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Abstract
The hydrogen evolution reaction (HER), the key reaction for electrocatalytic pro-
duction of hydrogen, is of fundamental importance due to its simplicity yet is
very important for renewable energy. Notwithstanding, Pt is still the main cata-
lyst for this reaction, which is not practical for the industrial deployment of this
technology owing to the high cost and scarcity of Pt. The successful synthesis
of high entropy alloy (HEA) nanoparticles opens a new frontier for the devel-
opment of new catalysts. Herein we investigate the design of a multinary noble
metal-free HER catalyst based on earth-abundant elements Co, Mo, Fe, Ni, and
Cu.Using amachine learning (ML) approach in conjunctionwith first-principles
methods, we build a model that can rapidly compute the hydrogen adsorption
energy on the alloyed surfaces with high fidelity. Within the large composition
space of the CoMoFeNiCuHEA, a large number of alloy combinations are shown
to optimally bind hydrogen with a high probability. Further, most of these alloy
compositions are found stable against dissociation into intermetallics, and hence
synthesizable as a solid solution, by virtue of a large mixing entropy compared to
mixing enthalpy and a small latticemismatch between the elements. This finding
is partly consistent with recent experimental results that synthesized five dif-
ferent CoMoFeNiCu HEA compositions. Our study underscores the significant
impact that computational modeling and ML can have on developing new cost-
effective electrocatalysts in the nearly-infinite materials design space of HEAs,
and calls for experimental validation.
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1 INTRODUCTION

The hydrogen economy is a promising route to phase out
the global energy dependence on the combustion of fossil
fuels, and hence mitigate climate changes. Electrocata-
lysts hold a prominent role in this economy as they can

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Electrochemical Science Advances published by Wiley-VCH GmbH.

increase the rate, efficiency, and selectivity for the hydro-
gen evolution reaction (HER), the fundamental reaction
for producing H2(g).[1] Unfortunately, HER requires an
expensive electrocatalyst, primarily platinum, in order to
produce describable amounts of energy, which severely
limits its practicality for industrial applications. One of the
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main challenges in the hydrogen economy is to develop
HER electrocatalysts that require lesser amounts of Pt or in
finding completely different cost-effective alternatives.[2–5]
High entropy alloys (HEAs) are multiple principal ele-

ment alloys that are attracting increased interest in the
field of catalysis as they recently became amenable for syn-
thesis as nanoparticles with different compositions.[6–11]
Initial findings in this strongly evolving field suggest that
HEAs may in particular enable the design and synthe-
sis of novel catalysts with higher activity, lower cost, or
both.[12–17] For example, CrMnFeCoNi HEA is demon-
strated to have an intrinsic electrocatalytic activity for
oxygen reduction which exceeds that of the precious
metal Pt.[13] AuAgPtPdCu HEAs are shown to be efficient
catalysts for the electrochemical reduction of CO2.[8,14]
CoMoFeNiCu HEAs are found to decompose ammonia 20
times more efficiently than the state-of-the-art precious-
metal Ru catalysts.[17]
For many reactions, catalysts design has often relied on

first-principles theoretical calculations, which predict the
HER activities of new catalysts on a volcano plot based
on a relatively easy-to-compute descriptor(s). For instance,
the hydrogen binding energy has been shown to be a good
descriptor for HER where the optimal catalysts such as
Pt neither bind hydrogen too strongly nor too weakly.
In addition, the descriptor can be applied to accurately
predict the exchange currents for catalysts measured in
experiments.[18–20] However, the study of alloyed surfaces,
particularly the complexHEAspose a significant challenge
to theoretical calculations.[21] This is because the theory
of catalysis requires the evaluation of the binding strength
of different adsorbates on the surface, which is not easy
to compute for alloyed surfaces owing to a large num-
ber of surface sites with different chemical environments.
Recently, several studies have shown that machine learn-
ing (ML) approaches can accelerate the computation of
the adsorption energies on surfaces.[22–28] Particularly a
notable study by Rossmeisl and coworkers applied a rel-
atively simple ML approach to show that the adsorption
energy inHEAs can be describedwell based on the number
of different chemical species in the local environment of
the adsorption site.[8,29] Also, Saidi and collaborators have
shown that a deep learning ML approach can obtain high
fidelity adsorption energies on HEA surfaces.[30,31]
Another challenge in modeling HEAs is in quantify-

ing their catalytic activity given that alloy surfaces have
a large number of chemical environments with different
adsorption energies. Although while very likely that some
of these sites would be optimum for a given chemical
reaction, this does not necessarily imply that the HEA
is a good catalyst for that reaction because the probabil-
ity of realizing these environments could be low on the
surface. The recent study by Rossmeisl and collaborators

introduced the average adsorption energy of theHEA com-
puted by averaging a large number of different sites on
the HEA surface, as a criterion to quantify the activity
of the surface.[29] This probabilistic approach for defin-
ing the chemical activity of the HEA has been utilized to
predict optimum compositions of HEA catalysts for CO2
reduction[8,14] and also for ammonia decomposition[17,30]
based on utilizing a single descriptor for these reac-
tions. The success of the probabilistic approach could
be attributed to the emergence of scaling relationships
between the configurations-averaged adsorption energies
that are absent for the adsorption energies.[32] Herein,
we also apply the probabilistic approach based on the
average hydrogen adsorption energy to design a HEA
CoMoFeNiCu HER catalyst. We show that there is a rela-
tively large number of potential compositions that can bind
hydrogen similar to that of Pt, which is a necessary con-
dition for having an optimum HER catalyst. Further, we
show that a large number of these potential catalysts are
stable in the HEA phase, hence synthesizable, which calls
for experimental validation.

2 RESULTS AND DISCUSSION

2.1 Stability of the HEA phase

Beforewe discuss the catalytic activity of the CoMoFeNiCu
alloy it is useful to first assess the stability of the alloy
against the undesirable ordered intermetallics and dissoci-
ation into multiple phases. Experimentally, CoMoFeNiCu
HEA was synthesized with five different alloy compo-
sitions, namely CoxMoyFe10Ni10Cu10(x+y = 70) where
the atomic ratio of Co/Mo is varied as 15/55, 25/45, 35/35,
45/25, and 55/15.[17] To investigate the thermodynamic
stability of the alloy for different compositions, we inspect
𝛿𝑟, Δ𝑆mix , and Δ𝐻mix . 𝛿𝑟 =

∑5

𝑖,𝑗
𝑐𝑖𝑐𝑗(𝑟𝑖 − 𝑟𝑗) is the differ-

ence in atomic radius between the elements in the alloy
weighted by the concentration 𝑐𝑖 (𝑖 = 1, 5) of the elements,
Δ𝑆mix = −𝑘𝐵

∑5

𝑖
𝑐𝑖 ln 𝑐𝑖 is the ideal mixing entropy (where

𝑘𝐵is the Boltzmann constant), and Δ𝐻mix is the mixing
enthalpy. For a given temperature 𝑇, if the entropic term
Δ𝑆mix is larger than |Δ𝐻mix|∕𝑇, then it is expected that the
solid solution phase of the alloy will be more stable than
the ordered intermetallics. Further, it is expected that as
the latticemismatch 𝛿𝑟 increases, then also theHEAphase
will be less stable due to increased strain effects, akin to
Vegard’s law for binary alloys. Empirically, it is found that
generally, the HEA phase is stable if Ω = 𝑇𝑚 Δ𝑆mix

|Δ𝐻mix | > 1.1

and 𝛿𝑟 < 6.6% where 𝑇𝑚 =
∑5

𝑖
𝑐𝑖 𝑇

𝑖
𝑚 is the melting

temperature of the alloy approximated from the rule of
mixtures.[33,34]
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F IGURE 1 Variations of Ω and 𝛿𝑟 for 1800 different alloy
compositions. The dashed horizontal and vertical lines correspond
to Log (1.1) and 0.066, respectively. Alloys located in the upper left
corner above the horizontal Log (1.1) line and to the left of the
vertical 0.066 are expected to be stable. Data labeled ‘HER opt’ and
‘HER non opt’ indicate compositions that are optimum (not
optimum) for hydrogen evolution reaction (HER). Data labeled ‘exp’
correspond to the compositions that were synthesize recently[17]

We have computed the values for Ω and 𝛿𝑟 for 1800
different alloy compositions. Rather than using the empir-
ical formula Δ𝐻mix proposed before based on the binary
alloy systems and alloy concentrations,[33,34] we instead
computed Δ𝐻mix directly from density functional theory
(DFT) as done before.[29] Namely, for each composition,
we computed Δ𝐻mix by averaging the enthalpies of five
different random configurations of the alloy. Herein we
assumed that the alloys adapt an fcc lattice regardless of
their composition, which has been verified experimentally
for five different compositions.[17] Values for Ω and 𝛿𝑟 are
summarized in Figure 1.
Figure 1 shows that the lattice mismatch 𝛿𝑟 is less than

the 6.6% limit for all the investigated alloy compositions,
suggesting the stability of the HEA phase against the lat-
tice mismatch criterion. The values for Ω vary in a wider
range butmost alloys have values greater than 1.1. This sug-
gests that CoMoFeNiCu HEAs are generally synthesizable
regardless of their composition. For instance, as a valida-
tion, we also computed Ω and 𝛿𝑟 for the CoMoFeNiCu
HEA alloys that were synthesized recently.[17] As shown in
Figure 1, these alloys are in the upper left region such that
Ω > 1.1 and 𝛿𝑟 < 6.6%, suggesting that HEA phase stabil-
ity according to the empirical criteria, as they should be.
Although our assessment of the synthesizability as a solid
solution is empirical in nature, the agreement with experi-
mental results lends further credibility to these rules. Also,
for completeness, we note that the stability investigations
of the HEA NPs in vacuum could be different from their
stability under electrochemical conditions.

We next investigate the interactions of hydrogen with
the alloyed surfaces. Pt (111) is the best single metal cata-
lyst for HER[35] that binds H with energy of –0.48 eV/H
based on our computational framework. Herein, as a guid-
ing principle, we will assess the HER catalytic activity of
the alloy in reference to Pt (111) where the alloy compo-
sition is optimum if the average adsorption energy of *H
is equivalent to that of Pt (111). One advantage of com-
paring with respect to Pt (111) rather than the absolute
*H adsorption energy value is that the results would be
less sensitive to intrinsic errors in the underlying DFT
computational framework. For instance, the difference
in binding energy between Au and Pt is 0.61 eV for
both the conventional[36] and revised[37] Perdew-Burke-
Ehrenzhof exchange-correlation functionals despite the
different absolute values for both metals.
To illustrate hydrogen interactions with the alloyed sur-

face, we examined the binding sites of H on 3 different
HEA surfaces. Because of the random nature of the sur-
face sites, all adsorption sites that even have the same site
symmetry are expected to be different, which is unlike the
case of pure metal slabs where these would be the same.
For instance, for the model shown in Figure S1, we find
that 4 different fcc adsorption energies –0.28, –0.39, –0.51
and –0.58 eV/H and 4 different hcp energies –0.30, –0.40,
–0.50 and –0.56 eV/H. For this model, the two most stable
adsorption sites are neighboring Fe atoms while the weak-
est sites are neighbor Cu atoms. Also, similar to the pure
metal slabs, the 3-metal coordinated hollow sites are found
to have the lowest energies while all atop or bridge sites
were not stable.
Because hydrogen interactions are negligible, the

adsorption strength of single hydrogen at all potential
surface sites would suffice to characterize the surface
reactivity to a very good approximation. This conclusion
can be drawn from studying the coverage dependence of
the hydrogen adsorption strength on different surfaces.[38]
As shown in this study, for surfaces with moderate to
strong interactions with hydrogen, the *H adsorption
energies differ by less than 0.1 eV for hydrogen coverage
between 1/4 and one monolayer. The 0.1 eV is expected to
be on par with the accuracy of the MLmodel, as discussed
later. Even though H interactions could modulate the
adsorption strength by up to 0.2 eV on the less reactive
Cu and Au surfaces, we do not expect this to affect our
findings that are focused on surfaces that bind H opti-
mally, as for the case of Pt. Additionally, for such surfaces,
the rate-determining step for the HER is expected to be
Heyrovsky or Volmer reactions considering that thermo-
dynamic accessibility dominates the kinetic behavior’s
properties.[39] Thus, only one hydrogen atom or one active
site is involved in each reaction pathway. In contrast, if the
rate-determining step is the Tafel reaction as in Pt (111),
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F IGURE 2 Comparison between *H adsorption energy predictions based on convolutional neural network (CNN) and DFT ground
truth values for the testing set for (a) fcc and (b) hcp sites. The inset shows the distribution in the differences between the machine learning
(ML) and density functional theory (DFT) values, and the mean absolute error (MAE) for the overall accuracy of the model

two surface hydrogen atoms are involved for each reaction
pathway.[35] Indeed even for the high active metals such
as Pt, Ir, Rh, and Pd, the rate-determining steps are tested
to be the Volmer step experimentally.[40]
The applied straightforward DFT approach for examin-

ing hydrogen interactions on the HEA surfaces cannot be
applied to compute the adsorption energy of all potential
configurations of the HEA alloy. To address this chal-
lenge, we developed ML models to rapidly compute the
*Hadsorption energies using as input easy-to-compute fea-
tures to characterize the surface configuration. The ML
models are trained using a database of ∼4000 different
adsorption configurations of *H that differ in the alloy
composition, arrangement of the atoms, as well as the
metal sites that interact with H. The initial configurations
are created by depositing H at either fcc or hcp hollow
metal sites and then optimizing the geometry. We found
that predominantly the final geometries mostly retain the
site symmetry of the initial configurations. We utilized the
developed database to train site-specific MLmodels for the
fcc and hcp configurations.
We applied four different ML models: one based on

a convolutional neural network (CNN), and three tree-
based models (decision tree, random forest, and gradient
boosted decision trees). Overall, the four different ML
models behaved similarly although the CNN model was
found to be more robust and incorporates the spatial
features corresponding to the atomic arrangements into
the training procedure. The CNN model was adopted as

the primary model for our analysis. Figure 2 compares the
adsorption energies for the test dataset (which contains
10% of the total dataset and was not used during the model
training process) obtained from the CNN model predic-
tions and from the DFT calculations (similar parity plots
are shown for the other ML models in Figures S3–S5). For
the fcc and hcp site symmetries, it can be observed that
the data points are clustered around the 45◦ reference line
(solid line) indicating a strong similarity between the ML
predictions and the DFT calculations, with the differences
quantified using the mean absolute error that is of similar
magnitude to the intrinsic errors of the employed DFT
functional. The insets in the figures show that no apprecia-
ble bias is present in the distribution of the ML prediction
errors around their mean value. To understand the robust-
ness of the methodology employed against the inherent
variability in the dataset, the model training/testing was
repeated using four different splits of the dataset. The
magnitude and distribution of the errors were found to be
similar among the four cases, as shown in Figure S2 for the
fcc dataset. The above observations support the reliability
of the chosen CNN hyperparameters and the training
methodology and give the confidence to use the trained
model for obtaining predictions for completely new
datasets.
Using the developed ML model, we compute the aver-

age adsorption energy Δ̂𝐸 for a wide range of alloy
compositions. As discussed in the introduction, it is
the average adsorption energy that quantifies the most
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F IGURE 3 (a) Correlations between Δ̂𝐸 for *H at fcc and hcp sites. The red line corresponds to linear dependence with predictivity
coefficient 𝑟2 = 0.96. (b) Variations of Δ̂𝐸 with elements compositions. For convenience, we shifted Δ̂𝐸 by –0.48 eV so the zero value indicates
catalysts that bind *H optimally as in Pt

probable adsorption energy on the surface, and hence
can be used to assess the catalytic efficiency.[29] We
utilize 𝑛𝑠 = 3000 different adsorption configurations for
each alloy composition and compute the average adsorp-
tion Δ̂𝐸 =

∑𝑛𝑠
𝓁
𝑓𝓁Δ𝐸𝓁∕

∑𝑛𝑠
𝓁
𝑓𝓁 where 𝑓 =

∏4

𝑘
𝑐𝑘
𝑁𝑘 mea-

sures the number of possibilities of generating a surface
microstructure with𝑁𝑘 metal atoms consistent with HEA
composition 𝑐𝑘 (omitting label 𝓁 for clarity).[8,29] This
approach is equivalent to using a surface with 3000×3000
sites. Figure 3 summarizes Δ̂𝐸 for *H on either fcc or hcp
sites. HEAs with Δ̂𝐸 = −0.48 eV on average bind *H simi-
lar to that of Pt (111) and hence are expected to be goodHER
catalysts. As can be seen from the figure, there is a large
number of alloy compositions that satisfy this constraint.
To better understand the constraints on the composi-

tions of the HER activity, we show in Figure 3b how Δ̂𝐸

varies with the 5 different elements’ compositions. For
instance, this figure shows that optimum HEA alloys can
have a wide range of ∼0–80 at% of Co or Ni. On the
other hand, the range is narrower for Fe (0%–60%), Mo
(0%–40%), and Cu (20–40%) at%.
These trends can be somewhat rationalized by inspect-

ing the *H adsorption energies on the pure metal surfaces.
Namely, the *H hcp adsorption energies on the fcc(111)
pure metal surfaces for Co, Mo, Fe, Ni, and Cu are –0.50,
–1.08, –0.81, –0.58, and –0.30 eV/H, respectively. The fcc
adsorption energies are of similarmagnitude except forMo
where it is –1.52 eV/H. For the pure metal surfaces Co, Fe,
and Mo, we chose to examine the fcc lattice rather than
the ground state configuration to better compare with the
HEA results. From the pure metal surfaces, not surpris-
ingly, the adsorption strength of *H to the HEAs surfaces
increases (becoming less negative) as the Mo and Fe con-

tents increase. On the other hand, we see the opposite
behavior with the increase of Cu considering that Cu(111)
*H binding is significantly weaker than the rest of the met-
als. The trends of Δ̂𝐸 with the Co and Ni concentrations
increase is similar, also in agreement with the pure metals
case.
To further understand the nature of the catalytic site,

we examined the chemical composition of the *H local
environment. For the five different metals, there are 35 dif-
ferent variations for the three metal atoms that are the
first nearest neighbors to H. Using the 5.4 million local
environments obtained from sampling 1800 alloy compo-
sitions each with 3000 configurations, we examined the
distribution of the binding energies for the different envi-
ronments. Figure 4 summarizes the obtained mean and
standard deviation of the binding energies. For instance,
the MoMoMo local environment yields the most stable
adsorption site with an average adsorption energy of –
0.75 eV/H for hcp and –0.85 eV/H for fcc, while CuCuCu
has the weakest with adsorption energy ∼-0.2 eV/H, as
can be expected from the behavior of the corresponding
pure metal surfaces. As seen from the figure there are
different local environments that bind *H optimally such
that |Δ̂𝐸 + 0.48| < 0.05 eV including CoCoCu, CoCoNi,
CoCuMo, CoNiNi, FeCoCu, FeFeCu, FeNiNi, NiCuMo,
NiNiNi, FeFeCu, CoCuMo, and CoCuMo.
The above analyses suggest that there is a large num-

ber of potential noble metal-free CoMoFeNiCu that bind
hydrogen optimally as in Pt (111). Further, Figure 1 shows
that a large number of these optimum compositions are
expected to be synthesizable based on the empiricalΩ and
𝛿𝑟 rules. Table S1 summarizes these stable and potential
HER catalysts.
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F IGURE 4 Breakup of the adsorption energies based on the site’s symmetry. The horizontal line shows the optimum value of –0.48 eV
for Pt (111)

3 CONCLUSION

The study of the alloyed surface is a major challenge to the
theory of catalysis based on traditional first-principles cal-
culations owing to their lack of periodicity. In this respect,
HEAs are an extreme example and a seminal challenge
owing to the enormous number of different chemical envi-
ronments. We show that the study of HEA surfaces is
trackable using a combined approach based on DFT and
accelerated with ML, and can provide adsorption energies
with errors that are commensuratewith the intrinsic errors
of DFT. We have applied the combined DFT/ML approach
to study hydrogen interactions on CoMoFeNiCu fcc(111)
surfaces. We show that there is a wide range of alloy com-
positions that with a high probability can bind hydrogen
equivalently to that of Pt (111). This strongly suggests that
these surfaces can be optimumcatalysts forHER.Our find-
ings predict that HEAs made of earth-abundant metals
can replace the precious Pt to activate HER and call for
experimental validation.

4 EXPERIMENTAL SECTION

4.1 First-principles computational
approach

The first-principles calculations are carried out using
the Perdew-Burke-Ehrenzhof exchange-correlation
functional[37] as employed in the Vienna Ab initio
Simulation Package. We used the projector augmented
wave pseudopotentials to model the electron-nucleus
interactions.[41,42] The slab models of the fcc (111) HEA
surface are studied using a 2×2 surface supercell with 5

layers of atoms, and 10 Å to mitigate interactions along
the non-periodic direction. The previous experimental
study that synthesized CoMoFeNiCu HEA NPs reported
the observation of the (111) surface termination,[17] and
hence the focus on this termination to study the NPs
is a good approximation. The Kohn-Sham orbitals are
expanded using a 300 eV plane-wave cutoff. The Brillion
zone is sampled using a 3×3×1 shifted Monkhorst-Pack
grid with 0.2 eV Gaussian smearing. All calculations
are spin-polarized, which is needed to account for the
magnetic elements. During geometry relaxation, all
atoms including the top two metal layers and hydrogen
adsorbates are relaxed using a force tolerance of 0.1 eV/Å.
Lattice constants of the HEAs are obtained as a weighted
average based on the alloy composition, following Vegard’s
law for binary alloys.
The hydrogen adsorption energy Δ𝐸 is calculated as,

Δ𝐸 = 𝐸∗𝐻 − 𝐸
∗ − 0. 5 𝐸H2 where 𝐸∗𝐻 is the energy of the

relaxed slab with the adsorbed hydrogen, 𝐸∗ is the energy
of the relaxed pure surface, and 𝐸H2 is the energy of the H2
molecule computed using a cubic supercell approach with
a 10 Å side.
To assess the stability of the alloy, we have com-

puted the mixing enthalpy Δ𝐻mix by optimizing 2×2×2
bulk supercells of the conventional fcc lattice (32 atoms)
and measuring its energy with respect to the bulk refer-
ence configurations. Namely, we used Δ𝐻mix = 𝐸alloy −∑5

𝑖
𝑐𝑖𝐸

ele
𝑖

where 𝐸alloy is the total energy of the alloy and
𝐸ele
𝑖
(𝑖 = 1 − 5) are the bulk metal energies. We used a

3×3×3 shifted Monkhorst-Pack grid with 0.2 eV Gaus-
sian smearing for the bulk calculations, consistent with
that used k-grid for the slabs. We averaged Δ𝐻mix over
5 different random structures consistent with the alloy
composition.
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4.2 Feature selection

The training database for the ML models is based on
∼4000 different adsorption energies obtained from ran-
dom configurations. The feature representation of each
configuration encodes information about the physical
properties of the metals and their locations with respect
to the adsorption site. The physical properties include
element-specific features (ionization energy, electroneg-
ativity, electron affinity, and a number of valence elec-
trons), in addition to metal-specific features (Wigner-Seitz
radius 𝑟𝑠, d-band center ∈𝑑, d-band filling 𝑓𝑑, coupling
matrix elements between adsorbate and metal d-states
𝑉𝑎𝑑, 𝑑ln ∈𝑑∕𝑑ln 𝑟𝑠, and work function). Thus, in total, we
have 11 features per site. In addition, we include also a 5-
element vector to characterize the overall composition of
the alloy. The geometrical information of the metals cor-
responds to the location of the sites with respect to the
adsorption site. Thus, for each configuration, we include
(three layers) x (four atoms/layer) x (11 features/site) +
(five composition vectors) = 137 features.

4.3 Machine learning

We explore four different ML approaches for this study.
One is based on a CNN, and three tree-based models,
namely decision tree, random forest, and gradient boosted
decision trees. The hyperparameters of the tree-based
models were chosen using a Bayesian search technique
along with k-fold cross validation. A pre-defined hyperpa-
rameter search space was explored in an efficient manner
to arrive at the set of hyperparameters that led to the lowest
mean cross validation loss over the training dataset.

4.3.1 Convolutional neural network

CNN is a specialized type of neural network capable of
efficiently handling data that have 2D/3D arrangements
and can incorporate spatial relationships inherent in the
dataset into the learning process. For this work, we employ
a CNN-based model that utilizes the information about
the relative arrangement of the atoms around the binding
location for obtaining the predictions. Unlike a standard
fully-connected neural network, the layers in a CNN have
neurons arranged in multiple dimensions, and any neu-
ron in a convolutional layer is connected only to a small
set of neurons in the previous layer. This arrangement can
drastically reduce the total number of model parameters to
be learned during the training process. The fundamental
operation in a CNN is the convolution operation (rep-

resented by ∗ in the equation below) that involves the
calculation of the output of a neuron in a given convolu-
tional layer l, at a location with indices i and j (assuming
a 2D arrangement of input data and neurons), represented
by 𝑆(𝑖, 𝑗), using the corresponding receptive field in layer
l-1, and a learnable kernel (also referred to as a filter), K [43]

𝑆 (𝑖, 𝑗) = (𝐼 ∗ 𝐾) (𝑖, 𝑗) =
∑
𝑚

∑
𝑛

𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛)𝐾 (𝑚, 𝑛) .

(1)

In the above equation, m and n represent the size of the
kernel (K) and I is the output of layer l-1. Usually, a CNN
consists of multiple convolutional layers arranged in a
manner that allowshierarchical learning of spatial features
in the input data. Often, the convolutional layers are inter-
spersed with pooling layers that help further reduce the
total number of parameters in the model.
The CNN architecture used here follows our previous

study.[28,30] The input layer is followed by two convolu-
tional layers and a fully connected layer that is connected
to the output layer that provides the predictions to be used
for the loss function calculation. The first convolutional
layer uses a one-dimensional kernel (with a size equal to
the number of input features) to generate 64 feature maps.
The second convolutional layer uses a two-dimensional
kernel and 128. The fully connected layer consists of 100
neurons and is followed by a dropout layer with a drop
rate of 0.2 to prevent overfitting. All the convolutional and
fully connected layers use the ReLU activation function.
Max-pooling layers (that downsample the outputs of the
previous layers by a factor of 2) are present between the
two convolutional layers, and between the second convo-
lutional layer and the fully connected layer. The last layer
consists of one neuron that takes the output of the fully
connected layer as input and provides the prediction of the
adsorption energy.

4.3.2 Decision tree model

The decision tree model is essentially a univariate binary
tree model forming the foundation for the random for-
est and gradient boosted decision tree models (explained
later) that consist of an ensemble of decision trees for
improved generalizability. The training step for a decision
tree model involves the recursive splitting of the feature
space into distinct nonoverlapping high-dimensional rect-
angular regions. For performing the first binary split, all
available features are explored to choose the feature, and
the split point corresponding to that feature, that divides
the dataset into two regions with the least sum of squared
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error between the target value for each training instance
in a region and the averaged target value for that region.
For any feature 𝑋𝑘 (where the overall feature space is rep-
resented by X), if a split point s divides the feature space
into two regions 𝑅1 and 𝑅2, where

𝑅1 (𝑠, 𝑋𝑘) = {𝑋|𝑋𝑘 < 𝑠} and 𝑅2 (𝑠, 𝑋𝑘) = {𝑋|𝑋𝑘 ≥ 𝑠} ,
(2)

the training procedure involves the identification of 𝑋𝑘
and s that minimizes

∑
𝑖

(𝑦𝑖 − 𝑦̂𝑅1)
2
+
∑
𝑗

(
𝑦𝑗 − 𝑦̂𝑅2

)
.2 (3)

Here 𝑦𝑖 and 𝑦𝑗 represent the target values correspond-
ing to each of the training instances in regions 𝑅1 and 𝑅2,
respectively. 𝑦̂𝑅1 and 𝑦̂𝑅2 are the averaged values of the tar-
gets in the corresponding regions. After the optimal split is
identified, the above step is repeated to further split each
of the two regions further based on the same criterion as
before, and the procedure is continued until a stopping
criterion is reached. For obtaining the prediction for any
observation, the mean of the target value for the training
instances in the region where the observation is located
is used. The above algorithm splits the feature space in a
tree-like manner, using a series of nodes forming a direc-
tional graph, that starts from a single node and has more
nodes after each split of the feature space. Each node of
the tree represents a test for a split, and the nodes that
cannot be split anymore are called “leaves”. The tree gen-
erated is of “univariate” type as each split is based on a
single feature, rather than a combination of features. Some
of the important hyperparameters of a decision tree model
include i) the depth of the tree, ii) the minimum number
of samples a tree node must have before it can be split,
and iii) the minimum number of samples a leaf node must
have. Decision trees are easily interpretable and are versa-
tile and computationally efficient, but they usually suffer
from high variance and are prone to overfitting. Although
appropriate tuning of the above parameters can alleviate
the problem to some extent, ensemble models (e.g., ran-
dom forest and gradient boosted decision trees) that consist
of multiple decision trees have been shown to significantly
reduce overfitting.

4.3.3 Random forest model

Random Forest models use bootstrapped samples to form
multiple decision trees and utilize a randomized feature
selectionmethod for reducing the overall variance. Instead

of using the whole training dataset, multiple bootstrapped
datasets are used to train each decision tree. Also, while
searching for the best split at any level, only a subset of
the overall set of features is used. These two techniques
reduce the correlation among the decision trees resulting
in an ensemble model that has much less variance than an
individual tree and is much less prone to overfit. The pre-
diction for an observation is obtained from the averaged
predictions from the relevant constituent decision trees.
The random forestmodel includes all the hyperparameters
of a decision tree model, as well as some additional ones
relevant to the ensemble process, the major among them
being i) the number of decision trees to be used, and ii) the
maximum number of features to consider when searching
for the best split.

4.3.4 Gradient boosted decision tree model

While random forest builds multiple decision trees simul-
taneously and independently, models based on the boost-
ing technique, like the gradient boosted decision trees
model, build the trees sequentially. Each tree is built using
information from previously grown trees and is trained
on the residual errors of the previous tree. The predic-
tion for an observation is obtained from the last decision
tree in the sequence of trees. Just like the random forest
model, the gradient boosted decision trees model includes
all the hyperparameters of a decision tree model, as well
as some additional ones relevant for the ensemble process,
the major among them being i) the number of decision
trees to be used, and ii) the rate at which the boosting
progress, that is, the contribution of each new decision
tree added to the sequence of trees. For the present work,
XGBoost, a highly optimized and robust implementation of
the gradient boosted decision treesmodel is used. XGBoost
uses an efficient algorithm for identifying the best split,
and other techniques to speed up the training process.
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