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ABSTRACT 24 

Furans are predominant heterocyclic volatile organic compounds (VOCs) in the atmosphere from 25 

both primary and secondary sources, such as direct emissions from wildfires and atmospheric 26 

oxidation of dienes. Formation of secondary organic aerosols (SOA) from the oxidation of furans 27 

has been reported. Previous research has shown that furan SOA generated from nighttime 28 

oxidation contributes to brown carbon (BrC) formation; however, how nighttime oxidant levels 29 

(represented by nitrate radical (NO3) levels) and pre-existing particles influence the SOA chemical 30 

composition and BrC optical properties is not well constrained. In this study, we conducted 31 

chamber experiments to systematically investigate the role of these two environmental factors in 32 

furan-derived secondary BrC formation during the nighttime. Our results suggest that the bulk 33 

compositions of SOA measured as ion fragment families by an aerosol mass spectrometer (mAMS) 34 

are unaffected by changes in NO3 levels, but can be influenced by the presence of pre-existing 35 

ammonium sulfate particles. Based on the mass absorption coefficient (MAC) profiles of SOA 36 

produced under different experimental conditions, the BrC light absorption was enhanced by 37 

higher NO3 levels and reduced by the presence of pre-existing ammonium sulfate seed particles, 38 

suggesting that NO3-initiated oxidation of furan can promote the formation of light-absorbing 39 

products while pre-existing particles may facilitate the partitioning of non-absorbing organics in 40 

the aerosol phase. Furthermore, molecular-level compositional analysis reveals a similar pattern 41 

of chromophores under various studied environmental conditions, in which highly oxygenated 42 

monomers (e.g., C4H4O6 and C4H3NO7), dimers, and oligomers can all contribute to BrC 43 

chromophores. Taken together, the NO3 levels and pre-existing particles can influence secondary 44 

BrC formation by altering SOA compositions, which is critical for assessing BrC optical properties 45 

in a complex environment. 46 
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INTRODUCTION 52 

Heterocyclic volatile organic compounds (VOCs) are a class of ubiquitous but 53 

understudied precursors of secondary organic aerosols (SOA) that have a substantial impact on air 54 

quality and the solar radiative budget of the Earth. Heterocyclic VOCs emitted from biomass 55 

burning1-3 are expected to become increasingly important due to the combustion of fossil fuels4, 5 56 

and the increased wildfire episodes with global warming.6-8 Because of the heteroatoms, 57 

heterocyclic VOCs with aromatic rings exhibit distinctive reactivity when compared to the 58 

homocyclic compounds (e.g., toluene, naphthalene), and thus their fates in atmospheric oxidation 59 

have gained increasing attention. In particular, furans are common heterocyclic VOCs that are 60 

released when cellulose and hemicellulose are pyrolyzed during biomass burning,9-11 especially 61 

when burning wiregrass,12 and are often observed in field measurements.3, 13, 14 Furans are also 62 

secondary products of atmospheric hydroxyl radical (OH)-initiated oxidation of dienes (e.g., 63 

butadiene and isoprene).15-17 Recent research suggested that furans may contribute to around 20-64 

30% of SOA generated in biomass burning,18, 19 highlighting the crucial role of furans as SOA 65 

precursors. 66 

The gas-phase oxidation pathways of furans are widely studied and have been incorporated 67 

into mechanistic models,20, 21 whereas the aerosol-phase compositions are less well-defined. 68 

Alvarez et al.22  reported that OH-initiated oxidation of furans can produce a large set of 69 

unsaturated 1,4-dicarbonyls in the aerosol phase, while Joo et al.23 suggested that nitrate radical 70 

(NO3)-initiated oxidation of 3-methylfuran can not only generate a variety of carbonyls but also 71 

dimers and oligomers. Strollo and Ziemann24 indicated that oligomerization is the key to SOA 72 

formation during 3-methylfuran daytime oxidation, while Jiang et al.25 highlighted the potentially 73 

important role of multifunctional dihydroxyl organonitrate products in SOA formation in the furan-74 
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NOx-NaCl system. However, our understanding of the chemical composition of reaction products 75 

in furan oxidations is still limited, making it difficult to evaluate the physicochemical properties 76 

of furan SOA. 77 

The optical properties of aerosols, in particular, are critical for influencing atmospheric 78 

radiative balance,26 but the optical properties of furans SOA have not been thoroughly investigated. 79 

Grace et al.27  suggested that furan derivatives in aqueous aerosols could potentially contribute to 80 

the formation of brown carbon (BrC), which is defined as the light-absorbing organic matter in 81 

aerosols. Jiang et al.28  reported that nighttime oxidation of furan can produce secondary BrC. Even 82 

though furans have been shown to be a precursor of SOA and BrC, it is unclear how environmental 83 

conditions regulate furan SOA and BrC formation. Tsigaridis and Kanakidou29 hypothesized that 84 

oxidant levels (i.e., concentration of oxidants) and pre-existing particles are two crucial 85 

environmental factors that will influence the future SOA burden in the atmosphere. Oxidant levels 86 

are anticipated to affect the oxidation products and, consequently, the optical properties of SOA,30 87 

whereas pre-existing particles may alter the amount of SOA constituents by facilitating gas-particle 88 

partitioning and heterocyclic reactions. However, the relationship between these processes and 89 

BrC formation has not been thoroughly investigated. Since furans can contribute to 5-37% of the 90 

emitted VOCs in biomass burning smoke,3, 10 it is essential to constrain the role of oxidant levels 91 

and pre-existing particles in the formation of BrC from the oxidation of furans under various 92 

environmental conditions. 93 

In this study, chamber experiments were carried out to determine the effects of oxidant 94 

levels and the presence of pre-existing particles on the formation of SOA and BrC by the nighttime 95 

oxidation of furan, the representative structural backbone and most abundant component of furans. 96 

The oxidant levels here refer to NO3 concentrations (hereafter denoted as “NO3 levels”), which are 97 
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controlled by the concentration ratios of nitrogen dioxide to ozone ([NO2]/[O3]), whereas the pre-98 

existing particles in this study are ammonium sulfate particles. The compositional variation of 99 

SOA under various environmental conditions was investigated. Light-absorption properties of 100 

SOA and chromophores were characterized to determine the effects of NO3 levels and pre-existing 101 

particles on secondary BrC formation. 102 

 103 

METHODS 104 

Experimental setup. All the experiments were conducted in a 10 m3 Teflon FEP chamber under 105 

dark conditions. Details of the experimental setup and procedures were introduced in our previous 106 

studies.31, 32 In brief, 1500 ppb O3 and 150 ppb or 450 ppb NO2 (i.e., initial [NO2]/[O3] = 0.1 or 107 

0.3, denoted as “low NO3” and “high NO3” experiments hereafter) were first injected into the 108 

chamber to produce NO3 radicals within 1 hour of reaction, followed by the injection of ~200 ppb 109 

furan. The stabilized NO3 radical concentration before furan injection was estimated to be ~8.0 110 

ppb and ~22.0 ppb under the “low NO3” and “high NO3” experiments, respectively.31 For 111 

experiments with pre-existing particles (denoted as “seeded experiments” hereafter), a constant 112 

output atomizer (TSI 3076) with 10 mM ammonium sulfate ((NH4)2SO4, Acros Organics, 99%, 113 

extra pure) solution and a silica-gel diffusion dryer were used to generate ~50 μg m-3 seed particles 114 

(central diameter ~50 nm) in the chamber before furan injection, simulating the background 115 

particles in wildfire plumes.33, 34 All the experiments were performed at room temperature (20-116 

25 °C) and low relative humidity (RH< 20%). It should be noted that when compared to real-world 117 

plumes, the chamber conditions may introduce some artifacts, such as much higher NO3 radical 118 

concentrations than those reported by field measurements in the biomass burning plume,35 119 

negligible NO concentrations that may affect gas-phase organic peroxy radical (RO2) chemistry, 120 
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and wall loss of volatile products from NO3-initiated reactions of furan. These artifacts may 121 

potentially influence the characterization of chemical composition in the experimental results.36 122 

Nevertheless, these controlled chamber conditions are intended to systematically investigate the 123 

role of NO3 levels and pre-existing particles in the formation of furan-derived secondary BrC. 124 

Compositional characterization. A combination of online and offline approaches was employed 125 

to characterize the chemical composition of furan SOA. Real-time bulk composition of aerosol 126 

particles and in situ molecular formula of aerosol constituents were measured online by the mini-127 

Aerosol Mass Spectrometer coupled with a compact time-of-flight mass spectrometer (mAMS, 128 

Aerodyne Research Inc.)37 and the iodide-adduct time-of-flight chemical ion mass spectrometry 129 

coupled with the Filter Inlet for Gases and AEROsols system (FIGAERO-ToF-CIMS, Aerodyne 130 

Research Inc.),38 respectively. Offline techniques, including attenuated total reflectance Fourier-131 

transform infrared spectroscopy (ATR-FTIR, Thermo Nicolet 6700), gas chromatography-electron 132 

ionization mass spectrometry (GC/EI-MS, Agilent Technologies 6890N GC System and 5975 inert 133 

XL Mass Selective Detector), liquid chromatography coupled with a diode array detector, an 134 

electrospray ionization source and a quadruple-time-of-flight mass spectrometer (LC-DAD-ESI-135 

Q-ToFMS, Agilent Technologies 1260 Infinity II and 6545 Q-ToF LC/MS), and an ion mobility 136 

spectrometry time-of-flight mass spectrometer (IMS-TOF, Tofwerk Inc.), were used to further 137 

characterize the functional group information and molecular compositions of SOA samples. 138 

Details of the instrumental setup have been introduced in previous studies.31, 32, 39-41 139 

Optical and particulate size measurements. In situ measurements of particulate absorption 140 

coefficients at 375 nm (βabs,375) were performed by a photoacoustic extinctiometer (PAX, Droplet 141 

Measurement Technology) at 1 Hz,42 while the ultraviolet and visible absorbance (UV-Vis) at 290-142 

700 nm of SOA samples were measured offline by a UV-Vis spectrophotometer (Beckman DU-143 
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640). All SOA samples were extracted with acetonitrile (ACN), a suitable solvent for secondary 144 

BrC analyses given the solubility and stability of chromophores.32 A Scanning Electrical Mobility 145 

Spectrometer (SEMS, Brechtel Manufacturing Inc.) was used to determine the number 146 

concentration and size distribution of SOA from 10 - 800 nm with 140 bins. Online MAC at 375 147 

nm was calculated by Eq. (1), where CSOA is the mass concentration of SOA in the chamber. The 148 

offline MAC profile was calculated by Eq. (2), where A(λ) is the absorbance along with wavelength 149 

(λ), b is the light path (i.e., 1 cm), and Cm is the mass concentration of SOA constituents in the 150 

ACN solution. 151 

𝑀𝐴𝐶𝑜𝑛𝑙𝑖𝑛𝑒(375) =
𝛽𝑎𝑏𝑠,375

𝐶𝑆𝑂𝐴
                                                        (1) 152 

𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆) =  𝑙𝑛10 ×
𝐴(𝜆)

𝑏 × 𝐶𝑚
                                             (2) 153 

Absorption Ångström exponents (AAE) within 290-400 nm and 400-600 nm (AAE290/400 154 

and AAE400/600) representing the wavelength dependence of light absorption in the UV and visible 155 

ranges, respectively, were calculated by the power-law dependence of offline MAC on the 156 

wavelengths (Eq. (3)). 157 

𝐴𝐴𝐸𝜆1/𝜆2
=  

−𝑙𝑛 (
𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆1)

𝑀𝐴𝐶𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝜆2)
)

𝑙𝑛 (
𝜆1

𝜆2
)

                                               (3) 158 

Particulate effective density and organic aerosol fraction of furan SOA under different 159 

environmental conditions are summarized in Table S1 for estimating CSOA and Cm. Details of the 160 

instrumental setup and calculations of parameters were illustrated in our previous studies.31, 32  161 

Computational details of UV-Vis spectra simulations. Time-dependent density functional 162 

theory (TD-DFT) was employed to confirm the light absorptivity of oxidation products with high 163 

double bond equivalence (DBE) identified by FIGAERO-ToF-CIMS. All the computations were 164 
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performed using the Gaussian 16 program (revision C. 01).43 Geometrical optimizations, excitation 165 

wavelengths, and oscillator strengths were computed by the B3LYP functional44, 45 implemented 166 

with the 6-311++G(d,p) basis set,46 which is suggested by previous studies.47, 48 The integral 167 

equation formalism extension of the polarizable continuum model (IEFPCM)49 was used to 168 

simulate the ACN environment. All the theoretical UV-Vis spectra were generated by the 169 

GaussView 6 program. The Cartesian coordinates for all the geometrical structures are summarized 170 

in Table S2. 171 

 172 

RESULTS AND DISCUSSION  173 

The role of NO3-initiated oxidation. In order to investigate secondary BrC formation from furan, 174 

it is essential to determine whether NO3-initiated reactions play a predominant role in furan SOA 175 

formation during the nighttime, given that O3 concentration is significantly higher than NO2 176 

concentration in biomass burning plumes, where O3 and NO3 are likely to compete for furan 177 

oxidation.35, 50, 51 The reaction rate constant of “furan + NO3” (𝑘𝑓𝑢𝑟𝑎𝑛+𝑁𝑂3
) in the gas phase is 6 178 

orders of magnitude greater than that of “furan + O3” (𝑘𝑓𝑢𝑟𝑎𝑛+𝑂3
),52-54 indicating that NO3-initiated 179 

reactions should account for the majority of oxidation products; the dominance of NO3-initiated 180 

oxidation can be further verified by the method described by Draper et al.55 (i.e.,[𝑁𝑂2] [𝑓𝑢𝑟𝑎𝑛]⁄ >181 

𝑘𝑓𝑢𝑟𝑎𝑛+𝑂3
𝑘𝑂3+𝑁𝑂2

⁄  ). Here, iodide-adduct CIMS was used to measure the gas-phase oxidation 182 

products. The O3-only experiments (~1500 ppb O3 as the oxidant) were implemented as a NOx-183 

free benchmark for comparison. Fig. 1 shows the comparison of gas-phase products under low 184 

NO3 and O3-only conditions, where the m/z 200-250 range reveals nearly identical oxidation 185 

products under both conditions, whereas the m/z 250-310 range reveals products that are 186 

completely dissimilar. In the presence of NO2, despite the concentration of NO2 being much lower 187 
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than that of O3, only nitrogen-containing products were detected in the m/z 250-310 range, 188 

indicating that NO3-initiated oxidation significantly altered the reaction pathways. Moreover, as 189 

the NO3 levels increased, the mass spectra of gas-phase products remained relatively unchanged 190 

but the intensity-weighted average values of the oxygen-to-carbon and nitrogen-to-carbon ratios 191 

(i.e., <O/C> and <N/C>) increased (Fig. S2), implying that NO3 levels may have minimal effects 192 

on changing the molecular composition of oxygenated products but lead to a greater amount of 193 

oxidation products.  194 

     195 

 196 
Figure 1. Comparison of gas-phase products from nighttime oxidation of furan between the low-197 

NO3 and O3-only experiments. The green area highlights the compositional difference under the 198 

two environmental conditions. 199 

 200 

Gas-phase products can contribute to SOA formation via new particle formation or gas-201 

particle partitioning on aerosols, where heterogeneous and multiphase chemistry (e.g., reactive 202 

uptake of gaseous oxidants onto aerosols) can promote further reactions and thus generate a wider 203 

array of secondary products. However, since the mechanistic understanding of NO3-initiated 204 
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oxidation of furan is still lacking, process-level insights into SOA formation in this case are very 205 

limited. Berndt et al.56 and Zhang et al.57 reported the formation mechanisms of 3H-furan-2-one 206 

and dicarbonyls (e.g., cis-butenedial) initiated by NO3 addition on the furan ring, whereas Jiang et 207 

al.21 recently proposed a mechanistic scheme of NO3-initiated reactions with furan. Nonetheless, 208 

little understanding of oxidation products has been experimentally supported thus far. In this study, 209 

Fig. 1 may suggest the generation of 2-peroxyl-5-nitrate-furan (C4H5NO6), 5-nitrate-furan-2-one 210 

(C4H3NO5, the highest peak in the upper panel) and formyl nitrate methyl formylate (C3H3NO6) in 211 

the mechanisms proposed by Jiang et al.21 In addition, nitrate-furan (C4H3NO4) was detected here, 212 

which is consistent with our previous findings.28 Furthermore, our data could support field 213 

observations. For example, Palm et al.14 proposed that furan oxidation may contribute to C4H4O4 214 

and C3H4O4 observed in the biomass burning plume, which can be supported by Fig. 1. 215 

While the characterization of gas-phase products reveals the remarkable alteration of 216 

oxidation pathways in the presence of NO2, SEMS measurements highlight the effect of NO3-217 

initiated reactions on SOA formation kinetics. As soon as furan was injected into the chamber 218 

where NO2 and O3 had been reacting for 1 h, SOA was formed immediately (Fig. 2A and 2C). In 219 

the O3-only experiments, no particles were generated within ~30 min after furan injection (Fig. 220 

2E). As seed particles were added, instant generation of SOA occurred after furan injection (Fig. 221 

2B and 2D), whereas no rapid formation of SOA was observed in O3-only, seeded experiments 222 

(Fig. 2F). These results demonstrate the advantage of NO3-initiated reactions in rapidly producing 223 

low volatile products and thus accelerating SOA formation, and consequently, NO3-initiated 224 

oxidation should account for the majority of furan SOA in nighttime biomass burning plumes. 225 
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 226 
Figure 2. Size and number distribution of furan SOA along with the experimental time. 227 

Experimental conditions: (A) [NO2]/[O3] = 0.3, non-seeded, (B) [NO2]/[O3] = 0.3, seeded, (C) 228 

[NO2]/[O3] = 0.1, non-seeded, (D) [NO2]/[O3] = 0.1, seeded, (E) O3-only, non-seeded, (F) O3-only, 229 

seeded. 230 

 231 

SOA constituents under various environmental conditions. Fig. 3 depicts the 232 

characterization of SOA in bulk composition and at the molecular level measured by mAMS and 233 

FIGAERO-ToF-CIMS, respectively. In this study, pie charts were used to visualize the average 234 

relative abundance of CxHy
+, CxHyO

+, CxHyO>1
+, CxHyN

+, and CxHyNO+ fractions during the 235 

experiments. To show the change in relative abundance of fraction signals during the experiments, 236 

the average value of each fraction was calculated at (1) 20-30 minutes and (2) 95-115 minutes after 237 
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the injection of furan. These time intervals were selected to represent the early and late stages of 238 

the experiment, and the corresponding averages are named as “early averages” and “late averages” 239 

(Fig. S1). The comparison of these two timeframes allows differentiation between mechanisms of 240 

particle formation; the “early average” represents the nucleation of atmospheric particles, whereas 241 

the “late average” represents the condensation of oxidation products on already formed SOA. Fig. 242 

S1 reveals that the two mechanisms may result in overall similar chemical compositions, meaning 243 

that the SOA generated from the nucleation in the non-seeded experiments may have on average a 244 

comparable composition to those formed from the condensation process. The condensation process 245 

is expected to be more atmospherically relevant due to the abundance of pre-existing particles in 246 

the biomass burning plume. The relative abundance of investigated fragments (CxHy
+, CxHyO

+, 247 

CxHyO>1
+, CxHyN

+ and CxHyNO+) is roughly consistent among all of the experimental conditions, 248 

where CxHyO
+ and CxHyO>1

+ fragments contribute to ~60-70% and CxHyN
+ plus CxHyNO+ 249 

contribute to ~8-13%, suggesting the dominance of CxHyOz-containing products and a 250 

considerable amount of nitrogen-containing products in furan SOA.  251 

            In addition, the ratio of NO+/NO2
+ in all experiments was higher than what is expected 252 

from inorganic nitrates (1.30-1.42)58, 59 (Table S3), confirming that some of the measured nitrate 253 

by the mAMS was organic in nature. However, the ratio did not show significant changes with 254 

oxidation time, suggesting that the contribution of the organic portion of nitrate to total nitrate did 255 

not change with the extent of oxidation. More importantly, higher NO3 conditions did not result in 256 

significantly higher NO+/NO2
+ ratios for non-seeded experiments, suggesting again that the 257 

fraction of organonitrates/nitro-organic species in total nitrate was independent of the NO3 258 

concentration. In contrast, seeded, high NO3 experiments displayed higher ratios of NO+/NO2
+ 259 

compared to seeded, low NO3 experiments, indicating that higher NO3 levels had resulted in a 260 
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higher fraction of organonitrate/nitro-organics in the aerosols instead of inorganic nitrate. 261 

Regardless of NO3 levels, the presence of seed decreased the contribution of organonitrate/nitro 262 

organics since significantly lower NO+/NO2
+ were observed in seeded experiments compared to 263 

non-seeded ones. 264 

The molecular compositions of SOA constituents shown in Fig. 3 highlight the C4 and C8 265 

products, which represent the monomer and dimer products of furan oxidation. In the non-seeded 266 

experiments, C4H2O4 is the highest peak (Fig. 3A-B), but in the seeded experiments, the intensity 267 

of C4H4O3 is comparable to C4H2O4 (Fig. 3C) or even exceeds C4H2O4 (Fig. 3D). Since C4H4O3 is 268 

also detected in the gas phase (Fig. 1 and Fig. S2), the C4H4O3 found in the aerosol phase should 269 

be attributed to gas-particle partitioning facilitated by pre-existing particles. However, C4H2O4 is 270 

not observed in the gas-phase mass spectra, suggesting that rapid gas-particle partitioning and/or 271 

condensed-phase reactions on aerosols may contribute to this product. Notably, C4H2O5, a more 272 

oxidized formula compared to C4H2O4, is only detected in seeded experiments, implying that pre-273 

existing particles may facilitate the generation of further oxidation products. Incremental addition 274 

of oxygen in other C4 monomer series (i.e., C4H4O3, C4H4O4 and C4H4O5; C4H6O4 and C4H6O5) is 275 

also observed in all the panels of Fig. 3, indicating common pathways of CxHyOz product formation 276 

in furan SOA under all the environmental conditions. In addition, a series of dimers were identified 277 

in furan SOA (Fig. 3). C8H4O3 is most likely phthalic anhydride, which has been confirmed 278 

previously as a chromophore in secondary furan BrC,32 while C8H3NO5 could be its nitro-279 

substituted product. Furthermore, IMS-TOF characterization of SOA constituents show significant 280 

differences in isomer distribution of oxygenated products led by the pre-existing particles while 281 

similar isomer distribution under the “high NO3” and “low NO3” conditions (Fig. S3), revealing 282 

that pre-existing particles can alter the reaction pathways and hence modify SOA constituents. 283 
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 284 

 285 
Figure 3. Molecular compositions of SOA measured by FIGAERO-ToF-CIMS and bulk 286 

compositions of SOA measured as ion fragment families by mAMS under various experimental 287 

conditions. (A) [NO2]/[O3] = 0.1, non-seeded; (B) [NO2]/[O3] = 0.3, non-seeded; (C) [NO2]/[O3] 288 

= 0.1, seeded; (D) [NO2]/[O3] = 0.3, seeded. Pie charts show the relative abundance of the 289 

investigated fragments: CxHy
+, CxHyO

+, CxHyO>1
+, CxHyN

+ and CxHyNO+. 290 

 291 

Fingerprints of functional groups characterized by the ATR-FTIR can also provide further 292 

evidence to reveal the divergence of SOA constituents under various environmental conditions. 293 

Fig. 4 highlights three wavenumber regions that illustrate the compositional difference. The orange 294 
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area shades the wavenumber 1600-1800 cm-1, which corresponds to the stretching modes of 295 

carbonyl groups (>C=O). Two peaks are seen at 1643 cm-1 and 1730 cm-1, respectively; the first 296 

can also be attributed to the stretching of aliphatic C=C double bonds, but the latter is attributable 297 

only to >C=O stretching.60 Without pre-existing particles, the presence of NO2 flattens the peak at 298 

1643 cm-1 but raises the peak at 1730 cm-1 (Fig. 4A), which may be attributed to the higher 299 

consumption of aliphatic C=C double bonds along with the enhanced generation of carbonyl 300 

products during NO3-initiated oxidation. This could be due to the fact that the NO3-initiated 301 

oxidation of furan is much faster than the O3-initiated oxidation,52-54 and the “addition-elimination 302 

mechanism,” in which carbonyls are produced along with the loss of NO2 from the NO3 groups 303 

added to furan, is the most energetically favorable pathway in the NO3-initiated oxidation of 304 

furan.57 However, the presence of pre-existing particles inhibits the peak at 1730 cm-1 (Fig. 4B), 305 

implying further reactions of carbonyl products on the seed particles. The blue-shaded area (1300-306 

1500 cm-1) represents a mixture of functional group signals, with the O3-only experiment 307 

producing three sharp peaks in the absence of seeds, while both NO3 conditions produce only one 308 

peak at 1360 cm-1 (Fig. 4A). This occurrence suggests that the presence of NO2 together with O3 309 

can significantly modify the SOA compositions, but SOA compositions are insensitive to the 310 

changes in NO3 levels. In contrast, only broad peaks were observed in seeded experiments (Fig. 311 

4B), highlighting the role of pre-existing particles in modifying the SOA constituents. The green-312 

shaded area has a strong peak at 1095 cm-1 (i.e., C-O-C stretching61) in the seeded experiments, 313 

which may be attributed to the gas-particle partitioning of more volatile oxidation products that 314 

preserve the furan backbone facilitated by pre-existing particles. 315 

 316 
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 317 
Figure 4. ATR-FTIR spectra corresponding to the ACN-extracted aerosol samples from nighttime 318 

oxidation of furan under different environmental conditions. 319 

 320 

In addition, the formation of organosulfur products was observed in the presence of pre-321 

existing particles (Fig. S4), which indicates the unique condensed-phase chemistry supported by 322 

the sulfate-containing pre-existing particles (i.e., (NH4)2SO4). Overall, the compositional profiles 323 

of furan-derived SOA may be resistant to the changes in NO3 levels, but they can vary in the 324 

presence of pre-existing particles. 325 

 326 

Light-absorption properties of furan BrC. The wavelength dependent MACs are depicted in 327 

Fig. 5. The SOA mass concentration and online MAC at 375 nm (MAC375) are provided in Table 328 

1, followed by the AAE290/400 and AAE400/600. Fig. 5 shows the elevated MACs related to the 329 

increased NO3 levels. Given the consistent SOA mass concentrations under the various NO3 levels 330 

studied (Table 1), our findings indicate that higher levels of NO3-initiated oxidation can result in 331 

the production of more BrC constituents absorbing in the near UV range. Furthermore, the 332 

presence of pre-existing particles led to higher the SOA mass concentrations (Table 1) and lower 333 

MAC profiles (Fig. 5). Because pre-existing particles can facilitate gas-particle partitioning and 334 

promote SOA formation by enhancing aerosol-phase reactions, it appears that the seed promoted 335 
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the addition of non-absorbing products more compared to BrC chromophores. Our results may 336 

also suggest that semi-volatile products that would not condense without the seed are not as light-337 

absorbing compared to the low-volatile products that condense under both conditions. To rule out 338 

potential interference caused by solvent effects during extractions,32 online MAC375 measurements 339 

were also compared. The results show the consistency of MAC375 under the studied NO3 levels but 340 

a reduction by half of MAC375 in the presence of pre-existing particles (Table 1). In addition, the 341 

results of AAE290/400 and AAE400/600 may indicate that MAC profiles have a weaker wavelength 342 

dependence of in the presence of pre-existing particles. 343 

Moreover, Fig. 6 shows the LC-DAD chromatograms (absorption wavelength versus the 344 

chromatographic retention time), where each heatmap displays the relative light absorption 345 

intensity of chromophores under the corresponding experimental conditions. All the chromophores 346 

are distributed in the UV range, agreeing with the MAC profiles (Fig. 5), in which the major 347 

absorption is below 400 nm. The distribution of chromophores exhibits a similar pattern in the LC-348 

DAD chromatogram for all the experimental conditions, where the strongest light absorption 349 

hotspot emerges within the retention time between 1.5-2.0 min, while several weaker absorption 350 

hotspots are spread over 7.0-17.0 min. Moreover, the strongest hotspot has the highest absorption 351 

at ~300 nm, while those weaker hotspots are spread within the range of 300-400 nm, corresponding 352 

to the protruding shoulder at ~350 nm in the MAC profiles (Fig. 5).  353 
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 354 

Figure 5. MAC profiles of furan BrC under the investigated conditions. The spectral curves are 355 

estimated by the average of three replica samples and the shared areas are estimated by the 356 

corresponding standard deviations of MAC at each wavelength.   357 

 358 

Table 1. Summary of CSOA, online MAC375, AAE290/400 and AAE400/600 under different 359 

environmental conditions. Results are expressed as mean ± 1 standard deviation (SD) from 360 

triplicate experiments. The data shown in the non-seeded experiments were from our previous 361 

study.32 362 

[NO2]/[O3]  
Pre-existing  

particles 
CSOA (µg m-3) MAC375 (m2 g-1)  AAE290/400  AAE400/600 

0.1 
No 17.73 ± 1.68 0.09 ± 0.03 5.82 ± 0.55 5.28 ± 0.85 

Yes 42.46 ± 1.80 0.04 ± 0.01 3.26 ± 1.36 3.98 ± 0.65 

0.3 
No 17.74 ± 1.65 0.08 ± 0.01 5.98 ± 1.03 4.14 ± 0.30 

Yes 40.86 ± 5.15 0.04 ± 0.01 4.11 ± 0.88 3.93 ± 0.84 

 363 
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 364 
Figure 6. LC-DAD heatmap of furan BrC chromophores under various environmental conditions.  365 

 366 

Molecular compositions of chromophores in furan BrC 367 

Understanding the chromophore composition is fundamental to the process-level 368 

evaluation of secondary BrC formation. Since the strongest absorption hotspot in Fig. 6 is at around 369 
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1.7 min and 290 nm, the DAD chromatogram at 290 nm is extracted (Fig. 7A) and the mass 370 

spectrum of the identified peak is analyzed (Fig. 7B). The predominant peak in the mass spectrum 371 

is assigned to the deprotonated anion (i.e., [M-H]-) of C4H4O6, whose extracted ion chromatogram 372 

(EIC) also shows a distinct peak at 1.7 min (Fig. 7C). C4H4O6 is a highly oxidized product and 373 

could be generated from further oxidation of C4H4O3, C4H4O4 and C4H4O5 that were identified in 374 

the FIGAERO-CIMS data (Fig. 3). The measured UV-Vis spectrum from LC-DAD shows a similar 375 

sketch to the MAC profiles (Fig. 5), indicating that C4H4O6 is one of the major chromophores in 376 

furan BrC from nighttime oxidation (Fig. 6). 377 

As discussed above, the hotspots over 7.0-17.0 min from LC-DAD can contribute to the 378 

protruding shoulder in the MAC profiles (Fig. 5). Compositional analysis reveals that these 379 

hotspots may be attributable to higher molecular weight oxidation products (i.e., dimers and 380 

oligomers) with high double bond equivalents (DBE). For example, Fig. S5A-C shows three 381 

dimers, C8H6O4 (DBE = 6), C8H6O6 (DBE = 6) and C8H4O6 (DBE = 7), which may correlate to 382 

the hotspots at 9 min and 11.2 min, respectively. The oligomers C14H22O5 (DBE = 4), C15H21NO5 383 

(DBE = 5) and C10H13NO5 (DBE = 4) shown in Fig. S5D-F may correspond to the hotspots at 11.2 384 

min and 13.5 min, respectively. Notably, because each hotspot shown in the heatmap may account 385 

for multiple chromophores (e.g., Fig. S5B-E), it is challenging to quantify their contributions here 386 

without authentic standards. Nevertheless, dimers and oligomers appear to play an important role 387 

in BrC light absorption in furan SOA. 388 
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 389 
Figure 7. Identification of C4H4O6 as a BrC chromophore. (A) DAD extracted wavelength 390 

chromatogram at 290 nm, (B) extracted mass spectrum of the shaded area in the DAD 391 

chromatogram, (C) EIC of the deprotonated C4H4O6, and (D) UV-Vis spectrum from the shaded 392 

area in the DAD chromatogram.  393 

 394 

Due to the smaller proportion of nitrogen-containing products in furan SOA compositions, 395 

the solvent selectivity or artifacts during LC analysis that may further impede the detection of 396 

chromophores that are sensitive to solvent attacks (e.g., hydrolysis or methanolysis of anhydrides 397 

by LC mobile phases).32 In addition, not all the SOA components can be efficiently ionized by the 398 

ESI source.62, 63 As a result, identified chromophores in this subset by LC-DAD-ESI-Q-ToFMS 399 

are limited. However, several unsaturated nitrogen-containing products were identified by an 400 

independent solvent-free approach using FIGAERO-ToF-CIMS; thus, we performed TD-DFT 401 

calculations to determine whether these products could be potential chromophores. For instance, 402 

C4H3NO7 (DBE = 3), is a functionalized monomer which may have two light-absorbing isomers: 403 
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2-hydroxy-3-nitro-maleic acid and 2-hydroxy-3-nitro-fumaric acid (Fig. 8A). C8H3NO5 (DBE = 7) 404 

is likely nitrophthalic anhydrides that are susceptible to solvent attacks (Fig. 8B). Given the strong 405 

absorptivity of these products, nitrogen-containing chromophores may still contribute significantly 406 

to BrC light absorption even though their mass fraction is small.  407 

 408 

 409 

Figure 8. Theoretical UV-Vis spectra of nitrogen-containing chromophores: (A) C4H3NO7 and (B) 410 

C8H3NO5. 411 

 412 

Atmospheric implications  413 

This study investigated the secondary BrC formation from nighttime oxidation of furan by 414 

varying the NO3 levels and pre-existing particles. Our analysis revealed the key role of NO3-415 

initiated oxidation in furan oxidation under the in-plume environment and highlighted the effects 416 

of oxidant levels and pre-existing particles on chemical compositions and optical properties. 417 

Increased NO3 levels can enhance the MAC profiles, but the overall bulk compositions in furan 418 

SOA measured as ion fragment families by mAMS are insensitive to this change. Since rapid SOA 419 

formation has been observed in biomass burning plumes exposed to NO2 and O3 during the 420 

nighttime but has not been well represented in modeling studies,64 our work contributes to a better 421 

understanding of the role of nighttime oxidant levels in furan SOA formation and BrC light 422 
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absorption. Our results also indicate that the pre-existing particles can increase the SOA mass 423 

concentrations but, in the meantime, decrease the MAC profiles under dry conditions (RH< 20%). 424 

MAC reduction due to pre-existing particles under dry conditions may be an important process for 425 

evaluating BrC radiative forcing in climate models, as pre-existing particles have been 426 

demonstrated as a crucial factor that controls SOA formation in a changing climate.65  427 

Our study is pertinent to biomass burning plumes with low RH (e.g., the Williams Fire 428 

plume66) or plumes of higher RH expanded into the low RH atmospheres, such as those in the 429 

western United States67, 68 and Africa during dry seasons.69, 70 The molecular compositions reported 430 

here can contribute to a more comprehensive molecular understanding of furan oxidation. We show 431 

that under different environmental conditions, highly oxidized monomers, dimers, and oligomers 432 

can contribute to BrC chromophores. Multiple anhydride species, including maleic anhydride (or 433 

furandione), phthalic anhydride, and nitrophthalic anhydrides, can be potentially important 434 

chromophores in furan BrC under dry conditions.32 Notably, atmospheric convection can vertically 435 

transport BrC into the upper troposphere,71 where the average relative humidity is approximately 436 

27% and less than 10% for subtropical regions.72 Anhydride chromophores are likely to have a 437 

longer lifetime in the upper troposphere. Even under wet conditions where anhydrides could be 438 

hydrolyzed, the resulting products may still be chromophores. For example, phthalic acid (or 1,2-439 

benzenedicarboxylic acid), the hydrolysis product of phthalic anhydride, has been reported as one 440 

of the most prevalent BrC chromophores in ambient observations.73, 74 Nitrophthalic acid, the 441 

hydrolysis product of nitrophthalic anhydrides, was also identified as a chromophore in the 442 

aerosols produced by the combustion of biomass.75 Since both of these hydrolysis products are 443 

organic markers of SOA,76-79 the hydrolysis of anhydrides can be used to track the formation and 444 

evolution of secondary BrC. Overall, our findings highlight the influence of NO3 levels and pre-445 
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existing particles on the chemical composition and optical properties of nighttime furan SOA, 446 

whereas bulk and molecular characterizations of SOA constituents and chromophores are 447 

necessary for better experimental constraint and a more complete process-level understanding of 448 

their formation. 449 
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