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Work-related musculoskeletal disorders (MSDs) are often observed in human-robot collaboration (HRC), a
common work configuration in modern factories. In this study, we aim to reduce the risk of MSDs in HRC
scenarios by developing a novel model-free reinforcement learning (RL) method to improve workers’
postures. Our approach follows two steps: first, we adopt a 3D human skeleton reconstruction method to
calculate workers’ Rapid Upper Limb Assessment (RULA) scores; next, we devise an online gradient-based
RL algorithm to dynamically improve the RULA score. Compared with previous model-based studies, the
key appeals of the proposed RL algorithm are two-fold: (i) the model-free structure allows it to “learn” the
optimal worker postures without need any specific biomechanical models of tasks or workers, and (ii) the
data-driven nature makes it accustomed to arbitrary users by providing personalized work configurations.
Results of our experiments confirm that the proposed method can significantly improve the workers’

postures.

INTRODUCTION

Musculoskeletal disorders (MSDs) are the most common
occupational injuries in the industry (Kang et al., 2014; Stack
et al., 2016). The causes of MSDs can be repetitive motions,
awkward postures, and high workloads (Stack et al., 2016).
There were approximately 273,000 day-away-from-work cases
related to MSDs reported in 2017 in the U.S. (U.S. Bureau of
Labor Statistics, 2020). The adoption of industry robots can
relieve workers from repetitive work and heavy workloads
(Gualtieri et al., 2021). For example, a variety of robots have
been designed to move heavy parts for human workers, and
consequently can help reduce the risk of low-back MSDs.
Nevertheless, not all tasks can be completed by robots alone.
Some still require human workers working together with robots
for quality control purposes, especially in advanced
manufacturing and assembly (Bi et al., 2021). This human-
assisted work configuration is called human-robot collaboration
(HRC).

Yet the risk of MSDs may still exist in HRC tasks. When robots
are pre-programmed to work at a preset position, this position
may not be suitable for all workers due to their individual
variability such as body dimensions (Figure 1), preferences, and
other personalized characteristics. Consequently, HRC without
personal customization may lead to awkward postures for
workers and in turn, increase MSDs risks(Anita et al., 2014).

Figure 1. A set
position may not be
suitable for workers
with different body
features. A taller
worker (left) has to
bend down to finish
an HRC tasks

- N

To reduce the risk of MSDs during HRC, the robot-end effector
position should be adaptive and take into consideration
ergonomics factors. To date, a number of optimization methods
have been proposed to improve workers’ posture during HRC
by adjusting the location of robots’ end effectors. In some
studies (Kim et al., 2017; Peternel et al., 2018), optimization
methods are developed based on body joint loadings that are
estimated through a biomechanical model or measured from
EMG feedback. Yet, the estimated joint loading can be sensitive
to the validity of the adopted biomechanical models. In some
other studies (Busch et al., 2017, 2018; Roveda et al., 2020),
optimizations are performed on ergonomic assessment
indicators. For example, in a recent study (Liau & Ryu, 2020),
a Rapid Upper Limb Assessment (RULA) score is used as an
indicator of workers’ posture health during HRC. RULA is a
widely used and validated ergonomics tool in evaluating the
overall MSD risks (McAtamney & Corlett, 1993; Micheletti
Cremasco et al., 2019) A greater RULA score indicates a
greater risk of MSD.

Traditionally, assessment and calculation of RLUA score
require safety practitioners to manually code body postures.
This process is time-consuming and requires ergonomic
expertise. In previous studies, researchers have adopted
wearable inertial measurement units to track workers’ body
postures and estimate the ergonomic score for optimizing a
robot’s end effector location and improving workers’ posture
(Busch et al., 2017, 2018). Nevertheless, wearable sensors may
be not suitable in certain field applications because they can
affect worker’s natural body motion at work. An alternative
way to track body motion and automatically assess the RULA
score is through camera and computer vision (Li et al., 2020)

Once workers’ ergonomics assessment scores are computed,
one can further apply different optimization algorithms to
adjust robots’ end effector locations with an objective of
minimizing workers’ ergonomic assessment risk. Prior studies
have proposed optimization methods where the ergonomic
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assessment was performed on the simulated human pose during
HRC tasks (Busch et al., 2017; Yazdani et al., 2021). However,
human pose simulation can be an ill-posed problem (Qu &
Nussbaum, 2008) because 1) workers have a substantial amount
of redundant degree of freedoms and 2) the range of motion
limits may vary from person to person (Park et al., 2010). To
address these issues, a novel model-free reinforcement-learning
(RL) algorithm is proposed in this study, which is a trial-and-
error method (Sutton & Barto, 2018) that can optimize workers’
RULA scores without needing a full body biomechanical
model. Prior to this study, RL methods have been applied in
robot action planning in different scenarios (Degris et al., 2012;
Hu et al, 2019) and these applications exhibit promising
potentials in optimization tasks.

In the current study, we developed a novel model-free RL
method called Gradient-based Online Learning Algorithm in
HRC (GOLA-HRC) which can be used to effectively minimize
workers’ RULA scores. The data-driven nature of the proposed
method allows the robot to “learn” the optimal effector location
and provide personalized configurations for individual worker.
We further conducted a preliminary experiment to examine the
effect this algorithm on worker posture improvement. Results
of our experiments confirm that our approach is effective in
improving the worker’s posture.

METHOD
Automatic RULA score estimation

Human pose reconstruction Adopting a computer vision
method developed in our previous study (Wang et al., 2021),
the present work will calculate the RULA score from workers
visualized joint angles. The first step in RULA score estimation
is to reconstruct workers’ poses from a single RGB camera. The
VideoPose3D model is adopted which predicts the 3D human
key-joint positions of a worker from camera captured videos.
The mean absolute error of the estimated joint positions is
reported to be less than 50 mm (Pavllo et al., 2019).

A refined RULA score. Traditional RULA assessment is a step
function which intends to be insensitive when the change of
body joint angle is relatively small (Note that the gradient of the
RULA is zero). To establish a refined RULA score so that it can
be used to calculate the gradient during optimization, we
propose to fit the RULA score into a continuous linear function
(Figure 2), which is referred as continuous RULA (cRULA).
Because RULA does not consider the lower extremity posture,
we added ‘knee’ into cRULA in order to capture deep squat
postures. Specifically, a punishment score of 2 is added to
cRULA whenever the workers’ knee angles were over 20
degrees. The scores of all joints will be then summed up to form
an overall cRULA score that will be used in our RL algorithm.
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Figure 2. Comparison of RULA and cRULA score of worker’s
upper arm. Left: Upper arm cRULA vs RULA; Right: Trunk
cRULA vs RULA

Gradient-based online learning in HRC (GOLA-HRC)

Variables to adjust An HRC task was designed as a testbed for
developing the GOLA-HRC method. In this task, the
participants were asked to insert wires into a specific location
on a breadboard gripped by a collaborative robot (Sawyer,
Rethink Robotics). This task simulated a common human-
assisted assembly task. Workers’ posture is determined by the
location and orientation of the robot’s end-effector.
Specifically, the adopted robot’s end-effector has 6 degree of
freedom (DoF), including three translational DoF (x, y, z,
shown in Figure 3) and three rotational DoF («, 8, v, Figure 3).
Therefore, one can adjust these six variables to change workers’
RULA score. To reduce the state space and improve learning
speed, in this study some variables that did not substantially
affect workers” pose were excluded. For instance, the
participants were free to move during the experiment.
Therefore, the end effector’s horizontal translational motions (x
and z, Figure 3) would not affect workers’ postures and thus
could be excluded. Similarly, the rotational motion along the £5-
axis (Figure 3) could be compensated by the horizontal motions
of workers. In addition, due to the nature of the adopted fine
wire insertion task, the rotational motion along the y-axis does
not affect workers’ posture. Therefore, there were two essential
variables to adjust during the RL: translational motion along the
y-axis, which determined the height of the end-effector, and
rotational motion along the x-axis, which determined the pitch
angle of the end-effector.

End
Effector

Figure 3. Experimental setting: A camera is placed 3 meters
away from the robot. The origin of the robot coordinates is set
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on the robot base. The directions of translational axes x, y, z
and rotational axes «, 8,y are marked on the figure.

RL algorithm. The algorithm searches for a set of variables that
minimize the cRULA score of a worker. Following the
estimation method described earlier, a cRULA score is to be
estimated each time a worker finishes a fine wire insertion task,
and a posture-cRULA pair is generated.

The gradient th and V;_ are defined in Equation (1) and (2).

This gradient indicates how the cRULA is improved or
deteriorated by translational motion h and rotational motion a.
Using the gradient, the future end effector location at step t + 1
is determined by the previous end effector location at time t and
search step lengths (h and a) as described in Equation (3).
Inspired by the optimizer Adams (Sun et al., 2019), we
introduce a discounting factor a to control the learning rate
dynamically. We also impose constraints on the step lengths s,
and s, to guarantee a stable search process. Learning rates [,
and [, involve after each iteration according to Equation (4).
The termination condition is defined in constraint (5). Here,
€ >0.3 is an error parameter that trades off between
convergence speed and solution precision. Note that when € is
large (small) the algorithm converges more quickly (slowly) but
yielding a more (less) accurate solution. The flow chart of
experiment process description was shown in Figure 4, and the
detailed algorithm is shown in Algorithm 1.

Ve, = (RULAY —RULA,) / h, 1)

Vi,= (RULA? —RULA;) / a 2)
= min (L. - % 4 = min(l - . o

h = min (lp th, sp) 7 ,a=min(l, -V, s,) el 3)

Pt+1=Pt+h0t+1=0t+a, lp,lo=0('lp,a'lo (4)

|th|<€' ||7t0|<E )

Here V, is the gradient, P, 4, P; are positions at step t + 1 and
step t. [, and [, are the learning rates of the position and the
orientation, s, and s, are step length constraints of the position
and the orientation. « is the discounting factor. € > 0 is the
error parameter one may select in order to achieve a proper
tradeoff between convergence speed and solution precision for
GOLA-HRC; in particular, when € is large (small) the
algorithm converges more quickly (slowly) but yielding a more
(less) accurate solution..
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Figure 4. Flow chart of GOLA-HRC.

Algorithm 1: GOLA-HRC
Input: initial position and orientation P,. Og; searching search
step lengths hy, aq; step limits sy, s,; learning rates I, [,;
discounting factor a

set P = Py, O= 0, move end effector to (P, Q).
fort=0.1,2,.... Ndo

set Pe = Pey +he 1,0y = 0;_1 + a;
Move to (P;, 0;), Record RULA,;
Move to (P + he, 0;). record RULAY;
Move to (P;, 0; + a;), record RULAS ;

Ve, = (RULAY —RULA;) /hs,

Ve, = (RULAY — RULA,)/ ay:

if |th| <eand |V, | < € then:

| end loop

Vt,
= i . .
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The initial end effector location in y axis and orientation « are
set to 1.055m and 0 degree (along x axis of the robot). This
setting will place the breadboard at the 50%ile elbow height
over the entire population as elbow height is referred as a
preferred height for assembly tasks in terms of reducing MSD
risks (Freivalds & Niebel, 2008).

Participants, collaboration task and experiment setup

To evaluate the effectiveness of the GOLA-HRC method, we
performed a validation study. As shown in Figure 3, a gripper
was 3D printed and attached to the end effector of the
collaborative robot to hold a breadboard (5.5 cm x 17 cm). The
robot was connected to a workstation with a GPU (NVIDIA
RTX 2080Ti) that supported computer vision algorithms. All
the computer vision algorithms, cRULA score calculations, and
RL algorithm were programmed in Python (Ver. 3.6) on Linux
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platform (Ver. 16.04). The workstation-robot communication
was through Intera SDK (Ver. 5.3), which is based on Robot
Operating Systems (ROS Kinetic). A webcam (Model:
MF920P, Spedal) was placed 3 meters away from the robot to
capture the image of the participants and was connected to the
workstation.

Eight participants were recruited (4 males and 4 females,
average age of 26.3 + 2.1, height of 173 + 12.0 cm, weight of
73 +16.3 kg). During the experiment, each participant was first
asked to repetitively perform the wire insertion task until the
estimated cRULA scores through computer vision converged
with € = 0.3, that is, until ||7tp| < 0.3and |V, | <0.3. After

each repetition, the location of the robot’s end effector was
adjusted by applying the GOLA-HRC for minimizing the
cRULA score. The end effector location with the converged
cRULA score is referred as “learnt location” hereafter. The
participants were then asked to move the end-effector to
positions that they felt most comfortable to work with. This
position is referred as “worker-selected location” hereafter.
Once the learnt location and worker-selected location were
determined, the participants performed the wire insertion task
three times under each location as well as the initial end effector
location (50%ile elbow height). The sequences for each
participant of the testing were counter-balanced.

Statistical analysis

The cRULA score associated with the learnt location was
compared with those associated with the elbow height and
worker-selected locations. Analysis of variance (ANOVA) and
post-hoc Tukey test were performed to investigate whether the
different end-effect locations had significant effects on cRULA.

RESULTS

As expected, the ANOVA indicated that the end-effector
locations had significant effects on the workers’ cRULA score
(F(2, 14) =34.05, p < 0.0001).The result of the post-hoc Tukey
test indicates that the cRULA score of learnt location and elbow
height were significantly different (p = 0.0026), and the cRULA
score of worker-selected and elbow locations were significantly
different (p = 0.0074). Figure 5 shows the means and quantiles
of the result.
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Figure 5. Means and quantiles of cRULA score under different
end effector location. The red box plots show the 90%, 75%,
50%, 25%, 10% quantiles.

DISCUSSIONS
cRULA score vs Iterations

Figure 6 shows how the GOLA-HRC improved a participant’s
working posture step by step. For this specific participant, the
initial position was too low and resulted in a forward trunk
bending posture. By calculating the gradient of the cRULA
score, the algorithm adjusted the location and orientation of the
end-effector until the cRULA score converged.

cRULA vs Iterations

1 4 7 1013 16 19

Figure 6. Left: Six postures over 20 iterations. The numbers
below indicates the number of iterations. Right: The cRULA
scores over each iteration.

Effectiveness of GOLA-HRC .

As expected, the cRULA scores of the elbow height were the
greatest on average and significantly different from the cRULA
scores of the learnt locations, which indicates that the GOLA-
HRC can effectively improve the posture of a worker and thus
reduce the MSD risks. In addition, the cRULA scores of
worker-selected location were significantly lower than the
cRULA scores of elbow height. This is aligned with the
assumption in psychophysics studies — workers to some extent
are aware of whether a specific body posture is safe or not for
them (Snook & Ciriello, 1991).

Personalization of cRULA

Another appeal of the proposed model-free RL method is that
the optimization criteria can be conveniently personalized for
workers. For instance, workers who already have neck
discomfort should ensure their neck is in a neutral posture. In
that case, one can apply a weight factor to the Neck score in
cRULA before applying the RL algorithm. In a preliminary
experiment, the robot’s end effector moved to a higher position
when the weight factor of Neck is set to two and thus resulted
in a smaller neck forward bending angle but a greater arm
elevation angle (Figure 7)
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Figure 7. Left: The optimized posture in original RULA.
Right: The optimized posture with doubled weight on neck
angle.

Limitations

A few limitations need to be addressed. First, as this study
adopted the computer vision algorithm, a camera needs to be
placed where its field of view is not blocked. Otherwise the
error of identified joint location will be significantly greater. To
address this problem, one could consider using a multi-camera
computer vision system. Second, assessment of RULA scores
is based on workers’ joint angles as well as workloads (e.g., the
weight of the material being handled). As this study focuses on
improving the workers’ postures, the workload factors were not
included in the assessment.

CONCLUSION

In this study we proposed a worker posture optimization
method during HRC. A computer vision method was first
adopted to recognize human posture and estimated a cRULA
score. A model-free gradient descent optimization algorithm
was then developed to lower the cRULA score of a worker. The
preliminary experimental result indicated that the GOLA-HRC
had a good potential to effectively lower workers’” cRULA
score during HRC tasks and thus reduce the risk of MSDs. Next,
we will recruit additional participants to validate the
generalizability of GOLA-HRC.
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