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Unsteady aerodynamic theory for membrane
wings
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We study analytically the dynamic response of membrane aerofoils subject to arbitrary,
small-amplitude chord motions and transverse gusts in a two-dimensional inviscid
incompressible flow. The theoretical model assumes linear deformations of an extensible
membrane under constant tension, which are coupled aeroelastically to external
aerodynamic loads using unsteady thin aerofoil theory. The structural and aerodynamic
membrane responses are investigated for harmonic heave oscillations, an instantaneous
change in angle of attack, sinusoidal transverse gusts and a sharp-edged gust. The unsteady
lift responses for these scenarios produce aeroelastic extensions to the Theodorsen,
Wagner, Sears and Küssner functions, respectively, for a membrane aerofoil. These
extensions incorporate for the first time membrane fluid–structure interaction into the
expressions for the unsteady lift response of a flexible aerofoil. The indicial responses
to step changes in the angle of attack or gust profile are characterised by a slower lift
response in short times relative to the classical rigid-plate response, while achieving a
significantly higher asymptotic lift at long times due to aeroelastic camber. The unsteady
lift for harmonic gusts or heaving motions follows closely the rigid plate lift responses at
low reduced frequencies but with a reduced lift amplitude and greater phase lag. However,
as the reduced frequency approaches the resonance of the fluid-loaded membrane, the lift
response amplitude increases abruptly and is followed by a sharp decrease. This behaviour
reveals a frequency region, controlled by the membrane tension coefficient, for which
membrane aerofoils could possess substantial aerodynamic benefits over rigid aerofoils in
unsteady flow conditions.

Key words: flow–structure interactions, swimming/flying

1. Introduction

The growing industrial interest in small-scale unmanned aerial vehicles (SUAVs) for
sensing, reconnaissance and parcel delivery continues to spur scientific interest into
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novel aerodynamic design solutions for low-speed flows, inspired by biological fliers
(Hassanalian & Abdelkefi 2017). A special focus has been given to the membrane
wings of bats, who possess impressive maneuvering and gliding abilities without relying
upon high-frequency wing flapping for lift (Hedenström & Johansson 2015). These
membrane wings are lightweight and are therefore appealing for SUAV applications.
However, the compliance of membrane wings couples their geometrical shape and
dynamics to the surrounding fluid mechanics and complicates the prediction of their
aerodynamic performance. Several computational and experimental studies have examined
the aerodynamics of these flexible membrane wings in steady flow conditions over the
last two decades (e.g. Song et al. 2008; Gordnier 2009; Rojratsirikul, Wang & Gursul
2009; Arbos-Torrent, Ganapathisubramani & Palacios 2013; Serrano-Galiano, Sandham
& Sandberg 2018). Gordnier (2009) and Rojratsirikul et al. (2009) showed that membrane
wings in low-Reynolds-number flows delay stall and enhance the mean lift coefficient due
to the onset of flow–membrane oscillations. The oscillations of the compliant membrane
are essential to these aerodynamic benefits, as Gordnier (2009) found no significant
advantage for a static membrane wing when compared with an equivalent (cambered)
rigid aerofoil. Thus, the unsteady behaviour of membrane wings is a principal source of
interest to discover mechanisms for aerodynamic performance improvement. Although
many studies investigated the membrane wing response to steady flow conditions (see
Tiomkin & Raveh 2021 for a recent literature survey), few have studied its response to
unsteady flow conditions or prescribed motions, where aeroelastic membrane deformation
may yield further aerodynamic benefits.
The pursuit of novel mechanisms to improve the unsteady aerodynamic performance of

membranewings andunderstand their associatedfluidmechanics has led to a recent research
focus on flapping membrane wings. The combination of aerofoil flexibility with flapping
motions can potentially eliminate flow separation along the aerofoil altogether and improve
the aerodynamic maneuverability of the vehicle, as demonstrated in the context of bat
flight (Muijres et al. 2008; Chin & Lentink 2016). Several computational (Gopalakrishnan
& Tafti 2010; Jaworski & Gordnier 2015) and experimental (Tregidgo, Wang & Gursul
2013) studies investigated the membrane wing response to prescribed flapping motions,
which are generally described as pitch or heave oscillations, or as a combination of the
two. Gopalakrishnan & Tafti (2010) used coupled large eddy simulations of a rectangular
membrane to showthat inducedcamberenhancesboth the lift and the thrustduringaflapping
pitching motions. These simulations identified the movement of the leading-edge vortex
along the membrane aerofoil surface to be the main source of the increased lift and thrust
relative to a flapping rigidwing, forwhich the leading-edge vortex detaches andmoves away
of thewingwhich causes a drop in the lift coefficient (Eldredge& Jones 2019). These results
are supported by the computations of Jaworski & Gordnier (2015) that focused on the role
of prestress and elastic modulus in the propulsion of a flapping membrane aerofoil, which
is enhanced by the interaction of the leading-edge vortex with the local elastic deformation.
Experiments of Tregidgo et al. (2013) focused on the membrane dynamic response to a
transient sinusoidal pitchmaneuverof reduced frequencyofk = 0.022andamplitudeof10◦.
Different vibrational modes were identified that depended on the stationary angle of attack
about which the unsteady maneuver was carried out. For small stationary angles of attack
(0◦ ≤ α ≤ 4◦), first mode oscillations were observed with a small lag in the membrane
dynamic response relative to the prescribed motion. This delay was more pronounced for a
larger stationary angle of attack of α = 10◦, for which hysteresis was identified between the
pitch-up and the pitch-down sections of the motion, which were accompanied by different
vibrational modes.
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Unsteady aerodynamics for membrane wings

The above studies collectively emphasise the complexity of the flapping membrane
wing problem. However, due to their computational and experimental nature, their scope
is limited to a few specific points in the parameter regime of flapping membrane wings,
i.e. specific values of reduced frequency, mass ratio and membrane elasticity. An analytical
solution of a simplified model problem is therefore desired to shed light on the role of each
dimensionless group in the wide parameter space of flapping membrane wings. Physical
insights from such an analytical solution are expected to inform future computational and
experimental studies en route to obtaining a more complete understanding of the physics
of flapping membrane wings.
Several analytical studies have been carried out that focus on propulsive thrust and

efficiency predictions for flapping flexible wings. Alben (2008) presented an analytical
solution for a flapping inextensible elastic sheet (with a free trailing edge), utilising
unsteady thin aerofoil theory coupled to a beam structural model. Their work identified
an optimal thrust condition at the resonance peaks for small pitching amplitudes. More
recently, Alon Tzezana & Breuer (2019) showed via analytical solution that a heaving
membrane wing transitions between thrust and drag near the membrane resonance
frequency, as the reverse von Kármán wake transitions to a traditional von Kármán wake.
In their reviews on flapping wing aerodynamics of biological and bio-inspired flyers, Shyy
et al. (2013, 2016) highlighted the importance of using a time-domain approach to predict
accurately the aerodynamic performance of flapping wings at the scale of bats and birds
due to the inseparable flapping and body timescales of these flyers, which is not the case
for smaller insect-scale flyers. Thus, although a quasi-steady model can make accurate
predictions for insect-scale vehicles, this model assumption is not recommended for SUAV
applications, where a time-dependent approach is essential to address vehicle stability and
control. Furthermore, whilst the studies of Alben (2008) and Alon Tzezana & Breuer
(2019) elucidate the propulsive potential of flapping flexible wings, a theoretical basis to
understand the membrane wing aerodynamic performance in prescribed flapping motions
remains underdeveloped, specifically in terms of the ability to predict its unsteady lift and
structural dynamic response.
In addition to the unsteady lift and thrust enhancement mechanisms engendered by

membrane wings under prescribed flapping motions, an understanding of the response of
these wings to flow disturbances such as gusts is important to the design of membrane
wing SUAVs. Due to their small size and slow flight speed, SUAVs are especially
susceptible to flight disruption from small gusts typical of urban environments (Watkins
et al. 2006; Elbanhawi et al. 2017; Jones, Cetiner & Smith 2022). Classical linear unsteady
aerodynamic theory (see von Kármán & Sears 1938; Sears 1940) predicts the transient lift
response of a rigid aerofoil to transverse gusts of small gust ratios, where the gust ratio is
the transverse gust amplitude divided by the freestream flow speed. This theory has long
been utilised to predict the unsteady load on rigid wings in terms of lift amplitude and
phase lag. However, when compliant membrane wings are considered, the lift response
is composed of both the local change in angle of attack and the resulting deformation
of the aerofoil. The membrane deformation couples aeroelastically to the aerodynamic
load, which may amplify or attenuate the unsteady lift response. Initial results by Berci
et al. (2013) from a semi-analytical state-space model indicate the appearance of structural
oscillations in the massless membrane response to a sharp-edged transverse gust. However,
these oscillations were described only in terms of the mid-chord membrane deformation
and without consideration of the structural mode of oscillation and the lift response of
the aerofoil. A complete analysis of the membrane response to unsteady flow is currently
lacking in the literature.
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Figure 1. Sketch of the membrane aerofoil gust problem: (a) initial time t = 0; (b) later time t > 0. Note that
the membrane is initially taut, at zero angle of attack, and deforms under transient (gust) fluid loads.

The current study aims to fill this knowledge gap by presenting an unsteady
analytical model and its solution for a membrane wing in inviscid incompressible flow,
under the unsteady conditions of prescribed motions or transverse gust profiles. The
transient membrane response is determined in the Laplace domain; steady-state harmonic
oscillations of the membrane deformation and the unsteady lift response are investigated
using a simplified solution in the frequency (Fourier) domain, which is convenient to
compare against established rigid aerofoil theory. These solutions yield novel extensions
to the classical unsteady aerodynamic functions for flexible membrane wings.
The remainder of this paper is organised as follows. Section 2 presents the mathematical

problem for the generalised case of a membrane wing in arbitrary motion or gust, and for
specific canonical unsteady flow scenarios. In § 3, the results of the theoretical model
are presented in terms of membrane wing deformation and aerodynamic performance, as
represented by extensions to the classical unsteady aerodynamic functions by Theodorsen,
Wagner, Sears and Küssner. Section 4 closes with concluding remarks.

2. Formulation

2.1. Membrane wing
Consider an extensible membrane aerofoil of thickness h and density ρm, which is held by
simple supports at a distance 2b from one edge to the other. The membrane is initially still
and taut, and is immersed in a uniform and inviscid incompressible freestream of density
ρ and speed U, aligned parallel to the membrane chord (see figure 1a). Assuming small
deformations of the membrane, |ỹx̃| � 1, the membrane dynamic equation is

ρmhỹt̃t̃ = Tỹx̃x̃ + �p, (2.1)

where ỹ denotes the membrane profile, t̃ represents time, x̃ is a coordinate along the chord
and T and �p are the tension and pressure difference along the membrane, respectively.
While the membrane is extensible, we note that Tiomkin & Raveh (2017) showed that
the tension can be considered constant to leading order for the small angles of attack and
deformations assumed in the current study.
The non-dimensional form of the dynamic equation is

4μytt = 2CTyxx + �Cp, (2.2)

in which b, b/U, ρ, U, 1
2ρU

2 and ρU2b are used as the units of length, time, density,
circulation (per unit length), pressure and force (per unit span). Note that b is used as the
unit of length throughout the dynamic equation, but the mass ratio is normalised with c as
the unit of length, namely μ = ρmh/ρc, following the convention in previous membrane
wing studies (Alon Tzezana & Breuer 2019; Jaworski & Gordnier 2012). The mass ratio μ

and tension coefficient CT are fixed parameters in the present analysis, and the unsteady
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Unsteady aerodynamics for membrane wings

membrane deformation and pressure coefficient profiles, y and �Cp, respectively, are part
of the solution. A schematic drawing of the membrane geometry in the non-dimensional
form is presented in figure 1 for the gust response case; this coordinate system is used to
describe the membrane deformation in all of the considered cases.

2.2. Incompressible potential flow
The extensible membrane aerofoil may encounter or produce an unsteady flow field that
superposes on the uniform background flow. Inviscid, incompressible potential flow is
considered with an initial angle of attack of α = 0◦, which isolates the effects of unsteady
angle of attack variations or transient gusts on the membrane dynamic response; this
approach is similar to the traditional formulation available for the arbitrary motion of
rigid aerofoils (e.g. Bisplinghoff, Ashley & Halfman 1996). For completeness, this section
outlines the formulation of Tiomkin & Raveh (2017) for a membrane aerofoil in steady
flow and extends it to include the dynamic membrane response to an unsteady flow.
The standard coordinate transformation

x = − cos θ (2.3)

places the profile leading edge at x = −1 (θ = 0) and the trailing edge at x = 1 (θ = π).
This coordinate transformation permits the membrane slope, yx, to be expressed as a
Fourier cosine series expansion per Nielsen (1963), which is augmented here by allowing
the Fourier coefficients to be time-dependent:

yx(t, θ) = 1
2
F0(t) +

∞∑
n=1

Fn(t) cos nθ. (2.4)

We proceed with expressing the membrane dynamic equation (2.2) in terms of the new
coordinate θ , which yields a system of differential equations for the Fourier coefficients.
Integration of (2.4) along the horizontal coordinate, from the leading edge to a point x

along the chord, yields the membrane profile:

y(t, θ) = 1
2
F0(t)(1 − cos θ) + 1

2
F1(t) sin2 θ − 1

2

∞∑
n=2

Fn(t)
(

1
n2 − 1

)
× [2 + (n − 1) cos(n + 1)θ − (n + 1) cos(n − 1)θ], (2.5)

which has to sustain the fixed boundary conditions of the membrane edges. The
leading-edge boundary condition is automatically satisfied by (2.5). However, the fixed
trailing-edge boundary condition imposes the constraint

F0(t) = 2
∞∑
m=1

F2m(t)
(2m)2 − 1

. (2.6)

In addition, the assumption of an initially still and taut membrane yields zero-valued initial
conditions for the Fourier coefficients and their first time derivative.
The pressure difference across the membrane in (2.2) is obtained by using the unsteady

vortex sheet method (Bisplinghoff et al. 1996, p. 274),

�Cp(t, x) = 2γ (t, x) + 2
∂

∂t

∫ x

−1
γ (t, ζ ) dζ, (2.7)

where γ is the normalised vortex sheet strength per unit length along the profile. The
vorticity distribution along the aerofoil is determined by the fundamental equation of thin

948 A33-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.682


S. Tiomkin and J. W. Jaworski

aerofoil theory,

1
2π

−
∫ 1

−1

γ (t, ξ)

x − ξ
dξ = wa(t, x) − 1

2π

∫ 1+t

1

γw(t, η)

x − η
dη, x ∈ (−1, 1), (2.8)

where the dashed integral denotes the Cauchy principal value. Here wa(t, x) is the
normal velocity on the membrane surface (normalised by U), and γw(t, η) describes the
normalised vorticity per unit length at location η along the wake, η ∈ (1,∞), at time t.
Wake vortices are assumed to be continuously shed from the trailing edge at the freestream
velocity into a flat wake and have a fixed strength, which asserts that the wake vorticity
distribution, γw(t, η), is equivalent to the vorticity at the trailing edge at time t − η + 1:

γw(t, η) = γw(t − η + 1, 1) � γTE(t − η + 1). (2.9)

Application of Söhngen’s inversion formula to (2.8) and enforcement of Kelvin’s theorem
(cf. Söhngen 1939; Bisplinghoff et al. 1996, p. 289) leads to

2
∫ 1

−1

√
1 + ξ

1 − ξ
wa(t, ξ) dξ = −

∫ 1+t

1

√
η + 1
η − 1

γTE(t − η + 1) dη. (2.10)

Tiomkin & Raveh (2017) showed that the application of the Laplace transform to (2.10)
yields a closed-form expression for the wake vorticity distribution in the Laplace plane.
Provided that a solution for γTE is obtainable in the time domain, the method of Schwarz

(1940) (see also Iosilevskii 2007) produces a general expression for the pressure difference
along the aerofoil:

�Cp(t, x) = − 4
π

√
1 − x
1 + x

−
∫ 1

−1

√
1 + ξ

1 − ξ

wa(t, ξ)

x − ξ
dξ + 4

π
−
∫ 1

−1
Λ1(x, ξ)wat(t, ξ) dξ

+ 2
π

√
1 − x
1 + x

∫ 1+t

1

γTE(t − η + 1)√
η2 − 1

dη, (2.11)

where Λ1 is an auxiliary function expressed in (A3) of Appendix A. The first integral
term describes the quasi-steady pressure difference, the second term is the apparent mass
contribution (non-circulatory term) and the third term describes the contribution of the
wake.
The contributions to expression (2.11) for the aerodynamic load along the membrane

may be further separated and analysed by describing the normal velocity on the membrane
surface as a superposition:

wa(t, x) = wad(t, x) + waf (t, x), (2.12)

where waf (t, x) is the contribution of the unsteady flow (i.e. prescribed chord motion or a
traveling gust) to the normal flow velocity on the membrane, and wad(t, x) is the respective
contribution of the membrane deformation,

wad(t, x) = −yx(t, x) − yt(t, x). (2.13)

Substitution of (2.12) into (2.11) permits a separation of the effect of the membrane
deformation, wad , from the effect of the unsteady flow, waf , on the aerodynamic load,
namely

�Cp(t, θ) = �Cpd(t, θ) + �Cpf (t, θ), (2.14)

where the subscripts d and f denote terms due to membrane deformation and unsteady
flow, respectively. Details of the analytical expressions for �Cpd (in the Laplace plane) are
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Unsteady aerodynamics for membrane wings

available in Appendix A of Tiomkin & Raveh (2017). We develop in § 2.4 the closed-form
expressions for �Cpf that are necessary to complete the description of the aerodynamic
load on a membrane undergoing prescribed chord motion or encountering a gust. Note that
the membrane Fourier coefficients appear only in the expression for �Cpd , whilst �Cpf
depends only on the prescribed motion or gust.
The next section combines the terms obtained for the membrane deformation and the

resulting aerodynamic load to produce a set of equations for the coupled aeroelastic
problem for any arbitrary prescribed chord motion or gust.

2.3. Aeroelastic coupling and methods of solution
The coupled aeroelastic equation that describes the membrane response to unsteady flow
conditions is obtained by substituting (2.4), (2.5) and (2.14) into (2.2). This procedure
yields a matrix equation in which the unknowns are the Fourier coefficients that describe
the membrane deformation. The aeroelastic equation is described and solved in the
Laplace domain for generalised time-dependent cases, or in the frequency domain for
harmonic motions or gusts. The details of these two methods are given next in §§ 2.3.1 and
2.3.2, respectively. Note that the overbar and hat symbols are used throughout to denote
variables in the Laplace and frequency domains, respectively.

2.3.1. Laplace domain
The membrane dynamic equation (2.2) is expressed in the Laplace domain by applying
the Laplace transform to (2.4), (2.5) and (2.14) and substituting the resulting expressions
into the Laplace transform of (2.2). We then multiply the resulting equation by sin θ and
use the mathematical relations (A1) and (A2) to construct a matrix system of equations,

{As2 + Bs + E}F̄ = H , (2.15)

where F̄ is the vector of Fourier coefficients F̄n(s), n = 1 . . .N and N is the number
of coefficients chosen to represent the membrane-profile slope in (2.4), taken here as
N = 24 following the numerical convergence studies of Nielsen (1963) and Tiomkin
& Raveh (2017). Here, the overbar denotes the Laplace transform of the variable,
F̄n(s) = L{Fn(t); s}. The matrices A,B,E and the vector H are obtained by matching
the coefficients of the harmonics of sin θ in the dynamic equation (2.2). It is noted here
that matrices B and E and vectorH depend on the Laplace variable s, while A is constant.
We further note that the matrices A, B and E are obtained from the steady flow solution
under zero angle of attack, i.e. by applying �Cp = �Cpd to the dynamic equation; these
matrices are detailed in Tiomkin & Raveh (2017). The effect of the unsteady flow appears
only in H , on the right-hand side of the resulting dynamic equation, and is determined by
�Cpf . Thus, �Cpf acts as an excitation force that is applied to the membrane.
The Fourier coefficients, F̄ , can now be computed from (2.15), and their substitution into

the Laplace transform of (2.5) produces the membrane dynamic solution in the Laplace
domain. This approach predicts the membrane dynamic response to any arbitrary motion
or gust. However, a numerical Laplace inversion is required to obtain a solution in the
time domain, as no analytical expression is available for the inverse Laplace transform of
our problem. We apply the numerical scheme of Valsa & Branc̆ik (1998) to carry out this
inversion, which is robust and reliable for both oscillatory and non-oscillatory functions.
A solution can alternatively be determined in the frequency (Fourier) domain by setting

s = ik, where k is the reduced frequency (Bisplinghoff et al. 1996, p. 292). This approach
computes readily the steady-state response of the membrane wing to harmonic gusts
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or motions. However, this method cannot obtain the transient response of the membrane
and will therefore only be used here for the harmonic cases and as a means of verification
of the indicial lift responses obtained in the Laplace domain. Details of the application of
the frequency-domain method are presented in the next section.

2.3.2. Frequency domain
The assumption of harmonic motion for all variables converts the membrane dynamic
solution to the frequency domain, where, for example y(t, x) = ŷ(k, x) eikt, and the hat
denotes a complex-valued amplitude. Assignment of s = ik into (2.15) yields this equation
in the frequency domain,

{−Ak2 + B̂ik + Ê}F̂ = Ĥ , (2.16)

where B̂ = B(s = ik), Ê = E(s = ik), Ĥ = H(s = ik) and F̂ is the vector of complex
amplitudes of the Fourier coefficients F̂n(s), n = 1 . . .N. Once determined by (2.16), these
Fourier coefficients produce the resulting membrane deformation through (2.5). Note that
the constant matrix A is unaffected by the shift from the Laplace (2.15) to the frequency
(2.16) domain.
Frequency domain analysis is a natural approach to study the canonical unsteady

aerodynamic scenarios of Theodorsen (harmonic oscillations) and Sears (sinusoidal gust).
For these two scenarios, the frequency-domain solution yields the membrane dynamic
response and the aerodynamic lift response; these results are compared against the
Laplace domain results for verification. Integration of the Theodorsen and Sears harmonic
functions over the entire frequency domain yields the indicial lift responses to a step
change in angle of attack (Wagner’s function) and to a sharp-edged gust (Küssner’s
function), respectively (Bisplinghoff et al. 1996, pp. 284–287; Baddoo, Hajian & Jaworski
2021). Thus, the frequency-domain solution can generate all four canonical functions for
the membrane aerofoil, whilst the transient dynamic response of the membrane can only
be studied through the Laplace-domain solution. Case-specific technical details for this
approach are further discussed in §§ 2.5.1 and 2.5.3 for harmonic heave motions and
sinusoidal gusts, respectively.

2.4. Unsteady flow conditions
We next describe the unsteady flow conditions that the membrane aerofoil encounters
for two cases of prescribed motion: generalised and harmonic heave motions, and a step
change in angle of attack. We describe the generalised problem of a membrane aerofoil
that encounters a small-amplitude transverse gust, and then focus on two canonical gust
profiles of sinusoidal or sharp-edged geometry. For each of these cases, the aerodynamic
load due to the unsteady flow,�Cpf , is derived by applying wa = waf to (2.11). The normal
velocity at the aerofoil surface, waf , is defined according to von Kármán & Sears (1938)
and Wagner (1925), where the amplitudes of the prescribed motions and gusts sustain
the small-disturbance requirement |α0| � 1. The expression obtained for �Cpf forms the
H vector in (2.15) for the Laplace-domain solution, or the Ĥ vector in (2.16) for the
frequency-domain solution, which concludes the formulation of our problem.

2.4.1. Prescribed heave motion
Consider a membrane aerofoil that performs a prescribed translatory motion, h(t), that is
normal to the flight direction, where h is normalised by b and is positive downwards.
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Unsteady aerodynamics for membrane wings

Under these conditions, the aerodynamic load on the membrane due to heave motion
is obtained by substituting wa(t, x) = ḣ(t) into (2.10), where the overdot denotes a time
derivative. The solution of (2.10) in the Laplace domain yields a closed-form expression
for the wake vorticity distribution, which is substituted into the Laplace transform of (2.11).
Subsequent application of the coordinate transformation (2.3) yields the Laplace transform
of the aerodynamic load due to harmonic heave oscillations:

�C̄ph(s, θ) = 4s2h̄(s)
[
Φ̄(s) cot

θ

2
+ sin θ

]
, (2.17)

where h̄(s) is the Laplace transform of the prescribed heave motion, and Φ̄(s) is the
Laplace transform of Wagner’s function (e.g. Sears 1940),

Φ̄(s) = C(s)
s

. (2.18)

Here C(s) is the generalised Theodorsen function (e.g. Edwards 1979),

C(s) = K1(s)
K0(s) + K1(s)

, (2.19)

and K0 and K1 are modified Bessel functions of the second kind.
In the frequency domain, assuming h(t) = h0 eikt, the amplitude of the effective angle

of attack is α0 = ikh0, and the aerodynamic load due to harmonic heave oscillations is

�Ĉph(k, θ) = 4(ik)h0C(k) cot
θ

2
− 4k2h0 sin θ, (2.20)

where C(k) is the frequency-domain Theodorsen’s function,

C(k) = H(2)
1 (k)

H(2)
1 (k) + iH(2)

0 (k)
, (2.21)

andH(2)
0 andH(2)

1 are Hankel functions of the second kind. The corresponding lift response
is

Clh(t) = 2πC(k) ḣ(t) + πḧ(t), (2.22)

which is, in fact, the rigid plate response to heave oscillations (Bisplinghoff et al. 1996,
p. 272). The aerodynamic load expressions (2.17) and (2.20) form the term �Cpf in (2.14)
for prescribed heave motions in the Laplace and frequency domains, respectively.

2.4.2. Step angle of attack
The canonical unsteady aerodynamics problem for the indicial lift response of an aerofoil
to a step in angle of attack was originally solved by Wagner (1925) for a rigid flat plate.
The aerodynamic load on a membrane due to a step change in angle of attack may be
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computed using wa(t, x) = α(t), where

α(t) = α0H(t) ⇒ ᾱ(s) = α0

s
, (2.23)

and H(t) is the Heaviside function. The procedure detailed in § 2.4.1 is repeated to derive
an expression for the pressure difference coefficient,

�C̄pα0
(s, θ) = 4α0

[
Φ̄(s) cot

θ

2
+ sin θ

]
. (2.24)

The corresponding lift coefficient due to a step change in angle of attack is

C̄lα0 (s) = 2πα0[Φ̄(s) + 1
2 ], (2.25)

which recovers the indicial lift response found by Wagner (1925).

2.4.3. Generalised transverse gust
We consider a membrane aerofoil that encounters a vertically oriented gust with an
arbitrary profile. The leading edge of the aerofoil encounters the gust front at time t = 0
(figure 1), and the gust amplitude is assumed to be small with respect to the freestream
velocity. The aerodynamic load due to the imposed unsteady flow, �Cpf , is briefly detailed
here to complete the formulation of the problem, as it is, in fact, the rigid aerofoil response
to a transverse gust presented in Appendix B of Iosilevskii (2007). Note that �Cpf in (2.14)
is denoted �Cpg in the present context of gusts.
The gust model assumptions permit the substitution of wa(t, x) = αg(t − x − 1) into

(2.10) to produce the gust effect on the vorticity distribution along the wake, which leads
to a closed-form expression for the aerodynamic load along the aerofoil using (2.11):

�C̄pg(s, θ) = 4sΨ̄ (s)ᾱg(s) cot
θ

2
, (2.26)

where

Ψ̄ (s) = e−s

s2
1

K0(s) + K1(s)
(2.27)

is the Laplace transform of Küssner’s function, Ψ (t) (e.g. Sears 1940). Note that the
aerodynamic load due to an arbitrary transverse gust is obtained by a convolution of
Küssner’s function and the time derivative of the gust angle of attack,

�Cpg(t, θ) = 4 cot
θ

2

∫ t

0
Ψ (t − τ)

dαg(τ )

dτ
dτ. (2.28)

Equation (2.26) forms an expression for �Cpf in the Laplace domain, for an arbitrary,
small-amplitude gust profile.
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2.4.4. Sinusoidal gust
A sinusoidal gust encountered at the leading edge at time t = 0 can be expressed as

αg(t − x − 1) = α0 sin(k(t − x − 1))H(t − x − 1). (2.29)

The substitution of the Laplace transform of (2.29) into (2.26) yields the aerodynamic load
along the aerofoil due to a sinusoidal gust,

�C̄pg(s, θ) = 4kα0
s

s2 + k2
Ψ̄ (s) cot

θ

2
. (2.30)

It is natural to solve the steady-state problem for harmonic gusts in the frequency domain
by assuming

αg(t − x − 1) = α0 eik(t−x−1), (2.31)

which yields

�Ĉpg(k, θ) = 4α0ikΨ̂ (k) cot
θ

2
. (2.32)

Here

Ψ̂ (k) = 2
π

e−ik

k2

(
1

H(2)
1 (k) + iH(2)

0 (k)

)
(2.33)

is the Fourier transform of the Küssner function, which is obtained by assigning s = ik in
(2.27). The lift response to sinusoidal gusts in the frequency domain is

Ĉlg(k) = 2πα0ikΨ̂ (k) = 2πα0S(k), (2.34)

where the modified Sears function, S(k), is given by Bisplinghoff et al. (1996, p. 287)

S(k) = ik Ψ̂ (k) = {C(k)[J0(k) − iJ1(k)] + iJ1(k)} e−ik = S̃(k) e−ik. (2.35)

Here S̃(k) is the classical Sears function whose gust front is at the mid-chord location at
time t = 0, and J0 and J1 are Bessel functions of the first kind.

2.4.5. Sharp-edged gust
A sharp-edged gust is similarly described by

αg(t − x − 1) = α0H(t − x − 1). (2.36)

The substitution of (2.36) into (2.26) yields the aerodynamic load along the aerofoil due
to a sharp-edged gust,

�C̄pg(s, θ) = 4α0 cot
θ

2
Ψ̄ (s). (2.37)

The resulting lift response is
C̄lg(s) = 2πα0Ψ̄ (s), (2.38)

which is the expected classical indicial lift of a rigid plate due to a sharp-edged gust. The
distributed aerodynamic load (2.37) is, in fact, the external force applied on the membrane
through the termH in (2.15) in the case of a sharp-edged gust. This applied force initiates
a membrane deformation which brings about a change in the aerodynamic load through
aeroelastic coupling.
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2.5. Unsteady lift response functions
The membrane unsteady lift coefficient is derived by integration of the aerodynamic load
(2.14) along the membrane chord-line, which leads to

Clm(t) = Cld(t) + Clf (t), (2.39)

where the normalised lift due to membrane deformation is

Cld(t)
2πα0

=
∫ t

0
Φ(t − τ)ḟ (τ ) dτ + g(t). (2.40)

Here, Φ(t) is the time-domain Wagner function, and f (t) and g(t) are functions of the
Fourier coefficients given by

f (t) = 1
2
F1(t) − 1

2
F0(t) − 1

4
Ḟ0(t) − 1

4
Ḟ1(t) + 1

4
Ḟ2(t) +

N/2∑
m=2

Ḟ2m−1(t)
(2m − 1)2 − 1

, (2.41)

g(t) = −1
4
Ḟ0(t) + 1

4
Ḟ2(t) − 3

16
F̈1(t) + 1

8
F̈3(t) + 1

2

N/2∑
m=3

F̈2m−1(t)
(2m − 1)2 − 1

, (2.42)

where Fn = Fn/α0. The term α0 is the unsteady angle of attack amplitude in the harmonic
cases, or the steady angle of attack in the indicial cases; the reader may consult § 2.4 for
details on the definition of α0 and the lift due to the unsteady flow, Clf , for each case of
prescribed chord motion or gust encounter considered here.
The Laplace transform of Cld(t),

C̄ld(s)
2πα0

= C(s)f̄ (s) + ḡ(s), (2.43)

obtains the lift coefficient due to membrane deformation in the Laplace domain for
indicial scenarios. Subsequent numerical Laplace inversion yields the membrane indicial
lift response functions in the time domain. For cases of harmonic oscillations, in which
the membrane solution is obtained in the frequency domain, the lift coefficient due to
membrane deformation is expressed in the frequency domain

Ĉld(k)
2πα0

= C(k)f̂ (k) + ĝ(k), (2.44)

where f̂ (k) and ĝ(k) are found by substituting Fn(t) = F̂n(k) eikt into (2.41) and (2.42),
respectively, and the auxiliary functions in the time domain become f (t) = f̂ (k) eikt and
g(t) = ĝ(k) eikt.
Substitution of Cld ((2.43) or (2.44) for the indicial or harmonic scenarios, respectively)

and the case-specificClf into (2.39) yields a closed-form expression for the total membrane
lift coefficient,Clm , fromwhich extensions to the classical unsteady aerodynamic functions
are derived after a solution for the Fourier coefficients is obtained.

2.5.1. Equivalent Theodorsen function
An equivalent Theodorsen function is constructed for a flexible membrane wing following
the classical approach presented in Bisplinghoff et al. (1996, p. 279). An extension for

948 A33-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.682


Unsteady aerodynamics for membrane wings

Theodorsen’s function is obtained by computing the membrane response to prescribed
heave oscillations in the frequency domain:

Cm(k) = L̂Ch (k)
ikh0Lsα

, (2.45)

where LCh is the circulatory lift due to heave oscillations, and Lsα is the static (aeroelastic)
membrane lift-curve slope. The membrane circulatory lift is obtained by superposition
between the circulatory lift due to membrane deformation (first term in (2.44)) and the
circulatory lift due to the unsteady flow (first term in (2.22)). Substitution of the membrane
circulatory lift expression into (2.45) yields a closed-form expression for the membrane
Theodorsen function in the frequency domain,

Cm(k) = 2π
Clsα

C(k)[1 + f̂ (k)]. (2.46)

The static membrane lift slope,

Clsα = 2π[1 + 1
2Fs1 − 1

2Fs0], (2.47)

is established by direct integration of the static pressure load given by Nielsen (1963).
Here, Fsn are the static membrane Fourier coefficients, normalised by the static angle of
attack, which depend solely on the tension coefficient. Note that as k → 0 the Fourier
coefficients in the unsteady membrane solution converge to the static solution, F̂n −→ Fsn ,
where F̂n = Fn/α0 and α0 = ikh0. Application of this limit to (2.46) after substituting the
leading term in the asymptotic expansion of f̂ (k) in (B6) recovers

Cm(k) = C(k) + O(k) as k → 0. (2.48)

In other words, in the limit of small reduced frequencies the equivalent Theodorsen
function converges to the standard Theodorsen function, as expected.
Finally, we note that the Fourier coefficients of the membrane solution converge to

zero for a very stiff membrane as CT → ∞ at any reduced frequency other than the
fluid-loaded resonance frequencies. Under these conditions, the auxiliary function f (t)
(2.41) goes to zero, and the static membrane lift-curve slope converges on 2π. Therefore,
the equivalent Theodorsen function recovers the rigid plate function for CT → ∞, as
expected. Appendix B reports further details on this limit.

2.5.2. Equivalent Wagner function
We next derive the equivalent Wagner function for a flexible membrane wing following
Bisplinghoff et al. (1996, pp. 284–287). Note that the equivalent Theodorsen function
derived in § 2.5.1 enables the computation of the equivalent Wagner function in the time
domain through (Bisplinghoff et al. 1996, p. 285)

Φm(t) = LCα0
α0 Lsα

= 1 + 2
π

∫ ∞

0

Im{Cm(k)}
k

cos kt dk, t > 0, (2.49)

where LCα0 is the circulatory lift of the membrane due to a step change in angle of attack,
expressed in the time domain. The above equation allows for the computation of the
equivalent Wagner function from both the Laplace-domain solution (first equality) or
the frequency-domain solution (second equality). However, whilst the frequency-domain
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solution is more efficient when computing the Theodorsen function, the application
of this solution to (2.49) requires a broad range of frequencies to obtain an accurate
initial (high-frequency) response of the membrane lift. Therefore, the equivalent Wagner
function is presented using the Laplace-domain solution.
Following the procedure presented in § 2.5.1 for the equivalent Theodorsen function,

a closed-form expression is derived for the equivalent Wagner function in the Laplace
domain,

Φ̄m(s) = 2π
Clsα

Φ̄(s)[1 + sf̄ (s)], (2.50)

where f̄ (s) is the Laplace transform of f (t) from (2.41). In the time domain, the equivalent
Wagner function becomes

Φm(t) = 2π
Clsα

{
Φ(t) +

∫ t

0
Φ(t − τ)ḟ (τ ) dτ

}
. (2.51)

We note that Φm(0) = π/Clsα at time t = 0, and the static membrane lift slope, Clsα , is
higher than the rigid plate lift slope due to the static membrane camber. Therefore, the
initial value of the equivalent Wagner function is smaller than the classical value of 1/2
predicted by the standard Wagner function for a rigid flat plate.
At long times (t → ∞), we can use the fact that ḟ (τ ) rapidly converges to zero as the

membrane profile converges to the appropriate static profile. Thus,

lim
t→∞

{∫ t

0
Φ(t − τ)ḟ (τ ) dτ

}
∼= lim

t→∞

{
Φ(t)

∫ t

0
ḟ (τ ) dτ

}
∼= lim

t→∞{Φ(t)f (t)} ∼=
(
Clsα

2π
− 1

)
Φ(t) (2.52)

and the equivalent Wagner function converges to the standard Wagner function,
Φm(t → ∞) ∼= Φ(t → ∞) = 1, as expected. For a very stiff membrane (CT → ∞), the
static membrane lift slope becomes 2π, and the equivalent Wagner function converges to
the rigid-plate Wagner function during the entire time response.

2.5.3. Equivalent Sears function
Extension of the canonical modified Sears function is next derived for a flexible membrane
wing in the frequency domain, following the classical approach presented in Bisplinghoff
et al. (1996, pp. 286–287). The equivalent Sears function is obtained by calculating the
membrane response to oscillating gusts (§ 2.4.4) and normalising the expression by the
membrane static lift:

Sm(k) = L̂gs(k)
Ls

, (2.53)

where L̂gs(k) is the (complex) amplitude of the lift due to harmonic gust with reduced
frequency k.
Substitution of the membrane lift expression (2.39) into (2.53), superposing the lift

due to membrane deformation (2.44) with the lift due to the sinusoidal gust (2.34) in the
frequency domain, leads to a closed-form expression for the membrane equivalent Sears
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function,

Sm(k) = 2π
Clsα

{S(k) + C(k)f̂ (k) + ĝ(k)}. (2.54)

The first term in (2.54) describes the rigid aerofoil lift response, the second term is the
circulatory lift response due to membrane deformation, and the third term represents
the non-circulatory lift response due to membrane deformation. Note that the unsteady
membrane solution to an encounter with sinusoidal gusts converges to the static membrane
solution as k → 0, namely F̂n −−→

k→0
Fsn , where F̂n = F̂n/α0. Thus, for very low reduced

frequencies the equivalent Sears function converges to

Sm(k) ∼= 2π
Clsα

{
S(k) +

(
Clsα

2π
− 1

) [
1 + k

(
i ln

k
2

− π

2

)]}
+ O(kF̂3; kF̂4; k2 ln k; k2) as k → 0. (2.55)

We note that for the limiting case of CT → ∞ the static membrane lift slope approaches
2π and the lift due to the membrane deformation converges to zero for k /=ωrn . Therefore,
the equivalent Sears function converges to the standard modified Sears function for
CT → ∞, as expected. Appendix B reports further details on these low-frequency limits.

2.5.4. Equivalent Küssner function
The aeroelastic membrane Küssner function in the time domain,

Ψm(t) = Lseg
Ls

= 1 + 2
π

∫ ∞

0

Im{Sm(k)}
k

cos kt dk, t > 0, (2.56)

follows from the equivalent Sears function determined in § 2.5.3 using the procedure
outlined in § 2.5.2 for the Wagner function (e.g. Bisplinghoff et al. 1996, p. 287). Here
Lseg is the time-domain membrane lift response to a sharp-edged gust. The above equation
enables the computation of the equivalent Küssner function from both the Laplace-domain
solution (first equality) or the frequency-domain solution (second equality).
A closed-form expression for the equivalent Küssner function is determined in the

Laplace domain by superposing the rigid aerofoil indicial lift (2.38) and the lift due to
membrane deformation (2.43), with substitution of the resultant unsteady lift into the
Laplace transform of (2.56):

Ψ̄m(s) = 2π
Clsα

{ḡ(s) + Ψ̄ (s) + C̄(s)f̄ (s)}. (2.57)

The equivalent Küssner function in the time domain is clearly

Ψm(t) = 2π
Clsα

{
g(t) + Ψ (t) +

∫ t

0
Φ(t − τ)ḟ (τ ) dτ

}
. (2.58)

We note that the initial value of the equivalent Küssner function is Ψm(0) = 0. For t → ∞
the equivalent Küssner function asymptotically converges to unity, and for a very stiff
membrane of CT → ∞ the rigid-plate Küssner function is recovered.
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3. Results and discussion

The membrane response to prescribed chord motion or an incoming gust is derived in both
the time domain (via inverse Laplace transform) and the frequency domain, the latter of
which is used to study the steady-state response to harmonic motions or sinusoidal gusts.
Results are shown for four canonical cases: harmonic heave oscillations, step change in
angle of attack, sinusoidal gust and sharp-edged gust, for which extensions of the four
respective classical unsteady lift functions are presented for a flexible membrane wing.
We begin by studying the lift and dynamic response of a nominal membrane of μ = 1 and
CT = 2.5, followed by analysis of the role of each of the membrane parameters.

3.1. Prescribed motion
The membrane response to prescribed chord motion is derived for two canonical
problems: harmonic heave oscillations, from which Theodorsen’s function is derived,
and a step change in angle of attack (also known as Wagner’s problem). In both cases
the membrane is free to deform around the chord-line, which adheres to the prescribed
motion. Extensions of the classical Theodorsen and Wagner functions are presented for
flexible membrane wings, along with a discussion on the membrane dynamic response to
these unsteady flow conditions and the role of the membrane parameters (μ,CT) in its
aerodynamic performance.

3.1.1. Harmonic heave oscillations
To assess the membrane wing response to prescribed oscillations in heave, we compute
first the membrane amplitude at various reduced frequencies of oscillation, k, for various
tension coefficients and two mass ratios (figure 2). In addition, the resonance frequencies
of the fluid-loaded membrane system (ωr1, ωr2, etc.) are computed from the homogeneous
system of (2.16), following the method of Kornecki, Dowell & O’Brien (1976). The
parametric dependence of the fluid-loaded resonance frequencies on CT and k is illustrated
with dashed red lines in figure 2. The left column of figure 2 presents maps of the resulting
maximum membrane amplitude, obtained for μ = 1 (upper row) and μ = 18 (lower row)
for varying tension coefficient and reduced frequency. As expected, significant amplitudes
of oscillation occur for frequencies near the resonance frequencies of the fluid-loaded
membrane. In the heavy membrane case, μ = 18, where the mass ratio is encroaching
upon the flutter instability threshold, predicted by Tiomkin & Raveh (2017) at μ ≥ 18.8
for CT = 2, the peaks in the maximal amplitude map are more concentrated, with a
significantly increased amplitude along the second fluid-loaded resonance frequency. Note
that these narrow peaks in figure 2(c) prevent the addition of the resonance frequencies
to this plot, as these lines cover the peaks entirely; the relevant fluid-loaded resonance
frequencies are plotted in figure 2(d) for reference. We further note that the presence of
aerodynamic damping leads to finite amplitudes of the membrane at resonance in this
linear analysis. The amplitude peaks along the fluid-loaded resonance frequencies reach
large values that are beyond the validity range of the current study (especially in the heavy
membrane case). However, away from these very narrow peaks the results across the rest
of the frequency regime satisfy the ansatz of linear dynamics assumed by the present work.
The right column of figure 2 shows the membrane amplitude profiles obtained along the

fluid-loaded resonance frequencies, with background colour used to indicate the maximum
amplitude value. Dotted black lines indicate the in vacuo natural frequencies, k1, k2,
etc., where kn = nπ

√
CT/8μ, which are compared against the fluid-loaded resonance

frequencies. Significant differences between the in vacuo and the fluid-loaded membrane
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Figure 2. Membrane amplitude in response to heave oscillations: (a,c) maximum amplitude maps obtained
for various values of CT and k for μ = 1 and μ = 18, respectively. (b,d) Present the membrane amplitude
profiles obtained at the fluid-loaded resonance frequencies for μ = 1 and μ = 18, respectively. Background
colour depicts maximum amplitude of membrane deformation, normalised by the heave motion amplitude, h0.
Red dashed lines describe the first, second and third resonance frequencies of the fluid-loaded membrane, and
black dotted lines present membrane in vacuo natural frequencies. A large value of the mass ratio, μ = 18, is
chosen to assess the membrane response near the onset of flutter, which Tiomkin & Raveh (2017) predict to
occur for μ ≥ 18.8 when CT = 2. Aerodynamic damping leads to finite membrane amplitudes at resonance.

resonance frequencies are obtained for the lowest mass ratio, μ = 1, in figure 2(b). This
difference in frequencies evokes oscillations with membrane amplitude profiles that are
noticeably different from the membrane in vacuo modes. In addition, the membrane
amplitude increases with reduced frequency, following the behaviour of the excitation term
in (2.20) whose amplitude increases monotonically with k. As the mass ratio increases
in figure 2(d), the gap between the resonance and the structural frequencies diminishes,
and second-mode oscillations become dominant; this is the first dynamically unstable
membrane mode (Nielsen 1963; Tiomkin & Raveh 2017). In this case the membrane
amplitude increases as the tension decreases (although the resonance frequency also
decreases), which is typical of the membrane-wing behaviour on the verge of instability
(Tiomkin & Raveh 2017; Mavroyiakoumou & Alben 2020, 2021).
The differences between the in vacuo natural frequencies and the fluid-loaded resonance

frequencies are mainly due to the added mass of the surrounding fluid, which must be
taken into account when computing the total inertia of the coupled system. This effect
may be quantified in non-dimensional terms as an added mass ratio, μadd, which can be
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Figure 3. The dependence of non-dimensional added mass and aerodynamic damping on membrane tension
coefficient for membrane mass ratios of μ = 1, 18: (a) added mass ratio, μadd , compared against the rigid
plate added mass value of π/4, and the added mass obtained by Jaworski & Gordnier (2015) for μ = 1.2065;
(b) damping coefficient, ζ , computed from the frequency ratio at the lift amplitude peak that sustains
(k/ωr1 )peak =

√
1 − 2ζ 2. The membrane added mass approaches the rigid plate value as CT → ∞, and is

in close agreement with Jaworski & Gordnier (2015). The aerodynamic damping is effectively constant for all
of the examined values of CT , except at the lowest values near the divergence instability threshold, CT ∼= 1.73,
where the damping coefficient approaches ζ = 1/

√
2. Resonance peaks do not occur for ζ > 1/

√
2 (Rao 2007,

p. 274).

computed by assuming ωr1 = π
√
CT/(8μ + 8μadd). For a rigid plate the added mass is

commonly taken as μadd = π/4 (Katz & Plotkin 2001, pp. 385–387). For a membrane
wing, Alon Tzezana & Breuer (2019) found a constant added mass value of μadd = 0.5,
and Minami (1998) determined that μadd = 0.68 for a membrane oscillating in quiescent
air. Minami (1998) used standing modes to describe the membrane deformation, without
considering the tension along the membrane. However, Yadykin, Tenetov & Levin (2003)
showed that the added mass of flexible plates is strongly affected by the mode of vibration.
Figures 2(b) and 2(d) reveal in the current investigation that the membrane parameters
and the reduced frequency of the harmonic heave motion control the amplitude profile
of the oscillating membrane. Therefore, the added mass ratio in fact depends on both the
membrane mass ratio and tension coefficient when considering the coupled problem of
the membrane passive deformation in response to unsteady flow.
Figure 3(a) presents the membrane added mass ratio values for μ = 1 and μ = 18 as

a function of the tension coefficient over 1.73 ≤ CT ≤ 100, which are compared against
the known rigid plate added mass ratio of π/4 and the results of Jaworski & Gordnier
(2015) obtained for μ = 1.2065. It is evident that the added mass ratio increases with
the membrane mass ratio and decreases with increase in tension coefficient, where an
asymptotic approach to the rigid plate solution as CT → ∞ is noted. In addition, a good
agreement is obtained with the results computed by Jaworski & Gordnier (2015, Table 1)
assuming quasi-steady aerodynamics. Jaworski & Gordnier (2015) argued that circulatory
effects are negligible in the computation of the resonance frequency of the system, and the
close agreement in figure 3(a) substantiates this claim.
An aerodynamic damping coefficient, ζ , may also be computed for the fluid-loaded

membrane using the frequency ratio at the peak of the unsteady lift amplitude value,
(k/ωr1)peak =

√
1 − 2ζ 2 (Rao 2007, pp. 271–274). Figure 3(b) plots the damping

948 A33-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.682


Unsteady aerodynamics for membrane wings

–0.2 0 0.2 0.4 0.6 0.8 1.0
–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

Im
[C

(k
)]

–0.3

–0.2

–0.1

0

Rigid
Membrane
ωr1
ωr2
kinv1
kinv2

0.5 1.0 1.5 2.0 2.5 3.0 3.50

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
–3

–2

–1

0

�
C

(k
)(

ra
d)

|C
(k

)|

Re[C(k)]

k

k

(b)(a)

Figure 4. Membrane lift response to heave oscillations, obtained for CT = 2.5, μ = 1 in terms of the
membrane equivalent Theodorsen function: (a) Argand diagram; (b) modulus and phase. Frequencies of
inflection points are denoted with black circles (kinv1 ) and crosses (kinv2 ), and resonance frequencies are
denoted with red pluses (ωr1 ) and magenta crosses (ωr2 ).

coefficient for two values of mass ratio as a function of the tension coefficient and shows
that it is practically constant for CT ≥ 3. The damping coefficient approaches the limit
of ζ = 1/

√
2 as the tension coefficient is further reduced, which is near the divergence

instability threshold of CT ∼= 1.73 (Tiomkin & Raveh 2017). This limit describes the
aerodynamic damping value beyond which no resonance peak is obtained, as would be
expected for any harmonically forced linear system (Rao 2007, p. 274). In general, all of
the examined cases possess substantial aerodynamic damping, which explains the finite
amplitudes obtained at the fluid-loaded resonance frequency conditions in the present
linear analysis.
The membrane lift response to heave oscillations is next evaluated by comparing the

membrane equivalent Theodorsen function (2.46) to the standard Theodorsen function
of a rigid flat plate. Figure 4 illustrates this comparison for the nominal membrane of
μ = 1 and CT = 2.5 as an Argand diagram (figure 4a) and in terms of modulus and phase
(figure 4b). This representation of a complex-valued function as a two-dimensional plot
is used to describe the unsteady lift amplitude and the phase lag relative to the heaving
motion of the aerofoil. When Im[Cm(k)] < 0 in the Argand diagram, the lift response lags
the rigid motion (negative phase), whereas the lift precedes the heaving motion (positive
phase) when Im[Cm(k)] > 0. Whilst figures 4(a) and 4(b) are, in fact, two ways to describe
the same results, each of these figures highlights different characteristics of the membrane
lift response, as will be elaborated next.
For low reduced frequencies, the membrane lift response follows the general behaviour

of the rigid plate response, with reduced amplitude and increased phase lag. As the
reduced frequency of heave oscillations increases, at some point (typically for k smaller
than the first resonance frequency) the membrane equivalent Theodorsen function changes
its direction abruptly in the complex plane, where the unsteady lift response amplitude
increases, rather than converging to zero as it would for rigid aerofoils. We mark this
inflection point by reduced frequency kinv1 . With a further increase in k beyond kinv1 ,
a circular path is obtained in the complex plain plot until the next inflection point is
reached at k = kinv2 , and so on. In figure 4(a), we present results for reduced frequencies
up to the second in vacuo natural frequency, k2 ∼= 3.5, for the sake of clarity. Each of
these circular arcs, which are identifiable in the Argand plot (figure 4a), contains one of
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Figure 5. The first two (most dominant) complex-valued Fourier coefficients, normalised by α0 = ikh0, for
a nominal membrane of CT = 2.5, μ = 1 undergoing harmonic heave oscillations of reduced frequency k:
(a) Argand diagram; (b) modulus and phase. Static solutions are denoted by pentagram markers and recovered
by the unsteady results as k → 0. First inflection point is marked with black circles and identified by the
first local minimum of |F̂1|. Second inflection point is denoted by black crosses, identified by an intersection
between |F̂1| and |F̂2|. The insets in (a) introduce an enlarged view of the first inflection point region for
illuminating the trend of both functions as k passes kinv1 .

the system’s resonance frequencies for which a local maximum is observed in the lift
response amplitude (figure 4b). A region of special interest is revealed around the first
resonance frequency, for 0.65 ≤ k ≤ 0.96, where the membrane aerofoil demonstrates a
substantial increase in lift magnitude over a rigid aerofoil. Interestingly, oscillations with
lower or higher reduced frequency (in the examined range of k ≤ 3.5) result in substantial
deficit in unsteady lift amplitude. Viewed in a practical context, these results for the lift
amplitude may be used to extract the maximum unsteady wing load in the design process.
Therefore, cases where the flexible membrane presents higher maximum loads than a rigid
aerofoil could be hazardous when using predictions of the standard Theodorsen function,
for example.
To further examine the origin of the circular paths in the membrane Theodorsen

function, we recall that the equivalent Theodorsen function (2.46) is, in fact, a product of
the standard Theodorsen function and a function of the membrane Fourier coefficients.
Figure 5 presents the evolution of the first two Fourier coefficients (normalised by
α0 = ikh0) with varying reduced frequency, obtained for the nominal membrane case.
These normalised Fourier coefficients are the most dominant coefficients in the Fourier
series used to describe the membrane slope (2.4), and are plotted as an Argand diagram
(figure 5a) and in terms of its modulus and phase (figure 5b). Note that the unsteady
solution recovers the static aeroelastic membrane results for k → 0, as expected, where the
static results are marked by pentagrams in the Argand diagram. As the reduced frequency
is increased from the static limit, the amplitudes of both of the normalised Fourier
coefficients decrease at first, yielding a smaller amplitude of the oscillating membrane
shape, and then increase as the reduced frequency approaches the first fluid-loaded
resonance frequency. The first inflection point in the equivalent Theodorsen function
corresponds to the first local minimum of |F̂1|, which is followed by a circular path in
the complex plane plots of all coefficients (figure 5a). This entire frequency regime, in
which the first circle appears in the Fourier coefficients, is dominated by the membrane’s
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Figure 6. Membrane dynamic response to harmonic heave oscillations, obtained for a nominal membrane
of CT = 2.5, μ = 1. (a) Amplitude profiles computed for varying values of reduced frequency. Resonance
frequencies are denoted with dashed black lines and inflection point frequencies are marked with dotted black
lines. (b,c) Membrane amplitude profiles obtained for reduced frequencies around the first and second inflection
points, respectively.

first mode, as is evident by the dominance of the first Fourier coefficient in figure 5(b). This
dominance is maximum near the first resonance frequency and diminishes as k increases,
which continues until the second resonance frequency is approached and the second mode
coefficient becomes dominant. The frequency at which |F̂2| crosses |F̂1| is in fact kinv2 ,
which marks the transition from the first circle to the second circle in the equivalent
Theodorsen function in figure 4(a). This behaviour, in which the inflection points are
identified by a switch of dominance between the membrane modes, also continues to
higher modes as the frequency is further increased, but is not shown here for the sake
of clarity and brevity. Thus, it can be concluded that the circular arcs in the equivalent
Theodorsen function are due to the membrane dynamic response, where each circle is
related to a different dominant mode, and the inflection points between circles occur at
the intersection between the modulus functions of two consecutive normalised Fourier
coefficients.
Figure 6 presents the membrane amplitude profiles computed for a nominal membrane

undergoing heave oscillations of varying reduced frequency, where the profile represents
the amplitude of oscillation at every point along the membrane chord. A contour plot
of the amplitude profiles is presented in figure 6(a) for varying reduced frequency,
k, with black dashed and dotted lines denoting the resonance and inflection point

948 A33-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.682


S. Tiomkin and J. W. Jaworski

frequencies, respectively. Small deformations relative to the heave amplitude are obtained
along the entire frequency range, except in the vicinity of the system’s (fluid-loaded)
resonance frequencies, for which large-amplitude profiles are observed with a shape
similar to the membrane structural modes. This observation suggests a close coupling
between the unsteady lift amplitude and the membrane amplitude in response to harmonic
heave oscillations. Furthermore, a favourable lift is clearly achievable only for odd
resonance frequencies (ωr1, ωr3, etc.), which correspond to shapes that are symmetric
around the mid-chord point, rather than anti-symmetric in the even-mode cases, as
illustrated by comparing the lift response in figure 4(b) with the membrane amplitude
profiles in figure 6(a).
Figures 6(b) and 6(c) provide a more detailed view of the membrane amplitude profiles

obtained for reduced frequencies near kinv1 and kinv2 , respectively. In accordance with
the normalised Fourier coefficients (figure 5), we note that small-amplitude profiles are
obtained for small values of reduced frequency (figure 6b). These membrane shapes are
convex, with a maximum camber point at the fore section of the aerofoil, in accordance
with the static membrane solution (Nielsen 1963). As the reduced frequency increases,
the amplitude of the profile decreases until for kinv1 an inflection point appears in
the membrane profile and drastic changes in the profile shape are evoked with further
increase in reduced frequency. These deformations indicate the excitation of the membrane
structural modes as the reduced frequency approaches the system’s first resonance
frequency. For larger reduced frequencies near the second inflection point, kinv2 , figure 6(c)
shows that significant membrane oscillations are evoked, in which the inflection point
(kinv2) represents the shift in the membrane amplitude profile, from the fully convex shape
obtained for the first resonance frequency to the second mode shape obtained for the
second resonance frequency. This shift is identified by an inflection point that appears near
the leading edge of the membrane profile for k ≥ kinv2 , after which the second mode of
the membrane becomes most dominant. This result is in accordance with the behaviour of
the Fourier coefficients, presented in figure 5, affirming the conclusion that the inflection
points in the complex plane plot of the equivalent Theodorsen function mark the shift in
dominance between consecutive membrane modes.
The circular paths of the membrane Theodorsen function provide direct insight into the

dynamic interplay of the membrane and surrounding flow dynamics through the lens of
the unsteady lift. Specifically, the aeroelastic oscillations of the membrane are connected
to changes in the surrounding fluid flow and the shed wake, which are reflected in the
unsteady lift response. For reduced frequencies near the fluid-loaded resonances, larger
membrane deformations alter the shed flow vorticity to bring about longer response times,
which lead to an increased phase lag between the unsteady lift and the prescribed motion.
Further increases of the reduced frequency beyond the fluid-loaded resonance frequency
yield decreases in the lift amplitude and phase lag due to a smaller camber of the deformed
membrane amplitude. In addition, we note that the even membrane modes produce smaller
circles about a center closer to the origin of the complex plot of the membrane Theodorsen
function, which indicate a smaller lift amplitude than the odd membrane modes, as
expected aerodynamically in light of the shape of these modes (figure 2b).
Figures 7 and 8 illustrate the separate effects of the tension coefficient and the membrane

mass ratio on the membrane Theodorsen function. Tension coefficients between 2 and 4,
and mass ratios between 0.5 and 2.5 are chosen to represent realistic membrane wings (e.g.
Rojratsirikul, Wang & Gursul 2010; Tiomkin & Raveh 2021), while still remaining in the
membrane stable regime, as the membrane loses stability via divergence forCT < 1.73 and
loses stability via flutter only in the case of heavy membranes of μ > 18.8 (see Tiomkin
& Raveh 2017 for details). Results are presented for reduced frequencies up to the second
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Figure 8. Effect of membrane mass ratio on the membrane equivalent Theodorsen function for CT = 2.5:
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for comparison with the membrane equivalent Theodorsen function.

in vacuo frequency (k = k2) for the sake of clarity. The membrane stiffness is strongly
influenced by the tension coefficient, and figure 7(b) shows that the membrane lift response
to low-frequency oscillations approaches the rigid plate response with increasing tension
coefficient, as expected. This result is further validated by examining an extreme case of
CT = 50, presented in figure 7(b) with a dashed red line. For this high tension coefficient
the membrane is practically rigid, and indeed the resulting equivalent Theodorsen function
follows closely the standard Theodorsen function for a wide range of frequencies up to
about k = 2, where differences in the amplitudes arise due to parametric proximity to the
system’s first resonance frequency. Because the system’s resonance frequencies increase
with CT , the range of frequencies for which the equivalent Theodorsen function follows
the standard Theodorsen function increases with CT as well, and the first resonance circle
occurs at a larger reduced frequency (i.e. kinv1 increases). In addition, the circle diameter
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Figure 9. Effect of (a) membrane tension coefficient and (b) mass ratio on the membrane-equivalent
Theodorsen function, obtained for μ = 1 and CT = 2.5, respectively. The modulus and phase of the equivalent
Theodorsen functions are plotted against the reduced frequency of the prescribed motion, normalised by
the first fluid-loaded resonance frequency. Aerodynamic damping leads to a finite peak in the modulus of
the equivalent Theodorsen function, which scales on CT , and to a peak frequency that is smaller than the
fluid-loaded resonance frequency.

increases with CT for μ = 1, indicating that an increase in tension coefficient leads locally
to an increased amplitude of the unsteady lift response near the resonance frequency, as
the membrane oscillation amplitude also increases (figure 2b). Thus, in a practical sense,
the hazardous region where a substantial increase in unsteady lift amplitude is obtained is
clearly controlled by the tension coefficient, suggesting the possibility of optimising the
flapping wing performance by controlling the tension along the membrane.
Analysis of the mass ratio effect on the membrane response to prescribed heave

oscillations (figure 8) shows that at small reduced frequencies the mass ratio has practically
no effect on the lift response, as expected. For higher reduced frequencies the first
resonance circle appears earlier (at lower k) as the mass ratio is increased, in accordance
with the decrease in resonance frequency, while the amplitude of the lift response is
practically unaffected. The hazardous region is also controlled by the mass ratio, as the
peak in the lift amplitude follows the movement of the resonance frequency. However, in
practical applications, this variable is often harder to control than the tension coefficient.
Some insight into the scaling of the membrane lift response to harmonic heave

oscillations is gleaned from figures 9(a) and 9(b), which present the effects of the
tension coefficient and the membrane mass ratio on the membrane Theodorsen function,
respectively, as a function of the normalised reduced frequency, k/ωr1 . For varying mass
ratio, all of the examined cases collapse to a single curve for reduced frequency ratios
up to k/ωr1

∼= 2.6, beyond which the second fluid-loaded resonance peak is approached.
Variation in the tension coefficient shows that the membrane Theodorsen function
modulus peak at the first fluid-loaded resonance frequency is linearly proportional to the
tension coefficient for all membranes of CT ≥ 2.5; note that the modulus is normalised
by CT in figure 9(a). This dependence of the amplitude peak on CT suggests that the
aerodynamic damping that controls the peak amplitude is effectively constant for CT ≥
2.5, as was shown in figure 3(b) for μ = 1. For lower values of the tension coefficient,
a larger aerodynamic damping is obtained (ζ → 1/

√
2), and the amplitude peak reduces

significantly.
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Figure 10. Membrane (a) dynamic response and (b) lift response to a step in angle of attack, obtained for a
nominal membrane of CT = 2.5 and μ = 1. Black line in (a) and dashed black line in (b) denote the static
solution (Nielsen 1963). The membrane unsteady lift coefficient, Clm , is computed by superposition between
the rigid plate indicial lift, Clf , and the lift due to membrane deformation, Cld , which is composed of the
circulatory and non-circulatory terms, CC

ld and CNC
ld , respectively.

3.1.2. Step angle of attack
We next examine the response of the nominal membrane to a step in angle of attack,
in terms of its dynamic and aerodynamic response (figure 10). The membrane dynamic
response begins with an initially taut profile, followed by membrane oscillations as a result
of the abrupt change in angle of attack. These oscillations decrease in amplitude with
time until a steady-state profile is obtained that is identical to the respective static solution
(figure 10a). The resulting lift coefficient history (figure 10b) presents a similar trend to the
membrane deformation history and suggests a close coupling between the two. In addition,
when comparing the nominal membrane lift history in response to a step in angle of attack,
Clm , with the rigid plate response, Clf , we see that the membrane wing achieves a larger
lift across almost the entire response, converging to a value more than double that of the
rigid-plate lift, due to membrane camber. Interestingly, during the initial transient stage
of the response (for t < 1.4) the membrane lift is lower than the rigid plate lift. Namely,
the membrane deformation due to the abrupt change in angle of attack produces negative
lift, as evident by the plot of CC

ld and CNC
ld in figure 10(b), which describe the circulatory

and non-circulatory terms in Cld (2.40). As the membrane is initially still and taut, the
membrane surface accelerates in response to the sudden change in flow conditions, leading
to a negative apparent mass lift at t = 0 and zero circulatory lift. The membrane inflates
with time and its acceleration reduces, which yields a decrease in the non-circulatory lift
magnitude. The initial acceleration subsequently yields a negative circulatory lift, but it
also causes an increase in the membrane velocity, which increases the circulatory lift.
This trend continues until at time t = 1.4 the circulatory lift is able to compensate the
lift deficit due to CNC

ld and the membrane lift exceeds the rigid plate lift. For longer times
the membrane deformation yields a higher circulatory lift that contributes to the further
increase in the total membrane lift, as it proceeds to converge to the static membrane lift
coefficient, Cls .
Figure 11 illustrates the separate effects of the membrane tension coefficient and mass

ratio on the membrane lift response to a step in angle of attack in terms of the equivalent
Wagner function, and compares it to the standard Wagner function for rigid aerofoils.
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Figure 11. Effect of the (a) tension coefficient and (b) mass ratio on the membrane equivalent Wagner
function, obtained for μ = 1 and CT = 2.5, respectively, as compared with the standard Wagner function
(black line). Results are obtained via Laplace-domain solution and are verified against the expected initial
values marked with pentagrams.

The equivalent Wagner functions were computed in the Laplace domain (2.50) and
transformed to the time domain via numerical Laplace inversion. In general, for all of
the examined cases, the membrane lift response is slower than the rigid plate response.
However, we recall that the static membrane lift-curve slope is determined by the tension
coefficient (2.47), and can be significantly larger than the rigid-plate lift slope due to
aeroelastic camber. Thus, for example, while for CT = 2, μ = 1, at time t = 100 the
equivalent Wagner function reaches only 93.8% of its steady-state solution, compared
with 99% for a rigid flat plate, the steady-state lift in this case is substantially higher for
the membrane wing (Clsα

∼= 28), yielding a lift that is more than 4 times larger than the
rigid plate lift. As the tension along the membrane is increased, the membrane Wagner
function approaches the classical solution for a rigid plate, as expected (figure 11a). In
addition, the initial value of the equivalent Wagner function is significantly lower than
its rigid value, as it recovers the result predicted in § 2.5.2, Φm(0) = π/Clsα , marked by
pentagrams in figure 11.
The effect of the mass ratio on the equivalent Wagner function is much less pronounced

than the tension coefficient effect (figure 11b) and is discernible only for short time periods
(i.e. high frequencies) when inertial effects are important. For long time durations, the lift
responses are equivalent for any practical use.

3.2. Gust response
The membrane response to encounters with transverse gusts is now studied for two
canonical cases: (i) a sinusoidal gust and (ii) a sharp-edged gust. The sinusoidal
and sharp-edged gusts produce unsteady lift responses described by the equivalent
Sears and Küssner functions, respectively. These extensions of the classical Sears and
Küssner functions are presented for flexible membrane wings, along with discussion on
the membrane dynamic response to these unsteady flow conditions and the role of the
membrane parameters (μ,CT) in its aerodynamic performance. We note that while the
sharp-edged gust has no physical meaning by itself, it is a very useful tool when predicting
the aerofoil’s response to an arbitrary (small-amplitude) transverse gust by appeal to
convolution theory (Bisplinghoff et al. 1996, p. 288).
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Figure 12. Membrane lift response to sinusoidal gusts of various frequencies, obtained for a nominal
membrane of CT = 2.5, μ = 1 in terms of the membrane equivalent Sears function: (a) Argand diagram and
(b) squared modulus and phase. Frequencies of the inflection points are denoted with black circles (kinv1 ) and
crosses (kinv2 ), and resonance frequencies are denoted with red pluses (ωr1 ) and magenta cross signs (ωr2 ).

3.2.1. Sinusoidal gust
The membrane lift and dynamic response to an encounter with a sinusoidal gust is
controlled by the membrane tension coefficient, mass ratio and the gust reduced frequency.
The response of a nominal membrane wing to sinusoidal gusts of varying reduced
frequency is analysed first, followed by a separate analysis of the effect of each of
the membrane parameters on the resulting unsteady lift and dynamic response of the
membrane.
Figure 12 presents the lift response of the nominal membrane to sinusoidal gusts in

terms of the equivalent Sears function (2.54). This equivalent Sears function is compared
against the classical modified Sears function for a rigid flat plate in figure 12(a) using
an Argand diagram and in figure 12(b) in terms of the squared magnitude and the
phase. The choice of a squared amplitude plot rather than a modulus plot follows the
convention originated by Drischler (1956) for harmonic gusts. For low reduced frequencies
of k < kinv1 ∼= 0.41, the membrane equivalent Sears function closely follows the classical
modified Sears function, with a slightly decreased amplitude and increased phase lag.
However, at the point of inflection (k = kinv1) the lift amplitude begins to increase
significantly with reduced frequency, creating a circular path in the complex plane, in a
manner similar to the equivalent Theodorsen function (cf. figure 4). The lift amplitude
increases beyond the rigid plate response in the vicinity of the first fluid-loaded resonance
frequency (k = ωr1), which is followed by a sharp decrease in amplitude at higher reduced
frequencies. This behaviour suggests the existence of a reduced frequency region for which
gust mitigation is achievable using flexible membrane wings, while also revealing a range
of frequencies (near the first resonance frequency) for which membrane flexibility could
have adverse results.
To further study the origin of the inflection points in the complex plane plot of the

equivalent Sears function, we recall that the equivalent Sears function (2.54) depends on
the standard modified Sears function, the standard Theodorsen function and the Fourier
coefficients used to describe the membrane deformation. Figure 13 presents the behaviour
of the first two normalised Fourier coefficients obtained for the nominal membrane in
response to sinusoidal gusts of varying reduced frequency. These Fourier coefficients are
the most dominant coefficients in the membrane dynamic response for the range of reduced
frequencies examined. For k → 0, the Fourier coefficients converge to the appropriate
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Figure 13. The first two (most dominant) complex-valued normalised Fourier coefficients obtained for a
nominal membrane of CT = 2.5, μ = 1 that encounters a sinusoidal gust of reduced frequency k: (a) Argand
diagram; (b) modulus and phase. Static solutions are denoted by pentagram markers and recovered by the
unsteady results as k → 0. First inflection point is marked with black circles and identified by the first local
minimum of |F̂1|. Second inflection point is denoted by black crosses, identified by an intersection between
|F̂1| and |F̂2|.

static solution, marked by pentagrams in figure 13(a). As the reduced frequency increases,
the changes in both Fourier coefficients resemble the behaviours of the normalised
coefficients in the heaving membrane case (cf. figure 5), while the amplification at the
resonance frequency is less pronounced for the sinusoidal gust response. The first and
second inflection points in the equivalent Sears function are identified here, similarly
to the heaving membrane case, by locating the first local minimum in |F̂1|, and the
crossing between |F̂1| and |F̂2| as the dominance transfers from the first membrane mode
to the second mode around kinv2 . Namely, the circles in the complex plane plot of the
equivalent Sears function are due to the membrane dynamic response, just like in the
equivalent Theodorsen function, where each circle corresponds to a different dominant
mode in the membrane oscillations. However, both the location of these circles in the
frequency domain and the magnitude of the lift amplification differ significantly from the
heaving membrane case, as the gust encounter introduces different flow mechanisms due
to shedding of the unsteady flow conditions along the aerofoil.
Figure 14(a) presents the membrane amplitude profiles computed during steady-state

oscillations of a nominal membrane that encounters sinusoidal gusts of various reduced
frequencies. For k → 0 a convex amplitude profile is obtained, in accordance with the
static membrane solution. Then, as the reduced frequency is increased, the membrane
amplitude profile is flattened until k approaches the first resonance frequency, for which a
large maximum amplitude is obtained. Figure 14(b) illustrates the membrane amplitude
profiles computed for sinusoidal gusts at reduced frequencies near the first inflection
point frequency, kinv1 . For reduced frequencies smaller than kinv1 a convex shape with
a maximum camber point at the fore part of the aerofoil is obtained. As the reduced
frequency increases to kinv1 the maximum amplitude of the membrane decreases, and
the maximum camber point slowly approaches the mid-chord location. A further increase
in the reduced frequency beyond kinv1 yields a sudden shift of the maximum camber
point downstream, as the membrane profile bears a close resemblance to the first unstable
eigenshape of the membrane in cases of divergence instability, as reported by Sygulski
(2007) and Tiomkin & Raveh (2017). This shift in the membrane amplitude profile
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Figure 14. Membrane dynamic response to an encounter with a sinusoidal gust, obtained for a nominal
membrane of CT = 2.5, μ = 1. (a) Amplitude profile computed for varying values of reduced frequency.
Resonance frequencies, ωr, are denoted with dashed black lines and frequencies of inflection points, kinv , are
denoted by dotted black lines. Membrane amplitude profiles near the (b) first and (c) second inflection points.

signals the excitation of the membrane structural modes as the first fluid-loaded resonance
frequency is approached. As we further increase the reduced frequency to the vicinity of
the second inflection point frequency, kinv2 , in figure 14(c) we see a clear change in the
membrane amplitude profile from a shape that is dominated by the first structural mode
to a shape in which the second structural mode is most dominant, as supported by the
Fourier coefficients in figure 13. Thus, any inflection point in the complex plane plot of
the equivalent Sears function is related to a shift in dominance between two consecutive
membrane mode shapes. As the gust frequency is increased, higher membrane modes
become dominant. We further note that for the frequency regime in which membrane
oscillations amplify the lift response (around k = ωr1), large amplitude deformations are
obtained with a convex amplitude profile. For higher reduced frequencies, the membrane
amplitude profile is no longer convex due to the appearance of additional nodal points
along the profile, and smaller maximum camber is obtained. Membrane oscillations with
these amplitude profiles attenuate the aerofoil’s lift response, presenting a reduced lift
amplitude relative to the rigid plate lift (figure 12b).
Figure 15 illustrates the effect of the tension coefficient on the equivalent Sears function,

which is presented as a curve in the complex plane and in terms of its squared amplitude
and phase, as compared with the classical modified Sears function. These results are
obtained using the frequency-domain solution, which are verified by comparison with
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Figure 15. Effect of tension coefficient on the membrane equivalent Sears function, for μ = 1: (a) Argand
diagram; (b) squared amplitude and phase, as compared with the rigid-plate modified Sears function (black
line). An additional solution for a very large tension coefficient of CT = 50 is presented with a magenta dashed
line in (b), to validate the unsteady solution by convergence to the rigid plate solution. All results are obtained
with the frequency-domain solution, presented for frequencies up to k = k2 for clarity. Direct comparison with
the Laplace-domain solution is made for CT = 2 (red dashed line in (a)), where the strong agreement indicates
the equivalence of the methods.

results of the Laplace domain solution (see dashed red line in figure 15a). The equivalent
Sears function approaches the classical rigid aerofoil function uniformly at low reduced
frequencies as the tension coefficient, CT , increases. An extreme case of CT = 50, in
which the membrane is practically rigid, is presented in figure 15(b) to confirm the
approach of the analytical solution to that of the rigid aerofoil at large CT . The equivalent
Sears function of this extreme case follows closely the rigid-plate modified Sears function
for a wide range of reduced frequencies up to about k = 2 and validates our solution
for large tension coefficients. As the tension coefficient is increased from two to four
in figure 15, the first inflection point is delayed to a higher reduced frequency while
also producing a larger unsteady lift amplification near the first resonance frequency.
The beneficial region, where significant gust mitigation is obtained, is also shifted to
higher values of k with an increase in the tension coefficient. This unique characteristic
of the membrane wing presents a special opportunity to calibrate the pre-tension on the
membrane to successfully alleviate gusts of specific frequency regime, which is known to
be one of the crucial challenges in SUAV design (Mohamed et al. 2014).
Looking into the effect of the mass ratio on the membrane lift response to a sinusoidal

gust, figure 16 presents the equivalent Sears functions which are computed for varying
values of the mass ratio, μ, and are compared with the classical modified Sears function.
For very low frequencies, up to the point of inflection kinv1 (whose value decreases with
increase in μ), the lift response is practically unaffected by changes in the mass ratio,
as predicted by the asymptotic analysis (2.55). Thus, the response can be considered
quasi-steady for this frequency regime. As the gust frequency is increased beyond the
inflection point, a circular path appears at the complex plane plot with a radius (and
amplitude) that slightly increases withμ. The membrane oscillates with the gust frequency
so that an increase in μ leads to increase in the membrane inertia, which is proportional to
μk2, resulting with a larger amplitude of oscillation for a given gust frequency. However,
as the system’s resonance frequencies decrease with increase in μ (cf. figure 2), the lift
amplification at the first resonance frequency increased only slightly with an increase
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in μ. We note that the in vacuo natural frequencies of the membrane are proportional
to μ− 1

2 , indicating that for these frequencies the mass ratio has no effect on the membrane
amplitude. Thus, the small effect of the mass ratio on the lift amplitude, illustrated in
figure 15, is attributed to the added mass of the fluid-loaded membrane. For frequencies
beyond the first resonance frequency, the gust mitigation region is controlled by the
membrane mass ratio in a manner that is similar to the effect of the tension coefficient
(cf. figure 15b), where a decrease in μ delays the region to higher values of k. However,
in contrast to the tension coefficient, this variable is typically fixed in membrane wing
applications, and thus is expected to be less useful for aerodynamic design purposes.

3.2.2. Sharp-edged gust
The dynamic response of a nominal membrane wing to a sharp-edged gust is presented in
figure 17 in terms of its deformation in time and its lift response. Here we choose to present
the actual lift response first (instead of the normalised response represented by the Küssner
function) to obtain quantitative conclusions on the difference in the lift produced by a
flexible membrane wing (blue line) and a rigid flat plate (black line) during sharp-edged
gust encounter. While the transient response up to t ∼= 30 introduces oscillations in the
membrane deformation, resulting in oscillations in the lift response, at a later time a fully
convex shape is obtained converging to the appropriate static solution (Nielsen 1963). The
lift response in figure 17(b) shows that, as expected, the membrane achieves a much higher
lift coefficient than a rigid flat plate, converging to more than double the lift coefficient of
the flat plate, as in the case of a step change in angle of attack (cf. figure 10). However,
zooming in onto the transient lift response during gust penetration reveals that at initial
stage, for t < 1.7, the membrane presents a lower lift coefficient than the rigid plate. The
inset in figure 17(b) shows that the transient membrane deformation leads to a negative
contribution to the lift coefficient for t < 1.7, which results in a reduced lift coefficient
compared with the rigid plate indicial lift. As the gust front approaches the trailing edge,
the circulatory lift due to membrane deformation, CC

ld , increases first until it overcomes
the non-circulatory lift, CNC

ld , for t = 1.7. We observe that this time is longer than the time
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Figure 17. Membrane (a) dynamic response and (b) lift response to a sharp-edged gust, obtained for a nominal
membrane of CT = 2.5 and μ = 1. Black line in (a) and dashed black line in (b) denote the static solution
(Nielsen 1963). The membrane unsteady lift coefficient, Clm , is computed by superposition between the rigid
plate indicial lift, Clg , and the lift due to membrane deformation, Cld , which is composed of the circulatory and
non-circulatory terms, CC

ld and CNC
ld , respectively. For t < 1.7 the membrane deformation yields negative lift

that reduces the total membrane lift compared with the rigid plate indicial lift. After time t = 1.7 the membrane
lift surpasses the rigid plate lift due to induced membrane camber and converges to the static solution.
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Figure 18. Membrane deformation in response to an encounter with a sharp-edged gust, obtained during
gust penetration (when the gust front travels along the chord during 0 ≤ t ≤ 2) for a nominal membrane of
CT = 2.5, μ = 1. Red points denote maximum camber point at each time step, and a dashed magenta line is
used to identify the membrane profile at time t = 1.7 (also denoted in figure 17b for the lift response).

required to compensate for the initial lift deficit in the membrane response to a step change
in angle of attack (cf. figure 10b). From this moment on, the membrane lift coefficient
surpasses the rigid-plate lift and slowly converges to the static solution.
Figure 18 presents the membrane profiles as obtained for t ≤ 2, during gust penetration

when the gust front travels along the chord. The membrane encounters the gust at the
leading edge at time t = 0, in a taut initial position. As the gust front moves downstream,
a small hump appears in the membrane profile near the leading edge, which increases
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Figure 19. Effect of (a) tension coefficient and (b) mass ratio on the membrane equivalent Küssner function,
obtained for μ = 1 and CT = 2.5, respectively, and compared with the standard Küssner function for a rigid
aerofoil (black line). Results are obtained via Laplace domain solution and are validated against the frequency
domain solution (red dashed line).

in size and moves downstream with the advancement of the gust. At time t = 1.7, for
which the membrane lift surpasses the rigid plate lift, the gust front has not yet reached
the trailing edge, but a fully convex shape has developed with a maximum camber
point at the aft part of the aerofoil. Note that the membrane profile obtains a positive
camber during gust penetration, which would result with increased static lift compared
to a rigid flat plate. However, the unsteady response of the membrane, and in particular
its acceleration, produces a negative non-circulatory lift at the initial response of the
membrane (figure 17b), highlighting the importance of a full unsteady aerodynamic model
for predicting the unsteady lift response of the membrane.
The membrane equivalent Küssner function is presented in figure 19 to study separately

the effect of the tension coefficient and mass ratio. These plots were computed using the
Laplace-domain solution (2.57) and were verified by comparison to the frequency-domain
solution (2.56). In general, the membrane response to a sharp-edged gust is slower than the
rigid plate response, similarly to the Wagner function case. As the tension coefficient is
reduced, a slower response is obtained since a larger camber profile is achieved at steady
state, which takes a longer time to attain. Contrarily, the membrane mass ratio appears
to affect only the initial oscillatory stage, while the rest of the response is practically
independent of the mass ratio, as expected.

4. Concluding remarks

Unsteady aerodynamic theory is extended to include aeroelastic coupling for predicting the
lift response of flexible membrane wings to small-amplitude chord motions or transverse
gusts. The pressure loads and membrane deformations due to dynamic fluid–membrane
coupling are determined in the Laplace domain for cases of a step change in angle of attack
or gust profile, and in the frequency domain for harmonic heave motions and sinusoidal
transverse gusts. In addition, the numerical inversion scheme of Valsa & Branc̆ik (1998)
is used to evaluate the indicial lift responses in the time domain. Lift responses computed
for the canonical unsteady aerodynamic scenarios of harmonic aerofoil motions or gusts,
as well as of a step change in the angle of attack or gust profile, constitute aeroelastic
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extensions to the classical Theodorsen, Sears, Wagner and Küssner functions, respectively,
for a membrane aerofoil.
In the harmonic scenarios, the membrane-equivalent Theodorsen and Sears functions

follow the parametric trends of their classical, rigid aerofoil counterparts at low reduced
frequency, k, albeit with a reduced unsteady lift amplitude and an increased phase lag.
As the reduced frequency increases and approaches the first resonance of the fluid-loaded
membrane, the membrane-equivalent Theodorsen and Sears functions introduce distinct
circular paths in the complex plane, which initiate at different values of k for each
function. Closed-form expressions for both functions reveal that these circular paths
are related to the membrane dynamic response during oscillations, where each circle
corresponds to a different dominant mode, and the inflection points that connect the
circles represent the shift in dominance between two consecutive membrane modes. The
membrane deformation shape differs for each of the unsteady scenarios, which is also
reflected in the unsteady lift functions. For example, in the heaving membrane case, the
unsteady lift lags the aerofoil motion for the considered membrane parameters, whereas the
unsteady lift leads the sinusoidal gust for reduced frequencies near the second fluid-loaded
resonance, albeit with a significantly smaller lift amplitude.
The model results for harmonic aerofoil motions or incoming flow disturbances

suggest parametric regions where the aeroelastic response of the membrane could
enable performance improvements for flapping flight or gust resilience. The unsteady lift
amplitude of the membrane in each of these scenarios is higher than that of the rigid flat
plate for a range of reduced frequencies in the neighbourhood of the first fluid-loaded
membrane resonance. Thus, in this frequency range the standard Theodorsen and Sears
functions underestimate the load on the aerofoil. This parametric region is controlled by
the tension coefficient, whereby the aerodynamic load on the aerofoil may be enhanced (or
reduced) through either passive or modest active control of the membrane pretension. For
reduced frequencies in a finite range above the first resonance frequency, the present model
predicts that membrane oscillations attenuate the unsteady lift response to sinusoidal gusts
or harmonic heave motions. In addition, by increasing the membrane pretension, this
beneficial region shifts to higher reduced frequencies, which could be exploited as a gust
mitigation strategy in practice.
Closed-form expressions derived in the Laplace domain for the membrane-equivalent

Wagner and Küssner functions reveal the direct dependence of these functions on the
original rigid-plate functions and on the Fourier coefficients that describe the membrane
profile. Each indicial lift response of the membrane aerofoil is slower relative to the
rigid plate response but results in a significantly higher lift in the steady state due to
aeroelastic membrane deformation. The membrane initial response in short times to an
abrupt change in angle of attack or to an encounter with a sharp-edged gust produces a
negative non-circulatory lift due to the acceleration of the membrane profile from a still
and taut position. Therefore, the overall initial lift response of the membrane is smaller
than the rigid plate response due to the gradual elastic reaction of the membrane to
the changes in the fluid flow. However, at later times the non-circulatory lift due to the
abrupt change in the flow field weakens and the circulatory lift increases, such that the
membrane lift quickly overtakes the rigid plate lift response and converges to the static
solution. While the membrane Küssner function always begins from a zero value at the
initial time when the gust front meets the membrane leading edge, the initial value of the
membrane Wagner function varies with the membrane tension coefficient, as it depends
on the membrane static lift slope. As the tension coefficient is increased, the initial value
of the membrane-equivalent Wagner function also increases and approaches the classical
rigid-aerofoil value of 1/2.
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Results from the present theoretical effort invite computational and experimental
companion efforts to elucidate the practical range of validity of the model, including the
influence of nonlinear flow effects that occur at large gust ratios (e.g. Andreu-Angulo et al.
2020; Jones 2020), which are expected to inform future improvements to the predictive
aeroelastic framework.
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Appendix A. Mathematical identities

The following identities are used in the mathematical derivations of § 2:

1 = 2
π

∞∑
n=1

1 − (−1)n

n
sin nθ, 0 < θ < π, (A1)

cos θ = 8
π

∞∑
m=1

m
4 m2 − 1

sin 2mθ, 0 < θ < π, (A2)

Λ1(x, ξ) = ln
∣∣∣∣√(1 − x)(1 + ξ) + √

(1 + x)(1 − ξ)√
(1 − x)(1 + ξ) − √

(1 + x)(1 − ξ)

∣∣∣∣ . (A3)

Appendix B. Asymptotic analysis of the lift due to membrane deformation for
low-frequency regime

This appendix presents an analysis of the lift due to membrane deformation in the
asymptotic regime of low reduced frequencies. The analysis begins with an identification
of the leading terms in k for the standard Theodorsen function, C(k), and the two auxiliary
functions, f̂ (k) and ĝ(k), as k → 0. These terms are then combined to obtain the leading
terms in the lift coefficient, Ĉld , for low reduced frequency. A series expansion is applied
to the standard Theodorsen function, C(k), leading to

C(k) ∼= 1 + k
[
i ln

k
2

+ iγe − π

2

]
+ O(k2 ln k), (B1)

where γe is the Euler constant. For the auxiliary functions, f̂ (k) and ĝ(k), we derive the
leading terms up to O(kF̂3, kF̂4) and O(k2), respectively,

f̂ (k) = 1
2 F̂1(k) − 1

2 F̂0(k) − 1
4 ikF̂0(k) − 1

4 ikF̂1(k) + 1
4 ikF̂2(k) + O(kF̂3, kF̂4), (B2)

ĝ(k) = 1
4 ikF̂2(k) − 1

4 ikF̂0(k) + O(k2). (B3)

We have used the fact that the magnitude of the Fourier coefficients F̂n(k) is strongly
reduced for n > 2 in the low reduced frequency regime, as seen in figure 20(a), in which
the Fourier coefficients obtained for a nominal membrane that encounters a sinusoidal
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Figure 20. Fourier coefficients obtained for a nominal membrane wing that encounters a sinusoidal gust of low
reduced frequency: (a) modulus, (b) modulus multiplied by the reduced frequency, k, and compared against k2

and k2 ln k denoted with a black dashed and dotted lines, respectively. Static solution is denoted in (a) by
pentagram markers and is recovered by the unsteady solution for k → 0. Only seven of the 24 coefficients are
presented for the sake of clarity, as the magnitude of higher mode coefficients is negligible for low reduced
frequencies.

gust of low reduced frequency are presented. For k → 0 the first Fourier coefficient is an
order of magnitude larger than the second Fourier coefficient, which is at least one order
of magnitude larger than the rest of the coefficients. Figure 20(b) illustrates the behaviour
of the product k|F̂n| for the first seven Fourier coefficients in the low reduced frequency
regime, and compares it with k2 and k2 ln k. As k → 0, k|F̂3| and k|F̂4| are comparable
and are an order of magnitude larger than k2 ln k. However, as k increases this difference
diminishes and at k ∼= 0.005 the three functions are comparable.
Further simplification of the above expansion is obtained by recalling that

1
2
F̂1(k) − 1

2
F̂0(k) ∼ 1

2
Fs1 − 1

2
Fs0 = Clsα

2π
− 1 as k → 0, (B4)

and
ikF̂0(k) = ik 23 F̂2(k) + O(kF̂4), (B5)

which when substituted into (B2) and (B3), respectively, produces

f (k) ∼=
(
Clsα

2π
− 1

) [
1 − 1

2
ik

]
− ik

12
F̂2(k) + O(kF̂3), (B6)

g(k) ∼= ik
12

F̂2(k) + O(kF̂4, k2). (B7)

Substitution of (B1), (B6) and (B7) into (2.44) yields

Ĉld(k) = α0(Clsα − 2π)

{
1 + k

[
i ln

k
2

− π

2

]}
+ O(kF̂3, kF̂4, k2 ln k, k2), (B8)

which represents the behaviour of the lift due to membrane deformation in response to
a low-frequency flapping motion or gust encounter. We note that the lift amplitude is
controlled by the difference between the static membrane lift slope and the rigid plate
lift slope, Clsα − 2π, as this term describes the static lift due to membrane camber, which
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is recovered by applying k = 0 to the unsteady problem. The tension coefficient on the
membrane controls the static membrane lift-slope and as the tension increases the lift
slope decreases due to decreased camber (increased stiffness) and approaches 2π. In the
rigid-membrane limit ofCT → ∞, the lift due to membrane deformation converges to zero
as the reduced frequency approaches zero, as expected. In addition, it is obvious that the
membrane inertia has no notable role in the low-frequency lift response of the membrane.
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