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Work-related musculoskeletal disorders (MSDs) are often observed in human-robot collaboration (HRC), a 
common work configuration in modern factories. In this study, we aim to reduce the risk of MSDs in HRC
scenarios by developing a novel model-free reinforcement learning (RL) method to improve workers’ 
postures. Our approach follows two steps: first, we adopt a 3D human skeleton reconstruction method to 
calculate workers’ Rapid Upper Limb Assessment (RULA) scores; next, we devise an online gradient-based 
RL algorithm to dynamically improve the RULA score. Compared with previous model-based studies, the 
key appeals of the proposed RL algorithm are two-fold: (i) the model-free structure allows it to “learn” the 
optimal worker postures without need any specific biomechanical models of tasks or workers, and (ii) the 
data-driven nature makes it accustomed to arbitrary users by providing personalized work configurations.
Results of our experiments confirm that the proposed method can significantly improve the workers’
postures.

INTRODUCTION

Musculoskeletal disorders (MSDs) are the most common 
occupational injuries in the industry (Kang et al., 2014; Stack 
et al., 2016). The causes of MSDs can be repetitive motions, 
awkward postures, and high workloads (Stack et al., 2016).  
There were approximately 273,000 day-away-from-work cases 
related to MSDs reported in 2017 in the U.S. (U.S. Bureau of 
Labor Statistics, 2020). The adoption of industry robots can 
relieve workers from repetitive work and heavy workloads 
(Gualtieri et al., 2021). For example, a variety of robots have 
been designed to move heavy parts for human workers, and 
consequently can help reduce the risk of low-back MSDs. 
Nevertheless, not all tasks can be completed by robots alone. 
Some still require human workers working together with robots 
for quality control purposes, especially in advanced 
manufacturing and assembly (Bi et al., 2021). This human-
assisted work configuration is called human-robot collaboration 
(HRC). 

Yet the risk of MSDs may still exist in HRC tasks. When robots 
are pre-programmed to work at a preset position, this position 
may not be suitable for all workers due to their individual 
variability such as body dimensions (Figure 1), preferences, and 
other personalized characteristics. Consequently, HRC without 
personal customization may lead to awkward postures for 
workers and in turn, increase MSDs risks(Anita et al., 2014). 

To reduce the risk of MSDs during HRC, the robot-end effector 
position should be adaptive and take into consideration 
ergonomics factors. To date, a number of optimization methods 
have been proposed to improve workers’ posture during HRC 
by adjusting the location of robots’ end effectors. In some 
studies (Kim et al., 2017; Peternel et al., 2018), optimization 
methods are developed based on body joint loadings that are 
estimated through a biomechanical model or measured from 
EMG feedback. Yet, the estimated joint loading can be sensitive 
to the validity of the adopted biomechanical models. In some 
other studies (Busch et al., 2017, 2018; Roveda et al., 2020), 
optimizations are performed on ergonomic assessment
indicators. For example, in a recent study (Liau & Ryu, 2020),
a Rapid Upper Limb Assessment (RULA) score is used as an 
indicator of workers’ posture health during HRC. RULA is a 
widely used and validated ergonomics tool in evaluating the 
overall MSD risks (McAtamney & Corlett, 1993; Micheletti 
Cremasco et al., 2019) A greater RULA score indicates a 
greater risk of MSD.

Traditionally, assessment and calculation of RLUA score 
require safety practitioners to manually code body postures. 
This process is time-consuming and requires ergonomic 
expertise. In previous studies, researchers have adopted 
wearable inertial measurement units to track workers’ body 
postures and estimate the ergonomic score for optimizing a 
robot’s end effector location and improving workers’ posture
(Busch et al., 2017, 2018). Nevertheless, wearable sensors may 
be not suitable in certain field applications because they can 
affect worker’s natural body motion at work. An alternative 
way to track body motion and automatically assess the RULA 
score is through camera and computer vision (Li et al., 2020)

Once workers’ ergonomics assessment scores are computed, 
one can further apply different optimization algorithms to 
adjust robots’ end effector locations with an objective of 
minimizing workers’ ergonomic assessment risk. Prior studies 
have proposed optimization methods where the ergonomic 

Figure 1. A set 
position may not be 
suitable for workers 
with different body 
features. A taller 
worker (left) has to 
bend down to finish 
an HRC tasks
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assessment was performed on the simulated human pose during 
HRC tasks (Busch et al., 2017; Yazdani et al., 2021). However, 
human pose simulation can be an ill-posed problem (Qu & 
Nussbaum, 2008) because 1) workers have a substantial amount 
of redundant degree of freedoms and 2) the range of motion 
limits may vary from person to person (Park et al., 2010). To 
address these issues, a novel model-free reinforcement-learning 
(RL) algorithm is proposed in this study, which is a trial-and-
error method (Sutton & Barto, 2018) that can optimize workers’ 
RULA scores without needing a full body biomechanical 
model. Prior to this study, RL methods have been applied in 
robot action planning in different scenarios (Degris et al., 2012; 
Hu et al., 2019) and these applications exhibit promising 
potentials in optimization tasks.

In the current study, we developed a novel model-free RL
method called Gradient-based Online Learning Algorithm in 
HRC (GOLA-HRC) which can be used to effectively minimize 
workers’ RULA scores. The data-driven nature of the proposed 
method allows the robot to “learn” the optimal effector location 
and provide personalized configurations for individual worker.
We further conducted a preliminary experiment to examine the 
effect this algorithm on worker posture improvement. Results 
of our experiments confirm that our approach is effective in 
improving the worker’s posture.

METHOD

Automatic RULA score estimation

Human pose reconstruction Adopting a computer vision 
method developed in our previous study (Wang et al., 2021), 
the present work will calculate the RULA score from workers 
visualized joint angles. The first step in RULA score estimation 
is to reconstruct workers’ poses from a single RGB camera. The
VideoPose3D model is adopted which predicts the 3D human 
key-joint positions of a worker from camera captured videos. 
The mean absolute error of the estimated joint positions is 
reported to be less than 50 mm (Pavllo et al., 2019).

A refined RULA score. Traditional RULA assessment is a step
function which intends to be insensitive when the change of
body joint angle is relatively small (Note that the gradient of the 
RULA is zero). To establish a refined RULA score so that it can 
be used to calculate the gradient during optimization, we 
propose to fit the RULA score into a continuous linear function
(Figure 2), which is referred as continuous RULA (cRULA). 
Because RULA does not consider the lower extremity posture, 
we added ‘knee’ into cRULA in order to capture deep squat 
postures. Specifically, a punishment score of 2 is added to 
cRULA whenever the workers’ knee angles were over 20 
degrees. The scores of all joints will be then summed up to form 
an overall cRULA score that will be used in our RL algorithm.

Figure 2. Comparison of RULA and cRULA score of worker’s 
upper arm. Left: Upper arm cRULA vs RULA; Right: Trunk 
cRULA vs RULA

Gradient-based online learning in HRC (GOLA-HRC)

Variables to adjust An HRC task was designed as a testbed for 
developing the GOLA-HRC method. In this task, the 
participants were asked to insert wires into a specific location 
on a breadboard gripped by a collaborative robot (Sawyer, 
Rethink Robotics). This task simulated a common human-
assisted assembly task. Workers’ posture is determined by the 
location and orientation of the robot’s end-effector. 
Specifically, the adopted robot’s end-effector has 6 degree of 
freedom (DoF), including three translational DoF (x, y, z, 
shown in Figure 3) and three rotational DoF (𝛼, 𝛽, 𝛾, Figure 3). 
Therefore, one can adjust these six variables to change workers’ 
RULA score. To reduce the state space and improve learning 
speed, in this study some variables that did not substantially 
affect workers’ pose were excluded. For instance, the 
participants were free to move during the experiment. 
Therefore, the end effector’s horizontal translational motions (x
and z, Figure 3) would not affect workers’ postures and thus 
could be excluded. Similarly, the rotational motion along the 𝛽-
axis (Figure 3) could be compensated by the horizontal motions 
of workers. In addition, due to the nature of the adopted fine 
wire insertion task, the rotational motion along the 𝛾-axis does 
not affect workers’ posture. Therefore, there were two essential 
variables to adjust during the RL: translational motion along the 
y-axis, which determined the height of the end-effector, and 
rotational motion along the x-axis, which determined the pitch 
angle of the end-effector.

Figure 3. Experimental setting: A camera is placed 3 meters 
away from the robot. The origin of the robot coordinates is set 

angle of the end
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on the robot base. The directions of translational axes x, y, z 
and rotational axes 𝛼, 𝛽, 𝛾 are marked on the figure.

RL algorithm. The algorithm searches for a set of variables that 
minimize the cRULA score of a worker. Following the 
estimation method described earlier, a cRULA score is to be 
estimated each time a worker finishes a fine wire insertion task, 
and a posture-cRULA pair is generated.

The gradient 𝛻𝑡𝑝
and 𝛻𝑡𝑜

are defined in Equation (1) and (2). 
This gradient indicates how the cRULA is improved or 
deteriorated by translational motion ℎ and rotational motion 𝑎. 
Using the gradient, the future end effector location at step t + 1 
is determined by the previous end effector location at time t and 
search step lengths (ℎ and 𝑎) as described in Equation (3). 
Inspired by the optimizer Adams (Sun et al., 2019), we 
introduce a discounting factor 𝛼 to control the learning rate 
dynamically. We also impose constraints on the step lengths sp

and so to guarantee a stable search process. Learning rates 𝑙𝑜

and 𝑙𝑝 involve after each iteration according to Equation (4).
The termination condition is defined in constraint (5). Here,
ϵ > 0.3 is an error parameter that trades off between 
convergence speed and solution precision. Note that when ϵ is 
large (small) the algorithm converges more quickly (slowly) but 
yielding a more (less) accurate solution. The flow chart of 
experiment process description was shown in Figure 4, and the 
detailed algorithm is shown in Algorithm 1.

𝛻𝑡𝑝
(𝑅𝑈𝐿𝐴𝑡

𝑝
− 𝑅𝑈𝐿𝐴𝑡) / ℎ (1)

𝛻𝑡𝑜
𝑅𝑈𝐿𝐴𝑡

𝑜 − 𝑅𝑈𝐿𝐴𝑡) / 𝑎 (2)

ℎ = min (𝑙𝑝 ⋅ 𝛻𝑡𝑝
, 𝑠𝑝) ⋅

𝛻𝑡𝑝

|𝛻𝑡𝑝|
, 𝑎 = min(𝑙𝑜 ⋅ 𝛻𝑡, 𝑠𝑜) ⋅

𝛻𝑡𝑜

|𝛻𝑡𝑜|
    (3)

𝑃𝑡+1 = 𝑃𝑡 + ℎ 𝑂𝑡+1 = 𝑂𝑡 + 𝑎,   𝑙𝑝, 𝑙𝑜 = 𝛼 ⋅ 𝑙𝑝, 𝛼 ⋅ 𝑙𝑜             (4)                           
|𝛻𝑡𝑝

| < 𝜖, |𝛻𝑡𝑜
| < 𝜖                                                   (5)

Here 𝛻𝑡 is the gradient, 𝑃𝑡+1, 𝑃𝑡 are positions at step t + 1 and 
step t. 𝑙𝑝 and 𝑙𝑜 are the learning rates of the position and the 
orientation, 𝑠𝑝 and 𝑠𝑜 are step length constraints of the position 
and the orientation. 𝛼 is the discounting factor. 𝜖 > 0 is the 
error parameter one may select in order to achieve a proper 
tradeoff between convergence speed and solution precision for 
GOLA-HRC; in particular, when 𝜖 is large (small) the 
algorithm converges more quickly (slowly) but yielding a more 
(less) accurate solution..

Figure 4. Flow chart of GOLA-HRC.

The initial end effector location in y axis and orientation 𝛼 are 
set to 1.055m and 0 degree (along x axis of the robot). This 
setting will place the breadboard at the 50%ile elbow height 
over the entire population as elbow height is referred as a 
preferred height for assembly tasks in terms of reducing MSD 
risks (Freivalds & Niebel, 2008). 

Participants, collaboration task and experiment setup

To evaluate the effectiveness of the GOLA-HRC method, we 
performed a validation study. As shown in Figure 3, a gripper 
was 3D printed and attached to the end effector of the 
collaborative robot to hold a breadboard (5.5 cm x 17 cm). The 
robot was connected to a workstation with a GPU (NVIDIA 
RTX 2080Ti) that supported computer vision algorithms. All 
the computer vision algorithms, cRULA score calculations, and 
RL algorithm were programmed in Python (Ver. 3.6) on Linux 
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platform (Ver. 16.04). The workstation-robot communication 
was through Intera SDK (Ver. 5.3), which is based on Robot 
Operating Systems (ROS Kinetic). A webcam (Model: 
MF920P, Spedal) was placed 3 meters away from the robot to 
capture the image of the participants and was connected to the 
workstation.

Eight participants were recruited (4 males and 4 females, 
average age of 26.3 ± 2.1, height of 173 ± 12.0 cm, weight of 
73 ± 16.3 kg). During the experiment, each participant was first 
asked to repetitively perform the wire insertion task until the 
estimated cRULA scores through computer vision converged
with 𝜖 = 0.3, that is, until |𝛻𝑡𝑝

| < 0.3 and |𝛻𝑡𝑜
| < 0.3 . After 

each repetition, the location of the robot’s end effector was 
adjusted by applying the GOLA-HRC for minimizing the 
cRULA score. The end effector location with the converged 
cRULA score is referred as “learnt location” hereafter. The 
participants were then asked to move the end-effector to 
positions that they felt most comfortable to work with. This 
position is referred as “worker-selected location” hereafter. 
Once the learnt location and worker-selected location were 
determined, the participants performed the wire insertion task 
three times under each location as well as the initial end effector 
location (50%ile elbow height). The sequences for each 
participant of the testing were counter-balanced.

Statistical analysis

The cRULA score associated with the learnt location was 
compared with those associated with the elbow height and 
worker-selected locations. Analysis of variance (ANOVA) and 
post-hoc Tukey test were performed to investigate whether the 
different end-effect locations had significant effects on cRULA. 

RESULTS 

As expected, the ANOVA indicated that the end-effector 
locations had significant effects on the workers’ cRULA score 
(F(2, 14) = 34.05, p < 0.0001).The result of the post-hoc Tukey 
test indicates that the cRULA score of learnt location and elbow 
height were significantly different (p = 0.0026), and the cRULA 
score of worker-selected and elbow locations were significantly 
different (p = 0.0074). Figure 5 shows the means and quantiles 
of the result.

Figure 5. Means and quantiles of cRULA score under different 
end effector location. The red box plots show the 90%, 75%, 
50%, 25%, 10% quantiles.

DISCUSSIONS

cRULA score vs Iterations

Figure 6 shows how the GOLA-HRC improved a participant’s 
working posture step by step. For this specific participant, the 
initial position was too low and resulted in a forward trunk 
bending posture. By calculating the gradient of the cRULA 
score, the algorithm adjusted the location and orientation of the 
end-effector until the cRULA score converged. 

Figure 6. Left: Six postures over 20 iterations. The numbers 
below indicates the number of iterations. Right: The cRULA 
scores over each iteration. 

Effectiveness of GOLA-HRC .

As expected, the cRULA scores of the elbow height were the 
greatest on average and significantly different from the cRULA 
scores of the learnt locations, which indicates that the GOLA-
HRC can effectively improve the posture of a worker and thus 
reduce the MSD risks. In addition, the cRULA scores of 
worker-selected location were significantly lower than the 
cRULA scores of elbow height. This is aligned with the
assumption in psychophysics studies – workers to some extent 
are aware of whether a specific body posture is safe or not for 
them (Snook & Ciriello, 1991).

Personalization of cRULA

Another appeal of the proposed model-free RL method is that 
the optimization criteria can be conveniently personalized for 
workers. For instance, workers who already have neck 
discomfort should ensure their neck is in a neutral posture. In 
that case, one can apply a weight factor to the Neck score in 
cRULA before applying the RL algorithm. In a preliminary 
experiment, the robot’s end effector moved to a higher position
when the weight factor of Neck is set to two and thus resulted 
in a smaller neck forward bending angle but a greater arm 
elevation angle (Figure 7)
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Figure 7. Left:  The optimized posture in original RULA. 
Right: The optimized posture with doubled weight on neck 
angle.

Limitations

A few limitations need to be addressed. First, as this study 
adopted the computer vision algorithm, a camera needs to be 
placed where its field of view is not blocked. Otherwise the 
error of identified joint location will be significantly greater. To 
address this problem, one could consider using a multi-camera 
computer vision system. Second, assessment of RULA scores 
is based on workers’ joint angles as well as workloads (e.g., the 
weight of the material being handled). As this study focuses on 
improving the workers’ postures, the workload factors were not 
included in the assessment. 

CONCLUSION

In this study we proposed a worker posture optimization 
method during HRC. A computer vision method was first 
adopted to recognize human posture and estimated a cRULA 
score. A model-free gradient descent optimization algorithm 
was then developed to lower the cRULA score of a worker. The 
preliminary experimental result indicated that the GOLA-HRC
had a good potential to effectively lower workers’ cRULA
score during HRC tasks and thus reduce the risk of MSDs. Next, 
we will recruit additional participants to validate the 
generalizability of GOLA-HRC.
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