between the dilute limit of the system and the surface termination. A variable dilute limit would affect the piecewise solute interaction energy term in determining which concentration solute interactions begin. Further testing of the thermodynamic model is needed to determine the dilute limit's physical nature, enabling more efficient parameter fitting.

IV. CONCLUSIONS

We have developed a robust atomistic potential based on machine learning principles using the DeepPot-SE approach. Our DNP was validated against DFT values in the literature or calculated by us, confirming that the developed Al-Mg DNP has high fidelity for calculating Al and Mg's general bulk properties. Furthermore, our DNP can reproduce DFT benchmarks for volume, density, and Al-Mg alloy systems' formation energy using a MC/MD approach. Additionally, we can accurately model Mg surface segregation behavior in larger simulation cells ($8 \times 8 \times 8$) while maintaining DFT accuracy. Our results suggest that the (111) surface is ideal for optimal corrosion resistance as Mg segregation is the lowest compared to the (100) and (110) surfaces. Surprisingly, careful selection of the Al-Mg alloy's Mg composition also impacts the surface segregation where 12–20% total Mg concentration shows the weakest segregation at the surface and a more uniform Mg distribution throughout. A thermodynamic model of Mg surface segregation in Al-Mg systems was developed, by adapting the isotherm by Wagih-Schuh to accurately predict surface solute concentrations in coordination with these results, which was achieved by eliminating the bulk solute approximation made in earlier models and incorporating a piecewise solute interaction energy term. The thermodynamic model's predictions also support the (111) surface having the lowest surface segregation energy of all studied terminations, which is explained by the higher packing density of (111), causing a smaller average separation between solute atoms and thus an increased misfit strain which spreads apart

energetically favorable surface positions. Future work is needed to mathematically describe the termination dependency of the dilute limit to enable faster parameter fitting of the isotherm. This work will help accelerate the selection and real-world testing of Al-Mg alloys that are more resistant to corrosion by serving as the basis for developing of DNP to evaluate the addition of dopants, such as beryllium [84].

The training database and the potential are freely available [85].

ACKNOWLEDGMENTS

We are grateful for the U.S. National Science Foundation Award No. [CSSI-2003808](#). Also, we are grateful for computing time provided in part by the Pittsburgh Center for Research Computing (CRC) resources at the University of Pittsburgh and Argonne Leadership Computing Facility, a DOE Office Science User Facility supported under Contract No. [DE-AC02-06CH11357](#).

[1] W. F. McDonough and S.-S. Sun, *Chem. Geol.* **120**, 223 (1995).

[2] Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, and T. Shen, *J. Mater. Sci. Technol.* **57**, 113 (2020).

[3] A. A. Luo, E. A. Nyberg, K. Sadayappan, and W. Shi, in *Essential Readings in Magnesium Technology*, edited by S. N. Mathaudhu *et al.* (Springer International Publishing, Cham, 2016), pp. 41.

[4] H. Friedrich and S. Schumann, *J. Mater. Process. Technol.* **117**, 276 (2001).

[5] X. J. Wang, D. K. Xu, R. Z. Wu, X. B. Chen, Q. M. Peng, L. Jin, Y. C. Xin, Z. Q. Zhang, Y. Liu, X. H. Chen, G. Chen, K. K. Deng, and H. Y. Wang, *J. Mater. Sci. Technol.* **34**, 245 (2018).

[6] N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K. U. Kainer, N. Hort, and C. Blawert, *Adv. Eng. Mater.* **7**, 659 (2005).

[7] S. Toros, F. Ozturk, and I. Kacar, *J. Mater. Process. Technol.* **207**, 1 (2008).

[8] S. You, Y. Huang, K. U. Kainer, and N. Hort, *J. Magnes. Alloy.* **5**, 239 (2017).

[9] G. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, *Corrosion Cost and Preventive Strategies in the US* (NACE International, Houston, TX, 2001).

[10] R. E. Ricker, *Science* **252**, 1232 (1991).

[11] H. Liu, F. Cao, G.-L. Song, D. Zheng, Z. Shi, M. S. Dargusch, and A. Atrens, *J. Mater. Sci. Technol.* **35**, 2003 (2019).

[12] E. Ghali, W. Dietzel, and K.-U. Kainer, *J. Mater. Eng. Perform.* **13**, 7 (2004).

[13] N. Mo, Q. Tan, M. Birmingham, Y. Huang, H. Dieringa, N. Hort, and M.-X. Zhang, *Mater. Des.* **155**, 422 (2018).

[14] G. K. Sigworth, *Best Practices in Aluminum Metalcasting* (American Foundry Society, Schaumburg, IL, 2014).

[15] R. Bruce, L. Ingberman, and A. Jarabek (Environmental Protection Agency, Washington, DC, 1998), https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=473360.

[16] R.-c. Zeng, J. Zhang, W.-j. Huang, W. Dietzel, K. U. Kainer, C. Blawert, and W. Ke, *Trans. Nonferrous Met. Soc.* **16**, s763 (2006).

[17] H. Hornberger, S. Virtanen, and A. R. Boccaccini, *Acta Biomater.* **8**, 2442 (2012).

[18] C. Nyshadham, M. Rupp, B. Bekker, A. V. Shapeev, T. Mueller, C. W. Rosenbrock, G. Csányi, D. W. Wingate, and G. L. W. Hart, *Npj Comput. Mater.* **5**, 51 (2019).

[19] G. P. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, *Nat. Commun.* **10**, 2339 (2019).

[20] A. Vaida, J. Guénoléb, A. Prakash, S. Korte-Kerzelb, and E. Bitzeka, *Materialia* **7**, 100355 (2019).

[21] X.-Y. Liu, P. Ohotnický, J. Adams, C. L. Rohrer, and R. J. Hyland, *Surf. Sci.* **373**, 357 (1997).

[22] M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, *Philos. Mag.* **89**, 3269 (2009).

[23] X. Y. Liu and J. B. Adams, *Acta Mater.* **46**, 3467 (1998).

[24] Y. Juan, Y. Dai, Y. Yang, and J. Zhang, *J. Mater. Sci. Technol.* **79**, 178 (2021).

[25] J. E. Gubernatis and T. Lookman, *Phys. Rev. Mater.* **2**, 120301 (2018).

[26] K. Choudhary, B. DeCost, and F. Tavazza, *Phys. Rev. Mater.* **2**, 083801 (2018).

[27] L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, *Phys. Rev. Mater.* **3**, 023804 (2019).

[28] S. Lorenz, A. Groß, and M. Scheffler, *Chem. Phys. Lett.* **395**, 210 (2004).

[29] B. G. Sumpter and D. W. Noid, *Chem. Phys. Lett.* **192**, 455 (1992).

[30] S. Manzhos, R. Dawes, and T. Carrington, *Int. J. Quantum Chem.* **115**, 1012 (2015).

[31] S. Manzhos and T. Carrington, Jr., *J. Chem. Phys.* **125**, 084109 (2006).

[32] A. P. Bartok, M. C. Payne, R. Kondor, and G. Csanyi, *Phys. Rev. Lett.* **104**, 136403 (2010).

[33] J. Behler and M. Parrinello, *Phys. Rev. Lett.* **98**, 146401 (2007).

[34] S. Chmiela, H. E. Sauceda, K. R. Muller, and A. Tkatchenko, *Nat. Commun.* **9**, 3887 (2018).

[35] L. Zhang, J. Han, H. Wang, W. A. Saidi, R. Car, and E. Weinan, *End-to-End Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems* (Curran Associates, Inc., Red Hook, NY, 2018), p. 4441-4451.

[36] DeePMD-Kit <https://github.com/deepmodeling/deeppmd-kit#the-deeppot-se-model>.

[37] H. Wang, L. Zhang, J. Han, and E. Weinan, *Comput. Phys. Commun.* **228**, 178 (2018).

[38] C. M. Andolina, P. Williamson, and W. A. Saidi, *J. Chem. Phys.* **152**, 154701 (2020).

[39] C. M. Andolina, M. Bon, D. Passerone, and W. A. Saidi, *J. Phys. Chem. C* **125**, 17438 (2021).

[40] D. McLean, *Grain Boundaries in Metals* (Clarendon Press, Oxford, 1957).

[41] R. H. Fowler, *Statistical Dhermodynamics* (CUP Archive, Cambridge, U.K., 1939).

[42] M. Wagih and C. A. Schuh, *Acta Mater.* **199**, 63 (2020).

[43] G. Kresse and J. Furthmüller, *Phys. Rev. B* **54**, 11168 (1996).

[44] M. Shishkin, M. Marsman, and G. Kresse, *Phys. Rev. Lett.* **99**, 246403 (2007).

[45] G. Kresse and J. Hafner, *Phys. Rev. B* **47**, 558 (1993).

[46] G. Kresse and J. Furthmüller, *Comput. Mater. Sci.* **6**, 15 (1996).

[47] J. P. Perdew, K. Burke, and M. Ernzerhof, *Phys. Rev. Lett.* **77**, 3865 (1996).

[48] G. Kresse and D. Joubert, *Phys. Rev. B* **59**, 1758 (1999).

[49] G. Kresse and J. Hafner, *J. Phys.: Condens. Matter* **6**, 8245 (1994).

[50] M. Methfessel and A. T. Paxton, *Phys. Rev. B* **40**, 3616 (1989).

[51] See Supplemental Material at <http://link.aps.org/supplemental/10.1103/PhysRevMaterials.xx.xxxxxx> for comparison of validation properties to EAM/MEAMs; more details regarding the calculation of nontypical lattice configurations are listed; equations for elastic constant calculations, and supporting figures/tables for the Mg surface segregation in Al-Mg alloys.

[52] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, *APL Mater.* **1**, 011002 (2013).

[53] W. R. Tyson and W. A. Miller, *Surf. Sci.* **62**, 267 (1977).

[54] J. D. Cox, D. D. Wagman, V. A. Medvedev, and D. P. Wagman, *CODATA: Key Values for Thermodynamics* (Hemisphere Pub, New York, NY, 1989).

[55] A. S. Cooper, *Acta Crystallogr.* **15**, 578 (1962).

[56] W. Triftshäuser, *Phys. Rev. B* **12**, 4634 (1975).

[57] M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. G. Legnini, and R. W. Siegel, *Phys. Rev. B* **17**, 3444 (1978).

[58] R. Q. Hood, P. R. C. Kent, and F. A. Reboreda, *Phys. Rev. B* **85**, 134109 (2012).

[59] R. Qiu, H. Lu, B. Ao, L. Huang, T. Tang, and P. Chen, *Philos. Mag.* **97**, 2164 (2017).

[60] G. N. Kamm and G. A. Alers, *J. Appl. Phys.* **35**, 327 (1964).

[61] M. Baucio, *ASM Metals Reference Book* (ASM International, Hemisphere Pub, Ohio, 1993).

[62] C. Kittel and P. McEuen, *Introduction to Solid State Physics* (Wiley, New York, 1976), Vol. 8.

[63] F. W. Von Batchelder and R. F. Raeuchle, *Phys. Rev.* **105**, 59 (1957).

[64] P. Tzanetakis, J. Hillairet, and G. Revel, *Phys. Status Solidi B* **75**, 433 (1976).

[65] L. J. Slutsky and C. W. Garland, *Phys. Rev.* **107**, 972 (1957).

[66] S. Plimpton, *J. Comput. Phys.* **117**, 1 (1995).

[67] P. Hirel, *Comput. Phys. Commun.* **197**, 212 (2015).

[68] G. Henkelman and H. Jónsson, *J. Chem. Phys.* **113**, 9978 (2000).

[69] J. L. Whitton, *Vacuum* **33**, 367 (1983).

[70] S. M. Rassoulinejad-Mousavi and Y. Zhang, *Sci. Rep.* **8**, 2424 (2018).

[71] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S.-G. Kim, G. J. Wagner, A. Moitra, and M. I. Baskes, *Phys. Rev. B* **85**, 245102 (2012).

[72] A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason, and T. Mueller, *Npj Comput. Mater.* **5**, 112 (2019).

[73] C. A. Becker and M. Kramer, *Modell. Simul. Mater. Sci. Eng.* **18**, 074001 (2010).

[74] W. Gaasior, Z. Moser, and J. Pstruš, *J. Phase Equilib.* **21**, 167 (2000).

[75] T. Gancarz, J. Jourdan, W. Gasior, and H. Henein, *J. Mol. Liq.* **249**, 470 (2018).

[76] H. Okamoto, *J. Phase Equilibria Diffus.* **19**, 598 (1998).

[77] F. Berthier, B. Legrand, and G. Tréglia, *Acta Mater.* **47**, 2705 (1999).

[78] H. Deng, W. Hu, X. Shu, and B. Zhang, *Appl. Surf. Sci.* **221**, 408 (2004).

[79] C. Colinet, A. Pasturel, and P. Hicter, *Calphad* **9**, 71 (1985).

[80] C. Lea and C. Molinari, *J. Mater. Sci.* **19**, 2336 (1984).

[81] J. Bloch, D. J. Bottomley, J. G. Mihaychuk, H. M. van Driel, and R. S. Timsit, *Surf. Sci.* **322**, 168 (1995).

[82] Y. Liu, Y. Chen, and C. Yang, *AIP Adv.* **5**, 087147 (2015).

[83] M. Hoffmann and P. Wynblatt, *Metall. Trans. A* **20**, 215 (1989).

[84] N. Smith, B. Gleeson, W. A. Saidi, A. Kvithyld, and G. Tranell, *Ind. Eng. Chem. Res.* **58**, 1434 (2019).

[85] The training database and the potential are freely available at saidigroup.pitt.edu or by contacting the corresponding author.