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Dedicated to the memory of Professors Edward Fadell and Sufian Husseini

Abstract. Parametrized motion planning algorithms [1] have high degree
of flexibility and universality, they can work under a variety of external

conditions, which are viewed as parameters and form part of the input of

the algorithm. In this paper we analyse the parameterized motion planning
problem in the case of sphere bundles. Our main results provide upper

and lower bounds for the parametrized topological complexity; the upper

bounds typically involve sectional categories of the associated fibrations
and the lower bounds are given in terms of characteristic classes and their

properties. We explicitly compute the parametrized topological complexity

in many examples and show that it may assume arbitrarily large values.

1. Introduction

The motion planning problem of robotics is one of the central themes which

makes possible autonomous robot motion, see [9]. A motion planning algorithm

takes as input the initial and the desired states of the system and produces as

output a motion of the system starting at the initial and ending at the desired

states. A robot is “told” where it needs to go and the execution of this task,

including selection of a specific route of motion, is made by the robot itself. In
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this approach it is understood that the external conditions (such as the positions

of the obstacles and the geometry of the enclosing domain) are known.

In recent papers [1], [2], motion planning algorithms of a new type were

considered. These are parametrized motion planning algorithms, which, besides

the initial and desired states, take as input the parameters characterising the

external conditions. The output of a parametrized motion planning algorithm is

a continuous motion of the system from the initial to the desired state respecting

the given external conditions. The papers [1], [2] laid out the new formalism

and analysed in full detail the problem of moving a number n of robots in the

domain with m unknown obstacles. The authors used techniques of algebraic

topology and were able to find the answer by using a combination of upper and

lower bounds. The lower bounds use the structure of the cohomology algebras.

A brief introduction into the concept of parametrized topological complexity is

given below in Section 3.

The purpose of this article is to analyse the parametrized topological com-

plexity of sphere bundles. The Stiefel–Whitney and Euler characteristic classes

play an important role in these estimates. Our main results give upper and

lower bounds for the parametrized topological complexity and we compute the

parametrized topological complexity of a number of examples.

It would be interesting to adopt the theory of weights of cohomology classes of

E. Fadell and S. Husseini [4] with the purpose of strengthening the cohomological

lower bounds in application to the parametrized topological complexity.

The authors thank the referee for very helpful comments.

2. Sectional category of sphere bundle

In this section we recall some well-known results, see [11], which will be useful

later in this paper.

Let ξ : E → B be a rank q vector bundle. We shall denote q = rk(ξ) and

shall write E(ξ) instead of E when dealing with several bundles at once. In

this article we shall always assume that vector bundles are equipped with metric

structures, i.e. with continuous scalar product on fibres.

We shall denote by ξ̇ : Ė → B the associated bundle of (q − 1)-dimensional

spheres, i.e. ξ̇ = ξ|Ė . Here Ė ⊂ E is the set of vectors of length 1. If ξ is oriented,

its Euler class e(ξ) ∈ Hq(B) is defined, see [10]. Here the cohomology is taken

with integral coefficients. We shall adopt the convention of skipping Z from the

notations while indicating explicitly all other coefficient groups.

For a cohomology class α 6= 0 we shall denote by h(α) its height, i.e. the

largest integer k such that its k-th power is nonzero, αk 6= 0. We shall also set

h(α) = 0 for α = 0.
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Recall that the sectional category (or Schwarz genus [11]) of a fibration with

base B is defined as the minimal integer k ≥ 0 such that there exists an open

cover B = U0 ∪ . . . ∪ Uk with the property that over each set Ui the fibration

admits a continuous section.

Lemma 2.1. Let ξ : E → B be a vector bundle, q = rk(ξ). Then

(a) The sectional category of the sphere fibration ξ̇ : Ė → B satisfies

secat(ξ̇) ≥ h(wq(ξ))

where wq(ξ) ∈ Hq(B;Z2) is the top Stiefel-Whitney class of ξ.

(b) If the bundle ξ is orientable then

secat
(
ξ̇
)
≥ h(e(ξ)).

(c) Moreover, if ξ is orientable and the base B is a CW-complex whose

dimension satisfies

dimB ≤ q · h(e(ξ)) + q,

then

secat
(
ξ̇
)

= h(e(ξ)).

Proof. (a) First we observe that ξ̇∗(wq(ξ)) = 0 ∈ Hq
(
Ė;Z2

)
. Indeed, using

functoriality of the Stiefel–Whitney classes, we see that ξ̇∗(wq(ξ)) is the top

Stiefel - Whitney class of the induced fibration ξ̇∗(ξ) over Ė(ξ). However this

fibration admits a nonzero section s(x) = x where x ∈ Ė(ξ). The top Stiefel–

Whitney class of a vector bundle having a section vanishes, hence ξ∗(wq(ξ)) =

wq
(
ξ̇∗(ξ)

)
= 0.

Finally, we apply the general cohomological lower bound for the sectional

category, see [11, Theorem 4]; this gives secat
(
ξ̇
)
≥ h(wq(ξ)).

(b) follows similarly.

To prove (c) we apply Theorem 3 of Schwarz [11] which identifies the sectional

category of ξ̇ with the smallest number k such that the (k+1)-fold fiberwise join(
ξ̇
)∗(k+1)

admits a continuous section. Note that
(
ξ̇
)∗(k+1)

is fiberwise homeo-

morphic to the unit sphere bundle of the vector bundle (k + 1)ξ = ξ ⊕ . . . ⊕ ξ,
the Whitney sum of k+ 1 copies of ξ. The obstructions for a section of

(
ξ̇
)∗(k+1)

lie in the groups

Hi(B;πi−1(Sq(k+1)−1)), i = 1, 2, . . .

The first obstruction (with i = q(k + 1)) equals

e(ξ)k+1 = e((k + 1)ξ) ∈ Hq(k+1)(B).

Taking k = h(e(ξ)) we obtain e(ξ)k+1 = 0, i.e. the first obstruction vanishes.

The further obstructions (with i = q(k + 1) + j where j = 1, 2, . . .) also vanish

because of our assumption dimB ≤ q · (h(e(ξ)) + 1). �
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Example 2.2. Let η : E → CPn denote the canonical complex line bundle over

CPn. We shall view η as a rank 2 real vector bundle. Its Euler class e(η) is

the generator of H2(CPn) and h(e(η)) = n. Since dimCPn = 2n ≤ 2 · (n + 1),

Lemma 2.1 (C) applies and gives secat(η) = n.

Example 2.3. Let η : E → CPn be as in the previous example. For k ≤ n

consider ξk = kη = η ⊕ . . . ⊕ η, the Whitney sum of k copies of η. We have

rk(ξk) = 2k, and e(ξk) = e(η)k implying h(e(ξk)) = bn/kc. The inequality

dimB = 2n ≤ 2k · (bn/kc+ 1) is satisfied and using Lemma 2.1 we obtain

(2.1) secat(ξk) = bn/kc

for any k = 1, . . . , n. Formula (2.1) is also true for k > n as then the bundle ξk

admits a section and hence secat(ξk) = 0.

Remark 2.4. There is a version of statement (c) of Lemma 2.1 for non-orientable

bundles; in this case the Euler class lies in the cohomology e(ξ) ∈ Hq
(
B; Z̃

)
with

twisted coefficients and its powers e(ξ)k lie in the groups

Hkq
(
B,
(
Z̃
)⊗k). It is easy to see that

(
Z̃
)⊗k = Z for k even and

(
Z̃
)⊗k = Z̃

for k odd.

3. Parametrized topological complexity

In this section we briefly recall the notion of parametrized topological com-

plexity which was recently introduced in [1], [2]. It is a generalization of the

concept of topological complexity of robot motion planning problem introduced

in [5]; see also [6].

Let X be a path-connected topological space viewed as the space of states

of a mechanical system. The motion planning problem of robotics asks for an

algorithm which takes as input an initial state and a desired state of the system,

and produces as output a continuous motion of the system from the initial state

to the desired state, see [9]. That is, given (x0, x1) ∈ X × X, the algorithm

will produce a continuous path γ : I → X with γ(0) = x0 and γ(1) = x1, where

I = [0, 1] denotes the unit interval.

Let XI denote the space of all continuous paths in X, equipped with the

compact-open topology. The map π : XI → X×X, where π(γ) = (γ(0), γ(1)), is

a fibration in the sense of Hurewicz. A solution of the motion planning problem,

a motion planning algorithm, is a section of this fibration, i.e. a map s : X×X →
XI with π ◦ s = idX×X . If X is not contractible, no section can be continuous,

see [5]. The topological complexity of X is defined to be the sectional category, or

Schwarz genus, of the fibration π : XI → X ×X; notation: TC(X) = secat(π).

In other words, TC(X) is the smallest integer k for which there exists an open

cover X×X = U0∪ . . .∪Uk such that the fibration π admits a continuous section
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sj : Uj → XI for each j = 0, . . . , k.

In the parametrized setting developed in [1], one assumes that the motion

of the system is constrained by external conditions, such as obstacles or va-

riable geometry of the containing domain. The initial and terminal states of the

system, as well as the motion between them, must live under the same external

conditions.

This situation is modelled by a fibration p : E → B, with path-connected

fibers, where the base B is a topological space encoding the variety of external

conditions. For b ∈ B, the fiber Xb = p−1(b) is viewed as the space of achievable

configurations of the system given the constraints imposed by b. A parametrized

motion planning algorithm takes as input initial and terminal states of the system

(consistent with external conditions b), and produces a continuous path between

them, achievable under external conditions b. The initial and terminal points,

as well as the path between them, all lie within the same fiber Xb.

To define the parametrized topological complexity of the fibration p : E → B

one needs to introduce the associated fibration Π: EIB → E×BE, where E×BE
is the space of all pairs of configurations lying in the same fiber of p, while EIB
stands for the space of continuous paths in E lying in a single fiber of p; the map

Π sends a path to its endpoints.

Definition 3.1. The parametrized topological complexity of the fibration p : E →
B is defined as the sectional category of the fibration

(3.1) Π : EIB → E ×B E, Π(γ) = (γ(0), γ(1)).

In more detail,

TC[p : E → B] := secat
(
Π: EIB → E ×B E

)
is the minimal integer k such that E ×B E admits an open cover E ×B E =

U0 ∪ . . . ∪ Uk with the property that each set Ui admits a continuous section of

Π, where i = 0, . . . , k.

Note that Π: EIB → E×BE is a Hurewicz fibration assuming that p : E → B

is a Hurewicz fibration, see [2], Proposition 2.1.

If B′ ⊂ B is a subset and E′ = p−1(B′) ⊂ E, then the topological complexity

TC[p′ : E′ → B′] of the restricted fibration (where p′ = p|E′) clearly satisfies

TC[p′ : E′ → B′] ≤ TC[p : E → B].

In particular, we obtain the inequality

(3.2) TC(X) ≤ TC[p : E → B]

where X is the fibre of p : E → B.
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Lemma 3.2. Let p : E → B be a locally trivial fibration with fibre X.

(a) If TC[p : E → B] = 0 then X is contractible.

(b) Conversely, if the the fibre X is contractible and the base B is paracom-

pact then there exists a globally defined continuous parametrized motion

planning algorithm s : E ×B E → EIB and therefore TC[p : E → B] = 0.

Proof. If TC[p : E → B] = 0 then TC(X) = 0 because of (3.2). By Theo-

rem 1 from [5] this implies that X is contractible. To prove (b) we shall apply

Corollary 3.2 from the paper of A. Dold [3]. It implies that a locally trivial fibre

bundle p : E → B with paracompact base and contractible fibre is shrinkable;

this means that there exists a continuous section σ : B → E and a homotopy

H : E× I → E such that for any e ∈ E one has H(e, 0) = e, H(e, 1) = σp(e) and

p(H(e, t)) = p(e). We may define the section s : E ×B E → EIB by the formula

(3.3) s(e, e′)(t) =

H(e, 2t) for 0 ≤ t ≤ 1/2,

H(e′, 2− 2t) for 1/2 ≤ t ≤ 1,

where (e, e′) ∈ E ×B E and t ∈ I. Since H(e, 1) = σp(e) = σp(e′) = H(e′, 1), we

see that both parts of the formula (3.3) match and hence s is continuous. We

clearly have s(e, e′)(0) = e and s(e, e′)(1) = e′. Besides, p(s(e, e′)(t)) = p(e) =

p(e′), i.e. s is a continuous parametrized motion planning algorithm. �

Next we mention the upper and lower bounds for the parametrized topolo-

gical complexity established in [1].

Proposition 3.3 ([1, Proposition 7.2]). Let p : E → B be a locally trivial fibra-

tion with fiber X, where the spaces E, B, X are CW-complexes. Assume that

the fiber X is r-connected. Then

TC[p : E → B] <
2 dimX + dimB + 1

r + 1
.

Proposition 3.4 ([1, Proposition 7.3]). Let p : E → B be a fibration with path-

connected fiber. Consider the diagonal map ∆: E → E ×B E, where ∆(e) =

(e, e). Then the parametrized topological complexity TC[p : E → B] is greater

than or equal to the cup-length of the kernel ker[∆∗ : H∗(E×BE;R)→ H∗(E;R)],

where R is an arbitrary coefficient ring.

Proposition 3.5 ([1, Proposition 4.7]). If p : E → B is a locally trivial fibration,

and the spaces E and B are metrizable separable ANRs, then in Definition 3.1,

instead of open covers one may use arbitrary covers of E ×B E or, equivalently,

arbitrary partitions

E ×B E = F0 t . . . t Fk, Fi ∩ Fj = ∅, i 6= j

admitting continuous sections si : Fi → EIB, where i = 0, . . . , k.
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Example 3.6. As an illustration consider the canonical complex line bundle

η : E → CPn = B viewed as a real rank 2 vector bundle. The unit sphere bundle

η̇ : Ė(η)→ CPn is a principal S1-bundle, its total space Ė(η) is the sphere S2n−1,

the set of unit vectors z ∈ Cn. The unit circle S1 ⊂ C acts by multiplication,

this action is free and the quotient is CPn. We claim that

(3.4) TC[η̇ : Ė(η)→ CPn] = 1.

Indeed, using (3.2) we get TC[η̇ : Ė(η) → CPn] ≥ TC(S1) = 1. To obtain the

inverse inequality we consider the following partition

Ė(η)×B Ė(η) = F0 t F1

where F0 is the set of all pairs (z1, z2) of unit vectors z1, z2 ∈ S2n−1 lying in the

same fibre but not antipodal, i.e. z1 6= −z2; the set F1 is the set of antipodal

pairs (z,−z). For (z1, z2) ∈ F0 we can write z2/z1 = eiφ where φ ∈ (−π, π) and

a continuous section s0 of the fibration (3.1) over F0 can be defined as follows:

s0(z1, z2)(t) = eiφtz1, t ∈ [0, 1].

On the other hand, over F1 we can define a continuous section s1 where

(3.5) s1(z,−z)(t) = eiπt · z, t ∈ [0, 1].

This proves (3.4).

This example is a special case of a more general statement that the parametrized

topological complexity of any principal bundle equals the Lusternik–Schnirelmann

category of the fibre, see Proposition 4.3 in [1].

The main result of [1] is the computation of the parametrized topological

complexity of the Fadell–Neuwirth fibration which, in term of robotics, can be

understood as the complexity of controlling multiple robots in the presence of

multiple movable obstacles.

4. The cup-length associated with a section

Material of this section will play an auxiliary role in the sequel. We shall use

notations introduced in the beginning of Section 2.

Let ξ : E → B be an oriented vector bundle of rank q ≥ 2 equipped with

scalar product structure 〈 · , · 〉. As above, let ξ̇ : Ė → B denote the unit sphere

bundle; its fibre is homeomorphic to Sq−1. In this section we shall assume that

the fibration ξ̇ : Ė → B has a continuous section s : B → Ė and our goal will be

to identify the kernel

(4.1) ker[s∗ : H∗(Ė)→ H∗(B)]
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and its cup-length, i.e. the length of the longest nontrivial products of elements

of this kernel. This result will be used in the following sections to estimate the

parametrized topological complexity from below.

We shall use the following remark. The oriented sphere fibration ξ̇ : Ė → B

admits a cohomological extension of the fibre (see [12, Chapter 5, §7]) if and only

if its Euler class vanishes, e(ξ) = 0. In particular, any oriented sphere fibration

with trivial Euler class e(ξ) = 0 satisfies the conclusion of the Leray–Hirsch

theorem, see [12].

Let Ḟ ⊂ Ė denote the set {e ∈ Ė : e ⊥ s(ξ(e))}; it is the set of unit vectors

perpendicular to the section. The projection

η : Ḟ → B, η = ξ̇|Ḟ
is an oriented bundle of (q−2)-dimensional spheres. Let e(η) ∈ Hq−1(B) denote

the Euler class of η. The mod-2 reduction of the class e(η) equals the Stiefel–

Whitney class wq−1(ξ) ∈ Hq−1(B;Z2) of ξ.

Theorem 4.1. The cup-length of the kernel (4.1) equals h(e(η))+1 where h(e(η))

denotes the height of the Euler class e(η) ∈ Hq−1(B).

Proof. Let U ∈ Hq−1(Ė) denote a fundamental class: for any b ∈ B the

restriction U |Ėb
is the fundamental class of the fibre Ėb. By the Leray–Hirsch

theorem every cohomology class in H∗(Ė) has a unique representation in the

form

ξ∗(u) + ξ∗(v) ^ U, where u, v ∈ H∗(B).

Let W,W ′ ⊂ Ė denote the following subsets:

W = {e ∈ Ė : 〈e, s(ξ(e))〉 ≥ 0} and W ′ = {e ∈ Ė : 〈e, s(ξ(e))〉 ≤ 0}.

Clearly W ∪W ′ = Ė and W ∩W ′ = Ḟ . One can identify W with the unit disc

bundle of the sphere bundle Ḟ . Therefore the quotient Ė/W ′ = W/Ḟ can be

naturally identified with the Thom space of the fibration η.

Next we observe that the fundamental class U ∈ Hq−1(Ė) can be chosen

such that U |W ′ = 0. Indeed, starting with an arbitrary choice U ′ we can replace

it by U = U ′ − ξ∗(x) where x ∈ Hq−1(B) is such that (ξ|W ′)∗(x) = U ′|W ′ .

Here we use the observation that ξ|W ′ : W ′ → B is a homotopy equivalence and

hence the class x mentioned above exists and is unique. With this choice clearly

U |W ′ = 0.

Once the fundamental class U satisfies U |W ′ = 0 we have the following

formulae which fully describe the multiplicative structure of H∗(Ė):

(4.2) s∗(U) = e(η) ∈ Hq−1(B)

and

(4.3) U ^ U = ξ∗(e(η))) ^ U ∈ H2(q−1)(Ė).
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To prove (4.3) we note that U |W = 0 implies that the class U can be refined to

a relative class Ũ ∈ Hq−1(Ė,W ′) = Hq−1(Ė/W ′) = Hq−1(W/Ḟ ). We already

mentioned that the quotient Ė/W ′ can be identified with the Thom space of

the vector bundle having η as its unit sphere bundle. Examining the long exact

sequence in cohomology

· · · → Hq−2(Ė)
'→ Hq−2(W ′)→ Hq−1(Ė,W ′)→ Hq−1(Ė)

we see that the refinement Ũ is unique and coincides with the Thom class. Now,

by the definition (see [10], §9), we have

(4.4) e(η) = s∗
(
Ũ |W

)
= s∗(U),

which proves (4.2). From (4.4) we also obtain

Ũ ^ Ũ = (Ũ |W ) ^ Ũ = ξ∗(e(η)) ^ Ũ ∈ H2(q−1)(Ė,W ′).

Applying the restriction homomorphism H2(q−1)(Ė,W ′)→ H2(q−1)(Ė) to both

sides of this equality gives (4.3).

Note that the order of the factors in the RHS of formula (4.3) is irrelevant:

if q is odd then the classes commute and for q is even the Euler class e(η) has

order two.

Consider now an arbitrary class x ∈ H∗(Ė) satisfying s∗(x) = 0. We can

write

x = ξ∗(α) + ξ∗(β) ^ U with α, β ∈ H∗(B).

Applying s∗ and using (4.2) we get

(4.5) s∗(x) = 0 = α+ β ^ e(η).

Conversely, any two classes α, β satisfying (4.5) produce a class x = ξ∗(α) +

ξ∗(β) ^ U lying in the kernel of s∗. A particular choice α = −e(η) and β = 1

gives the class

x0 = U − ξ∗(e(η)) ∈ Hq−1(Ė).

Using (4.3) we have

x20 = U2 − 2ξ∗(e(η)) ^ U + ξ∗(e(η))2 = −ξ∗(e(η)) ^ x0

and we obtain by induction

xn0 = (−1)n−1ξ∗
(
e(η)n−1

)
^ x0 = (−1)nξ∗(e(η)n) + (−1)n−1ξ∗(e(η))n−1 ^ U.

For n = h(e(η))+1 the class xn0 equals (−1)n−1ξ∗(e(η))n−1 ^ U and is obviously

nonzero (as follows from the Leray–Hirsch theorem). This implies that the cup-

length of the kernel ker s∗ is at least h(e(η)) + 1.

If x = ξ∗(α) + ξ∗(β) ^ U ∈, H∗(Ė) is an arbitrary class with s∗(x) = 0 then

α = −β ^ e(η) (see above) and thus x = ξ∗(β) ^ x0. In other words, the kernel

ker s∗ ⊂ H∗(Ė) is the principal ideal generated by the class x0. We see that the
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cup-length of the kernel equals the highest nonzero power of x0 which, as we

have shown above, is h(e(η)) + 1. �

The following Corollary is an analogue of Theorem 4.1 where we use Z2

coefficients. The role of the Euler class plays the top Stiefel–Whitney class of the

bundle η of vectors orthogonal to the section. The advantage of this statement

is that the answer is given in terms of the original bundle ξ and its characteristic

class wq−1(ξ) ∈ Hq−1(B;Z2).

Corollary 4.2. Let ξ : E → B be a rank q ≥ 2 vector bundle (not necessarily

orientable). Let s : B → Ė be a continuous section of the unit sphere bun-

dle. Then the cup-length of the kernel ker[s∗ : H∗(Ė;Z2) → H∗(B;Z2)] equals

h(wq−1(ξ)) + 1.

Proof. One repeats the arguments of the proof of Theorem 4.1 replacing the

integer coefficients by Z2. The bundle η : F → B, η = ξ|F is the bundle of vectors

orthogonal to the section, i.e. F = {e ∈ E : e ⊥ s(ξ(e))} and the arguments of the

proof of Theorem 4.1 show that the the kernel ker[s∗ : H∗(Ė;Z2)→ H∗(B;Z2)] is

the principal ideal generated by the class x0 = U−ξ∗(wq−1(η)). The height of x0

equals one plus the height of the class wq−1(η). However, ξ = η⊕ε where ε is the

trivial line bundle determined by the section and therefore wq−1(η) = wq−1(ξ)

and the result follows. �

5. Parametrized topological complexity of sphere bundles

Let ξ : E → B be an oriented rank q ≥ 2 vector bundle equipped with

fibrewise scalar product. Let ξ̇ : Ė → B denote the unit sphere bundle; its

fibre is the sphere of dimension q − 1. Our goal is to estimate the parametrized

topological complexity TC[ξ̇ : Ė → B]. By Proposition 3.3 we have an upper

bound

(5.1) TC
[
ξ̇ : Ė → B

]
< 2 +

dimB + 1

q − 1
.

To state our result, consider the bundle

(5.2) ξ̈ : Ë → Ė,

where Ë ⊂ Ė ×B Ė is the space of pairs of mutually orthogonal unit vectors

(x, y) ∈ Ė ×B Ė, x ⊥ y. The projection ξ̈ acts as ξ̈(x, y) = x. The map (5.2) is

an oriented locally trivial fibration with fibre sphere of dimension q−2. Consider

its Euler class

(5.3) e(ξ̈) ∈ Hq−1(Ė).

An obvious property of the class e(ξ̈) is that for any point b ∈ B the restriction

e(ξ̈)|Ėb
is the Euler class of the tangent bundle of the sphere Ėb.
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Remark 5.1. A section s of bundle (5.2) associates with a unit vector e ∈
Ė(ξ) a unit vector s(e) which is perpendicular to e and the integer secat(ξ̈) is

a measure of complexity of construction such a section s globally, i.e. over all Ė.

In particular, secat(ξ̈) = 0 if the vector bundle ξ admits a complex structure: in

this case one can define the section by s(e) =
√
−1 · e.

Theorem 5.2. One has the estimates

(5.4) h(e(ξ̈)) + 1 ≤ TC[ξ̇ : Ė → B] ≤ secat(ξ̈) + 1.

Moreover, if B is a CW-complex satisfying dimB ≤ (q − 1) · h(e(ξ̈)) then

(5.5) TC[ξ̇ : Ė → B] = h(e(ξ̈)) + 1 = secat(ξ̈) + 1.

Proof. Consider the diagonal map ∆: Ė → Ė×B Ė and apply Proposition 3.4;

we obtain that the parametrized topological complexity TC[ξ̇ : Ė → B] is greater

than or equal to the cup-length of the kernel ker[∆∗ : H∗(Ė ×B Ė) → H∗(Ė)].

However, ∆ is a section of the sphere fibration Ė×B Ė → Ė given by projection

on the first vector; hence we may apply Theorem 4.1 which describes the cup-

length of the kernel of the induced map. The bundle of vectors perpendicular to

the section is exactly the bundle ξ̈. By Theorem 4.1 the cup-length of the kernel

ker[∆∗ : H∗(Ė ×B Ė)→ H∗(Ė)] equals h(e(ξ̈)) + 1. This gives the lower bound

in (5.4).

To prove the right inequality in (15) consider the set U ⊂ Ė×B Ė consisting

of pairs (e, e′) ∈ Ė ×B Ė with e 6= −e′. Over U , we can define a continuous

motion planning algorithm s : U → ĖIB by setting

(5.6) s(e, e′)(t) =
(1− t)e+ te′

||(1− t)e+ te′||
, t ∈ [0, 1].

In view of Proposition 3.5 it remains to construct a motion planning algo-

rithm over the complementary set V = {(e,−e); e ∈ Ė} ⊂ Ė ×B Ė. Denote by

p1, p2 : V → Ė the projections p1(e,−e) = e and p2(e,−e) = −e.
Consider again the bundle ξ̈ : Ë → Ė and suppose that A ⊂ Ė is a subset

such that the bundle ξ̈ admits a continuous section sA : A → Ë over A. Using

this section we may construct a section s′A of the fibration

Π: ĖIB → Ė ×B Ė

over the set p−11 (A) as follows:

(5.7) s′A(e,−e)(t) = cos (tπ) · e+ sin (tπ) · sA(e), t ∈ [0, 1].

Let Ė = A0 ∪ . . . ∪ Ak be an open covering, where k = secat(ξ̈), with the

property that ξ̈ : Ë → Ė admits a continuous section over each Ai. Then the sets

p−11 (Ai) cover V and over each of these sets the fibration Π admits a continuous

section. Thus we get an inequality TC[ξ̇ : Ė → B] ≤ secat(ξ̈) + 1.
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Finally we apply Lemma 2.1 which claims that the sectional category of ξ̈

equals h(e(ξ̈)) under an additional assumption that dim Ė ≤ (q − 1) · h(e(ξ̈))

+(q − 1) which is equivalent to dimB ≤ (q − 1) · h(e(ξ̈)). Hence under this

assumption we obtain TC[ξ̇ : Ė → B] = h(e(ξ̈)) + 1 = secat(ξ̈) + 1. �

Corollary 5.3. For a vector bundle ξ : E → B satisfying secat(ξ̈) = 0 one has

TC[ξ̇ : Ė → B] = 1.

Proof. The inequality (5.4) gives TC[ξ̇ : Ė → B] ≤ 1. On the other hand,

TC[ξ̇ : Ė → B] ≥ TC(S2r−1) = 1 by (3.2). �

Example 5.4. Consider the canonical rank 2 bundle ξ over CPn as in Exam-

ple 3.6. In this case Ė(ξ) = S2n−1 and the bundle ξ̈ : Ë → Ė is the trivial bundle

with fibre S0, i.e.

secat(ξ̈) = 0 = h(e(ξ̈)).

We obtain from (5.4) that TC[ξ̇ : S2n−1 → CPn] = 1 confirming the result of

Example 3.6.

Generalising Example 5.4 we may state:

Corollary 5.5. For any vector bundle ξ : E → B of even rank rk(ξ) = 2r

admitting a complex structure, one has

TC[ξ̇ : Ė → B] = 1 = TC(S2r−1).

Proof. In this case secat(ξ̈) = 0 (by Remark 5.1) and the result follows from

Corollary 5.3. �

Remark 5.6. Introducing the bundle ξ̈ over Ė and using its sectional category

to estimate the parametrized topological complexity we made an approximation

of the space of paths on the sphere connecting a pair of antipodal points by the

sphere of one dimension below. This sphere is however only the first term in

the James’ construction JSq−2, see [8], which gives a CW complex having the

homotopy type of this space of paths.

Note that for q even the Euler class e(ξ̈) ∈ Hq−1(Ė) has order 2, i.e.

2 · e(ξ̈) = 0. We shall focus below on the case when q odd. Compared with

Theorem 5.2, Corollary 5.7 stated below has the advantage of dealing with co-

homology of the base B.

Corollary 5.7. For q ≥ 3 odd, let η : E(η) → B be an oriented vector bundle

of rank q− 1. Let ξ = η⊕ ε be the sum where ε is the trivial line bundle over B.

Then one has

(5.8) TC
[
ξ̇ : Ė(ξ)→ B

]
≥ h(e(η)) + 1.
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Moreover, if the height h(e(η)) is even and the integral cohomology of the base B

in dimension (q − 1) · h(e(η)) has no 2-torsion then

(5.9) TC
[
ξ̇ : Ė(ξ)→ B

]
≥ h(e(η)) + 2.

Proof. Consider the Euler class e(ξ̈) ∈ Hq−1(Ė(ξ)). Applying the Leray–

Hirsch theorem we see that any class in Hq−1(Ė(ξ)) has a unique representation

as ξ̇∗(a) + bU where U ∈ Hq−1(Ė) is a fundamental class, a ∈ Hq−1(B) and

b ∈ Z. Let s : B → Ė(ξ) be the section determined by the trivial summand ε.

We showed in the proof of Theorem 4.1 that the fundamental class U can be

chosen so that

(5.10) s∗(U) = e(η),

see formula (4.2). Note that

(5.11) s∗(ξ̈) = η.

Besides,

(5.12) e(ξ̈) = ξ̇∗(a) + 2U, for some class a ∈ Hq−1(B).

Indeed, the class e(ξ̈) restricted to each fibre Ėb(ξ) equals twice the fundamental

class of the sphere Ėb(ξ) ' Sq−1 (here we use our assumption that q is odd,

and hence the Euler characteristic of Sq−1 equals 2). Applying s∗ to both sides

of equation (5.12) we find s∗(e(ξ̈)) = e(s∗(ξ̈)) = e(η), and s∗(ξ̇∗(a)) = a which

together with (5.10) give a = −e(η). Therefore we have

(5.13) e(ξ̈) = −ξ̇∗(e(η)) + 2U.

Using U2 = ξ̇∗(e(η)) ^ U (see (4.3)) we find e(ξ̈)2 = ξ̇∗(e(η)2) and therefore the

even and odd powers of the class e(ξ̈) are as follows

(5.14) e(ξ̈)2n = ξ̇∗(e(η)2n)

and

(5.15) e(ξ̈)2n+1 = −ξ̇∗(e(η)2n+1) + 2ξ̇∗(e(η)2n) ^ U.

From formulae (5.14) and (5.15) we see that the height h(e(ξ̈)) either equals to

h(e(η)) or it equals h(e(η)) + 1; the second possibility happens iff h(e(η)) is even

and the group H(q−1)h(e(η))(B) has no 2-torsion.

Applying Theorem 5.2 completes the proof. �

Example 5.8. Consider the situation of Corollary 5.7 in the case when η : E(η)→
CPn is the canonical bundle over the complex projective space as in Example

3.6. Taking ξ = η ⊕ ε we have rk(ξ) = q = 3 is odd and h(e(η)) = n. By

Corollary 5.7 we get TC[ξ̇ : Ė(ξ) → CPn] ≥ n + 1 and moreover for n even
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TC[ξ̇ : Ė(ξ) → CPn] ≥ n + 2. On the other hand, the upper bound (5.1) gives

TC[ξ̇ : Ė(ξ)→ CPn] ≤ n+ 2. Thus, we see that

TC[ξ̇ : Ė(ξ)→ CPn] = n+ 2

for all even n. In particular, we see that the parametrized topological complexity

of sphere bundles can be arbitrarily large. This contrasts the situation with the

usual (i.e. unparametrized) topological complexity which takes the values 1 and

2 only for spheres.

Finally we describe an explicit parametrized motion planning algorithm hav-

ing complexity n+2 for the unit sphere bundle associated with the vector bundle

ξ = η ⊕ ε over B = CPn as considered in Example 5.8. We shall describe a par-

tition

(5.16) Ė(ξ)×B Ė(ξ) = F0 t . . . t Fn+2

and a continuous section si of the fibration

Π: Ė(ξ)IB → Ė(ξ)×B Ė(ξ)

over each of the sets Fi where i = 0, . . . , n+ 2.

The set F0 ⊂ Ė(ξ)×B Ė(ξ) will be defined as the set of pairs (x, y) ∈ Ė(ξ)×B
Ė(ξ) with x 6= −y. The section s0 over F0 can be defined by formula (5.6).

The unit sphere bundle of the trivial summand ε gives the sections ±σ : B →
Ė(ε) ⊂ Ė(ξ). Let Ė(ξ)∗ denote the complement Ė(ξ) − Ė(ε). We define the

set F1 ⊂ Ė(ξ) ×B Ė(ξ) to be the set of all pairs (x,−x) with x ∈ Ė(ξ)∗. Let

pr : Ė(ξ)∗ → Ė(η) ⊂ Ė(ξ) denote the retraction given by the formula

(5.17) pr(x) =
x− 〈x, σ(b)〉 · σ(b)

||x− 〈x, σ(b)〉 · σ(b)||
where b = ξ(x).

Here the symbol 〈 · , · 〉 denotes scalar product in the fibre. The deformation

αt(x) =
x− t · 〈x, σ(b)〉 · σ(b)

||x− t · 〈x, σ(b)〉 · σ(b)||
where b = ξ(x), t ∈ [0, 1],

satisfies α0(x) = x and α1(x) = pr(x). The homotopy t 7→ (αt(x), αt(−x)) de-

forms the initial pair (x,−x) to a pair of antipodal points lying in the equatorial

sphere Ė(η) ⊂ Ė(ξ). Note that the circle S1 acts freely on Ė(η), see Example 3.6.

We may define a continuous section s1 over F1 by setting s1(x,−x)(t) to be the

concatenation of the following three paths: (a) the deformation αt(x), (b) the

section (3.5) of Example 3.6, and (c) the reverse of the deformation αt(−x). In

more details,

s1(x,−x)(t) =


α3t(x) for t ∈ [0, 1/3],

eiπ(3t−1) · pr(x) for t ∈ [1/3, 2/3],

α3(1−t)(−x) for t ∈ [2/3, 1].
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Finally, we define the sections si : Fi → Ė(ξ)IB for i = 2, . . . , n + 2 as follows.

The base B = CPn has the well-known cell decomposition CPn = e0 t . . . t e2n

with a single cell e2i in each even dimension 2i ≤ 2n. For i = 2, . . . , n + 2, let

Fi denote the set of pairs (x,−x) with x = ±σ(b) for b = ξ(x) lying in the cell

e2(i−2). Since the cell e2(i−2) is contractible, the bundle η admits a continuous

section φi over e2(i−2). Hence we may define the section si : Fi → Ė(ξ)IB by the

formula

si(x,−x)(t) = cos(πt) · x+ sin(πt) · φi(ξ(x)),

similarly to (5.7). Here we assume that the Euclidean structure on the vector

bundle ξ is the orthogonal sum of the Euclidean structures of η and ε.

We conclude the paper with the following observations. Below we always

assume that the base B is an ANR.

Lemma 5.9. Let ξ : E → B be a vector bundle such that ξ = η⊕τ and rk(τ) ≥ 2.

Then

(5.18) secat
(
ξ̈ : Ë(ξ)→ Ė(ξ)

)
≤ secat

(
τ̈ : Ë(τ)→ Ė(τ)

)
+ secat

(
τ̇ : Ė(τ)→ B

)
+ 1

and consequently

(5.19) TC
[
ξ̇ : Ė → B

]
≤ secat

(
τ̈ : Ë(τ)→ Ė(τ)

)
+ secat

(
τ̇ : Ė(τ)→ B

)
+ 2.

Proof. It is enough to prove the inequality (5.18) as (5.19) follows from (5.18)

and Theorem 5.2. If ξ = η ⊕ τ then for any point of the base b ∈ B we have

E(ξ)b = E(η)b ⊕ E(τ)b. The scalar product can be chosen so that the spaces

E(η)b, E(τ)b ⊂ E(ξ)b are mutually orthogonal. We shall denote by P ηb and P τb
the orthogonal projections of E(ξ)b onto E(η)b and E(τ)b correspondingly.

Let k denote secat
(
τ̈ : Ë(τ) → Ė(τ)

)
and let ` denote secat

(
τ̇ : Ė(τ) → B

)
.

Let Ė(τ) = G0 t . . . t Gk be a partition such that for each j = 0, . . . , k there

exists a continuous map σj : Gj → Ė(τ) with the property that for every e ∈ Gj
the vectors e and σj(e) lie in the same fibre and are perpendicular to each other.

Besides, let B0 t . . . t B` = B be a partition of the base B with continuous

sections νi : Bi → Ė(τ), where i = 0, . . . , `.

We want to show that Ė(ξ) can be partitioned as

Ė(ξ) = F0 t . . . t Fk t Fk+1 t . . . t Fk+`+1

such that there exist continuous sections si : Fi → E(ξ̈) of the fibration ξ̈. In view

of the result of J.M. Garcia-Calcines [7], this is equivalent to secat(ξ̈) ≤ k+`+1.

For i = 0, . . . , k we set

Fi =
{
e ∈ Ė(ξ) : P τξ(e)(e) 6= 0, and

∥∥P τξ(e)(e)∥∥−1 · P τξ(e)(e) ∈ Gi}.
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and for i = k + 1, . . . , k + `+ 1, we set

Fi =
{
e ∈ Ė(ξ) : P τξ(e)(e) = 0 and ξ(e) ∈ Bi−k−1

}
.

Next we construct the continuous sections si : Fi → E(ξ̈). For i = 0, . . . , k,

given a unit vector e ∈ Fi, consider e′ = P τξ(e)(e) which is a nonzero vector of

E(τ)b, where b = ξ(e). Then e′′ = ‖e′‖−1 · e′ is a unit vector and σi(e
′′) ∈ Ė(τ)b

is a unit vector satisfying σi(e
′′) ⊥ e′. In particular we see that the unit vectors

e, σi(e
′′) ∈ E(ξ)b are linearly independent. Hence the unit vector

e′′′ = ‖σi(e′′)− 〈σi(e′′), e〉 · e‖−1 · (σi(e′′)− 〈σi(e′′), e〉 · e)

is perpendicular to e and depends continuously on e. Thus, we may define the

section si by setting si(e) = (e, e′′′).

Next we describe the sections si over the sets Fi where i = k+1, . . . , k+`+1.

If e ∈ Fi then P τb (e) = 0 and b = ξ(e) lies in Bi−k−1. In other words, e ∈ Ė(η)

and b = ξ(e) ∈ Bi−k−1. The section νi−k−1 : Bi−k−1 → Ė(τ) defines a unit

vector νi−k−1(b) ∈ Ė(τ) ⊂ Ė(ξ) which is perpendicular to e. Therefore we may

define the section si of ξ̈ over Fi by the formula si(e) = (e, νi−k−1(e)). �

Corollary 5.10. Let ξ : E → B be a vector bundle such that ξ = η ⊕ τ where

τ : E(τ) → B admits a complex structure and has a nowhere zero continuous

section. Then TC[ξ̇ : Ė → B] ≤ 2.

Proof. This follows from Remark 5.1 and Lemma 5.9. �

Corollary 5.11. Let ξ : E → B be a vector bundle admitting two continuous

linearly independent nowhere zero sections. Then TC[ξ̇ : Ė → B] ≤ 2.

Proof. This reduces to the previous Corollary with τ the trivial bundle of

rank 2.
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