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Abstract. In this paper we study paramertized motion planning algo-
rithms which provide universal and flexible solutions to diverse motion
planning problems. Such algorithms are intended to function under a
variety of external conditions which are viewed as parameters and serve
as part of the input of the algorithm. Continuing the recent paper [2],
we study further the concept of parametrized topological complexity. We
analyse in full detail the problem of controlling a swarm of robots in the
presence of multiple obstacles in Euclidean space which served for us a
natural motivating example. We present an explicit parametrized motion
planning algorithm solving the motion planning problem for any number
of robots and obstacles in R%. This algorithm is optimal, it has minimal
possible topological complexity for any d > 3 odd. Besides, we describe
a modification of this algorithm which is optimal for d > 2 even. We also
analyse the parametrized topological complexity of sphere bundles using
the Stiefel - Whitney characteristic classes.

Keywords: Motion planning algorithm - Topological complexity -
Parametrized topological complexity - Collision free motion of swarms
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1 Introduction

Algorithmic motion planning in robotics is a well established discipline. Typi-
cally, one is given a moving system S with k degrees of freedom and a two or
three-dimensional workspace V. The geometries of S and of V' are known in
advance, they determine the configuration space of the system, X. The latter is
a subset of R¥, parametrizing all placements (or configurations) of S.

To create an autonomously functioning system one designs a motion planning
algorithm. Such an algorithm takes as input the initial and the final states of
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the system and produces a motion of the system from the initial to final state
as output, see monographs [16,17].

A topological approach to the robot motion planning problem was suggested
in [7,9,10]; it was reported at WAFR in 2004, see [8], and developed further
in mathematical literature. This approach will be briefly reviewed later in this
paper. The topological techniques gives a measure of complexity of the motion
planning algorithms and explains relationships between instabilities occurring in
robot motion planning algorithms and topological features of robots’ configura-
tion spaces.

Present work extends the approach initiated in [7]. We study motion plan-
ning algorithms of a new type, we call them “parametrized motion planning
algorithms”. We employ tools of algebraic topology to measure complexity of
these algorithms. We also describe specific examples important for applications
in robotics as well as examples interesting mathematically.

The motivation for this work lies in the desire for our algorithms to be uni-
versal or flexible in the sense that they should be able to function in a variety
of situations, involving variable external conditions. Consequently, we view the
external conditions as parameters and consider them as part of the input of the
algorithm. A typical situation of this kind arises when we are dealing with col-
lision free motion of many objects (robots) moving in 3-space avoiding a set of
obstacles, and the positions of the obstacles are a priori unknown. In this case
the positions of the obstacles can be viewed as “the external conditions”. This
specific motion planning problem serves as the main motivation for us in this
work and we shall analyse it in full detail below.

To illustrate our approach consider the following practical situation. A naval
commander controls a fleet of submarines in waters with mines, which are mov-
able and are relocated every 24 h due to ocean currents and adversary actions.
Each morning the commander assigns a task for every submarine to move from
the current to the desired positions such that no collisions between the sub-
marines or between the submarines and the mines occur. A parametrised motion
planning algorithm, as we discuss in this paper, will take as input the positions of
the mines and the current and desired positions of the submarines and will pro-
duce as output a collision-free motion of the fleet. In this example the positions
of the mines represent the external conditions of the system.

In a recent publication [2] we presented mathematical theory of parametrized
motion planning algorithms and parametrized topological complexity. In this
paper, intended for the engineering community, we give a brief exposition of the
main ideas and techniques adding motivating examples. Besides, we present a
number of new results: (a) an explicit parametrized motion planning algorithm
for controlling n > 1 robots in the presence of m > 1 obstacles in the Euclidean
space R? which is optimal for d odd (for example, for d = 3); and (b) we use
the technique of characteristic classes of vector bundles to describe parametrized
topological complexity of sphere bundles (“parametrised families of spheres”).
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2 Parametrized Motion Planning Algorithms

A motion planning algorithm takes as input pairs of admissible states of the
system and generates a continuous motion of the system connecting these two
states as output. Let X be the configuration space of the system. Given a pair
of states (zg,z1) € X x X, a motion planning algorithm produces a continuous
path v : I — X with v(0) = x¢ and (1) = 1, where I = [0,1] is the unit
interval.

Let X7 denote the space of all continuous paths in X (with the compact-open
topology). The map 7 : X! — X x X, where 7(vy) = (7(0),7(1)), is a fibration,
with fiber 2X, the based loop space of X. A solution of the motion planning
problem, a motion planning algorithm, is then a section of this fibration, i.e., a
map s: X x X — X! satisfying 7o s =idxxx.

The section s cannot be continuous as a function of the input unless the
space X is contractible; see [7].

For a path-connected topological space X, the topological complexity TC(X)
is defined to be the sectional category, or Svarc genus, of the fibration =, i.e.
TC(X) = secat(m). That is, TC(X) is the smallest integer k > 0 for which there
is an open cover X x X = UgUU; U---UUy, and the map n admits a continuous
section s; : U; — X! satisfying mos; = idy, for each j. We refer to the survey [9],
the monograph [10] and the volume [14] for detailed exposition of the invariant
TC(X).

Recent important results on TC(X) were obtained in [15]. We mention also
the result of J. Gacia-Calcines [13] which states that if X is a metrisable separable
ANR then in the definition of the topological complexity TC(X) instead of open
covers one may use arbitrary covers, or equivalently, arbitrary partitions X x
X =UyUUy U--- U U, admitting continuous sections s; : U; — X7 for i =
0,1,...,k. Here ANR stands for Absolute Neighbourhood Retract, see [1,4].
The assumption that the configuration space X is a metrisable separable ANR
is typically satisfied in all robotics applications.

Any locally compact and locally contractible subset of R™ is an ANR. We
refer to [1] for further information.

Next we describe a generalisation of the concept of topological complexity,
where the motion of the system is constrained by external conditions, paramet-
rized by points of another topological space, B. For any point b € B the system
has configuration space X}, and we consider the spaces X, and X, for by # by
being disjoint. The disjoint union

E = UpepXy (1)

has natural topology in which the “fibers” X, are closed subspaces and the
projection p : E — B, where p(X;) = {b}, is a continuous map.

One possibility is that the space E is the Cartesian product £ = X x B
which means that the spaces of configurations living under all possible external
conditions can be naturally identified. This assumption is however very strong,
it is not satisfied in many important examples, including the situations which
will be considered later in this paper.
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A reasonable weaker assumption is that the projection p : E — B is a locally
trivial bundle. This means that the space of external conditions B admits an
open cover {U;};c; with the property that each preimage p~!(U;) = Uper, Xp is
homeomorphic to the product X x U;; more precisely, this means that there is
a continuous map F; : p~1(U;) — X such that the map

p_l(Ui) — X xU;, e~ (Fi(e),p(e)), where ece€ p_l(Ui), i€ J,

is a homeomorphism. In other words, the spaces of configurations X3, , Xp, living
under close enough external conditions b; ~ by can be naturally identified.

A motion planning algorithm must take as input pairs of configurations (e, e’)
living under the same external conditions (i.e. p(e) = p(e’) € B) and produce
as output a continuous motion of the system + : [0,1] — E with the properties
~v(0) = e, v(1) = ¢’ and, moreover, p(y(t)) = p(e) = p(e’) € B for any ¢ € [0,1];
the latter property means that the motion of the system is performed under the
constant external conditions.

Given a locally trivial bundle p : E — B with fibre X, we denote by ExgE C
E x E the subspace consisting of all pairs (e,e’) € E x E with p(e) = p(¢’) € B.
Besides, we denote by EL C E' the subspace of the path-space consisting of all
continuous paths v : I — FE such that the path po~ : I — B is constant; here
I = [0,1] denotes the unit interval. The evaluation map

II:EL - ExgFE, where II(y)= (7(0),7(1)), (2)

is also a locally trivial fibration. Its fibre over a pair (e, e’) € E x g F is the space
of all paths in the fibre starting at e and ending at ¢’; this space is homotopy
equivalent to £2X, the space of based loops in X.

Definition 1. A parametrized motion planning algorithm is a section
s: Exp E— EL of (2).

Corollary 1 below explains why typically parametrized motion planning algo-
rithms have discontinuities. The following definition gives a natural measure of
complexity of parametrized motion planning algorithms.

Definition 2. Let p : E — B be a locally trivial bundle with the base B and
the fibre X being metrizable separable ANR’s. The parametrized topological com-
plexity TC[p : E — B] is the smallest integer k > 0 such that there exists a
partition
ExgpE=FyUFU---UFy

with the property that over each set F; there exists a continuous section s; : F; —
EL of the fibration (2), where i = 0,1,...,k. The sections sq, ...,sy determine
a globally defined section s : Exp E — EL (i.e. a parametrized motion planning
algorithm) by the rule s|p, = s;.

We refer to [2], Proposition 4.7, which states that the above definition is
equivalent to the one with open sets instead of arbitrary partitions. Note the
following obvious inequality

TC[p: E — B] > TC(X), (3)
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where X is the fibre of p: E — B.

Corollary 1. If there is a continuous motion planning algorithm s : Exg E —
EL then the fibre X of p: E — B is contractible.

Proof. By (3), the vanishing of TC[p : F — B] implies the vanishing of TC(X).
Theorem 1 from [7] states that TC(X) = 0 is equivalent to contractibility of X.
Note that in [7] we used a non-reduced version of topological complexity which
is greater by 1 than the reduced version.

The inverse of Corollary 1 is also true:

Lemma 1. If the the fibre X of a locally trivial fibration p : E — B is con-
tractible and the base B is paracompact then there exists a globally defined con-
tinuous parametrized motion planning algorithm s : E xp E — EL.

See Lemma 6 in [12] for the proof.

Lemma 2. Ifp: E — B is a trivial bundle then TC[p: E — B] = TC(X), i.e.
in this case (3) is an equality.

Proof. If E= X x Bthen ExgE = X x X x Band E5 = X! x B. For a subset
U C X x X admiting a continuous section s : U — X! of the paths fibration
X' — X x X one may define a continuous section

sxid:UxB— X! xB=F}

of (2) over U x B. Thus, any partition X x X = UplU;U. .. Uy as in the Definition
of TC(X) given above yields a partition of E xp E of the same cardinality
satisfying Definition 2. O

The proof of Lemma 2 shows that in the case when p : F — B is a trivial
fibration one may construct a motion planning algorithm by viewing the external
conditions as being “stationary’. We shall see below that it is not the case when
the fibration p : F — B is locally trivial but not globally trivial. Moreover, the
examples described below show that due to global topological properties of the
fibration p : E — B, the difference TC[p: E — B] — TC(X) can be arbitrarily
large.

3 Multiple Robots and Obstacles in Euclidean Space

Consider n robots and m obstacles moving in the Euclidean space R?. The key
rule states that the robots must not collide with the other robots and with the
obstacles. A typical motion planning problem arises when there are given initial
and desired positions of the robots as well as the positions of the obstacles and
the algorithm generates a motion of each robot from the initial to the desired
positions avoiding the obstacles and with no collisions between the robots. It is
required for the algorithm to be universal in the sense that it must be capable
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of working for any configuration of the obstacles and for any pair of admissible
configurations (the initial and the desired) of the robots. This problem was an
important motivation for us in developing the approach of parametrized motion
planning. Once the positions of the obstacles are given, the configuration space
of the swarm of robots is determined as they must move in the complement of
the set of obstacles. Thus, in this example we have a family of configuration
spaces, parametrized by the configurations of the set of obstacles, which can be
viewed as “the external conditions’ for the swarm of robots.

Denote by z1,20,...,2, € R¢ the centres of n robots and by 01,09,...,0m €
R? the centres of m obstacles. The requirement that the robots do not collide
with the obstacles and with the other robots can be expressed geometrically as
|zi — zj| > € (for i # j) and |z; — 0;| > €, where € > 0 is a number depending on
physical sizes of the robots and obstacles. For simplicity in this work we shall
assume that € = 0, i.e. the non-colliding conditions are z; # z; (for ¢ # j) and
z; # 0j. The case € = 0, which we discuss in full detail in this paper, retains
the key topological features of the problem while allowing to avoid additional
mathematical difficulties arising when € > 0.

As is common in topology, we denote by F (Y, n) the configuration space of n
distinct points lying in the topological space Y, i.e. F(Y,n) = {(y1,¥2,--.,Yn) €
Y™ y; # yjfori # j}. Using this notation we may say that an admissible con-
figuration (z1,...,2n,01,...,0m,) of n robots and m obstacles in R? is a point
of the configuration space F(RY,n + m) and the configuration of m obstacles
(01,...,0m) is a point of F(R?,m). The natural projection

p: F(Rd,n +m) — F(Rd,m), (4)

where (z1,...,2n,01,...,0m) > (01,...,0m), is known as the Fadell - Neuwirth
fibration. Theorem 1 of Fadell and Neuwirth [5] states that (4) is indeed a locally
trivial fibration. Given a configuration of obstacles b = (01, ...,0.,) € F(R% m),
the preimage p~!(b) coincides with the configuration space p~1(b) = F(R? —
{01,...,0m},n) = X, and we see that the total space of the Fadell - Neuwirth
fibration is the disjoint union

F(RY n+m) = |_| F(R* = {o1,...,0m},n),
(01,.-,0m )EF(RE,m)

as in (1). Thus we are within the formalism of parametrized motion planning
as described in Sect. 2 with £ = F(R? n+m), B= F(R* m)and p: F — B
being the Fadell - Neuwirth fibration (4).

The space F X E (defined in Sect. 2) in this case can be identified with the
set of all configurations

(215 ey Zny 21y 20,01, .o Om) € (RE)20FM (5)
such that (z1,...,2n,01,...,0,) € F(RY n+m) and (2},...,2,,01,...,0m) €
F(R? n+m). Here (21, ..., 2,) stands for the initial configuration of the robots,

(24,...,2),) is the desired configuration of the robots, and (o01,...,0.,) is the
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configuration of the obstacles; therefore (5) encodes the initial and final config-
urations of all robots as well as the positions of the obstacles. A parametrized
motion planning algorithm takes the configuration (5) as input and produces
a continuous collective motion of the robots (z1(t),...,2,(t)), where t € [0, 1],
such that z;(0) = z;, 2z;(1) = z, for i = 1,2,...,n and for every ¢ € [0,1] the
configuration (z1(t),...,2,(t),01,...,0,) € F(R% n + m) consists of pairwise
distinct points. Note that this motion does not involve obstacles, i.e. it is a path
in the space EL, see Sect. 2.

An explicit parametrized motion planning algorithm for motion of swarms
of robots and obstacles in the Euclidean space R? will be described below in
Sect. 5. This algorithm is optimal (i.e. it has the minimal possible number of
domains of continuity) for any odd d > 3.

Theorem 1 (Theorem 9.1 in [2]). Let d > 3 be odd. The parametrized topo-
logical complezity of the motion of n > 1 non-colliding robots in the pres-
ence of m > 2 non-colliding obstacles is equal to 2n + m — 1. In other
words, the parametrized topological complexity of the Fadell - Neuwirth bundle
p: F(RYn+m)— F(RY m) is

TClp: FRY,n+m) — F(RY m)] =2n+m — 1. (6)

In the case m = 1 (i.e. when there is a unique obstacle) the base F(R?,m)
of the Fadell - Neuwirth bundle is contractible and hence the bundle is trivial.
By Lemma 2, in this case we may equally assume that the obstacle is stationary.
Hence, for m = 1 and odd d > 3 one has

TClp: FRY,n+1) — F(R%1)] = TC(F(R? - {0},n)) = 2n.

For the last equality we refer to Theorem 5.1 from [11] where the case d = 3 we
treated; the arguments of the proof of Theorem 5.1 from [11] extend with minor
modifications to the case d > 5 odd.! Thus we see that formula (6) remains valid
for m =1 as well.

An important Corollary of Theorem 1 is an observation that the parametrized
topological complexity can exceed by arbitrary large amount the usual (i.e. non-
parametrized) topological complexzity of the fibre F(R® — {oy,..., 01, },n), which
equals 2n. This additional complexity can be thought as the extra price for the
flexibility of motion planning.

4 Upper and Lower Bounds for TC[p : E — B]

In this section we state two results which will be used later in this paper.

! Note that in [11] we used a non-reduced notion of topological complexity which is
greater by 1 than the reduced version.
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Proposition 1 (Proposition 7.2 in [2]). Assume that p : E — B is a locally
trivial fibration with r-connected fibre X, where r > 0, and the spaces X, B and
E are CW-complexes. Then

hdim(E xg E) +1 < 2dim X +dim B +1

T :FE— B
Clp — Bl < r+1 - r+1

(7)

Here the symbol hdim(E x g E) denotes the homotopical dimension, i.e. the
minimal dimension of a CW-complex homotopy equivalent to F xp E. As an
example we mention that the homotopical dimension of any contractible space is
0, the space R — {0} has homotopical dimension d—1, etc. Inequality (7) implies
that the parametrized topological complexity is finite if the base B and the fibre
X are finite dimensional. The following result is an important technical tool. We
refer the reader to [19] for the definitions of the terms used in its statement.

Proposition 2 (Proposition 7.3 in [2]). Let p : E — B be a locally trivial
fibration with connected fibre X. Consider the diagonal map A: E — E Xg E,
where A(e) = (e,e). Then TC[p : E — B] is greater than or equal to the cup-
length of the kernelker[A* : H*(ExpFE; R) — H*(E; R)| where R is an arbitrary
ring of coefficients. In other words, if for some cohomology classes u1,...,u, €
H*(E xp E; R) satisfying A*(u;) = 0 the cup-product

Uy — Uy — - —up#0 € H(E xg E; R)

is nonzero, then TC[p: E — B] > k.

5 Algorithm

In this section we present an explicit parametrised motion planning algorithm
in R% (where d > 2) with n robots and m > 2 obstacles having parametrised
topological complexity 2n 4+ m — 1. As follows from Theorem 2, it is optimal for
any odd dimension d > 3; in particular, this algorithm is optimal in the case
d = 3 which is most directly relevant for robotics.

We shall denote E = F(RY, n+m), B= F(R% m) and p: E — B will stand
for the Fadell - Neuwirth fibration (4). The space F x g E will be denoted by C.
In these notations, a motion planning algorithm is a map s : C — Eé such that
IT o s = id¢, where IT appears in (2).

5.1 Subsets A;;

Fix an oriented line L C R%. Tts orientation defines a linear order < on L. We
shall denote by e the unit vector parallel to L and pointing in the direction of the
orientation. We shall also fix a unit vector e® which is perpendicular to e (such
el exists since d > 2). Let q : RY — L denote the affine orthogonal projection

onto L. For any x € R? the vector z — q(z) is perpendicular to e.
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Let

! ! ! d
C = (21, y2ny 21y 120,01,-+-,0m) EC,  2zi,2i,0; ER (8)

y Pn

be a configuration, where the points z; and z; represent the initial and desired
positions of the robots and the points o; represent the obstacles. We assume
that z; # 2j, 2} # z; and 0; # o; for all i # j and, besides, z; # o; # 2; for all
i, j. We shall denote by q(C') the set of projections points

a(C) ={a(zi),a(z)),a(05); i=1,...,n, j =1,...,m}. 9)

Clearly, some projection points may happen to be equal and therefore the car-
dinality of the set q(C) satisfies 1 < |q(C)| < 2n + m.

Denote by Aj;; C C the set of all configurations (8) such that the set
of projections (9) has cardinality j + t and the set of projections of the
obstacles {q(01),...,9(om)} has cardinality ¢. Here j € {0,1,...,2n} and
t € {1,2,...,m}. The sets A;, are pairwise disjoint and C is the union UA,,
wheret=1,...,mand j =0,1,...,2n.

5.2 Aggregation

It is easy to see that the closure of the set A;; is contained in the union

Aj’t C U Aj/’t/. (10)

J'<g, <t

We shall describe below in this section a continuous section s;; defined over each
set A; ;. Setting

We= J 41, ¢=12,....2n+m. (11)

Jjtt=c

we obtain, using (10), that each set A;, with j+¢ = ¢ is open and closed in W,.
Therefore the sections s;; with j +t = ¢ collectively define a continuous section
sc = Usj; on W.. Thus we obtain a parametrized motion planning algorithm
s = Us, with partition C = | J**1™

~—1 W, onto 2n + m subsets, which is optimal
according to Theorem 1.

5.3 The Generic Case

Consider the set Ag,, ; C C where t =1,...,m. The configurations C € A,, ; are
characterised by the property that the projection points q(z;), q(z}), € L are all
pairwise distinct and are distinct from the projections of the obstacles and the
set of projections of the obstacles {q(0;);¢ = 1,...,m} has cardinality ¢.

The space Ay, 1, is open and dense in C; it has many connected components
which we shall now describe.
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Let X, 4, denote the set of linear orderings of n 4+ m symbols
q(z1)s---,9(zn),9(01)s-..,q(0m) € L. The cardinality of the set X, ., equals
(n+m)!. Every configuration C' € Ag, ,,, determines two orderings of n+m sym-
bols: (1), (), (01), - - 4(0m) and (=4, ..., a(,),d(01), -, a(0m) and
these two orderings restrict to the same ordering of the symbols q(01), ..., q(0m)-

We denote by P,, ., the set of all pairs (0,0") € X4 X Xyt which restrict
to the equal orderings of the symbols q(01), ..., q(0m). The following statement
is obvious:

Lemma 3. (a) The connected components of the set Agnm are in one-to one
correspondence with the set Py m. (b) Every connected component of Aap m 15 a
convez subset of an Fuclidean space and hence is contractible.

The cardinality of the set P, ,,, which equals W, grows rapidly: for

n =2 =m it is 288, however for n = 5 and m = 3 (i.e. when one is dealing with 5
robots and 3 obstacles) the space As,, ,, has 270,950,400 connected components.
This fact is a reflection of the real geometric complexity of the problem.

5.4 Sections and Fibrewise Deformations

We shall use fiberwise deformations to describe sections of the fibration IT :
EL — C as we explain below. Suppose that we have constructed a continuous
section s of IT over a subset A C C and another subset A’ C C can be contin-
uously deformed into A in a fibrewise manner. This means that there exists a
continuous deformation h : A’ x I — C such that for every (e,e’) € A’ one has
h((e,€'),0) = (e,e’), h((e,e'),1) € A and, besides, the point p(h((e,e’),t)) € B
does not depend on t € I; here p: C — B denotes the projection. We may write
h((e,e'),t) = (ht((e,e’),t),h?((e,€'),t)) where h"((e,€'),t) € E for r = 1,2;
in particular, h'((e,e’),0) = e and h%((e,e’),0) = ¢’. Then one constructs a
continuous section s’ over A’ as follows:

hi((e,e'),3t), for 0 <t <1/3,
s'(e,e)(t) = < s(h((e,e),1))(3t — 1), for 1/3 <t < 2/3, (12)
h?((e,€'), (3 —3t)), for2/3<t<1.

Note that the fibrewise property of the deformation can equivalently be expressed
by saying that the external conditions (i.e. the obstacles) remain stationary
during the deformation.

5.5 Sets A2n ,t

Similarly to the discussion preceeding Lemma 3, for any 1 < ¢ < m we may
consider generalised orderings of the symbols q(z1),...,q(zn),q(01),.-.,q(0m)
allowing some projections of the obstacles to be equal to each other. If the
number of distinct projections of the obstacles is ¢, we shall denote by P,
the number of pairs of such generalised orderings (¢, ¢’) inducing the identical
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orderings of the projections of the obstacles q(01),...,q(0m). This leads to the
decomposition

A2n,t = I_l AU,U’7 (13)

(U,a’)E'Pfhm

where the symbol A, ,» C Az, C C denotes the set of configurations (8) such
that the ordering of the set q(z1),...,q(zn),q(01),...,q(0m) is ¢ while the set
q(=1),.--,q(z,),q9(01),- - .,q(om) has ordering ¢’. In view of (10), each of the sets
As o is open and closed in Asp, ;.

Consider a component A, , of (13) with o = ¢’. In this case the projection
points q(z1),...,4q(zn),q(01),...,q(0om) and q(21), ..., q(z}),q(01),...,q(on) are
in the same ordering and therefore we may define the following affine
parametrized deformation z;(t) = (1 — ¢)z; + ¢z} for i = 1,...,n and ¢t € I.
For i # j, one has q(2;) < q(z;) if and only if q(2;) < q(z}) and therefore for any

€ [0,1], it holds q(z(t)) < q(z;(t)) implying that z;(t) # z;(t). Similarly one
shows that for any ¢ € I one has z;(t) # o;. Thus, the affine parametrized defor-
mation described above defines a continuous section of II over every component
Ay o of (13) with o = o”.

5.6 Swapping Deformations

Consider now a triple of generalised orderings o, ', 0" of symbols
q(#1),.--,4(zn),9(01), - - ., q(0om) where, as in Sect. 5.5, we allow some projections
of the obstacles q(o0;) to coincide with each other while requiring for the total
number of distinct projections of the obstacles to be t (where 1 < ¢ < m) and for
the total number of distinct projection points to be 2n +t. We shall assume that
o and o’ are obtained from each other either (Case A) by reversing the order
of projections of two adjacent symbols q(z;), q(z;) or (Case B) by reversing the
order of two adjacent symbols q(z;),q(0;). Under these assumptions we shall
describe an explicit parametrized deformation h: Ay o X I — Ay g0r.
Consider first the Case A. Suppose that we have q(z;) < q(z;) and the interval
(q(zi),4q(z;)) C L contains no projections q(zx), q(z},) for k=1,...,n and g(og)

for £=1,...,m. We can define the following parametrized deformation
— 3t)z; + 3tq(z;), <t< )
1-3 3 0 1/3
Zl(t) — q(Zi)"lz‘q(zj) _ ‘Q(Zj)gq(zi)' . w(t)v 1/3 S t S 2/37
(3 —3t)q(z;) + (3t — 2)z;, 2/3<t<1.
and
(1 —3t)z; + 3tq(z;), 0<t<1/3,
zi(t) = q(zzz)-gq(zg') + \q(zg');q(zi)\ p(t), 1/3<t<2/3,

where ¢(t) = [cos((3t — 1)) - e +sin((3t — 1)7) - e*] for t € [1/3,2/3], as well
as zi(t) = zi, for all k # i, j; besides, we set z/.(t) = z/. for all r. The movement
of the point z;(t) consists of 3 parts: first it slides to its projection q(z;), then
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the circular movement takes it to q(z;) and finally reverse affine projection takes
it to z;. The point z;(t) moves in a similar fashion but during the second step
it moves in the opposite circular direction to avoid meeting z;(t). For any ¢t € I
the configuration (z1(t),...,2,(t),2],...,205,01,...,0n) lies in the configuration
space C and we obtain a deformation of the component A, ,~ in C ending at the
component A, 5.

Consider now the Case B, i.e. when the adjacent symbols q(z;) and
q(o;) are swapped in two orderings o,0’. We know that the open interval
between q(z;) and q(o;) contains no projection points while there could be
some other obstacles o with g(or) = q(o;). For simplicity we shall assume
that q(o;) < q(z;); the opposite case follows similarly. We denote by n =
N1y ey Zny Zhs ey 20,01, ..., 0m) > 0 the largest real number with the prop-
erty that the open interval (q(0;), q(0;) —n) contains no projection points q(z¢),
q(z;) and g(o,) and the open ball of radius 7 with centre o, contains no obstacles
oy, satisfying q(ox) = q(o;). Note that 7 is a continuous function on Agy, 4.

Let q; denote the orthogonal projection onto the line L; passing through
o; and parallel to L. We define the following deformation of the configuration

(Z15 oy Zny 215 oo oy 20,01, . . ., O) With only the point z; moving as follows:
zi(t) = § (2—=3t) - q;(z) + (3t — 1) - [q;(05) +1/2], 1/3 <t <2/3,

q;(0;) —n/2- [cos(m(3t — 2)) - e+ sin(m(3t — 2)) -et], 2/3<t< 1

On the first step the point z; moves to its projection q;(z;) onto the line Lj;.
The second movement is along the line L; to the point q;(0;) 4+ /2. The third
movement is the circular motion around the obstacle o; = q;(0;) along the circle
of radius 7/2. The final point of this deformation is z;(1) = q;(0;) — 1/2, i.e.
q(zi(1)) < q(0;); in other words, the inequality q(o0;) < ¢(z;) becomes reversed.

5.7 The Section sg, ¢

In this subsection we shall describe the section sy, + over Ag, ;. We know that
Agp,¢ is the disjoint union (13) and hence the section sg,, ¢ is determined by its
restriction s, o on A, .. We already described the sections on A, . for o = o/,
see Sect. 5.5.

For any pair of orderings o, 0’ we can find a sequence of orderings o1, ..., 0%
such that o1 = o, o = ¢’ and the orderings o; and 0,11 are related either by
swapping the order of a pair of adjacent symbols q(z;) and q(z;) or by swapping
the order of q(z;) and q(o;), see Sect. 5.6.

The deformation of Sect. 5.6 produces a sequence of deformations

AU;U' = AUhUk - AU2;0'k o AUk,Uk'

Applying the concatenation of these deformations to the constructions of Sects.
5.4 and 5.5, we obtain a continuous section s, , over each set A, ,-. Thus we
obtain the section sg,, + = Uss o for any t =1,...,m.
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5.8 Desingularization
Next we describe continuous fiberwise deformations
Fji:Aj X T — Agpiforeveryj=0,1,...,2n—land t =1,...,m. (14)

For a configuration C as in (8), consider all positive real numbers of the form

laz:) —az0)l, la(z) —a(z)l la(z) —ale)l,  la(z) —a(or)]

and let M(C) > 0 denote their minimum. Note that M(C) is a continuous
function of C' € A, ;. In the special case j = 0 and ¢ = 1 (when q(z;) = q(0;) =
q(zp,) for all 4,1, k, i.e. all robots and obstacles have the same projection level)
we set M (C) = 1. We define the deformation (14) by the formulae

(i—1)-t-M(C)
2n

o ()= Bt M(O)

Zi (t) = z;+ i on

e, te]0,1].
Since q(z;(t)) = q(z;) +t- (i — 1)M(C)/2n, it is obvious that the configuration
(z1(t), .., 2n(t), 21(t), ..., 20 (t), 01, ..., 0n) lies in Ay, , for any ¢ > 0.

Applying the construction (12) and the sections sg,, ¢ constructed earlier, we
obtain a continuous section s; ¢ of the fibration II over each set A; ;.

As we mentioned earlier in Sect. 5.2, these sections combine and yield con-
tinuous sections

Se = |_| sjt, ¢c=1,2,....2n+m
jHt=c

over 2n + m subsets W, partitioning C. Hence, we obtain a parametrized motion

planning algorithm s = UiZTm se which is optimal according to Theorem 1.

6 Motion Planning Algorithm in Even Dimensions

In this section we shall briefly describe an explicit parametrized motion planning
algorithm for collision free motion of n robots in the presence of m > 2 obstacles
in the Euclidean space R? where the dimension d > 2 is even. This algorithm
is a minor modification of the algorithm of Sect. 5, but it has 2n + m — 2 local
rules, i.e. one less than the general algorithm of Sect. 5. The main result of [3]
implies that the algorithm we describe below is optimal for d > 2 even.

It is well known that for d even the unit sphere S~ C R¢ admits a con-
tinuous non-vanishing tangent vector field, see [19]. This means that we may
continuously assign to every unit vector e € R? a unit vector e~ € R? which is
perpendicular to e.

Using this remark we modify the constructions of the sets A;; of Sect. 5.1
as follows. Given a configuration (8), consider the unit vector e in the direction
02 — 01 and the line L from the origin parallel to e. Repeating the construction
of Sect. 5.1 we shall obtain the sets A;;, which partition the whole configuration
space, where j € {0,1,...,2n} and t € {2,...,m}: the number ¢ of distinct
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projections of the obstacles onto L is at least 2. Hence the quantity ¢ = j + ¢
(which appears in (11)) takes 2n + m — 2 distinct values 2,3,...,2n + m.

The swapping deformations of Sect. 5.6 use the vector e+ (depending on e)
indicating the direction for a manoeuvre to avoid collisions.

All other constructions and arguments of Sect. 5 remain unchanged.

7 Parametrized Topological Complexity of Sphere
Bundles and the Stiefel—Whitney Characteristic
Classes

The results described in this and the following sections develop further the math-
ematical foundations of the method of parametrized motion planning algorithms
and parametrized topological complexity.

Consider a locally trivial vector bundle £ : E — B of rank ¢ > 2. For b € B
the fiber £71(b) of ¢ are a real vector space of dimension g. Note that we do not
assume that the bundle ¢ is orientable. It is known that every vector bundle over
a paracompact base B admits a Riemannian structure, i.e. a positive definite
scalar product on each fibre. The space of all vectors of length 1 is denoted
E C E and the map f :E— B (defined as the restriction of &) is called the unit
sphere bundle determined by £. Our goal in this and in the following section is
to study the parametrized topological complexity of the sphere bundles. Recall
that in the standard (non-parametrized) setting the topological complexity of
spheres is 1 or 2 depending on the parity of the dimension, see [7], Theorem 8
(note that [7] was operating with the non-reduced version of TC, it is higher by
1 compared with the definitions of this paper).

For simplicity we shall assume below that the base B is a finite CW-complex.
The upper bound (7) gives

dimB+1

TC€:E— Bl <2+
q—1

(15)

for any spherical bundle { : E — B with fibre the sphere of dimension ¢ — 1.

The lower bound of the parametrized topological complexity will use the
Stiefel - Whitney classes. Recall that every rank ¢ vector bundle £ : E — B
determines a sequence of Stiefel - Whitney characteristic classes, (see [18]):
w;(€) € HY(B;Zy) where i =1,2,...,q.

Theorem 2. The parametrized topological complezity of the unit sphere bundle
& E — B satisfies

TC¢: E — B] > h(we_1(8)| we()) +1, (16)

where the symbol h(wqe_1(§)|wq(§)) denotes the relative height of the Stiefel —
Whitney class wq—1(£) € H?1(B; Zs) with respect to w,(€) € H1(B; Zs).
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If wy_1(§) # 0 € H1"Y(B; Zs), the relative height h(wy—1(£)|wy(£)) is defined
as the largest integer k& > 1 such that the k-th power w,_(£)* € H*9=1(B;Zs,)
does not belong to the ideal generated by w(€); the relative height of the trivial
class is defined as the zero.

The proof of Theorem 2 will use the following statement proven in [12] as
Corollary 12.

Theorem 3. Let £ : E — B be a rank g > 2 vector bundle (not necessarily ori-
entable). Let s : B — E be a continuous section of the unit sphere bundle. Then
the cup-length of the kernel of the induced homomorphism ker[s* : H*(E; Zy) —
H*(B;Z>) equals h(wq_1(§)) + 1.

Proof (Proof of Theorem 2). Consider the diagonal map A : E — ExpFE and the
kernel of the induced homomorphism A* : H*(E x g E;Zy) — H*(E;Zs). Note
that A is a section of the unit sphere bundle C : ExgE — E of the vector bundle
¢ : ExpE — F (the projection on the first factor) we may apply Theorem 3. We
obtain that the cup-length of the kernel ker[A* : H*(E x g E; Zy) — H*(E; Zs)]
equals one plus the height of the Stiefel - Whitney class w,_1(¢). We shall show
below that h(wy—1(C)) = h(we—1(§)| wqe(§)). Once this has been established, the
inequality (16) follows from Proposition 2.

Note that w, 1(¢) € HI"Y(E;Zy) and w,_1(€) € HI"Y(B;Zsy), i.c. these
classes lie in different groups. From the Gysin exact sequence with Zs coeffi-
cents we know that the homomorphism &* : H"1(B;Zy) — HY Y(E;Zy) is a
monomorphism. We see that £*(w,_1(£)) = wy_1(¢) which is a consequence
of functoriality of the Stiefel - Whitney classes: since £*(£) = ¢ we see that
Wo_1(0) = Wa1(£%(€)) = €*(wy_1(€)). The Gysin exact sequence [19] implies
that the kernel of the homomorphism &* : H*(B;Zs) — H*(E;Zsy) coincides
with the ideal generated by the class w,(€). Thus we have £*(w,_1(£)F) =
wg—1(¢)* which implies the equality h(w,—1(¢)) = h(wy—1(&)|w,(€)) and com-
pletes the proof.

8 Examples

In this section we shall illustrate Theorem 2 by several examples.

Consider the vector bundle &, over RP" which is the Whitney sum of k copies
of the canonical line bundle 7 and of a trivial line bundle €, i.e. £ = knde. It is a
rank ¢ = k+1 vector bundle and its total Stiefel —Whitney class is (1+a)* where
a € HY(RP";Z,) is the generator. In particular, we see that wx (&) = o and
Wit1(€x) = 0. Using Theorem 2 we obtain TC[§, : E(&) — RP"] > |n/k| + 1.
The upper bound (15) gives TC[¢ : E(&x) — RP"] < 2+ (n 4 1)/k which is
equivalent to TClé : E(&) — RP"] < [(n +1)/k] + 1. We conclude |n/k| +
1 < TCl : E(&,) — RP"] < [(n+ 1)/k] + 1. This example shows that the
parametrized topological complexity of sphere bundles can be arbitrarily large.

Next consider the Grassmann manifold G2(R?*) of 2-dimensional subspaces
in R*, see [18]. It is a 4-dimensional closed smooth manifold. The canonical rank
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2 vector bundle ¢ : E — Go(R?) has Stiefel - Whitney classes w; = wy(€), and
wy = w(€) which are elements of the cohomology ring H*(Go(R*); Zs). It is
known that the cohomology ring H*(Go(R*); Zs) has generators wy, wo, W1, Wa
which satisfy the defining relation (1 4+ wq + wa) - (1 + W1 + Wa) = 1, (see [18],
Sect. 7, Problem 7.B). The relations can be represented as follows:

w1+ w1 =0, wo+wiw1 +Wo =0, wiwg + wowy =0, wawo = 0.

The first two relations can be used to express w; and Wy through the classes wy
and wo, and the last two relations give: wi = 0 and w3 = w?w,. In particular, we
obtain h(wy(€)| wa(£)) = 2. Applying Theorem 2 we get TC[E : E — Go(RY)] >
3. Inequality (15) gives in this case the upper bound TC[¢ : E — G5(R*)] < 6.

Here is a variation of this example: taking the rank 3 vector bundle ¢’ = { @ e
over Go(R?*), we find that wo(¢') = wa and h(wa) = 2 which gives TC[¢ :
E' — Go(R*)] > 3. The inequality (15) gives in this case the upper bound
TC[E : B/ — Go(RY)] < 4.

We refer the reader to [12] for further results on topological complexity of
sphere bundles. In [12] we use cohomology with integer coefficients (rather than
cohomology with coefficients in Z5) and describe several examples with identical
upper and lower bounds.
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