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Dedicated to the memory of Professors Edward Fadell and Sufian Husseini

ABSTRACT. Parametrized motion planning algorithms [1] have high degree
of flexibility and universality, they can work under a variety of external
conditions, which are viewed as parameters and form part of the input of
the algorithm. In this paper we analyse the parameterized motion planning
problem in the case of sphere bundles. Our main results provide upper
and lower bounds for the parametrized topological complexity; the upper
bounds typically involve sectional categories of the associated fibrations
and the lower bounds are given in terms of characteristic classes and their
properties. We explicitly compute the parametrized topological complexity
in many examples and show that it may assume arbitrarily large values.

1. Introduction

The motion planning problem of robotics is one of the central themes which
makes possible autonomous robot motion, see [9]. A motion planning algorithm
takes as input the initial and the desired states of the system and produces as
output a motion of the system starting at the initial and ending at the desired
states. A robot is “told” where it needs to go and the execution of this task,
including selection of a specific route of motion, is made by the robot itself. In
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162 M. FARBER — S. WEINBERGER

this approach it is understood that the external conditions (such as the positions
of the obstacles and the geometry of the enclosing domain) are known.

In recent papers [1], [2], motion planning algorithms of a new type were
considered. These are parametrized motion planning algorithms, which, besides
the initial and desired states, take as input the parameters characterising the
external conditions. The output of a parametrized motion planning algorithm is
a continuous motion of the system from the initial to the desired state respecting
the given external conditions. The papers [1], [2] laid out the new formalism
and analysed in full detail the problem of moving a number n of robots in the
domain with m unknown obstacles. The authors used techniques of algebraic
topology and were able to find the answer by using a combination of upper and
lower bounds. The lower bounds use the structure of the cohomology algebras.
A brief introduction into the concept of parametrized topological complexity is
given below in Section 3.

The purpose of this article is to analyse the parametrized topological com-
plexity of sphere bundles. The Stiefel-Whitney and Euler characteristic classes
play an important role in these estimates. Our main results give upper and
lower bounds for the parametrized topological complexity and we compute the
parametrized topological complexity of a number of examples.

It would be interesting to adopt the theory of weights of cohomology classes of
E. Fadell and S. Husseini [4] with the purpose of strengthening the cohomological
lower bounds in application to the parametrized topological complexity.

The authors thank the referee for very helpful comments.

2. Sectional category of sphere bundle

In this section we recall some well-known results, see [11], which will be useful
later in this paper.

Let £: E — B be a rank ¢ vector bundle. We shall denote ¢ = rk(¢) and
shall write E(€) instead of E when dealing with several bundles at once. In
this article we shall always assume that vector bundles are equipped with metric
structures, i.e. with continuous scalar product on fibres.

We shall denote by 5 : E — B the associated bundle of (¢ — 1)-dimensional
spheres, i.e. f =¢| ;. Here E C E is the set of vectors of length 1. If £ is oriented,
its Euler class ¢(¢) € HY(B) is defined, see [10]. Here the cohomology is taken
with integral coefficients. We shall adopt the convention of skipping Z from the
notations while indicating explicitly all other coefficient groups.

For a cohomology class v # 0 we shall denote by h(«) its height, i.e. the
largest integer k such that its k-th power is nonzero, o* # 0. We shall also set
h(a) =0 for a = 0.
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Recall that the sectional category (or Schwarz genus [11]) of a fibration with
base B is defined as the minimal integer £ > 0 such that there exists an open
cover B = Uy U ... U Uy with the property that over each set U; the fibration
admits a continuous section.

LEMMA 2.1. Let £: E — B be a vector bundle, ¢ = rk(§). Then
(a) The sectional category of the sphere fibration &: E = B satisfies

secat(&) > h(wy(£))

where wq(&) € H1(B;Zs) is the top Stiefel-Whitney class of €.
(b) If the bundle & is orientable then

secat(£) > h(e(¢)).

(¢) Moreover, if € is orientable and the base B is a CW-complex whose

dimension satisfies
dim B < ¢ - h(e(£)) + ¢,

then
secat(£) = h(e(€)).

PROOF. (a) First we observe that £*(w,(£)) = 0 € Hq(E;Zg). Indeed, using
functoriality of the Stiefel-Whitney classes, we see that £*(w,(€£)) is the top
Stiefel - Whitney class of the induced fibration £*(&) over E(¢). However this
fibration admits a nonzero section s(z) = = where z € E(£). The top Stiefel-
Whitney class of a vector bundle having a section vanishes, hence £*(w,(§)) =
Wq(é*(g)) =0.

Finally, we apply the general cohomological lower bound for the sectional
category, see [11, Theorem 4]; this gives secat(f') > h(wgy()).

(b) follows similarly.

To prove (c¢) we apply Theorem 3 of Schwarz [11] which identifies the sectional
category of £ with the smallest number k such that the (k+ 1)-fold fiberwise join
(é)*(kﬂ) admits a continuous section. Note that (é)*(k+1) is fiberwise homeo-
morphic to the unit sphere bundle of the vector bundle (k+ 1) =@ ... BE,
the Whitney sum of k4 1 copies of €. The obstructions for a section of (f)*(kﬂ)
lie in the groups

HY(B;m_1 (8101 i =1,2,...
The first obstruction (with ¢ = q(k + 1)) equals
e(©)" ! =e((k+1)¢) € HD(B).

Taking k = h(e(£)) we obtain e(£)*! = 0, i.e. the first obstruction vanishes.
The further obstructions (with i = q(k + 1) + j where j = 1,2,...) also vanish
because of our assumption dim B < ¢q- (h(e(€)) + 1). O
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EXAMPLE 2.2. Let n: E — CP" denote the canonical complex line bundle over
CP". We shall view n as a rank 2 real vector bundle. Its Euler class e(n) is
the generator of H*(CP") and h(e(n)) = n. Since dimCP" = 2n < 2 (n + 1),
Lemma 2.1 (C) applies and gives secat(n) = n.

EXAMPLE 2.3. Let n: E — CP" be as in the previous example. For k < n
consider & = kn = n @ ... ® n, the Whitney sum of k copies of 7. We have
k(&) = 2k, and e(&) = e(n)* implying h(e(&x)) = |n/k|. The inequality
dim B = 2n < 2k - (|n/k] + 1) is satisfied and using Lemma 2.1 we obtain

(2.1) secat(§y) = [n/k]

for any k =1,...,n. Formula (2.1) is also true for & > n as then the bundle &
admits a section and hence secat(&;) = 0.

REMARK 2.4. There is a version of statement (c) of Lemma 2.1 for non-orientable
bundles; in this case the Euler class lies in the cohomology e(§) € HY (B ; Z) with
twisted  coefficients and its powers e(¢)F lie in the groups
H* (B, (Z)@“). It is easy to see that (Z)®’€ = Z for k even and (2)@”C =7
for k odd.

3. Parametrized topological complexity

In this section we briefly recall the notion of parametrized topological com-
plexity which was recently introduced in [1], [2]. It is a generalization of the
concept of topological complexity of robot motion planning problem introduced
in [5]; see also [6].

Let X be a path-connected topological space viewed as the space of states
of a mechanical system. The motion planning problem of robotics asks for an
algorithm which takes as input an initial state and a desired state of the system,
and produces as output a continuous motion of the system from the initial state
to the desired state, see [9]. That is, given (zg,x1) € X x X, the algorithm
will produce a continuous path v: I — X with v(0) = z¢ and (1) = x1, where
I =10, 1] denotes the unit interval.

Let X! denote the space of all continuous paths in X, equipped with the
compact-open topology. The map m: X! — X x X, where (y) = (7(0),~(1)), is
a fibration in the sense of Hurewicz. A solution of the motion planning problem,
a motion planning algorithm, is a section of this fibration, i.e. a map s: X x X —
X7 with mos = idxxx. If X is not contractible, no section can be continuous,
see [5]. The topological complexity of X is defined to be the sectional category, or
Schwarz genus, of the fibration m: X7 — X x X; notation: TC(X) = secat(n).
In other words, TC(X) is the smallest integer k& for which there exists an open
cover X x X = UpU...UUy such that the fibration m admits a continuous section
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s;: Uj — X' for each j =0,...,k.

In the parametrized setting developed in [1], one assumes that the motion
of the system is constrained by external conditions, such as obstacles or va-
riable geometry of the containing domain. The initial and terminal states of the
system, as well as the motion between them, must live under the same external
conditions.

This situation is modelled by a fibration p: £ — B, with path-connected
fibers, where the base B is a topological space encoding the variety of external
conditions. For b € B, the fiber X}, = p~1(b) is viewed as the space of achievable
configurations of the system given the constraints imposed by b. A parametrized
motion planning algorithm takes as input initial and terminal states of the system
(consistent with external conditions b), and produces a continuous path between
them, achievable under external conditions b. The initial and terminal points,
as well as the path between them, all lie within the same fiber Xj.

To define the parametrized topological complexity of the fibration p: £ — B
one needs to introduce the associated fibration II: Eé — ExpFE, where ExgFE
is the space of all pairs of configurations lying in the same fiber of p, while EL
stands for the space of continuous paths in F lying in a single fiber of p; the map
IT sends a path to its endpoints.

DEFINITION 3.1. The parametrized topological complexity of the fibration p: £ —
B is defined as the sectional category of the fibration

(3.1) I:Ep— ExgBE, ()= (4(0),7(1)).
In more detail,
TC[p: E — B] :=secat(Il: Ef; —» E xp E)

is the minimal integer k£ such that F xp E admits an open cover £ xp F =
Up U...U Uy with the property that each set U; admits a continuous section of
II, where i = 0,..., k.

Note that I1: EL — E x g E is a Hurewicz fibration assuming that p: £ — B
is a Hurewicz fibration, see [2], Proposition 2.1.

If B' C Bisasubset and B’ = p~!(B’) C E, then the topological complexity
TC[p': E' — B’'] of the restricted fibration (where p’ = p|g/) clearly satisfies

TC[p': E' — B'1 < TC[p: E — B].
In particular, we obtain the inequality
(3.2) TC(X) < TClp: E — B]

where X is the fibre of p: E — B.
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LEMMA 3.2. Let p: E — B be a locally trivial fibration with fibre X.

(a) If TC[p: E — B] =0 then X is contractible.

(b) Conwversely, if the the fibre X is contractible and the base B is paracom-
pact then there exists a globally defined continuous parametrized motion
planning algorithm s: E x g E — EL and therefore TC[p: E — B] = 0.

ProoF. If TC[p: E — B] = 0 then TC(X) = 0 because of (3.2). By Theo-
rem 1 from [5] this implies that X is contractible. To prove (b) we shall apply
Corollary 3.2 from the paper of A. Dold [3]. It implies that a locally trivial fibre
bundle p: F — B with paracompact base and contractible fibre is shrinkable;
this means that there exists a continuous section ¢: B — FE and a homotopy
H: ExI — E such that for any e € E one has H(e,0) = e, H(e,1) = op(e) and
p(H(e,t)) = p(e). We may define the section s: E x g E — EL by the formula

He,2t) for 0 <t <1/2,

(3.3) s(e,e')(t) = H(e,2—2t) for1/2<t<1,

where (e,e¢’) € Exp E and t € I. Since H(e,1) = op(e) = op(e’) = H(e', 1), we
see that both parts of the formula (3.3) match and hence s is continuous. We
clearly have s(e,e’)(0) = e and s(e,e’)(1) = ¢’. Besides, p(s(e,e')(t)) = p(e) =
p(e’), i.e. s is a continuous parametrized motion planning algorithm. O

Next we mention the upper and lower bounds for the parametrized topolo-
gical complexity established in [1].

PROPOSITION 3.3 ([1, Proposition 7.2]). Let p: E — B be a locally trivial fibra-
tion with fiber X, where the spaces E, B, X are CW-complexes. Assume that
the fiber X is r-connected. Then
2dim X +dim B +1

r+1 ’
PROPOSITION 3.4 ([1, Proposition 7.3]). Let p: E — B be a fibration with path-
connected fiber. Consider the diagonal map A: E — E xp E, where Ae) =

TCp: E— B] <

(e,e). Then the parametrized topological complexity TClp: E — B] is greater
than or equal to the cup-length of the kernel ker[A*: H*(ExgE; R) — H*(E; R)],
where R is an arbitrary coefficient ring.

PROPOSITION 3.5 ([1, Proposition 4.7]). Ifp: E — B is a locally trivial fibration,
and the spaces E and B are metrizable separable ANRs, then in Definition 3.1,
instead of open covers one may use arbitrary covers of E Xg E or, equivalently,
arbitrary partitions

EXBE:FQU...qu, FlﬂF]:(Z),z;é]

admitting continuous sections s;: F; — E]Ig, where 1 =0,...,k.
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EXAMPLE 3.6. As an illustration consider the canonical complex line bundle
n: E — CP" = B viewed as a real rank 2 vector bundle. The unit sphere bundle
n: E(n) — CP" is a principal S*-bundle, its total space E(n) is the sphere S?71,
the set of unit vectors z € C*. The unit circle S' C C acts by multiplication,
this action is free and the quotient is CP". We claim that

(3.4) TC[: E(n) — CP"] = 1.

Indeed, using (3.2) we get TC[n: E(n) — CP"] > TC(S') = 1. To obtain the
inverse inequality we consider the following partition

E(n) xp E(n) = FyUF,

where Fy is the set of all pairs (21, z2) of unit vectors z1, zo € S?"~! lying in the
same fibre but not antipodal, i.e. z1 # —z9; the set F} is the set of antipodal
pairs (z,—2). For (z1,29) € Fy we can write 22/2; = €® where ¢ € (—m,7) and
a continuous section sg of the fibration (3.1) over Fy can be defined as follows:

s0(21,22)(t) = €2y, t€[0,1].

On the other hand, over F; we can define a continuous section s; where
(3.5) s1(z,—2)(t) =™ 2, te]0,1].
This proves (3.4).

This example is a special case of a more general statement that the parametrized
topological complexity of any principal bundle equals the Lusternik—Schnirelmann
category of the fibre, see Proposition 4.3 in [1].

The main result of [1] is the computation of the parametrized topological
complexity of the Fadell-Neuwirth fibration which, in term of robotics, can be
understood as the complexity of controlling multiple robots in the presence of
multiple movable obstacles.

4. The cup-length associated with a section

Material of this section will play an auxiliary role in the sequel. We shall use
notations introduced in the beginning of Section 2.

Let £&: E — B be an oriented vector bundle of rank g > 2 equipped with
scalar product structure (-, -). As above, let £: E — B denote the unit sphere
bundle; its fibre is homeomorphic to S97!. In this section we shall assume that
the fibration £: F — B has a continuous section s: B — E and our goal will be
to identify the kernel

(4.1) ker[s*: H*(E) — H*(B)]
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and its cup-length, i.e. the length of the longest nontrivial products of elements
of this kernel. This result will be used in the following sections to estimate the
parametrized topological complexity from below.

We shall use the following remark. The oriented sphere fibration § :F— B
admits a cohomological extension of the fibre (see [12, Chapter 5, §7]) if and only
if its Euler class vanishes, ¢(£) = 0. In particular, any oriented sphere fibration
with trivial Euler class ¢(§) = 0 satisfies the conclusion of the Leray—Hirsch
theorem, see [12].

Let F' C E denote the set {e € F : e L s5(£(e))}; it is the set of unit vectors
perpendicular to the section. The projection

n:F =B, n={p
is an oriented bundle of (g —2)-dimensional spheres. Let ¢(n) € H9~1(B) denote

the Euler class of . The mod-2 reduction of the class ¢(n) equals the Stiefel-
Whitney class w,_1(§) € H1™1(B;Zs) of €.

THEOREM 4.1. The cup-length of the kernel (4.1) equals h(e(n))+1 where h(e(n))
denotes the height of the Euler class ¢(n) € H71(B).

PROOF. Let U € H? '(E) denote a fundamental class: for any b € B the
restriction U| £, is the fundamental class of the fibre E,. By the Leray—Hirsch
theorem every cohomology class in H*(F) has a unique representation in the
form
& (u) + & (v) — U, where u,v € H*(B).
Let W, W' C E denote the following subsets:
W={ecFE:{es(t())>0} and W' ={eec E: (e s(¢(e))) <0}

Clearly W UW’ = E and W N W’ = F. One can identify W with the unit disc
bundle of the sphere bundle F. Therefore the quotient E/W’ = W/F can be
naturally identified with the Thom space of the fibration 7.

Next we observe that the fundamental class U € H9 '(E) can be chosen
such that Ul = 0. Indeed, starting with an arbitrary choice U’ we can replace
it by U = U’ — £*(z) where x € H971(B) is such that (¢|w)*(x) = U'|w.
Here we use the observation that £|y: W/ — B is a homotopy equivalence and
hence the class z mentioned above exists and is unique. With this choice clearly
Ulw: = 0.

Once the fundamental class U satisfies Ulys = 0 we have the following

formulae which fully describe the multiplicative structure of H*(E):
(42) s*(U) = ¢(n) € HT\(B)
and

(4.3) U—U=¢(e(n) — U e HD(E).
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To prove (4.3) we note that Uy = 0 implies that the class U can be refined to
a relative class U € HI"Y(E,W') = H™Y(E/W’) = HI"Y(W/F). We already
mentioned that the quotient E /W' can be identified with the Thom space of
the vector bundle having 7 as its unit sphere bundle. Examining the long exact
sequence in cohomology

e HU7XE) S HIT2(W') — HI7YE,W') - HI7Y(E)
we see that the refinement U is unique and coincides with the Thom class. Now,
by the definition (see [10], §9), we have
(4.4) e(n) = 5" (Ulw) = s*(U),
which proves (4.2). From (4.4) we also obtain

U—U=(Olw) = U=¢"(e(n) = UeHND(EW).
Applying the restriction homomorphism H2(q*1)(E, W’ — Hz(qfl)(E') to both
sides of this equality gives (4.3).

Note that the order of the factors in the RHS of formula (4.3) is irrelevant:
if ¢ is odd then the classes commute and for ¢ is even the Euler class e(n) has
order two.

Consider now an arbitrary class 2 € H*(E) satisfying s*(z) = 0. We can
write

r=E§(a)+£(B) — U with o, 8 € H*(B).
Applying s* and using (4.2) we get
(4.5) s*(x) =0=a+ 8 — ¢(n).
Conversely, any two classes «, 8 satisfying (4.5) produce a class x = £*(«a) +
€*(B) — U lying in the kernel of s*. A particular choice & = —e(n) and § =1
gives the class
w0 =U =€ (e(n)) € HT(E).
Using (4.3) we have
wy=U? =26 (e(n) — U +&"(e(n))* = =€ (e(n)) — w0
and we obtain by induction
g = ()" (en)" 1) — zo = (=1)"E" (e(m)") + (1)1 (e(m)" " — UL

For n = h(e(n))+1 the class 2% equals (—1)"71&*(e(n))"~! — U and is obviously
nonzero (as follows from the Leray—Hirsch theorem). This implies that the cup-
length of the kernel ker s* is at least h(e(n)) + 1.

If & = &%(
a = —fF — e(n) (see above) and thus z = £*(8) — xo. In other words, the kernel
kers* C H* (E) is the principal ideal generated by the class xy. We see that the

a)+&*(B) — U €, H*(F) is an arbitrary class with s*(z) = 0 then
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cup-length of the kernel equals the highest nonzero power of zy which, as we
have shown above, is h(e(n)) + 1. O

The following Corollary is an analogue of Theorem 4.1 where we use Zo
coefficients. The role of the Euler class plays the top Stiefel-Whitney class of the
bundle 7 of vectors orthogonal to the section. The advantage of this statement
is that the answer is given in terms of the original bundle £ and its characteristic
class w,_1(§) € H17Y(B; Z2).

COROLLARY 4.2. Let £: E — B be a rank q > 2 vector bundle (not necessarily
orientable). Let s: B — E be a continuous section of the unit sphere bun-
dle. Then the cup-length of the kernel ker[s*: H*(E;Zy) — H*(B;Zs)] equals
b(wg-1(£)) + 1.

PROOF. One repeats the arguments of the proof of Theorem 4.1 replacing the
integer coefficients by Zs. The bundle n: F — B, n = £|F is the bundle of vectors
orthogonal to the section, i.e. F = {e € E : e L s(£(e))} and the arguments of the
proof of Theorem 4.1 show that the the kernel ker[s*: H*(E;Zy) — H*(B;Z3)] is
the principal ideal generated by the class 29 = U —£*(wq—1(n)). The height of z
equals one plus the height of the class w,_1(n). However, £ = n@®e where ¢ is the
trivial line bundle determined by the section and therefore wy_1(n) = wq—1(§)
and the result follows. O

5. Parametrized topological complexity of sphere bundles

Let £&: E — B be an oriented rank ¢ > 2 vector bundle equipped with
fibrewise scalar product. Let 5 E — B denote the unit sphere bundle; its
fibre is the sphere of dimension ¢ — 1. Our goal is to estimate the parametrized
topological complexity TC[é: E — B]. By Proposition 3.3 we have an upper
bound

oo dim B+ 1
(5.1) TC[é: £ — B] <2+%.
q—
To state our result, consider the bundle
(5.2) £ E— E,

where E C E xp E is the space of pairs of mutually orthogonal unit vectors
(z,y) € ExpE, x Ly. The projection £ acts as f(x,y) = z. The map (5.2) is
an oriented locally trivial fibration with fibre sphere of dimension g—2. Consider
its Euler class

(5.3) e(§) e HIY(E).

An obvious property of the class ¢(¢) is that for any point b € B the restriction
e(£)|Eb is the Euler class of the tangent bundle of the sphere Ej.
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REMARK 5.1. A section s of bundle (5.2) associates with a unit vector e €
E(€) a unit vector s(e) which is perpendicular to e and the integer secat(¢) is
a measure of complexity of construction such a section s globally, i.e. over all E.

In particular, secat(§) = 0 if the vector bundle £ admits a complex structure: in
this case one can define the section by s(e) = +/—1-e.

THEOREM 5.2. One has the estimates

(5.4) he(€)) +1 < TC[é: E — B] < secat(€) + 1.

Moreover, if B is a CW-complex satisfying dim B < (¢ — 1) - h(e(€)) then
(5.5) TC[¢: E — B] = h(e(§)) + 1 = secat(é) + 1.
PRrOOF. Consider the diagonal map A: E — ExgF and apply Proposition 3.4;
we obtain that the parametrized topological complexity TC[S ) D B is greater
than or equal to the cup-length of the kernel ker[A*: H*(E x5 E) — H*(E)].
However, A is a section of the sphere fibration F x g E — E given by projection
on the first vector; hence we may apply Theorem 4.1 which describes the cup-
length of the kernel of the induced map. The bundle of vectors perpendicular to
the section is exactly the bundle E . By Theorem 4.1 the cup-length of the kernel
ker[A* : H*(E xp E) — H*(E)] equals h(e(€)) + 1. This gives the lower bound
in (5.4).

To prove the right inequality in (15) consider the set U C E x g E consisting
of pairs (e,e/) € E xp E with e # —e’. Over U, we can define a continuous
motion planning algorithm s: U — E,é by setting

(5.6) s(e,e)(t) = E=Hexte

“a=pesee ‘€O
In view of Proposition 3.5 it remains to construct a motion planning algo-
rithm over the complementary set V = {(e, —e); e € E} C E xp E. Denote by
p1,p2 1 V — E the projections pi (e, —e) = e and pa(e, —e) = —e.
Consider again the bundle f : E — E and suppose that A C E is a subset
such that the bundle ¢ admits a continuous section s4: A — E over A. Using

this section we may construct a section sy of the fibration
M Bl = oy B
over the set p; ' (A) as follows:

(5.7) s'y(e,—e)(t) = cos(tm) - e+sin(tm)-sale), te[0,1].

Let £ = AgU...U Ay be an open covering, where k = secat(£), with the
property that f E — F admits a continuous section over each A4;. Then the sets
py ' (A;) cover V and over each of these sets the fibration IT admits a continuous

section. Thus we get an inequality TC[¢: E — B] < secat(£) + 1.
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Finally we apply Lemma 2.1 which claims that the sectional category of {
equals h(e(€)) under an additional assumption that dim E < (¢ — 1) - h(e(€))
+(¢ — 1) which is equivalent to dim B < (g — 1) - h(e(€)). Hence under this

assumption we obtain TC[¢: E — B] = h(e(£)) + 1 = secat(€) + 1. O

COROLLARY 5.3. For a vector bundle £: E — B satisfying secat(§) = 0 one has
TC[¢: E— B] =1.

PROOF. The inequality (5.4) gives TC[¢: E — B] < 1. On the other hand,
TC[¢: E— B] > TC(S* 1) =1 by (3.2). O

ExaMPLE 5.4. Consider the canonical rank 2 bundle £ over CP" as in Exam-
ple 3.6. In this case E(€) = $2*~! and the bundle £: E — E is the trivial bundle
with fibre S, i.e.

secat(£) = 0 = b(e(E)).
We obtain from (5.4) that TC[¢: $2"~! — CP"] = 1 confirming the result of
Example 3.6.

Generalising Example 5.4 we may state:

COROLLARY 5.5. For any vector bundle £: E — B of even rank tk(§) = 2r
admitting a complex structure, one has

TC¢: E— Bl =1=TC(S* ).

PROOF. In this case secat(§) = 0 (by Remark 5.1) and the result follows from
Corollary 5.3. O

REMARK 5.6. Introducing the bundle 5 over F and using its sectional category
to estimate the parametrized topological complexity we made an approximation
of the space of paths on the sphere connecting a pair of antipodal points by the
sphere of one dimension below. This sphere is however only the first term in
the James’ construction JS?72, see [8], which gives a CW complex having the
homotopy type of this space of paths.

Note that for ¢ even the Euler class e(§) € H9'(E) has order 2, ie.
2. e(fn) = 0. We shall focus below on the case when ¢ odd. Compared with
Theorem 5.2, Corollary 5.7 stated below has the advantage of dealing with co-

homology of the base B.

COROLLARY 5.7. For ¢ > 3 odd, let n: E(n) — B be an oriented vector bundle
of rank q— 1. Let £ = n® e be the sum where € is the trivial line bundle over B.
Then one has

(5.8) TCIE: E(€) = B] = b(e(n)) + 1.
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Moreover, if the height h(e(n)) is even and the integral cohomology of the base B
in dimension (¢ — 1) - h(e(n)) has no 2-torsion then

(5.9) TC[¢: E(€) — B] > b(e(n)) + 2.

PRrOOF. Counsider the Euler class ¢(§) € Hq’l(E(f)). Applying the Leray—
Hirsch theorem we see that any class in H9~1(E(¢)) has a unique representation
as £*(a) 4+ bU where U € H?'(E) is a fundamental class, a € H?"'(B) and
beZ Lets: B— E(€) be the section determined by the trivial summand e.
We showed in the proof of Theorem 4.1 that the fundamental class U can be
chosen so that

(5.10) (U) = o),
see formula (4.2). Note that

(5.11) (&) =n.

Besides,

(5.12) e(€) = €"(a) +2U, for some class a € H*}(B).

Indeed, the class ¢(€) restricted to each fibre Fj,(€) equals twice the fundamental
class of the sphere Eb(f) ~ S9! (here we use our assumption that ¢ is odd,
and hence the Euler characteristic of S9=1 equals 2). Applying s* to both sides

of equation (5.12) we find s*(e(§)) = e(s*(€)) = e(n), and s*(£*(a)) = a which
together with (5.10) give a = —e(n). Therefore we have

(5.13) e(§) = —€"(e(n)) + 2U.

Using U? = £*(e(n)) — U (see (4.3)) we find e(£)? = £*(e(n)?) and therefore the

even and odd powers of the class e(§) are as follows

(5.14) e(£)*" =& (e(n)®")
and
(5.15) e(£)7"H = =€ (e(n)* ) + 26" (e(n)*") — U.

From formulae (5.14) and (5.15) we see that the height h(e(&)) either equals to
h(e(n)) or it equals h(e(n)) + 1; the second possibility happens iff h(e(n)) is even
~1b(()(B) has no 2-torsion.

Applying Theorem 5.2 completes the proof. U

and the group H

ExaMPLE 5.8. Consider the situation of Corollary 5.7 in the case when n: E(n) —
CP"™ is the canonical bundle over the complex projective space as in Example
3.6. Taking £ = n ® e we have rk(§) = ¢ = 3 is odd and h(e(n)) = n. By
Corollary 5.7 we get TC[¢: E(§) — CP"] > n + 1 and moreover for n even
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TC[¢: E(€) — CP"] > n+ 2. On the other hand, the upper bound (5.1) gives

TC[¢: E(€) — CP"] < n+ 2. Thus, we see that
TC[¢: E(€) = CP" =n+2

for all even n. In particular, we see that the parametrized topological complexity
of sphere bundles can be arbitrarily large. This contrasts the situation with the
usual (i.e. unparametrized) topological complexity which takes the values 1 and
2 only for spheres.

Finally we describe an explicit parametrized motion planning algorithm hav-
ing complexity n+2 for the unit sphere bundle associated with the vector bundle
E=n& e over B=CP" as considered in Example 5.8. We shall describe a par-
tition
(5.16) E)xpE(§)=FyU...UF,
and a continuous section s; of the fibration

I: E(¢) 5 — E(€) x5 E(§)

over each of the sets F; where i =0,...,n+ 2.
The set Fy € E(£) x g E(£) will be defined as the set of pairs (x,y) € E(€) xp
E(€) with 2 # —y. The section so over Fy can be defined by formula (5.6).
The unit sphere bundle of the trivial summand ¢ gives the sections +o: B —
E(e) C E(€). Let E(£)* denote the complement F(£) — E(e). We define the
set Fy C B(€) xp E(£) to be the set of all pairs (z, —z) with z € E(£)*. Let
pr: B(€)* = E(n) C E(£) denote the retraction given by the formula

z — (z,0(b)) - a(b)
5.17 r(r) = where b = £(x).
47 P S o) o T
Here the symbol (-, -) denotes scalar product in the fibre. The deformation
_ z—t-(z,0(b) o(b) _
a(T) = =t (@.o0) o0 where b = £(z), t € [0,1],

satisfies ag(x) = = and «a;(z) = pr(z). The homotopy ¢t — (ai(z), az(—x)) de-

forms the initial pair (z, —x) to a pair of antipodal points lying in the equatorial
sphere E(n) C E(£). Note that the circle S* acts freely on E(), see Example 3.6.
We may define a continuous section sy over Fj by setting sq(z, —x)(¢) to be the
concatenation of the following three paths: (a) the deformation «:(z), (b) the
section (3.5) of Example 3.6, and (c) the reverse of the deformation oy(—z). In
more details,

aszy(T) for t € [0,1/3],
s1(z, —z)(t) = < ™G . pr(z) for t € [1/3,2/3],
043(1,15)(—.7}) for t € [2/37 1]



PARAMETRIZED TOPOLOGICAL COMPLEXITY OF SPHERE BUNDLES 175

Finally, we define the sections s;: F; — E(E)j[g for i = 2,...,n + 2 as follows.
The base B = CP" has the well-known cell decomposition CP" = €% L ... L e2»
with a single cell €2’ in each even dimension 2i < 2n. For i = 2,...,n+ 2, let

F; denote the set of pairs (z, —x) with = £0(b) for b = £(z) lying in the cell
e2(=2)  Since the cell e2(=2) is contractible, the bundle 7 admits a continuous
section ¢; over e2(*=2). Hence we may define the section s;: F; — E({)IB by the

formula

si(z, —x)(t) = cos(mt) - @ + sin(nt) - $i(§(x)),
similarly to (5.7). Here we assume that the Euclidean structure on the vector
bundle ¢ is the orthogonal sum of the Euclidean structures of 7 and €.

We conclude the paper with the following observations. Below we always
assume that the base B is an ANR.

LEMMA 5.9. Let &: E — B be a vector bundle such that £ = n®71 and rk(t) > 2.
Then

(5.18) secat(&: E(€) — B(€))
< secat(7: E(r) = E(T)) + secat(7: E(r) — B) +1

and consequently

(5.19) TC[¢: E — B| < secat(#: E(r) — E(7)) + secat(7: E(1) — B) +2.
PROOF. It is enough to prove the inequality (5.18) as (5.19) follows from (5.18)
and Theorem 5.2. If £ = n @& 7 then for any point of the base b € B we have
E(&)s = E(n)y ® E(7)p. The scalar product can be chosen so that the spaces
En)p, E(1), C E(§)s are mutually orthogonal. We shall denote by P! and P/
the orthogonal projections of E(£), onto E(n), and E(7); correspondingly.

Let k denote secat(7: E(r) - E(T)) and let ¢ denote secat(7: E(r) - B).
Let E(1) = Go U ... U G}, be a partition such that for each j = 0,...,k there
exists a continuous map o;: G; — E (1) with the property that for every e € G;
the vectors e and ¢;(e) lie in the same fibre and are perpendicular to each other.
Besides, let By U ... By = B be a partition of the base B with continuous
sections v;: B; — F(7), where i =0, ..., /.

We want to show that E(£) can be partitioned as

E(ﬁ)=F0|J...L|FkL|Fk+1|_|...|_|Fk+g+1

such that there exist continuous sections s;: F; — E(€) of the fibration . In view

of the result of J.M. Garcia-Calcines [7], this is equivalent to secat(§) < k+£¢+1.
Fori=0,...,k we set

Fi = {6 € E(é—) : Pg(e)(e) 7é O’ and ||Pg—(e)(e)||_1 : Pg(e)(e) € Gl}
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and fori=k+1,...,k+ 0+ 1, we set
F,={ec E(&): Pl (e) =0and {(e) € Bi -1}

Next we construct the continuous sections s;: F; — FE(§). For i = 0,...,k,
given a unit vector e € F;, consider ¢/ = Pg(e)(e) which is a nonzero vector of
E(7)p, where b = £(e). Then e’ = ||¢/|| =" - ¢’ is a unit vector and o;(e”) € E(1)
is a unit vector satisfying o;(e”) L €’. In particular we see that the unit vectors
e,o:(e") € E(§)p are linearly independent. Hence the unit vector

" = |loi(e") = (oi(e"), e} el 7 - (ai(e”) = {oile”),e) - €)

is perpendicular to e and depends continuously on e. Thus, we may define the
section s; by setting s;(e) = (e, e’”).

Next we describe the sections s; over the sets F; where ¢ = k+1,..., k+{+1.
If e € F; then P](e) =0 and b = £(e) lies in B;_k_1. In other words, e € E(n)
and b = £(e) € B;_g—1. The section v;_g_1: Bj—-1 — E(’T) defines a unit
vector v;_y_1(b) € E(r) C E(¢) which is perpendicular to e. Therefore we may
define the section s; of & over F; by the formula s;(e) = (e, v;_g_1(€)). O

COROLLARY 5.10. Let £: E — B be a vector bundle such that £ = n @ T where

7: E(1) — B admits a complex structure and has a nowhere zero continuous
section. Then TC[¢: E — B] < 2.

Proor. This follows from Remark 5.1 and Lemma 5.9. O

COROLLARY 5.11. Let £: E — B be a vector bundle admitting two continuous
linearly independent nowhere zero sections. Then TC[E: E — B] < 2.

PROOF. This reduces to the previous Corollary with 7 the trivial bundle of
rank 2.
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