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Robust Effects of Working Memory Demand during
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Cortex
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To understand language, we must infer structured meanings from real-time auditory or visual signals. Researchers have long
focused on word-by-word structure building in working memory as a mechanism that might enable this feat. However, some
have argued that language processing does not typically involve rich word-by-word structure building, and/or that apparent
working memory effects are underlyingly driven by surprisal (how predictable a word is in context). Consistent with this al-
ternative, some recent behavioral studies of naturalistic language processing that control for surprisal have not shown clear
working memory effects. In this fMRI study, we investigate a range of theory-driven predictors of word-by-word working
memory demand during naturalistic language comprehension in humans of both sexes under rigorous surprisal controls. In
addition, we address a related debate about whether the working memory mechanisms involved in language comprehension
are language specialized or domain general. To do so, in each participant, we functionally localize (1) the language-selective
network and (2) the “multiple-demand” network, which supports working memory across domains. Results show robust sur-
prisal-independent effects of memory demand in the language network and no effect of memory demand in the multiple-
demand network. Our findings thus support the view that language comprehension involves computationally demanding
word-by-word structure building operations in working memory, in addition to any prediction-related mechanisms. Further,
these memory operations appear to be primarily conducted by the same neural resources that store linguistic knowledge,
with no evidence of involvement of brain regions known to support working memory across domains.
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This study uses fMRI to investigate signatures of working memory (WM) demand during naturalistic story listening, using a broad
range of theoretically motivated estimates of WM demand. Results support a strong effect of WM demand in the brain that is dis-
tinct from effects of word predictability. Further, these WM demands register primarily in language-selective regions, rather than in
“multiple-demand” regions that have previously been associated with WM in nonlinguistic domains. Our findings support a core
role for WM in incremental language processing, using WM resources that are specialized for language. j

ignificance Statement

Introduction

Language presents a major challenge for real-time informa-
tion processing. Transient acoustic or visual signals must be
translated into structured meaning representations very effi-

Received Sep. 17, 2021; revised July 6, 2022; accepted July 11, 2022.

Author contributions: C.S., LAB., EF., E.G., and W.S. designed research; C.S. and I.A.B. performed research;
C.S. analyzed data; C.S., LAB., E.F., E.G., and W.S. wrote the paper.

This research was supported by National Institutes of Health (NIH) Grant RO0-HD-057522 (to E.F.) and by
National Science Foundation Grant 1816891 (to W.S.). C.S. was supported by a postdoctoral fellowship from

the Simons Center for the Social Brain at the Massachusetts Institute of Technology (MIT). E.F. was
additionally supported by NIH Grants R01-DC-016607 and R01-DC-016950, and by a grant from the Simons
Foundation via the Simons Center for the Social Brain at MIT. We thank the Athinoula A. Martinos Imaging
Center at the McGovern Institute for Brain Research at MIT, and the support team (Steven Shannon and
Atsushi Takahashi) for help with the experiments. We also thank EvLab members for help with data collection
(especially Zach Mineroff and Alex Paunov), and Jakub Dotlacil for generously providing ACT-R predictors to
use in our analyses. All views expressed are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

The authors declare no competing financial interests.

Correspondence should be addressed to Cory Shain at cshain@mit.edu.

https://doi.org/10.1523/JNEUR0SCI.1894-21.2022
Copyright © 2022 the authors

ciently, at least fast enough to keep up with the perceptual
stream (Christiansen and Chater, 2016). Understanding the
mental algorithms that enable this feat is of interest to the
study both of language and of other forms of cognition that
rely on structured representations of sequences (Howard and
Kahana, 2002; Botvinick, 2007). Language researchers have
focused for decades on one plausible adaptation to the con-
straints of real-time language processing: working memory
(WM). According to memory-based theories of linguistic com-
plexity (e.g., Frazier and Fodor, 1978; Clifton and Frazier,
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1989; Just and Carpenter, 1992; Gibson, 2000; Lewis and
Vasishth, 2005; see Fig. 2), the main job of language-processing
mechanisms is to rapidly construct (word-by-word) a struc-
tured representation of the unfolding sentence in WM, and
incremental processing demand is thus driven by the difficulty
of these WM operations.

This view has faced two major challenges. First, some have
argued that typical sentence comprehension relies on representa-
tions that are shallower and more approximate than those
assumed by word-by-word parsing models (Ferreira et al., 2002;
Christiansen and MacDonald, 2009; Frank and Bod, 2011; Frank
and Christiansen, 2018) and that standard experiment designs
involving artificially constructed stimuli may exaggerate the
influence of syntactic structure (Demberg and Keller, 2008).
Second, surprisal theory has challenged the assumptions of
memory-based theories by arguing that the main job of sen-
tence processing mechanisms is not structure building in WM
but rather probabilistic interpretation of the unfolding sentence
(Hale, 2001; Levy, 2008), with processing demand determined by
the information (quantified as surprisal, the negative log probabil-
ity of a word in context) contributed by a word toward that inter-
pretation. Surprisal theorists contend that surprisal can account
for patterns that have been otherwise attributed to WM demand
(Levy, 2008). Consistent with these objections, some recent natu-
ralistic studies of language processing that control for surprisal
have not yielded clear evidence of working memory effects
(Demberg and Keller, 2008; van Schijndel and Schuler, 2013;
Shain and Schuler, 2021; but see e.g., Brennan et al., 2016; Li and
Hale, 2019; Stanojevic et al., 2021).

To investigate the role of WM in typical language processing,
we use data from a previous large-scale naturalistic functional
magnetic resonance imaging (fMRI) study (Shain et al., 2020) to
explore multiple existing theories of WM in language processing,
under rigorous surprisal controls (van Schijndel and Linzen,
2018; Radford et al., 2019). We then evaluate the most robust of
these on unseen data.

We additionally address a related ongoing debate about
whether the WM resources used for language comprehension
are domain general (e.g., Just and Carpenter, 1992) or specialized
for language (e.g., Caplan and Waters, 1999; for review of this
debate, see Discussion). To address this question, we consider
two candidate brain networks, each functionally localized in
individual participants: the language-selective (LANG) network
(Fedorenko et al, 2011); and the domain-general multiple-
demand (MD) network, which has been robustly implicated in
domain-general working memory (Duncan et al., 2020), and
which is therefore the most likely candidate domain-general
brain network to support WM for language.

Results show strong, surprisal-independent influences of
WM retrieval difficulty on human brain activity in the lan-
guage network but not the MD network. We therefore argue
(1) that a core function of human language processing is to
compose representations in working memory based on
structural cues, even for naturalistic materials during pas-
sive listening; and (2) that these operations are primarily
implemented within language-selective cortex. Our study
thus supports the view that typical language comprehension
involves rich word-by-word structure building via compu-
tationally intensive memory operations and places these
operations within the same neural circuits that store lin-
guistic knowledge, in line with recent arguments against a
separation between storage and computation in the brain
(e.g., Hasson et al.,, 2015; Dasgupta and Gershman, 2021).
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Materials and Methods

Except where otherwise noted below, we use the materials and methods
of the study by Shain et al. (2020). At a high level, we analyze the influ-
ence of theory-driven measures of working memory load during audi-
tory comprehension of naturalistic stories (Futrell et al, 2020) on
activation levels in the LANG versus domain-general MD networks
identified in each participant using an independent functional localizer.
To control for regional variation in the hemodynamic response function
(HRF), the HRF is estimated from data using continuous-time deconvo-
lutional regression (CDR; Shain and Schuler, 2018, 2021) rather than
assumed (e.g., Brennan et al., 2016; Bhattasali et al., 2019). Hypotheses
are tested using generalization performance on held-out data.

In leveraging the fMRI blood oxygenation level-dependent (BOLD)
signal (a measure of blood oxygen levels in the brain) to investigate lan-
guage processing difficulty, we adopt the widely accepted view that “a
spatially localized increase in the BOLD contrast directly and monotoni-
cally reflects an increase in neural activity” (Logothetis et al., 2001). To
the extent that computational demand (e.g., from performing a difficult
memory retrieval operation) results in the recruitment of a larger num-
ber of neurons, leading to a synchronous firing rate increase across a cell
population, we can use the BOLD signal as a proxy for this increased
demand.

Experimental design

Functional magnetic resonance imaging data were collected from sev-
enty-eight native English speakers (30 males), aged 18-60 (mean =*
SD,25.8 £ 9; median * semi-interquartile range, 23 = 3). Each partici-
pant completed a passive story comprehension task, using materials
from the stud by Futrell et al. (2020), and a functional localizer task
designed to identify the language and MD networks and to ensure func-
tionally comparable units of analysis across participants. The use of
functional localization is motivated by established interindividual vari-
ability in the precise locations of functional areas (e.g., Frost and Goebel,
2012; Tahmasebi et al., 2012; Vézquez-Rodriguez et al., 2019)—includ-
ing the LANG (e.g.,, Fedorenko et al., 2010) and MD (e.g., Fedorenko et
al.,, 2013; Shashidhara et al., 2020) networks. Functional localization
yields higher sensitivity and functional resolution compared with the
traditional voxelwise group-averaging fMRI approach (e.g., Nieto-
Castanon and Fedorenko, 2012) and is especially important given the
proximity of the LANG and the MD networks in the left frontal cor-
tex (for review, see Fedorenko and Blank, 2020). The localizer task
contrasted sentences with perceptually similar controls (lists of pro-
nounceable nonwords). Participant-specific functional regions of in-
terest (fROIs) were identified by selecting the top 10% of voxels that
were most responsive (to the target contrast; see below) for each par-
ticipant within broad areal “masks” (derived from probabilistic
atlases for the same contrasts, created from large numbers of individ-
uals; for the description of the general approach, see Fedorenko et al.,
2010), as described below.

Our focus on these functionally defined language and multiple-
demand networks is motivated by extensive prior evidence that these
networks constitute functionally distinct “natural kinds” in the human
brain. First, a range of localizer tasks yield highly stable definitions of
both the language network (Fedorenko et al., 2010, 2011; Scott et al.,
2017; Malik-Moraleda et al., 2022) and the MD network (Fedorenko et
al., 2013; Shashidhara et al., 2019; Diachek et al., 2020), definitions that
map tightly onto networks independently identified by task-free (resting
state) functional connectivity analysis (Vincent et al., 2008; Assem et al.,
2020a; Braga et al,, 2020). Second, the activity in these networks is
strongly functionally dissociated, with statistically zero synchrony
between them during both resting state and story comprehension
(Blank et al., 2014; Malik-Moraleda et al., 2022). Third, the particular
tasks that engage these networks show strong functional clustering:
the language network responds more strongly to coherent language
than perceptually matched control conditions and does not engage in
a range of WM and cognitive control tasks, whereas the MD network
responds less strongly to coherent language than perceptually matched con-
trols and is highly responsive to diverse WM and cognitive control tasks
(for review, see Fedorenko and Blank, 2020). Fourth, within individuals, the
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strength of task responses between different brain areas is highly corre-
lated within the language network (Mahowald and Fedorenko, 2016)
and the MD network (Assem et al., 2020b), but not between them
(Mineroft et al., 2018). Fifth, distinct cognitive deficits follow damage to
language versus MD regions. Some patients with global aphasia (com-
plete or near complete loss of language) nonetheless retain the executive
function, problem-solving, and logical inference skills necessary for solv-
ing arithmetic questions, playing chess, driving, and generating scientific
hypotheses (for review, see Fedorenko and Varley, 2016). In contrast,
damage to MD regions causes fluid intelligence deficits (Glischer et al.,
2010; Woolgar et al., 2010, 2018). Thus, there is strong prior reason to
consider these networks as functional units and valid objects of study.
Our localizer tasks simply provide an efficient method for identifying
them in each individual, as needed for probing their responses during
naturalistic language comprehension.

Relatedly, our assumption that the MD network is the most likely
home for any domain-general WM resources involved in language com-
prehension follows from an extensive neuroscientific literature on WM
across domains that most consistently identifies the specific frontal and
parietal regions covered by our MD localizer masks. For example, a
Neurosynth (Yarkoni et al., 2011) meta-analysis of the term “working
memory” (https://neurosynth.org/analyses/terms/working%20memory/)
finds 1091 papers with nearly 40,000 activation peaks, and the regions
that are consistently associated with this term include regions that corre-
spond anatomically to the MD network, including the parietal cortex,
anterior cingulate/supplementary motor area, the insula, and regions in
the dorsolateral prefrontal cortex. This finding derives from numerous
individual studies that consistently associate our assumed frontal and pa-
rietal MD regions (or highly overlapping variants of them) with diverse
WM tasks (e.g., Fedorenko et al., 2013; Hugdahl et al., 2015; Shashidhara
et al, 2019; Assem et al., 2020a) and aligns strongly with results from
multiple published meta-analyses (e.g., Rottschy et al., 2012; Nee et al,,
2013; Emch et al,, 2019; Kim, 2019; Wang et al., 2019). As acknowledged
in the Discussion, some additional regions are also reported in studies of
WM with less consistency, including within the thalamus, basal ganglia,
hippocampus, and cerebellum. Although we leave possible involvement
of such regions in language processing to future research, current evi-
dence makes it a priori likely that the bulk of domain-general WM brain
regions will be covered by our MD localizer masks.

Six left-hemisphere language fROIs were identified using the contrast
sentences > nonwords: in the inferior frontal gyrus (IFG) and the orbital
part of the IFG (IFGorb); in the middle frontal gyrus (MFG); in the ante-
rior temporal cortex (AntTemp) and posterior Temp (PostTemp); and
in the angular gyrus (AngG). This contrast targets higher-level aspects of
language, to the exclusion of perceptual (speech/reading) and motor-
articulatory processes (for review, see Fedorenko and Thompson-Schill,
2014; Fedorenko, 2020). This localizer has been extensively validated
over the past decade across diverse parameters and shown to generalize
across task (Fedorenko et al., 2010; Cheung et al., 2020), presentation
modality (Fedorenko et al., 2010; Scott et al.,, 2017; Chen et al., 2021),
language (Malik-Moraleda et al., 2022), and materials (Fedorenko et al.,
2010; Cheung et al, 2020), including both coarser contrasts (e.g.,
between natural speech and an acoustically degraded control: Scott et al.,
2017) and narrower contrasts (e.g., between lists of unconnected, real
words and nonwords lists, or between sentences and lists of words;
Fedorenko et al., 2010; Blank et al., 2016).

Ten multiple-demand fROIs were identified bilaterally using the con-
trast nonwords > sentences, which reliably localizes the MD network, as
discussed below: in the posterior parietal cortex (PostPar), middle Par
(MidPar), and anterior Par (AntPar); in the precentral gyrus (PrecG); in
the superior frontal gyrus (SFG); in the MFG and the orbital part of the
MFG (MFGorb); in the opercular part of the IFG (IFGop); in the ante-
rior cingulate cortex and pre-supplementary motor cortex; and in the
insula (Insula). This contrast targets regions that increase their response
with the more effortful reading of nonwords compared with that of senten-
ces. This “cognitive effort” contrast robustly engages the MD network and
can reliably localize it (Fedorenko et al, 2013). Moreover, it generalizes
across a wide array of stimuli and tasks, both linguistic and nonlin-
guistic, including, critically, standard contrasts targeting executive
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functions (e.g., Fedorenko et al,, 2013; Shashidhara et al., 2019;
Assem et al., 2020a). To verify that the use of a flipped language local-
izer contrast does not artificially suppress language processing-related
effects in MD, we performed a follow-up analysis where the MD net-
work was identified with a hard > easy contrast in a spatial working
memory paradigm, which requires participants to keep track of more
versus fewer spatial locations within a grid (e.g., Fedorenko et al., 2013)
in the subset of participants (~80%) who completed this task.

The critical task involved listening to auditorily presented passages
from the Natural Stories corpus (Futrell et al., 2020). The materials are
described extensively in the study by Futrell et al. (2020), but in brief,
they consist of naturally occurring short narrative or nonfiction mate-
rials that were edited to overrepresent rare words and syntactic con-
structions without compromising perceived naturalness. The materials
therefore expose participants to a diversity of syntactic constructions
designed to tax the language-processing system within a naturalistic
setting, including nonlocal coordination, parenthetical expressions,
object relative clauses, passives, and cleft constructions. A subset of
participants (n=41) answered comprehension questions after each
passage, and the remainder (n = 37) listened passively.

Full details about participants, stimuli, functional localization, data
acquisition, and preprocessing are provided in the study by Shain et al.
(2020).

Statistical analysis

This study uses CDR for all statistical analyses (Shain and Schuler, 2021).
CDR uses machine learning to estimate continuous-time impulse response
functions (IRFs) that describe the influence of observing an event (word) on
a response (BOLD signal change) as a function of their distance in continu-
ous time. When applied to fMRI, CDR-estimated IRFs represent the hemo-
dynamic response function (Boynton et al, 1996) and can account for
regional differences in response shape (Handwerker et al,, 2004) directly
from responses to naturalistic language stimuli, which are challenging to
model using discrete-time techniques (Shain and Schuler, 2021). For model
details, see the Model design subsection below.

Our analyses consider a range of both perceptual and linguistic varia-
bles as predictors. For motivation and implementation of each predictor,
see the Control predictors and Critical predictors subsections below. As
is often the case in naturalistic language, many of these variables are cor-
related to some extent (Fig. 1), especially variables that are implementa-
tion variants of each other (e.g., different definitions of surprisal or WM
retrieval difficulty). We therefore use statistical tests that depend on the
unique contribution of each predictor, regardless of its level of correla-
tion with other predictors in the model. For testing procedures, see the
Ablative statistical testing subsection below.

Control predictors
We include all control predictors used in the study by Shain et al. (2020),
namely the following.

Sound power. Sound power is predicted with frame-by-frame root
mean square energy of the audio stimuli computed using the Librosa
software library (McFee et al,, 2015).

TR number. The repetition time (TR) number is an integer index of
the current fMRI volume within the current scan.

Rate. Rate is the deconvolutional intercept. A vector of one’s time
aligned with the word onsets of the audio stimuli. Rate captures influen-
ces of stimulus timing independent of stimulus properties (See e.g.,
Brennan et al., 2016; Shain and Schuler, 2018).

Frequency (unigram surprisal). Corpus frequency of each word com-
puted using a KenLM unigram model trained on Gigaword 3. For ease
of comparison with surprisal, frequency is represented here on a sur-
prisal scale (negative log probability), such that larger values index less
frequent words (and thus greater expected processing cost).

Network. The numeric predictor for network ID (0 for MD and 1 for
LANG). This predictor is used only in models of combined responses
from both networks.

Furthermore, because points of predicted retrieval cost may partially
overlap with prosodic breaks between clauses, we include the following
two prosodic controls.
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Figure 1.

End of sentence. The end-of-sentence predictor is an indicator for
whether a word terminates a sentence.

Pause duration. Pause duration is the length (in milliseconds) of the
pause following a word, as indicated by hand-corrected word alignments
over the auditory stimuli. Words that are not followed by a pause take
the value 0 ms.

We confirmed empirically that the pattern of significance reported in
the study by Shain et al. (2020) holds in the presence of these additional
controls.

In addition, inspired by evidence that word predictability strongly
influences BOLD responses in the language network, we additionally
include the following critical surprisal predictors from the study by
Shain et al. (2020).

5-gram surprisal. 5-gram surprisal for each word in the stimulus is
computed from a KenLM (Heafield et al,, 2013) language model with
default smoothing parameters trained on the Gigaword 3 corpus (Graff
et al,, 2007). 5-gram surprisal quantifies the predictability of words as
the negative log probability of a word given the four words preceding it
in context.

PCFG surprisal. Lexicalized probabilistic context-free grammar
(PCFG) surprisal is computed using the incremental left corner parser of
van Schijndel et al. (2013) trained on a generalized categorial grammar
(Nguyen et al., 2012) reannotation of Wall Street Journal sections 2
through 21 of the Penn Treebank (Marcus et al., 1993). Note that, like
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Pairwise Pearson correlations between all word-level predictors considered in our exploratory analyses.

the 5-gram model, the PCFG model is fully lexicalized, in that it gener-
ates a distribution over the next word (e.g., rather than the next part-of-
speech tag). The critical difference is that the PCFG model conditions
this prediction only on its hypotheses about the phrase structure of a
sentence, with no direct access to preceding words.

PCFG and 5-gram surprisal were investigated by Shain et al. (2020)
because their interpretable structure permitted testing of hypotheses of
interest in that study. However, their strength as language models has
been outstripped by less interpretable but better performing incremental
language models based on deep neural networks (e.g., Jozefowicz et al,,
2016; Gulordava et al., 2018; Radford et al., 2019). In the present investi-
gation, predictability effects are a control rather than an object of study,
and we are therefore not bound by the same interpretability considera-
tions. To strengthen the case for the independence of retrieval processes
from prediction processes, we therefore additionally include the follow-
ing predictability control.

Adaptive surprisal. Adaptive surprisal is word surprisal as computed
by the adaptive recurrent neural network (RNN) of van Schijndel and
Linzen (2018). This network is equipped with a cognitively inspired
mechanism that allows it to adjust its expectations to the local discourse
context at inference time, rather than relying strictly on knowledge
acquired during the training phase. Compared with strong baselines,
results show both improved model perplexity and improved fit between
model-generated surprisal estimates and measures of human reading
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times. Because the RNN can in principle learn both (1) the local word
co-occurrence patterns exploited by 5-gram models and (2) the struc-
tural features exploited by PCFG models, it competes for variance in our
regression models with the other surprisal predictors, whose effects are
consequently attenuated relative to those in the study by Shain et al.
(2020).

Models additionally included the mixed-effects random grouping
factors Participant and fROI. We examine the responses for each net-
work (LANG, MD) as a whole, which is reasonable given the strong evi-
dence of functional integration among the regions of each network (e.g.,
Blank et al., 2014; Assem et al., 2020a,b; Braga et al., 2020), but we also
examine each individual fROI separately for a richer characterization of
the observed effects. Before regression, all predictors were rescaled by
their SDs in the training set except Rate (which has no variance) and the
indicators End of Sentence and Network. Reported effect sizes are there-
fore in standard units.

Critical predictors

Among the many prior theoretical and empirical investigations of work-
ing memory demand in sentence comprehension, we have identified
three theoretical frameworks that are broad coverage (i.e., sufficiently
articulated to predict word-by-word memory demand in arbitrary utter-
ances) and implemented (i.e., accompanied by algorithms and software
that can generate word-by-word memory predictors for our naturalistic
English-language stimuli): the dependency locality theory (DLT; Gibson,
2000); ACT-R (Adaptive Control of Thought-Rational) sentence-proc-
essing theories (Lewis and Vasishth, 2005); and left corner parsing theo-
ries (Johnson-Laird, 1983; Resnik, 1992; van Schijndel et al, 2013;
Rasmussen and Schuler, 2018). We set aside related work that does not
define word-by-word measures of WM demand (e.g., Gordon et al,
2001, 2006; McElree et al., 2003). A step-through visualization of two of
these frameworks, the DLT and left corner parsing theory, is provided in
Figure 2.

At a high level, these theories all posit WM demands driven by the
syntactic structure of sentences. In the DLT, the relevant structures are
dependencies between words (e.g., between a verb and its subject). In
ACT-R and left corner theories, the relevant structures are phrasal
hierarchies of labeled, nested spans of words (syntax trees). The DLT
and left corner theories hypothesize active maintenance in memory
(and thus “storage” costs) from incomplete dependencies and incom-
plete phrase structures, respectively, whereas ACT-R posits no storage
costs under the assumption that partial derivations live in a content-
addressable memory store. All three frameworks posit “integration
costs” driven by memory retrieval operations. In the DLT, retrieval is
required to build dependencies, with cost proportional to the length of
the dependency. In ACT-R and left corner theories, retrieval is
required to unify representations in memory. Left corner theory is
compatible with several notions of retrieval cost (explored below),
whereas ACT-R assumes retrieval costs are governed by an interaction
between continuous time activation decay mechanisms and similarity-
based interference.

Prior work has investigated the empirical predictions of some of
these theories using computer simulations (e.g., Lewis and Vasishth,
2005; Rasmussen and Schuler, 2018) and human behavioral responses to
constructed stimuli (e.g., Grodner and Gibson, 2005; Bartek et al., 2011),
and reported robust WM effects. Related work has also shown the effects
of dependency length manipulations in measures of comprehension and
online processing difficulty (e.g., Gibson et al., 1996; McElree et al., 2003;
Van Dyke and Lewis, 2003; Makuuchi et al., 2009; Meyer et al., 2013). In
light of these findings, evidence from more naturalistic human sentence-
processing settings for working memory effects of any kind is surpris-
ingly weak. Demberg and Keller (2008) report DLT integration cost
effects in the Dundee eye-tracking corpus (Kennedy and Pynte,
2005), but only when the domain of analysis is restricted—overall
DLT effects are actually negative (longer dependencies yield shorter
reading times, a phenomenon known as “anti-locality” Konieczny,
2000). Van Schijndel and Schuler (2013) also report anti-locality
effects in Dundee, even controlling for word predictability phenom-
ena that have been invoked to explain anti-locality effects in other
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experiments (Konieczny, 2000; Vasishth and Lewis, 2006). It is there-
fore not yet settled how central syntactically related working memory
involvement is to human sentence processing in general, rather than
perhaps being driven by the stimuli and tasks commonly used in
experiments designed to test these effects (Hasson and Honey, 2012;
Campbell and Tyler, 2018; Hasson et al., 2018; Diachek et al., 2020).
In the fMRI literature, few prior studies of naturalistic sentence proc-
essing have investigated syntactic working memory (although some of
the syntactic predictors in the study by Brennan et al., 2016, especially
syntactic node count, are amenable to a memory-based interpretation).

DLT predictors

The DLT posits two distinct sources of WM demand, integration cost
and storage cost. Integration cost is computed as the number of dis-
course referents (DRs) that intervene in a backward-looking syntactic
dependency, where “discourse referent” is operationalized, for simplicity,
as any noun or finite verb. In addition, all the implementation variants
of integration cost proposed by Shain et al. (2016) are considered.

Verbs. Verbs (Vs) are more expensive. Nonfinite verbs receive a cost
of 1 (instead of 0), and finite verbs receive a cost of 2 (instead of 1).

Coordination. Coordination (C) is less expensive. Dependencies out
of coordinate structures skip preceding conjuncts in the calculation of
distance, and dependencies with intervening coordinate structures assign
that structure a weight equal to that of its heaviest conjunct.

Modifier. Exclude modifier (M) dependencies. Dependencies to pre-
ceding modifiers are ignored.

These variants are motivated by the following considerations. First,
the reweighting in V is motivated by the possibility (1) that finite verbs
may require more information-rich representations than nouns, espe-
cially tense and aspect (Binnick, 1991); and (2) that nonfinite verbs may
still contribute eventualities to the discourse context, albeit with under-
specified tense (Lowe, 2019). As in Gibson (2000), the precise weights
are unknown, and the weights used here are simply heuristic approxima-
tions that instantiate a hypothetical overall pattern: nonfinite verbs con-
tribute to retrieval cost, and finite verbs contribute more strongly than
other classes.

Second, the discounting of coordinate structures under C is moti-
vated by the possibility that conjuncts are incrementally integrated into a
single representation of the overall coordinated phrase, and thus that
their constituent nouns and verbs no longer compete as possible retrieval
targets. Anecdotally, this possibility is illustrated by the following sen-
tence: “Today I bought a cake, streamers, balloons, party hats, candy,
and several gifts for my niece’s birthday.”

In this example, the dependency from “for” to its modificand
“bought” does not intuitively seem to induce a large processing cost, yet
it spans six coordinated nouns, yielding an integration cost of 6, which is
similar in magnitude to that of some of the most difficult dependencies
explored in the study by Grodner and Gibson (2005). The C variant
treats the entire coordinated direct object as one discourse referent,
yielding an integration cost of 1.

Third, the discounting of preceding modifiers in M is motivated by
the possibility that modifier semantics may be integrated early, alleviat-
ing the need to retrieve the modifier once the head word is encountered.
Anecdotally, this possibility is illustrated by the following sentence:
“(Yesterday,) my coworker, whose cousin drives a taxi in Chicago, sent
me a list of all the best restaurants to try during my upcoming trip.”

The dependency between the verb “sent” and the subject “coworker”
spans a finite verb and three nouns, yielding an integration cost of 4
(plus a cost of 1 for the discourse referent introduced by “sent”). If the
sentence includes the pre-sentential modifier “Yesterday,” which, under
the syntactic annotation used in this study, is also involved in a depend-
ency with the main verb “sent” then the DLT predicts that it should dou-
ble the structural integration cost at “sent” because the same set of
discourse referents intervenes in two dependencies rather than one.
Intuitively, this does not seem to be the case, possibly because the temporal
information contributed by “Yesterday” may already be integrated with the
incremental semantic representation of the sentence before “sent” is
encountered, eliminating the need for an additional retrieval operation at
that point. The +M modification instantiates this possibility.
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Figure 2.  Visualization of storage and integration and their associated costs in two of the three frameworks investigated here: the DLT (Gibson, 2000) versus left corner parsing theory (e.g.,
Rasmussen and Schuler, 2018). [The third framework—ACT-R (Lewis and Vasishth, 2005)—assumes a left corner parsing algorithm as in the figure above but differs in predicted processing
costs, positing (1) no storage costs and (2) integration costs continuously weighted both by the recency of activation for the retrieval target and the degree of retrieval interference.] Costs are
shown in boxes at each step. DLT walk-through: in the DLT, expected incomplete dependencies (open circles) are kept in WM and incur storage costs (SCs), whereas dependency construction
(dosed circles) requires retrieval from WM of the previously encountered item and incurs integration costs (ICs). DRs (effectively, nouns and verbs) that contribute to integration costs are under-
lined in the figure. At “The,” the processor hypothesizes and stores both an upcoming main verb for the sentence (V) and an upcoming noun complement (N). At “reporter,” the expected noun
is encountered, contributing 1 DR and a dependency from “reporter” to “the,” which frees up memory. At “who,” the processor posits both a relative clause verb and a gap site, which is core-
ferent with “who,” and an additional noun complement is posited at “the.” The expected noun is observed at “senator,” contributing 1 DR and a dependency from “senator” to “the.” The
awaited verb is observed at “attacked,” contributing 1 DR and two dependencies, one from “attacked” to “senator” and one from the implicit object gap to “who.” The latter spans 1 DR,
increasing IC by 1. When “disliked” is encountered, an expected direct object is added to storage, and a subject dependency to “reporter” is constructed with an IC of 3 (the DR “disliked,” plus
2 intervening DRs). At the awaited object “editor,” the store is cleared and two dependencies are constructed (to “the” and “disliked”). Left comer walk-through: the memory store contains
one or more incomplete derivation fragments (shown as polygons), each with an active sign (top) and an awaited sign (right) needed to complete the derivation. Storage cost is the number
of derivation fragments currently in memory. Integration costs derive from binary lexical match (L) and grammatical match (G) decisions. Costs shown here index ends of multiword center
embeddings (+L +G), where disjoint fragments are unified (though other cost definitions are possible, see below). At “the,” the processor posits a noun phrase (NP) awaiting a noun. There
is nothing on the store, so both match decisions are negative. At “reporter,” the noun is encountered (L) but the sentence is not complete (—G), and the active and awaited signs are updated
to NP and relative clause (RC), respectively. At “who,” the processor updates its awaited category to S/NP [sentence (S) with gapped/relativized NP]. When “the” is encountered, it is analyzed
neither as S/NP nor as a left child of an S/NP; thus, both match decisions are negative and a new derivation fragment is created in memory with active sign NP and awaited sign N. Lexical
and grammatical matches occur at “senator,” unifying the two fragments in memory, and the awaited sign is updated to VP/NP [verb phrase (VP) with gapped NP, the missing unit of the RC].
The awaited VP (with gapped NP) is found at “attacked,” leading to a lexical match, and the awaited sign is updated to the missing VP of the main clause. The next two words (“disliked” and
“the”) can be incorporated into the existing fragment, updating the awaited sign each time, and “editor” satisfies the awaited N, terminating the parse. Comparison: hoth approaches posit stor-
age and integration (retrieval) mechanisms, but they differ in the details. For example, the DLT (but not left corner theory) posits a spike in integration cost at “attacked.” Differences in predic-
tions between the two frameworks fall out from different claims about the role of WM in parsing.

The presence/absence of the three features above yields a total of
eight variants, as follows: DLT, DLT-V (a version with the V fea-
ture), DLT-C, DLT-M, DLT-VC, DLT-VM, DLT-CM, and DLT-
VCM. A superficial consequence of the variants with C and M fea-
tures is that they tend to attenuate large integration costs. Thus, if
they improve fit to human measures, it may simply be the case that
the DLT in its original formulation overestimates the costs of long
dependencies. To account for this possibility, this study additionally

considers a log-transformed variant of (otherwise unmodified) DLT
integration cost: DLT (log).

We additionally consider DLT storage cost (DLT-S), the number of
awaited syntactic heads at a word that is required to form a grammatical
utterance.

In our implementation, this includes dependencies arising via syn-
tactic arguments (e.g., the object of a transitive verb), dependencies
from modifiers to following modificands, dependencies from relative
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pronouns (e.g., who, what) to a gap site in the following relative clause,
dependencies from conjunctions to following conjuncts, and depend-
encies from gap sites to following extraposed items. In all such cases,
the existence of an obligatory upcoming syntactic head can be inferred
from context. This is not the case for the remaining dependency types
(e.g., from modifiers to preceding modificands, since the future appear-
ance of a modifier is not required when the modificand is processed),
and they are therefore treated as irrelevant to storage cost. Because stor-
age cost does not assume a definition of distance (unlike integration
cost), no additional variants of it are explored.

ACT-R predictor

The ACT-R model (Lewis and Vasishth, 2005) composes representations
in memory through a content-addressable retrieval operation that is sub-
ject to similarity-based interference (Gordon et al., 2001; McElree et al.,
2003; Van Dyke and Lewis, 2003), with memory representations that
decay with time unless reactivated through retrieval. The decay function
enforces a locality-like notion (retrievals triggered by long dependencies
will on average cue targets that have decayed more), but this effect can
be attenuated by intermediate retrievals of the target. Unlike the DLT,
ACT-R has no notion of active maintenance in memory (items are sim-
ply retrieved as needed) and therefore does not predict a storage cost.

The originally proposed ACT-R parser (Lewis and Vasishth, 2005) is
implemented using hand-crafted rules and is deployed on utterances
constructed to be consistent with those rules. This implementation does
not cover arbitrary sentences of English and cannot therefore be applied
to our stimuli without extensive additional engineering of the parsing
rules. However, a recently proposed modification to the ACT-R frame-
work has a broad-coverage implementation and has already been applied
to model reading time responses to the same set of stories (Dotlacil,
2021). Tt does so by moving the parsing rules from procedural to declara-
tive memory, allowing the rules themselves to be retrieved and activated
in the same manner as parse fragments. In this study, we use the same
single ACT-R predictor used in Dotlacil (2021): in ACT-R target activa-
tion, the mean activation level of the top three most activated retrieval
targets is cued by a word. Activation decays on both time and degree of
similarity with retrieval competitors, and is therefore highest when the
cue strongly identifies a recently activated target. ACT-R target activa-
tion is expected to be anticorrelated with retrieval difficulty. See Dotlacil
(2021) and Lewis and Vasishth (2005) for details.

The Dotlacil (2021) implementation of ACT-R activation is the only
representative we consider from an extensive theoretical and empirical
literature on cue-based retrieval models of sentence processing (McElree
et al., 2003; Van Dyke and Lewis, 2003; Lewis et al., 2006; Van Dyke and
McElree, 2011; Van Dyke and Johns, 2012; Vasishth et al., 2019; Liss6n
etal, 2021), because of the lack of broad-coverage software implementa-
tion of these other models that would permit application to our natural-
istic language stimuli.

Left corner predictors

Another line of research (Johnson-Laird, 1983; Resnik, 1992; van
Schijndel et al,, 2013; Rasmussen and Schuler, 2018) frames incremental
sentence comprehension as left corner parsing (Rosenkrantz and Lewis,
1970) under a pushdown store implementation of working memory.
Under this view, incomplete derivation fragments representing the
hypothesized structure of the sentence are assembled word by word,
with working memory required to (1) push new derivation fragments to
the store, (2) retrieve and compose derivation fragments from the store,
and (3) maintain incomplete derivation fragments in the store. For a
detailed presentation of a recent instantiation of this framework, see
Rasmussen and Schuler (2018). In principle, costs could be associated
with any of the parse operations computed by left corner models, as well
as (1) with DLT-like notions of storage (maintenance of multiple deriva-
tion fragments in the store) and (2) with ACT-R-like notions of retrieval
and reactivation, since items in memory (corresponding to specific deri-
vation fragments) are incrementally retrieved and updated. Unlike ACT-
R, left corner frameworks do not necessarily enforce activation decay
over time, and they do not inherently specify expected processing costs.
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Full description of left corner parsing models of sentence compre-
hension is beyond the scope of this presentation (See e.g., Rasmussen
and Schuler, 2018; Oh et al., 2021), which is restricted to the minimum
details needed to define the predictors covered here. At a high level,
phrasal structure derives from a sequence of lexical match (£L) and
grammatical match (*G) decisions made at each word (for relations to
equivalent terms in the prior parsing literature, see Oh et al., 2021). In
terms of memory structures, the lexical decision depends on whether a
new element (representing the current word and its hypothesized part
of speech) matches current expectations about the upcoming syntactic
category; if so, it is composed with the derivation at the front of the
memory store (+1), and, if not, it is pushed to the store as a new derivation
fragment (-L). Following the lexical decision, the grammatical decision
depends on whether the two items at the front of the store can be com-
posed (+G) or not (-G). In terms of phrasal structures, lexical matches
index the ends of multiword constituents (+L at the end of a multiword
constituent, -L otherwise), and grammatical match decisions index the
ends of left-child (center-embedded) constituents (+G at the end of a left
child, -G otherwise). These composition operations (+L and +G) instan-
tiate the notion of syntactic integration as envisioned by, for example, the
DLT, since structures are retrieved from memory and updated by these
operations. They each may thus plausibly contribute a memory cost (Shain
etal,, 2016), leading to the following left corner predictors.

End of constituent (+L). This is an indicator for whether a word ter-
minates a multiword constituent (i.e. whether the parser generates a lexi-
cal match).

End of center embedding (+G). This is an indicator for whether a
word terminates a center embedding (left child) of one or more words (
i.e. whether the parser generates a grammatical match).

End of multiword center embedding (+L, +G). This is an indicator
for whether a word terminates a multiword center embedding (i.e. whether
the parser generates both a lexical match and a grammatical match).

In addition, the difficulty of retrieval operations could in principle be
modulated by locality, possibly because of activation decay and/or inter-
ference, as argued by Lewis and Vasishth (2005). To account for this pos-
sibility, this study also explores distance-based left corner predictors.

Length of constituent (+L). This encodes the distance from the most
recent retrieval (including creation) of the derivation fragment at the
front of the store when a word terminates a multiword constituent (oth-
erwise, 0).

Length of multiword center embedding (+L, +G). This encodes the
distance from the most recent retrieval (including creation) of the deri-
vation fragment at the front of the store when a word terminates a multi-
word center embedding (otherwise, 0).

The notion of distance must be defined, and three definitions are
explored here. One simply counts the number of words [word distance
(WD)]. However, this complicates comparison with the DLT, which
then differs not only in its conception of memory usage (constructing
dependencies vs retrieving/updating derivations in a pushdown store),
but also in its notion of locality (the DLT defines locality in terms of
nouns and finite verbs, rather than words). To enable direct comparison,
DLT-like distance metrics are also used in the above left corner locality-
based predictors—in particular, both using the original DLT definition
of DRs, as well as the modified variant +V that reweights finite and non-
finite verbs (DRV). All three distance variants are explored for both dis-
tance-based left corner predictors.

Note that these left corner distance metrics more closely approximate
ACT-R retrieval cost than DLT integration cost, because, as stressed by
Lewis and Vasishth (2005), decay in ACT-R is determined by the
recency with which an item in memory was previously activated, rather
than overall dependency length. Left corner predictors can therefore be
used to test one of the motivating insights of the ACT-R framework: the
influence of reactivation on retrieval difficulty.

Note also that because the parser incrementally constructs expected
dependencies between as-yet incomplete syntactic representations, at
most two retrievals are cued per word (up to one for each of the lexical
and grammatical decisions), no matter how many dependencies the
word participates in. This property makes left corner parsing a highly
efficient form of incremental processing, a feature that has been
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argued to support its psychological plausibility (Johnson-Laird, 1983;
van Schijndel et al., 2013; Rasmussen and Schuler, 2018).

The aforementioned left corner predictors instantiate a notion of re-
trieval cost, but the left corner approach additionally supports measures
of storage cost. In particular, the number of incomplete derivation frag-
ments that must be held in memory (similar to the number of incom-
plete dependencies in DLT storage cost) can be read off the store depth
of the parser state.

Embedding depth. Embedding depth is the number of incomplete
derivation fragments left on the store once a word has been processed.

This study additionally considers the possibility that pushing a new
fragment to the store may incur a cost.

Start of embedding (-L-G). This is an indicator for whether embed-
ding depth increased from one word to the next.

As with retrieval-based predictors, the primary difference between
left corner embedding depth and DLT storage cost is the efficiency with
which the memory store is used by the parser. Because expected depend-
encies between incomplete syntactic derivations are constructed as soon
as possible, a word can contribute at most one additional item to be
maintained in memory (vis-a-vis DLT storage cost, which can in princi-
ple increase arbitrarily at words that introduce multiple incomplete
dependencies). As mentioned above, ACT-R does not posit storage costs
at all, and thus the investigation of such costs potentially stands to
empirically differentiate ACT-R from DLT/left corner accounts.

Model design

Following Shain et al. (2020), we use CDR (Shain and Schuler, 2018,
2021) to infer the shape of the HRF from data (Boynton et al., 1996;
Handwerker et al., 2004). We assumed the following two-parameter
HRF kernel based on the widely used double-gamma canonical HRF
(Lindquist et al., 2009):
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where parameters « and S are fitted using black box variational
Bayesian inference. Model implementation follows Shain et al. (2020),
except in replacing improper uniform priors with normal priors, which
have since been shown empirically to produce more reliable estimates of
uncertainty (Shain and Schuler, 2021). Variational priors follow Shain
and Schuler (2018).

The following CDR model specification was fitted to responses
from each of the LANG and MD fROIs, where italics indicates
predictors convolved using the fitted HRF and bold indicates pre-
dictors that were ablated for hypothesis tests, as follows: BOLD ~
TRNumber + Rate + SoundPower + EndOfSentence + PauseDuration +
Frequency + 5gramSurp + PCFGSurp + AdaptiveSurp + Predl + ... +
PredN + (TRNumber + Rate + SoundPower + EndOfSentence +
PauseDuration + Frequency + 5gramSurp + PCFGSurp + AdaptiveSurp +
Predl + ... + PredN | fROI) + (1 | Participant).

In other words, models contain a linear coefficient for the index of
the TR in the experiment, convolutions of the remaining predictors with
the fitted HRF, by-fROI random variation in effect size and shape, and
by-participant random variation in base response level. This model is
used to test for significant effects of one or more critical predictors
Pred], ..., PredN in each of the LANG and MD networks. To test for sig-
nificant differences between LANG and MD in the effect sizes of critical
predictors Pred], ..., PredN, we additionally fitted the following model
to the combined responses from both LANG and MD, as follows:
BOLD ~ TRNumber + Rate + SoundPower + EndOfSentence +
PauseDuration +  Frequency + 5gramSurp + PCFGSurp +
AdaptiveSurp + Predl + ... + PredN + TRNumber:Network + Rate:
Network + SoundPower:Network + EndOfSentence:Network +
PauseDuration:Network + Frequency:Network + 5gramSurp:Network +
PCFGSurp:Network + AdaptiveSurp:Network + PredI:Network + .. +
PredN:Network + (1 | fROI) + (1 | Participant).

By-fROI random effects are simplified from the individual network
models to improve model identifiability (Shain et al., 2020).
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Ablative statistical testing

Following the study by Shain et al. (2020), we partition the fMRI data
into training and evaluation sets by cycling TR numbers e into different
bins of the partition with a different phase for each subject u:

partition(e; u) = \‘e;;)u

JmodZ

assigning output 0 to the training set and 1 to the evaluation set. Model
quality is quantified as the Pearson sample correlation, henceforth r,
between model predictions on a dataset (training or evaluation) and
the true response. Fixed effects are tested by paired permutation test
(Demsar, 2006) of the difference in correlation (rg;) that equals rg,y —
Tablated» Where rgy is the 7 of a model containing the fixed effect of inter-
est, while rp1areq is the 7 of a model lacking it. Paired permutation test-
ing requires an elementwise performance metric that can be permuted
between the two models, whereas Pearson correlation is a global metric
that applies to the entire prediction-response matrix. To address this,
we exploit the fact that the sample correlation can be converted to an
elementwise performance statistic as long as both variables are standar-
dized (i.e., have sample mean 0 and sample SD 1):

1 NCV/x X\ T 1
X,Y) = E = E I
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As aresult, an elementwise performance metric can be derived as the
elements of a Hadamard product between independently standardized
prediction and response vectors. These products are then permuted in
the usual way, using 10,000 resampling iterations. Each test involves a
single ablated fixed effect, retaining all random effects in all models.

Exploratory and generalization analyses

Exploratory study is needed for the present general question about the na-
ture of WM-dependent operations that support sentence comprehension
because multiple broad-coverage theories of WM have been proposed in
language processing, as discussed above, each making different predictions
and/or compatible with multiple implementation variants, ruling out a sin-
gle theory-neutral measure of word-by-word WM load. In addition, as dis-
cussed in the Introduction, prior naturalistic investigations of WM have
yielded mixed results, motivating the use of a broad net to find WM meas-
ures that correlate with human processing difficulty. Exploratory analysis
can therefore illuminate both the existence and kind of WM operations
involved in human language comprehension.

However, exploring a broad space of predictors increases the false-posi-
tive rate, and thus the likelihood of spurious findings. To avoid this issue
and enable testing of patterns discovered by exploratory analyses, we divide
the analysis into exploratory (in-sample) and generalization (out-of-sample)
phases. In the exploratory phase, single ablations are fitted to the training set
for each critical variable (i.e., a model with a fixed effect for the variable and
a model without one) and evaluated via in-sample permutation testing on
the training set. This provides a significance test for the contribution of each
individual variable to 74 in the training set. This metric is used to select
models from broad “families” of predictors for generalization-based testing,
where the members of each family constitute implementation variants of
the same underlying idea: DLT integration cost [DLT-(V)(C)(M)]; DLT
storage cost (DLT-S); ACT-R target activation; left corner end of constituent
(+1L, plus length-weight variants +1-WD, +LDR, and +1L-DRV); left cor-
ner end of center embedding (+G); left corner end of multiword center
embedding (+L+G, plus length-weigted variants +L+G-WD, +L+G-
DR, and +L+G-DRV); and left corner embedding depth (Embedding
depth and Start of embedding).

Families are selected for generalization-based testing if they contain
at least one member (1) whose effect estimate goes in the expected direc-
tion and (2) which is statistically significant following Bonferroni’s cor-
rection on the training set. For families with multiple such members,
only the best variant (in terms of exploratory r4) is selected for general-
ization-based testing. To perform the generalization tests, all predictors
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Figure 3. A, (, The aitical working memory result (A), with reference estimates for surprisal variables and other controls shown in €. The LANG network shows a large positive estimate for integration
cost (DLT-VCM, comparable to or larger than the surprisal effect) and a weak positive estimate for storage (DLT-S). The MD network estimates for both variables are weakly negative. fROls individually rep-
licate the critical DLT pattem and are plotted as points left-to-right in the following order (individual subplots by fROI are available on OSF: https:/osf.io/ah429/): LANG: LIFGorb, LIFG, LMFG, LAntTemp,
LPostTemp, LAngG; MD: LMFGorb, LMFG, LSFG, LIFGop, LPrecG, LmPFC, Linsula, LAntPar, LMidPar, LPostPar, RMFGorb, RMFG, RSFG, RIFGop, RPrecG, RmPFC, Rinsula, RAntPar, RMidPar, and RpostPar
(where L is left, R is right). (Note that estimates for the surprisal controls differ from those reported in the study by Shain et al. (2020). This is because models contain additional controls, especially adapt-
ive surprisal, which overlaps with both of the other surprisal estimates and competes with them for variance. Surprisal effects are not tested because they are not relevant to our core dlaim.) Error bars
show 95% Monte Carlo estimated variational Bayesian credible intervals. For reference, the group masks bounding the extent of the LANG and MD fROls are shown projected onto the cortical surface. As
explained in Materials and Methods, a small subset (10%) of voxels within each of these masks is selected in each participant based on the relevant localizer contrast. B, Schematic of analysis pipeline.
fMRI data from the Study by Shain et al. (2020) are partitioned into training and generalization sets. The training set is used to train multiple CDR models, two for each of the memory variables explored
in this study (a full model that contains the variable as a fixed effect and an ablated model that lacks it). Variables whose full model (1) contains estimates that go in the prediicted direction and (2) signif-
icantly outperforms the ablated model on the training set are selected for the critical evaluation, which deploys the pretrained models to predict unseen responses in the generalization set and statistically
evaluates the contribution of the selected variable to generalization performance.

selected for generalization set evaluation are included as fixed effects in a
model fitted to the training set, and all nested ablations of these predictors
are also fitted to the same set. Fitted models are then used to generate pre-

The DLT predictors are broadly descriptive of language net-
work activity: six of eight integration cost predictors and the
DLT-S predictor yield both large significant increases in rg;¢ and

dictions on the (unseen) evaluation set, using permutation testing to evalu-
ate each ablative comparison in terms of out-of-sample rg This analysis
pipeline is schematized in Figure 3B.

Data availability

Data used in these analyses, including regressors, are available on OSF:
https://osf.io/ah429/. Regressors were generated using the ModelBlocks
repository: https://github.com/modelblocks/modelblocks-release. Code
for reproducing the CDR regression analyses is public: https://github.com/
coryshain/cdr. These experiments were not preregistered.

Results

Exploratory phase: do WM predictors explain LANG or MD
network activity in the training set?

Effect estimates and in-sample significance tests from the explor-
atory analysis of each functional network are given in Table 1
(LANG) and Table 2 (MD).

comparatively large overall correlation with the true training
response g, The strongest variant of DLT integration cost is
DLT-VCM. Although the log-transformed raw DLT predictor
provides substantially stronger fit than DLT on its own, consist-
ent with the hypothesis that the DLT overestimates the cost of
long dependencies, it is still weaker than most of the other DLT
variants, suggesting that these variants are not improving fit
merely by discounting the cost of long dependencies. None of
the other families of WM predictors is clearly associated with
language network activity.

No predictor is significant in MD with the expected sign.
Two variants of DLT integration cost (DLT-M and DLT-VCM)
are significant but have a negative sign, indicating that BOLD
signal in MD decreases proportionally to integration difficulty.
This outcome is not consistent with the empirical predictions of the
hypothesis that MD supports WM for language comprehension,
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Table 1. LANG Exploratory results
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Variable Mean 2.5% 97.5% I3blated Tl Taife p

DLT 0.085 0.073 0.096 0.1325 0.1334 0.0010 0.0318
DLT (log) 0.144 0.136 0.153 0.1323 0.1346 0.0024 0.0005
DLT-V 0.094 0.083 0.105 0.1326 0.1337 0.001 0.0173
DLT-C 0.190 0.179 0.200 0.1324 0.1370 0.0046 0.0001
DLT-M 0.139 0.129 0.148 0.1329 0.1356 0.0027 0.0003
DLT-VC 0.239 0.228 0.250 0.1326 0.1386 0.0060 0.0001
DLT-VM 0.154 0.144 0.165 0.1329 0.1360 0.0031 0.0001
DLT-CM 0.231 0.221 0.242 0.1330 0.1402 0.0072 0.0001
DLT-VC(M 0.267 0.256 0.277 0.1333 0.1417 0.0084 0.0001
DLT-S 0.065 0.061 0.068 0.1328 0.1352 0.0024 0.0001
ACT-R target activation 0.007 0.003 0.010 0.1330 0.1331 0.0000 0.7025
End of constituent —0.061 —0.072 —0.051 0.1324 0.1326 0.0002 0.2850
Length of constituent (WD) —0.076 —0.092 —0.059 0.1329 0.1333 0.0004 0.1430
Length of constituent (DR) 0.069 0.054 0.085 0.1324 0.1327 0.0003 0.2541
Length of constituent (DRV) 0.042 0.026 0.056 0.1326 0.1327 0.0001 0.6763
End of center embedding 0.137 0.134 0.141 0.1326 0.1338 0.0013 0.0206
End of multiword center embedding 0.026 0.013 0.038 0.1328 0.1328 0.0001 0.6458
Length of multiword center embedding (WD) —0.042 —0.060 —0.026 0.1343 0.1345 0.0002 0.2484
Length of multiword center embedding (DR) —0.015 —0.032 0.003 0.1332 0.1332 0.0000 0.6133
Length of multiword center embedding (DRV) —0.039 —0.056 —0.022 0.1334 0.1337 0.0002 0.2306
Embedding depth —0.035 —0.037 —0.032 0.1347 0.1355 0.0008 0.0293
Start of embedding —0.118 —0.130 —0.106 0.1329 0.1335 0.0006 0.2979

V, , and M suffixes denote the use of verb, coordination, and/or preceding modifier modifications to the original definition of DLT integration cost. Effect estimates with 95% credible intervals, correlation levels of full and
ablated models on the training set, and significance by paired permutation test of the improvement in training set correlation are shown. Families of predictors are delineated by black horizontal lines. Variables that have the
expected sign and are significant under 22-way Bonferroni’s correction are shown in bold (note that the expected sign of ACT-R target activation is negative, since processing costs should be lower for more activated targets).

14 is the difference in Pearson correlation between true and predicted responses from a model containing a fixed effect for the linguistic variable (ry) to a model without one (Fpjatea)-

Table 2. MD Exploratory results

Variable Mean 2.5% 97.5% Isblated Tl Life p

DLT 0.003 —0.003 0.009 0.0812 0.0812 0.0000 0.9851
DLT (log) —0.038 —0.043 —0.034 0.0819 0.0823 0.0003 0.0742
DLT-V —0.001 —0.007 0.005 0.0810 0.0809 0.0000 1.0000
DLT-C —0.042 —0.047 —0.037 0.0814 0.0820 0.0006 0.0122
DLT-M —0.017 —0.022 —0.012 0.0818 0.0819 0.0001 0.5709
DLT-VC —0.047 —0.052 —0.043 0.0810 0.0815 0.0006 0.0156
DLT-VM —0.025 —0.030 —0.020 0.0813 0.0815 0.0002 0.3473
DLT-CM —0.059 —0.063 —0.054 0.0819 0.0829 0.00M 0.0010
DLT-VCM —0.062 —0.067 —0.058 0.0813 0.0824 0.0011 0.0012
DLT-S —0.034 —0.036 —0.032 0.0817 0.0828 0.0011 0.0026
ACT-R target activation 0.020 0.019 0.022 0.0817 0.0825 0.0008 0.0047
End of constituent 0.032 0.027 0.037 0.0811 0.0811 0.0000 0.8994
Length of constituent (WD) 0.115 0.107 0.124 0.0813 0.0821 0.0008 0.0460
Length of constituent (DR) 0.051 0.043 0.059 0.0809 0.0812 0.0003 0.2344
Length of constituent (DRV) 0.075 0.067 0.082 0.0812 0.0816 0.0004 0.1388
End of center embedding 0.022 0.020 0.024 0.0818 0.0819 0.0001 0.5319
End of multiword center embedding 0.065 0.059 0.070 0.0810 0.0816 0.0005 0.0589
Length of multiword center embedding (WD) 0.009 0.003 0.015 0.0811 0.0811 0.0000 0.6645
Length of multiword center embedding (DR) 0.026 0.018 0.033 0.0813 0.0815 0.0002 0.2171
Length of multiword center embedding (DRV) 0.013 0.005 0.021 0.0810 0.0810 0.0000 0.6798
Embedding depth 0.005 0.004 0.006 0.0814 0.0814 0.0000 0.8179
Start of embedding 0.060 0.054 0.065 0.0811 0.0813 0.0002 0.4439

V, , and M suffixes denote the use of verb, coordination, and/or preceding modifier modifications to the original definition of DLT integration cost. Effect estimates with 95% credible intervals, correlation levels of full and
ablated models on the training set, and significance by paired permutation test of the improvement in training set correlation are shown. Families of predictors are delineated by horizontal lines. No variable both (1) has the
expected sign (note that the expected sign of ACT-R target activation is negative, since processing costs should be lower for more activated targets) and (2) is significant under 22-way Bonferronis correction. ry is the differ-

ence in Pearson correlation between true and predicted responses from a model containing a fixed effect for the linguistic variable (rs,) to a model without one (£zpjateq)-

though it is possibly instead consistent with “vascular steal” (Lee et
al,, 1995; Harel et al., 2002) and/or inhibition (Shmuel et al., 2006)
driven by WM load in other brain regions (e.g., LANG).

In follow-up analyses, we addressed possible influences of
using the flipped language localizer contrast (nonwords > sen-
tences) to define the MD network by instead localizing MD using
a hard > easy contrast in a spatial WM task (Fedorenko et al,,

2013). Results were unchanged: no predictor has a significant
effect in the expected direction (see OSF for details: https://osf.
io/ah429/).

These exploratory results have several implications. First, they
support the existence of syntactically related WM load in the lan-
guage network during naturalistic sentence comprehension.
Second, they present a serious challenge to the hypothesis that
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WM for language relies primarily on the MD network—the most
likely domain-general WM resource: despite casting a broad net
over theoretically motivated WM measures and performing the
testing in-sample, the MD network does not show systematic
correlates of WM demand.

Based on these results, DLT-VCM and DLT-S are selected for
evaluation on the (held-out) generalization set, to ensure that the
reported patterns generalize. Models containing/ablating both
predictors are fitted to the training set, and their contribution to
r measures in the generalization set is used for evaluation and
significance testing. Because the MD network does not register
any clear signatures of WM effects, further generalization-based
testing is unwarranted. MD models with the same structure as
the full LANG network models are fitted simply to provide a
direct comparison between estimates in the LANG versus MD
networks.

These results also suggest that implementation variants
in models of WM may influence alignment with measures
of human language processing load: certain variants of the
DLT are numerically stronger predictors of language net-
work activity than the DLT as originally formulated, ACT-R
theory, or left-corner parsing theory. This outcome war-
rants further investigation because, although the DLT does
not commit to a parsing algorithm (Gibson, 2000), algorith-
mic-level theories like ACT-R and left corner parsing make
empirical predictions that are in aggregate similar to those
of the DLT (Lewis and Vasishth, 2005), and yet they are not
in evidence (beyond surprisal) in human neuronal time-
courses, at least not in brain regions identified by either of
the independently validated MD localizer contrasts that we
considered (nonwords > sentences and hard > easy spatial
working memory). This result raises three key questions for
future research. (1) Are the gains from DLT integration cost
and its variants significant over other theoretical models of
WM in sentence processing? If so, (2) which aspects of the
DLT (e.g., linear effects of dependency locality, a privileged
status for nouns and verbs) give rise to those gains, and (3)
how might the critical constructs be incorporated into algo-
rithmic level sentence processing models to enable them to
capture those gains?

Generalization phase
Do WM predictors explain neural activity in the generalization
set?
Effect sizes (HRF integrals) by predictor in each network from
the full model are plotted in Figure 3A. As shown, the DLT-
VCM effect is strongly positive and the DLT-S effect is weakly
positive in LANG, but both effects are slightly negative in MD.
The critical generalization (out-of-sample) analyses of DLT
effects in the language network are given in Table 3. As shown,
the integration cost predictor (DLT-VCM) contributes signifi-
cantly to generalization 4y both on its own and over the DLT-S
predictor. Storage cost effects are significant in isolation (DLT-S
is significant over “neither”) but fail to improve statistically on
integration cost (DLT-S is not significant over DLT-VCM).
Generalization-based tests of interactions of each of these predic-
tors with network (a test of whether the LANG network exhibits
a larger effect than the MD network) are significant for all com-
parisons, supporting a larger effect of each variable in the LANG
network. In summary, the evidence from this study for DLT inte-
gration cost is strong, whereas the evidence for DLT storage cost
is weaker (storage cost estimates are (1) positive, (2) significant
by in-sample test, and (3) significantly larger by generalization-
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Table 3. Critical comparison

LANG (p) Interaction with network (p)
DLT-VCM over neither 0.0007*** 0.0007***
DLT-S over neither 0.0033*** 0.0013**
DLT-VCM over DLT-S 0.0007%** 0.0001***
DLT-S over DLT-VCM 0.3301 0.0007***

The p values that are significant under eight-way Bonferroni’s correction (because eight comparisons are
tested) are shown in bold. For the LANG network [LANG (p) column], integration cost (DLT-VCM) significantly
improves network generalization rys both alone and over DLT-S, whereas DLT-S only contributes significantly
to generalization rgy in the absence of the DLT-VCM predictor (significant over “neither” but not over DLT-
VCM). For the combined models [interaction with network (p) column], the interaction of each variable with
network significantly contributes to generalization ryg in all comparisons, supporting a significantly larger
effect of both variables in the language network than in the MD network.

Table 4. Correlation r of full model predictions with the true response com-
pared with a ceiling measure correlating the true response with the mean
response of all other participants for a particular story/fROI

LANG MD

Combined

r-Absolute r-Relative r-Absolute r-Relative r-Absolute r-Relative

Ceiling 0.221 1.0 0.116 1.0 0.152 1.0
Mode! (train) 0.143 0.647 0.085 0.733  0.083 0.546
Model (evaluation) 0.086 0.389 —0.003  —0.026 0.048 0.316

The “r-Absolute” columns show absolute percent variance explained, while “r-Relative” columns show the ra-
tio of r-absolute to the ceiling.

based tests than storage costs in MDj; however, they do not pass
the critical generalization-based test of difference from 0 in the
presence of integration costs, and the existence of distinct storage
costs is therefore not clearly supported by these results).

Thus, whatever storage costs may exist, they appear to be con-
siderably fainter than integration costs (smaller effects, weaker
and less consistent improvements to fit), and a higher-powered
study may be needed to tease the two types of costs apart con-
vincingly (or to reject the distinction). In this way, our study
reflects a fairly mixed literature on storage costs in sentence
processing, with some studies reporting effects (King and Kutas,
1995; Fiebach et al., 2002; Chen et al., 2005; Ristic et al., 2022)
and others failing to find any (Hakes et al., 1976; Van Dyke and
Lewis, 2003).

How well do models perform relative to ceiling?

Table 4 shows correlations between model predictions and
true responses by network in both halves of the partition
(training and evaluation), relative to a “ceiling” estimate of
stimulus-driven correlation, computed as the correlation
between (1) the responses in each region of each participant
at each story exposure and (2) the average response of all
other participants in that region, for that story. Consistent
with prior studies (Blank and Fedorenko, 2017), the LANG
network exhibits stronger language-driven synchronization
across participants than the MD network (higher ceiling cor-
relation). Our models also explain a greater share of that cor-
relation in LANG versus MD, especially on the out-of-
sample evaluation set (39% relative correlation for LANG vs
3% relative anticorrelation for MD).

Are WM effects localized to a hub (or hubs) within the LANG
network?

Estimates also show a spatially distributed positive effect of
DLT integration cost across the regions of the LANG net-
work (Fig. 3A, gray points) that systematically improves gen-
eralization quality (Table 5), significantly so in inferior
frontal and temporal regions. This pattern indicates that all
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Table 5. Unique contributions of fixed effects for each of integration cost
(DLT-VCM) and DLT-S to out-of-sample correlation improvement rg; by lan-
guage fROI (relative to ceiling performance in LANG of 0.221)

fROI Network DLT-VCM ry;¢; relative DLT-S rgi relative
IFGorb LANG 0.038*** 0.003
IFG LANG 0.027* —0.003
MFG LANG 0.019 —0.003
AntTemp LANG 0.062*** 0.006
PostTemp LANG 0.027* 0.006
AngG LANG 0.002 —0.001

DLT-VCM improves correlation with the true response in all (six of six) LANG regions, but DLT-S improves
correlation with the true response in only three of six LANG regions. Significance derived from an uncor-
rected paired permutation test of r for each critical WM predictor within each fROI is shown by asterisks.
*p < 0.05, **p < 0.01, ***p < 0.001.

Table 6. Unique contributions of random effects by fROI for the WM predictors
DLT-VCM and DLT-S to out-of-sample correlation improvement ry¢ by fROI (rel-
ative to ceiling performance in LANG of 0.221)

fROI Network Iirr-relative
IFGorb LANG 0.012*
IFG LANG 0.012*
MFG LANG 0.008
AntTemp LANG 0.001
PostTemp LANG 0.006
AngG LANG —0.006

All regions but the AngG fROI show a numerical improvement, reaching significance in the inferior frontal
fROIs. Significance derived from an uncorrected paired permutation test of ryg for each critical WM predictor
within each fROI is shown by asterisks.
*p < 0.05, **p < 0.01, ***p < 0.001.

LANG fROIs are implicated to some extent in the processing
costs associated with the DLT, rather than being focally re-
stricted to one or two “syntax” regions. Storage cost effects
are less clear: although numerically positive DLT-S estimates
are found in all language regions (Fig. 3A), they do not sys-
tematically improve generalization quality (Table 5). No
such pattern holds in MD: regional effects of both DLT varia-
bles cluster around 0 (Fig. 3A, gray points), and the sign of
Tqier ACross regions is approximately at chance. These results
converge to support strong, spatially distributed sensitivity
in the language-selective network to WM retrieval difficulty.
Having shown evidence that WM demand is distributed
throughout the language network, we asked whether different
regions show these effects to different degrees. To do so, we fit
a variant of the main model (a “fixed WM-only” model) differ-
ing only in that it lacks by-fROI random effects for the WM
predictors DLT-VCM and DLT-S, enforcing the null hypothe-
sis of identical WM effects across regions. This null model fits
the test set significantly less well than the main model (rg
relative = 0.008, p = 0.001), supporting the existence of quantita-
tive differences in WM effects among the regions of the lan-
guage network. The population effect of DLT-VCM is slightly
smaller numerically in the fixed WM-only model (0.227 vs
0.245), likely reduced by the AngG fROI, which showed a
smaller effect in the main model. To probe which regions pri-
marily contribute to the gains of the main model over the fixed
WM-only model (and therefore benefit most from allowing
WM effects to vary by region), we assessed the difference in
performance between the main model and the fixed WM-only
model by fROI. This analysis shows which regions benefit most
from relaxing the assumption of a uniform WM effect across
fROIs (Table 6). The largest improvements are found in the in-
ferior frontal fROIs, which also show the largest DLT-VCM
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effect sizes (Fig. 3A). Thus, although all language regions
appear to participate in WM operations for syntactic structure
building, they do so to different degrees, with the largest effects
appearing in inferior frontal areas.

Are WM effects driven by item-level confounds?

Because the data partition of the study by Shain et al. (2020) dis-
tributes materials across the training and evaluation sets, it is
possible that item-level confounds may have affected our results
in ways that generalize to the test set. To address this possibility,
in a follow-up analysis we repartition the data so that the training
and generalization sets are approximately equal in size but
contain nonoverlapping materials, and we rerun the critical
analyses above. The result is unchanged: DLT-VCM and DLT-S
estimates are positive with similar magnitudes to those reported
in Figure 3A; DLT-VCM contributes significantly both on its
own (p < 0.001) and in the presence of DLT-S (p < 0.001); and
DLT-S contributes significantly in isolation (p < 0.004) but fails
to contribute over DLT-VCM, even numerically (p=1.0). The
evidence from both analyses is consistent: WM retrieval difficulty
registers in the language network, with little effect in the multi-
ple-demand network. Effect estimates from this reanalysis are
consistent with those in Figure 3 and are available on OSEF:

https://osf.io/ah429/.

Are WM effects driven by passage-level influences on word
prediction?

Although the three predictors in our surprisal baseline insure
against the possibility that WM effects in the LANG network are
driven by sentence-internal patterns of word predictability, all
three measures (5-gram surprisal, PCFG surprisal, and adaptive
surprisal) are constrained to make predictions based solely on
preceding information within the same sentence. What if these
controls underestimate the role of extrasentential influences
on word predictability (i.e., from preceding sentences in the
same passage)? Adaptive surprisal partially mitigates this con-
cern because the predictive model adapts to the local statistics
of the passage after each sentence, although the prediction
itself can only access intrasentential context. However, recent
large-scale language models based on the Transformer archi-
tecture (Vaswani et al.,, 2017), especially the GPT-2 network
(Radford et al., 2019), directly consider entire preceding pas-
sages in making next-word predictions and have been shown
to correlate strongly with human sentence processing, both in
their representational similarity to human brains (Schrimpf et
al., 2021; Goldstein et al., 2022) and in the correlation between
model-generated surprisal and measures of human compre-
hension difficulty (Wilcox et al., 2020). We therefore conduct
a follow-up analysis in which we control for passage-level
effects on word predictability by adding surprisal measures
derived from GPT-2-XL (Radford et al., 2019) to our existing
set of control variables and rerunning our critical confirmatory
analyses on responses from the language network. GPT-2-XL is a
48-layer 1.5 billion-parameter decoder-only autoregressive trans-
former neural network model, which uses a byte-pair encoding
tokenization (Sennrich et al., 2016) to represent unknown words as
sequences of subword character sequences. GPT-2 bases its deci-
sions on a context window of 1024 preceding words. In cases where
the article length exceeded the length of the context window, the
last 512 words of the previous context window were used as the first
512 words of the subsequent context window. Inclusion of GPT-2-
XL surprisal has little effect on the estimated overall change in
BOLD associated with an SD increase in integration cost (from
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0.245 without GPT-2-XL surprisal in the baseline to 0.233 with it)
and storage cost (from 0.035 without GPT-2-XL surprisal in the
baseline to 0.057 with it), and our critical finding is unchanged: inte-
gration cost contributes significantly to model fit to the unseen test
set, both over the baseline (p < 0.001) and over the baseline with an
additional fixed effect for storage cost (p < 0.001). Given that our
main finding holds in the presence of surprisal from a state-of-the-
art passage-level transformer language model, it is unlikely that pas-
sage-level influences on word predictability explain the patterns we
have attributed to WM demand.

Interestingly, we also found that storage costs are significant
in the language network when GPT-2-XL surprisal is controlled
for, both over the baseline (p < 0.001) and over the baseline with
an additional fixed effect for integration cost (p < 0.002). Given
that this pattern only emerged in follow-up analyses and did not
hold in our main comparison, we draw no conclusion about the
existence of storage costs and simply reiterate that our ensemble
of results suggests that, should any such costs exist, their effect is
considerably smaller than that of integration/retrieval costs (Fig.
3A), with inconsistent findings on whether they can be dissoci-
ated from integration costs.

Constraining the space of possible domain-general WM involve-
ment in language comprehension

We have shown that the MD network shows no significant
increase in activation in response to theory-driven estimates of
WM demand for language processing and has a significantly
weaker response to these measures than the LANG network in
direct comparisons.

Notwithstanding, there are two possibilities that our present
design cannot rule out: (1) that WM for language is imple-
mented—in addition to the LANG network—by domain-general
WM regions that are nonoverlapping with the MD network as
we have defined it; and (2) that WM for language is implemented
primarily in the language regions but also has a faint signature in
the domain-general MD regions that we lack the power to detect.
We consider possibility 1 to be implausible and possibility 2 to
be of little consequence. Regarding possibility 1, the weight of
prior evidence that the MD network primarily supports domain-
general WM (see Materials and Methods) renders it highly likely
that any putatively domain-general WM resources used for lan-
guage comprehension will overlap substantially with the MD net-
work. Although brain areas outside of the MD network have been
associated with WM, including within the thalamus (Rottschy et
al., 2012), basal ganglia (Emch et al., 2019), hippocampus (Olson
et al., 2006), and cerebellum (Rottschy et al., 2012), these areas are
less consistently identified in meta-analyses than the core MD
areas, and their functional role in WM is debated (for the discus-
sions of the role of the hippocampus in WM, see Baddeley and
Warrington, 1970; Nadel and MacDonald, 1980; Shrager et al.,
2008; Baddeley et al.,, 2010, 2011; Jeneson et al., 2010). We see no
clear reason to expect domain-general WM during language com-
prehension (unlike most other domains in which WM has been
studied) to fall primarily in areas like these, rather than the MD
network.

Regarding B, our current testing protocol cannot provide evi-
dence against (only fail to find evidence for) any MD involve-
ment in WM for language. However, our results indicate that
any such effects are so small (relative to the effects in the LANG
network) as to be of no practical interest. The by-fROI WM
effects in the MD network cluster tightly around 0, and the over-
all MD network effect for both WM variables is numerically neg-
ative, in stark contrast to the tightly clustered positive WM
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effects in the LANG network (Fig. 3A). Our large-scale (by fMRI
standards) study (78 participants) is adequately powered to
soundly reject the null hypothesis when applied to the language
network (***p < 0.0001). Thus, if there is any WM burden shar-
ing between the LANG and MD networks, the MD network con-
tribution is tiny and is inadequate to rescue the hypothesis of
primarily domain-general WM for language.

Discussion

The centrality of word-by-word structure-building operations in
WM during language processing has been challenged by argu-
ments that human language processing may be mostly approxi-
mate and shallow, especially in naturalistic settings (Frank and
Bod, 2011), and that the main driver of language processing costs
may be surprisal rather than WM demand (Levy, 2008). In this
study, we analyzed a large publicly available dataset of fMRI
responses to naturalistic stories (Shain et al., 2020) with respect to
diverse theory-driven estimates of syntactically modulated WM
demand (Gibson, 2000; Lewis and Vasishth, 2005; Rasmussen and
Schuler, 2018) under rigorous controls for word predictability
(Heafield et al., 2013; van Schijndel et al., 2013; van Schijndel and
Linzen, 2018; Radford et al., 2019).

We additionally addressed a related debate about the domain
specificity of WM resources for language. Some have argued that
language processing relies primarily on a domain-general work-
ing memory resource (Wanner and Maratsos, 1978; King and
Just, 1991; Just and Carpenter, 1992). This view draws support
from evidence that individual differences in nonlinguistic WM
capacity modulate linguistic processing (King and Just, 1991;
Prat and Just, 2011; Slevc, 2011; Meyer et al., 2013; Payne et al,,
2014; Nicenboim et al.,, 2015, 2016; but see Federmeier et al.,
2020), from dual-task experiments supporting a shared pool of
linguistic and nonlinguistic WM resources (Gordon et al., 2002;
Fedorenko et al., 2006, 2007; Van Dyke and McElree, 2006), and
from evidence that nonlinguistic WM training can facilitate sen-
tence comprehension (Novick et al, 2014; Hsu and Novick,
2016; Hussey et al., 2017; Hsu et al., 2021). However, others have
argued that language processing relies primarily on domain-spe-
cific working memory resources (Lewis, 1996; Waters and Caplan,
1996; Caplan and Waters, 1999). This view draws support from
studies showing little relation between WM capacity and language
processing (Waters and Caplan, 2004; Sprouse et al., 2012; Traxler
etal, 2012) and from studies showing distinct patterns of brain ac-
tivity for linguistic and nonlinguistic WM demand (Fiebach et al.,
2001; Santi and Grodzinsky, 2007; Makuuchi et al., 2009; Glaser et
al,, 2013). To probe the nature of the computations in question,
we examined neural responses in two functionally localized brain
networks: the domain-specific LANG network (Fedorenko et al.,
2011) and the domain-general MD network (Duncan, 2010),
implicated in executive functions, including working memory.

Exploratory analyses of theories of WM load in sentence com-
prehension, which posit integration costs associated with retriev-
ing representations from WM and/or storage costs associated with
maintaining representations in WM, identified clear effects in the
LANG network of integration cost and weaker effects of storage
costs over rigorous surprisal controls. No WM measures reliably
characterized responses in the MD network. Generalization tests
on held-out data support both (1) integration costs (but not stor-
age costs) in the LANG network, and (2) systematically larger
effects of integration and storage costs in the LANG network than
in the MD network. Further, integration costs are found across
the different regions of the LANG network, supporting a broadly
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distributed WM system for language comprehension, rather than
a spatially restricted “hub” or a set of hubs.

This pattern of results supports two broad inferences about
the neural implementation of human sentence processing. First,
our results support the widely held view that a core operation in
human sentence processing is to encode and retrieve items in
WM as required by the syntactic structure of sentences (Gibson,
2000; McElree et al., 2003; Lewis and Vasishth, 2005; Van Dyke
and McElree, 2006; Rasmussen and Schuler, 2018), even in a nat-
uralistic setting where behavioral evidence for such effects has
been mixed in the presence of surprisal controls (Demberg and
Keller, 2008; van Schijndel and Schuler, 2013; Shain and Schuler,
2018). And second, our results challenge prior arguments that
the WM operations supporting language comprehension draw
on primarily domain-general WM resources (Stowe et al., 1998;
Fedorenko et al., 2006, 2007; Amici et al., 2007). Activity in the
MD network—the most plausible candidate for implementing do-
main-general WM computations (Goldman-Rakic, 1988; Owen et
al., 1990; Kimberg and Farah, 1993; Duncan and Owen, 2000;
Prabhakaran et al., 2000; Cole and Schneider, 2007; Duncan, 2010;
Glascher et al., 2010; Rottschy et al., 2012; Camilleri et al., 2018;
Assem et al,, 2020a)—shows no association with any of the WM
measures explored here and shows significantly weaker associa-
tions with critical WM predictors than does the LANG network.
Our results thus support the hypothesis that the WM operations
required for language comprehension are primarily conducted by
the brain regions that store linguistic knowledge (Caplan and
Waters, 1999; Fiebach et al., 2001; Fedorenko and Shain, 2021).
This outcome accords with prior arguments that memory and
computation are tightly integrated in the brain (Fitz et al., 2020;
Dasgupta and Gershman, 2021) and that, for domains like lan-
guage—supported by specialized brain circuits—general computa-
tions like WM may be preferentially carried out within those
circuits (Fedorenko and Shain, 2021).

Our results also bear on ongoing debates about the degree of
regional specialization for syntactic processing within the LANG
network. According to some proposals, syntactic structure build-
ing is carried out focally in IFG (Hagoort, 2005, 2013; Friederici,
2017; Grodzinsky et al., 2021), whereas other proposals primarily
locate syntactic structure building in the posterior temporal lobe
(Pylkkdnen, 2019; Matchin and Hickok, 2020). Nonetheless,
effects for syntactic manipulations have been reported in other
areas associated with language processing, including temporo-
parietal areas (Meyer et al., 2012, 2013) and anterior temporal
areas (Mazoyer et al., 1993; Friederici et al., 2000; Humphries et
al,, 2006). The inferior frontal fROIs and anterior/posterior tem-
poral fROIs all reach significance in our stringent out-of-sample
test, with numerically positive contributions in all six fROIs.
Thus, our results are most consistent with a spatially distributed
burden of syntactic processing across the regions of the language
network (Bates et al., 1995; Caplan et al., 1996; Wilson and
Saygin, 2004; Blank et al., 2016; Toneva and Wehbe, 2019; Shain
et al., 2020; for review, see Fedorenko et al.,, 2020). In particular,
all language regions register a signature of syntactic structure
building, contrary to prior arguments for the existence of one or
two dedicated syntactic processing centers (Vandenberghe et al.,
2002; Hagoort, 2005; Friederici et al., 2006; Bemis and Pylkkénen,
2011; Pallier et al., 2011; Tyler et al., 2011; Brennan et al.,, 2012;
Matchin et al., 2017; Matchin and Hickok, 2020). In this way, they
align with recent evidence from our group that the regions of the
language network are all sensitive to linguistic information at
many grain sizes, from subword level to phrase and sentence level,
and are all sensitive to both manipulations of sentence structure
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and word meaning, with no region showing strong selectivity for
the former over the latter (Blank et al.,, 2016; Fedorenko et al.,
2016, 2020; Blank and Fedorenko, 2020; Shain et al., 2020, 2021;
Regev et al, 2021). The presence of graded differences in the
strength of WM effects between regions (the largest gains from
WM predictors in the inferior frontal and anterior and posterior
temporal areas, and the largest WM retrieval effects in the inferior
frontal areas) suggests that within-network specialization may be a
matter of degree rather than a kind of processing, at least when it
comes to WM for incremental language comprehension.

The WM effects shown here are not explained by multiple
strong measures of word predictability, which have repeatedly
been shown in prior work to describe naturalistic human sentence
processing responses across modalities, including behavioral
(Demberg and Keller, 2008; Frank and Bod, 2011; Fossum and
Levy, 2012; Smith and Levy, 2013; van Schijndel and Schuler,
2015; Aurnhammer and Frank, 2019; Shain, 2019), electrophysio-
logical (Frank et al., 2015; Armeni et al,, 2019; Heilbron et al,,
2022), and fMRI (Brennan et al., 2016; Henderson et al., 2016;
Willems et al., 2016; Lopopolo et al., 2017; Shain et al., 2020). In
its strong form, surprisal theory (Hale, 2001; Levy, 2008) equates
sentence comprehension with allocating activation among many
possible interpretations of the unfolding sentence, in proportion
to their probability given the currently observed string. Under
such a view, structured representations are assumed to be avail-
able, and the primary work of comprehension is (probabilistically)
selecting among them. However, according to integration-based
theories (Gibson, 2000; Lewis and Vasishth, 2005) incremental
effort is required to compute the available interpretations in the
first place (i.e., by storing, retrieving, and updating representa-
tions in memory). By showing integration costs that are not well
explained by word predictability, our study joins arguments in
favor of complementary roles played by integration and predic-
tion in language comprehension (Levy et al., 2013; Ferreira and
Chantavarin, 2018). Strong word predictability controls are of
course a perpetually moving target: we cannot rule out the
possibility that some other current or future statistical lan-
guage model might explain apparent WM effects. However,
such an objection effectively renders surprisal theory unfalsifi-
able. We have attempted to address such concerns by drawing
on the current state of the art in language modeling (“adaptive
surprisal” and “GPT-2-XL surprisal”).

Notwithstanding, one recent variant of surprisal theory might
offer an alternative explanation for our finding: lossy context sur-
prisal (Futrell et al., 2021), which derives what we have termed
integration costs as predictability effects by positing a memory
store subject to a progressive noise function, whereby words are
more likely to be forgotten the longer ago they occurred. Because
dependencies can make words more predictable, forgetting ren-
ders words less predictable on average (and thus harder to pro-
cess) when they terminate longer dependencies. Because lossy
context surprisal currently lacks a broad-coverage implementation
(Futrell et al., 2021), we cannot directly test its predictions for our
study, and we leave further investigation to future work.

In conclusion, our study supports the existence of a distributed
but domain-specific working memory resource that plays a core
role in language comprehension, with no evidence of recruitment
of domain-general working memory resources housed within the
multiple-demand network.

References
Amici S, Brambati SM, Wilkins DP, Ogar J, Dronkers NL, Miller BL, Gorno-
Tempini ML (2007) Anatomical correlates of sentence comprehension



7426 - ). Neurosci., September 28, 2022 - 42(39):7412-7430

and verbal working memory in neurodegenerative disease. ] Neurosci
27:6282-6290.

Armeni K, Willems RM, den Bosch A, Schoffelen J-M (2019) Frequency-spe-
cific brain dynamics related to prediction during language comprehen-
sion. Neuroimage 198:283-295.

Assem M, Glasser MF, Van Essen DC, Duncan J (2020a) A domain-general
cognitive core defined in multimodally parcellated human cortex. Cereb
Cortex 30:4361-4380.

Assem M, Blank IA, Mineroff Z, Ademoglu A, Fedorenko E (2020b) Activity
in the fronto-parietal multiple-demand network is robustly associated
with individual differences in working memory and fluid intelligence.
Cortex 131:1-16.

Aurnhammer C, Frank SL (2019) Evaluating information-theoretic measures
of word prediction in naturalistic sentence reading. Neuropsychologia
134:107198.

Baddeley A, Warrington EK (1970) Amnesia and the distinction between
long-and short-term memory. J Verbal Learning Verbal Behav 9:176—
189.

Baddeley A, Allen R, Vargha-Khadem F (2010) Is the hippocampus necessary
for visual and verbal binding in working memory? Neuropsychologia
48:1089-1095.

Baddeley A, Jarrold C, Vargha-Khadem F (2011) Working memory and the
hippocampus. ] Cogn Neurosci 23:3855-3861.

Bartek B, Lewis RL, Vasishth S, Smith M (2011) In search of on-line locality
effects in sentence comprehension. J Exp Psychol Learn Mem Cogn
37:1178-1198.

Bates E, Dale PS, Thal D (1995) Individual differences and their implications
for theories of language development. In: The handbook of child lan-
guage (Fletcher P, MacWhinney B, eds), pp 96-151. Oxford, UK:
Blackwell.

Bemis DK, Pylkkdnen L (2011) Simple composition: a magnetoencephalogra-
phy investigation into the comprehension of minimal linguistic phrases. J
Neurosci 31:2801-2814.

Bhattasali S, Fabre M, Luh W-M, Al Saied H, Constant M, Pallier C, Brennan
JR, Spreng RN, Hale ] (2019) Localising memory retrieval and syntactic
composition: an fMRI study of naturalistic language comprehension.
Lang Cogn Neurosci 34:491-510.

Binnick RI (1991) Time and the verb: a guide to tense and aspect. Oxford,
UK: Oxford UP.

Blank I, Fedorenko E (2017) Domain-general brain regions do not track lin-
guistic input as closely as language-selective regions. ] Neurosci 37:9999-
10011.

Blank I, Fedorenko E (2020) No evidence for differences among language
regions in their temporal receptive windows. Neuroimage 219:116925.
Blank I, Kanwisher N, Fedorenko E (2014) A functional dissociation between
language and multiple-demand systems revealed in patterns of BOLD

signal fluctuations. ] Neurophysiol 112:1105-1118.

Blank 1, Balewski Z, Mahowald K, Fedorenko E (2016) Syntactic processing
is distributed across the language system. Neuroimage 127:307-323.

Botvinick M (2007) Multilevel structure in behavior and in the brain: a com-
putational model of Fuster’s hierarchy. Phil Trans R Soc B 362:1615-
1626.

Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analy-
sis of functional magnetic resonance imaging in human V1. ] Neurosci
16:4207-4221.

Braga RM, DiNicola LM, Becker HC, Buckner RL (2020) Situating the left-
lateralized language network in the broader organization of multiple spe-
cialized large-scale distributed networks. ] Neurophysiol 124:1415-1448.

Brennan J, Nir Y, Hasson U, Malach R, Heeger DJ, Pylkkdnen L (2012)
Syntactic structure building in the anterior temporal lobe during natural
story listening. Brain Lang 120:163-173.

Brennan J, Stabler EP, Van Wagenen SE, Luh W-M, Hale JT (2016) Abstract
linguistic structure correlates with temporal activity during naturalistic
comprehension. Brain Lang 157-158:81-94.

Camilleri JA, Miiller VI, Fox P, Laird AR, Hoffstaedter F, Kalenscher T,
Eickhoff SB (2018) Definition and characterization of an extended multi-
ple-demand network. Neuroimage 165:138-147.

Campbell KL, Tyler LK (2018) Language-related domain-specific and do-
main-general systems in the human brain. Curr Opin Behav Sci 21:132—
137.

Caplan D, Waters GS (1999) Verbal working memory and sentence compre-
hension. Behav Brain Sci 22:77-94.

Shain et al. ® Working Memory in Naturalistic Language Processing

Caplan D, Hildebrandt N, Makris N (1996) Location of lesions in stroke
patients with deficits in syntactic processing in sentence comprehension.
Brain 119:933-949.

Chen E, Gibson E, Wolf F (2005) Online syntactic storage costs in sentence
comprehension. ] Mem Lang 52:144-169.

Chen X, Affourtit ], Ryskin R, Regev TI, Norman-Haignere S, Jouravlev O,
Malik-Moraleda S, Kean H, Varley R, Fedorenko E (2021) The human
language system does not support music processing. bioRxiv 446439. doi:
10.1101/2021.06.01.446439.

Cheung C, Ivanova AA, Siegelman M, Pongos A, Kean H, Fedorenko E
(2020) The effect of task on brain activity during sentence processing. In:
12th annual meeting of the Society for the Neurobiology of Language
(SNL20). Novato, CA: Society for the Neurobiology of Language.

Christiansen MH, Chater N (2016) The now-or-never bottleneck: a funda-
mental constraint on language. Behav Brain Sci 39:e62.

Christiansen MH, MacDonald MC (2009) A usage-based approach to recur-
sion in sentence processing. Lang Learn 59:126-161.

Clifton C, Frazier L (1989) Comprehending sentences with long-distance
dependencies. In: Linguistic structure in language processing (Carlson
GN, Tanenhaus MK, eds), pp 273-317. Dordrecht, The Netherlands:
Kluwer.

Cole MW, Schneider W (2007) The cognitive control network: integrated
cortical regions with dissociable functions. Neuroimage 37:343-360.

Dasgupta I, Gershman SJ (2021) Memory as a computational resource.
Trends Cogn Sci 25:240-251.

Demberg V, Keller F (2008) Data from eye-tracking corpora as evidence for
theories of syntactic processing complexity. Cognition 109:193-210.

Demsar ] (2006) Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res 7:1-30.

Diachek E, Blank I, Siegelman M, Affourtit J, Fedorenko E (2020) The do-
main-general multiple demand (MD) network does not support core
aspects of language comprehension: a large-scale fMRI investigation. |
Neurosci 40:4536-4550.

Dotlacil J (2021) Parsing as a cue-based retrieval model. Cogn Sci 45:13020.

Duncan ] (2010) The multiple-demand (MD) system of the primate brain:
mental programs for intelligent behaviour. Trends Cogn Sci 14:172-179.

Duncan J, Owen AM (2000) Common regions of the human frontal lobe
recruited by diverse cognitive demands. Trends Neurosci 23:475-483.

Duncan J, Assem M, Shashidhara S (2020) Integrated intelligence from dis-
tributed brain activity. Trends Cogn Sci 24:838-852.

Emch M, Von Bastian CC, Koch K (2019) Neural correlates of verbal work-
ing memory: an fMRI meta-analysis. Front Hum Neurosci 13:180.

Federmeier KD, Jongman SR, Szewczyk JM (2020) Examining the role of
general cognitive skills in language processing: a window into complex
cognition. Curr Dir Psychol Sci 29:575-582.

Fedorenko E (2020) The brain network that supports high-level language
processing. In: Cognitive neuroscience: the biology of the mind
(Gazzaniga M, Ivry RB, Mangun GR, eds), pp 871-880, Ed 6. New York:
W.W. Norton.

Fedorenko E, Blank I (2020) Broca’s area is not a natural kind. Trends Cogn
Sci 24:270-284.

Fedorenko E, Shain C (2021) Similarity of computations across domains
does not imply shared implementation: the case of language comprehen-
sion. Curr Dir Psychol Sci 30:526-534.

Fedorenko E, Thompson-Schill SL (2014) Reworking the language network.
Trends Cogn Sci 18:120-126.

Fedorenko E, Varley R (2016) Language and thought are not the same thing:
evidence from neuroimaging and neurological patients. Ann N|Y Acad
Sci 1369:132-153.

Fedorenko E, Gibson E, Rohde D (2006) The nature of working memory
capacity in sentence comprehension: evidence against domain-specific
working memory resources. ] Mem Lang 54:541-553.

Fedorenko E, Gibson E, Rohde D (2007) The nature of working memory in
linguistic, arithmetic and spatial integration processes. ] Mem Lang
56:246-269.

Fedorenko E, Hsieh P-J, Nieto-Castafion A, Whitfield-Gabrieli S, Kanwisher
N (2010) New method for fMRI investigations of language: defining
ROIs functionally in individual subjects. ] Neurophysiol 104:1177-1194.

Fedorenko E, Behr MK, Kanwisher N (2011) Functional specificity for high-
level linguistic processing in the human brain. Proc Natl Acad Sci U|S|A
108:16428-16433.



Shain etal. ® Working Memory in Naturalistic Language Processing

Fedorenko E, Duncan ], Kanwisher N (2013) Broad domain generality in
focal regions of frontal and parietal cortex. Proc Natl Acad Sci U|S|A
110:16616-16621.

Fedorenko E, Scott TL, Brunner P, Coon WG, Pritchett B, Schalk G,
Kanwisher N (2016) Neural correlate of the construction of sentence
meaning. Proc Natl Acad Sci U|S|A 113:E6256-E6262.

Fedorenko E, Blank I, Siegelman M, Mineroff Z (2020) Lack of selectivity for
syntax relative to word meanings throughout the language network.
Cognition 203:104348.

Ferreira F, Chantavarin S (2018) Integration and prediction in language proc-
essing: a synthesis of old and new. Curr Dir Psychol Sci 27:443-448.

Ferreira F, Bailey KGD, Ferraro V (2002) Good-enough representations in
language comprehension. Curr Dir Psychol Sci 11:11-15.

Fiebach CJ, Schlesewsky M, Friederici AD (2001) Syntactic working memory
and the establishment of filler-gap dependencies: insights from ERPs and
fMRL. ] Psycholinguist Res 30:321-338.

Fiebach CJ, Schlesewsky M, Friederici AD (2002) Separating syntactic mem-
ory costs and syntactic integration costs during parsing: the processing of
German WH-questions. ] Mem Lang 47:250-272.

Fitz H, Uhlmann M, den Broek D, Duarte R, Hagoort P, Petersson KM
(2020) Neuronal spike-rate adaptation supports working memory in lan-
guage processing. Proc Natl Acad Sci U|S|A 117:20881-20889.

Fossum V, Levy R (2012) Sequential vs. hierarchical syntactic models of
human incremental sentence processing. In: Proceedings of the 3rd
workshop on cognitive modeling and computational linguistics (CMCL
2012) (Levy R, Reitter D, eds), pp 61-69. Stroudsburg PA: Association
for Computational Linguistics.

Frank SL, Bod R (2011) Insensitivity of the human sentence-processing sys-
tem to hierarchical structure. Psychol Sci 22:829-834.

Frank SL, Christiansen MH (2018) Hierarchical and sequential processing of
language. Lang Cogn Neurosci 33:1213-1218.

Frank SL, Otten L], Galli G, Vigliocco G (2015) The ERP response to the
amount of information conveyed by words in sentences. Brain Lang
140:1-11.

Frazier L, Fodor JD (1978) The sausage machine: a new two-stage parsing
model. Cognition 6:291-325.

Friederici AD (2017) Language in our brain: the origins of a uniquely human
capacity. Cambridge, MA: MIT.

Friederici AD, Meyer M, Von Cramon DY (2000) Auditory language com-
prehension: an event-related fMRI study on the processing of syntactic
and lexical information. Brain Lang 74:289-300.

Friederici AD, Bahlmann J, Heim S, Schubotz RI, Anwander A (2006) The
brain differentiates human and non-human grammars: functional local-
ization and structural connectivity. Proc Natl Acad Sci U|S|A 103:2458-
2463.

Frost MA, Goebel R (2012) Measuring structural-functional correspondence:
spatial variability of specialised brain regions after macro-anatomical
alignment. Neuroimage 59:1369-1381.

Futrell R, Gibson E, Tily HJ, Blank I, Vishnevetsky A, Piantadosi ST,
Fedorenko E (2020) The Natural Stories corpus: a reading-time corpus of
English texts containing rare syntactic constructions. Lang Resour Eval
55:63-77.

Futrell R, Gibson E, Levy RP (2021) Lossy-context surprisal: an information-
theoretic model of memory effects in sentence processing. Cogn Sci 44:
e12814.

Gibson E (2000) The dependency locality theory: a distance-based theory of
linguistic complexity. In: Image, language, brain (Marantz A, Miyashita
Y, O’Neil W, eds), pp 95-106. Cambridge, MA: MIT.

Gibson E, Pearlmutter N, Canseco-Gonzalez E, Hickok G (1996) Recency
preference in the human sentence processing mechanism. Cognition
59:23-59.

Gldscher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, Adolphs R
(2010) Distributed neural system for general intelligence revealed by
lesion mapping. Proc Natl Acad Sci U|S|A 107:4705-4709.

Glaser YG, Martin RC, Van Dyke JA, Hamilton AC, Tan Y (2013) Neural ba-
sis of semantic and syntactic interference in sentence comprehension.
Brain Lang 126:314-326.

Goldman-Rakic PS (1988) Topography of cognition: parallel distributed net-
works in primate association cortex. Annu Rev Neurosci 11:137-156.
Goldstein A, et al. (2022) Shared computational principles for language proc-

essing in humans and deep language models. Nat Neurosci 25:369-380.

J. Neurosci., September 28, 2022 - 42(39):7412-7430 - 7427

Gordon PC, Hendrick R, Johnson M (2001) Memory interference during lan-
guage processing. ] Exp Psychol Learn Mem Cogn 27:1411-1423.

Gordon PC, Hendrick R, Levine WH (2002) Memory-load interference in
syntactic processing. Psychol Sci 13:425-430.

Gordon PC, Hendrick R, Johnson M, Lee Y (2006) Similarity-based interfer-
ence during language comprehension: evidence from eye tracking during
reading. ] Exp Psychol Learn Mem Cogn 32:1304-1321.

Graff D, Kong ], Chen K, Maeda K (2007) English Gigaword Third Edition
LDC2007T07.

Grodner DJ, Gibson E (2005) Consequences of the serial nature of linguistic
input. Cogn Sci 29:261-291.

Grodzinsky Y, Pieperhoff P, Thompson C (2021) Stable brain loci for the
processing of complex syntax: a review of the current neuroimaging evi-
dence. Cortex 142:252-271.

Gulordava K, Bojanowski P, Grave E, Linzen T, Baroni M (2018) Colorless
green recurrent networks dream hierarchically. In: Proceedings of the
2018 conference of the North American chapter of the Association for
Computational Linguistics: human language technologies, Vol 1 (Walker
M, Ji H, Stent A, eds), pp 1195-1205. Stroudsburg PA: Association for
Computational Linguistics.

Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends
Cogn Sci 9:416-423.

Hagoort P (2013) MUC (memory, unification, control) and beyond. Front
Psychol 4:416.

Hakes DT, Evans JS, Brannon LL (1976) Understanding sentences with rela-
tive clauses. Mem Cognit 4:283-290.

Hale ] (2001) A probabilistic earley parser as a psycholinguistic model. In:
NAACL ’01: Proceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguistics, pp 159-166.
Stroudsburg PA: Association for Computational Linguistics.

Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD he-
modynamic responses across subjects and brain regions and their effects
on statistical analyses. Neuroimage 21:1639-1651.

Harel N, Lee S-P, Nagaoka T, Kim D-S, Kim S-G (2002) Origin of negative
blood oxygenation level—dependent fMRI signals. ] Cereb Blood Flow
Metab 22:908-917.

Hasson U, Honey CJ (2012) Future trends in neuroimaging: neural processes
as expressed within real-life contexts. Neuroimage 62:1272-1278.

Hasson U, Chen ], Honey CJ (2015) Hierarchical process memory: memory
as an integral component of information processing. Trends Cogn Sci
19:304-313.

Hasson U, Egidi G, Marelli M, Willems RM (2018) Grounding the neurobiol-
ogy of language in first principles: the necessity of non-language-centric
explanations for language comprehension. Cognition 180:135-157.

Heafield K, Pouzyrevsky I, Clark JH, Koehn P (2013) Scalable modified
Kneser-Ney language model estimation. In: Proceedings of the 51st an-
nual meeting of the Association for Computational Linguistics, pp 690—
696. Stroudsburg PA: Association for Computational Linguistics.

Heilbron M, Armeni K, Schoffelen J-M, Hagoort P, de Lange FP (2022) A hi-
erarchy of linguistic predictions during natural language comprehension.
Proc Natl Acad Sci U|S|A 119:¢2201968119.

Henderson JM, Choi W, Lowder MW, Ferreira F (2016) Language structure
in the brain: a fixation-related fMRI study of syntactic surprisal in read-
ing. Neuroimage 132:293-300.

Howard MW, Kahana M] (2002) A distributed representation of temporal
context. ] Math Psychol 45:269-299.

Hsu NS, Novick JM (2016) Dynamic engagement of cognitive control modu-
lates recovery from misinterpretation during real-time language process-
ing. Psychol Sci 27:572-582.

Hsu NS, Kuchinsky SE, Novick JM (2021) Direct impact of cognitive control
on sentence processing and comprehension. Lang Cogn Neurosci
36:211-239.

Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a gen-
eralized non-specific task-dependent network. Front Hum Neurosci
9:430.

Humphries C, Binder JR, Medler DA, Liebenthal E (2006) Syntactic and
semantic modulation of neural activity during auditory sentence compre-
hension. ] Cogn Neurosci 18:665-679.

Hussey EK, Harbison J, Teubner-Rhodes SE, Mishler A, Velnoskey K,
Novick JM (2017) Memory and language improvements following cogni-
tive control training. ] Exp Psychol Learn Mem Cogn 43:23-58.



7428 - ). Neurosci., September 28, 2022 - 42(39):7412-7430

Jeneson A, Mauldin KN, Squire LR (2010) Intact working memory for rela-
tional information after medial temporal lobe damage. ] Neurosci
30:13624-13629.

Johnson-Laird PN (1983) Mental models: towards a cognitive science of lan-
guage, inference, and consciousness. Cambridge, MA: Harvard UP.

Jozefowicz R, Vinyals O, Schuster M, Shazeer N, Wu Y (2016) Exploring the
limits of language modeling. arXiv:1602.02410.

Just MA, Carpenter PA (1992) A capacity theory of comprehension: individ-
ual differences in working memory. Psychol Rev 99:122-149.

Kennedy A, Pynte J (2005) Parafoveal-on-foveal effects in normal reading.
Vision Res 45:153-168.

Kim H (2019) Neural activity during working memory encoding, mainte-
nance, and retrieval: a network-based model and meta-analysis. Hum
Brain Mapp 40:4912-4933.

Kimberg DY, Farah MJ (1993) A unified account of cognitive impairments
following frontal lobe damage: the role of working memory in complex,
organized behavior. ] Exp Psychol Gen 122:411-428.

KingJ, Just MA (1991) Individual differences in syntactic processing: the role
of working memory. ] Mem Lang 30:580-602.

King JW, Kutas M (1995) Who did what and when? Using word-and clause-
level ERPs to monitor working memory usage in reading. ] Cogn
Neurosci 7:376-395.

Konieczny L (2000) Locality and parsing complexity. ] Psycholinguist Res
29:627-645.

Lee AT, Glover GH, Meyer CH (1995) Discrimination of large venous vessels
in time-course spiral blood-oxygen-level-dependent magnetic-resonance
functional neuroimaging. Magn Reson Med 33:745-754.

Levy R (2008) Expectation-based syntactic comprehension. Cognition
106:1126-1177.

Levy R, Fedorenko E, Gibson E (2013) The syntactic complexity of Russian
relative clauses. ] Mem Lang 69:461-495.

Lewis RL (1996) Interference in short-term memory: the magical num-
ber two (or three) in sentence processing. ] Psycholinguist Res
25:93-115.

Lewis RL, Vasishth S (2005) An activation-based model of sentence process-
ing as skilled memory retrieval. Cogn Sci 29:375-419.

Lewis RL, Vasishth S, Dyke JAV (2006) Computational principles of
working memory in sentence comprehension. Trends Cogn Sci
10:447-454.

Li J, Hale J (2019) Grammatical predictors for fMRI timecourses. In:
Minimalist parsing (Berwick RC, Stabler EP, eds), pp 159-173. Oxford,
UK: Oxford UP.

Lissén P, Pregla D, Nicenboim B, Paape D, het Nederend ML, Burchert F,
Stadie N, Caplan D, Vasishth S (2021) A computational evaluation of two
models of retrieval processes in sentence processing in aphasia. Cogn Sci
45:€12956.

Logothetis NK, Pauls ], Augath M, Trinath T, Oeltermann A (2001)
Neurophysiological investigation of the basis of the fMRI signal. Nature
412:150-157.

Lopopolo A, Frank SL, den Bosch A, Willems RM (2017) Using stochastic
language models (SLM) to map lexical, syntactic, and phonological infor-
mation processing in the brain. PLoS One 12:e0177794.

Lowe JJ (2019) The syntax and semantics of nonfinite forms. Annu Rev
Linguist 5:309-328.

Mahowald K, Fedorenko E (2016) Reliable individual-level neural markers
of high-level language processing: a necessary precursor for relating neu-
ral variability to behavioral and genetic variability. Neuroimage 139:74-
93.

Malik-Moraleda S, Ayyash D, Gallée J, Affourtit ], Hoffmann M, Mineroff Z,
Jouravlev O, Fedorenko E (2022) An investigation across 45 languages
and 12 language families reveals a universal language network. Nat
Neurosci 25:1014-1019.

Makuuchi M, Bahlmann J, Anwander A, Friederici AD (2009) Segregating
the core computational faculty of human language from working mem-
ory. Proc Natl Acad Sci U|S|A 106:8362-8367.

Matchin W, Hickok G (2020) The cortical organization of syntax. Cereb
Cortex 30:1481-1498.

Matchin W, Hammerly C, Lau E (2017) The role of the IFG and pSTS in syn-
tactic prediction: evidence from a parametric study of hierarchical struc-
ture in fMRI. Cortex 88:106-123.

Shain et al. ® Working Memory in Naturalistic Language Processing

Marcus MP, Santorini B, Marcinkiewicz MA (1993) Building a large anno-
tated corpus of English: the Penn Treebank. Comput Linguist 19:313—
330.

Mazoyer BM, Tzourio N, Frak V, Syrota A, Murayama N, Levrier O,
Salamon G, Dehaene S, Cohen L, Mehler J (1993) The cortical represen-
tation of speech. ] Cogn Neurosci 5:467-479.

McElree B, Foraker S, Dyer L (2003) Memory structures that subserve sen-
tence comprehension. ] Mem Lang 48:67-91.

McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg E, Nieto O
(2015) librosa: Audio and music signal analysis in python. In Proceedings
of the 14th python in science conference, Vol 8, pp 18-25.

Meyer L, Obleser J, Kiebel S, Friederici AD (2012) Spatiotemporal dynamics
of argument retrieval and reordering: an FMRI and EEG study on sen-
tence processing. Front Psychol 3:523.

Meyer L, Obleser ], Friederici AD (2013) Left parietal alpha enhancement
during working memory-intensive sentence processing. Cortex 49:711-
721.

Mineroff Z, Blank TA, Mahowald K, Fedorenko E (2018) A robust dissocia-
tion among the language, multiple demand, and default mode networks:
evidence from inter-region correlations in effect size. Neuropsychologia
119:501-511.

Nadel I, MacDonald L (1980) Hippocampus: cognitive map or working
memory? Behav Neural Biol 29:405-409.

Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A,
Jonides ] (2013) A meta-analysis of executive components of working
memory. Cereb Cortex 23:264-282.

Nicenboim B, Vasishth S, Gattei C, Sigman M, Kliegl R (2015) Working
memory differences in long-distance dependency resolution. Front
Psychol 6:312.

Nicenboim B, Logacev P, Gattei C, Vasishth S (2016) When high-capacity
readers slow down and low-capacity readers speed up: working memory
and locality effects. Front Psychol 7:280.

Nieto-Castafion A, Fedorenko E (2012) Subject-specific functional localizers
increase sensitivity and functional resolution of multi-subject analyses.
Neuroimage 63:1646-1669.

Novick JM, Hussey E, Teubner-Rhodes S, Harbison JI, Bunting MF (2014)
Clearing the garden-path: improving sentence processing through cogni-
tive control training. Lang Cogn Neurosci 29:186-217.

Nguyen L, van Schijndel M, Schuler W (2012) Accurate unbounded depend-
ency recovery using generalized categorial grammars. In Proceedings of
COLING 2012, pp 2125-2140. The COLING 2012 Organizing Committee.

Oh B-D, Clark C, Schuler W (2021) Surprisal estimators for human
reading times need character models. In: Proceedings of the joint
conference of the 59th annual meeting of the Association for
Computational Linguistics and the 11th international joint confer-
ence on natural language processing (ACL-IJCNLP 2021), Vol 1,
long papers, pp 3746-3757. Stroudsburg PA: Association for
Computational Linguistics.

Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M (2006) Working
memory for conjunctions relies on the medial temporal lobe. ] Neurosci
26:4596-4601.

Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW, others (1990)
Planning and spatial working memory following frontal lobe lesions in
man. Neuropsychologia 28:1021-1034.

Pallier C, Devauchelle A-D, Dehaene S (2011) Cortical representation of the
constituent structure of sentences. Proc Natl Acad Sci U|S|A 108:2522—
2527.

Payne BR, Grison S, Gao X, Christianson K, Morrow DG, Stine-Morrow
EAL (2014) Aging and individual differences in binding during sentence
understanding: evidence from temporary and global syntactic attachment
ambiguities. Cognition 130:157-173.

Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JDE (2000) Integration of
diverse information in working memory within the frontal lobe. Nat
Neurosci 3:85-90.

Prat CS, Just MA (2011) Exploring the neural dynamics underpinning indi-
vidual differences in sentence comprehension. Cereb Cortex 21:1747-
1760.

Pylkkidnen L (2019) The neural basis of combinatory syntax and semantics.
Science 366:62-66.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019)
Language models are unsupervised multitask learners. OpenAl
Blog 1:1-24.



Shain etal. ® Working Memory in Naturalistic Language Processing

Rasmussen NE, Schuler W (2018) Left-corner parsing with distributed asso-
ciative memory produces surprisal and locality effects. Cogn Sci 42:1009—
1042.

Regev TI, Affourtit J, Chen X, Schipper AE, Bergen L, Mahowald K,
Fedorenko E (2021) High-level language brain regions are sensitive to
sub-lexical regularities. bioRxiv 447786. doi: 10.1101/2021.06.11.447786.

Resnik P (1992). Left-corner parsing and psychological plausibility. In:
COLING ’92: proceedings of the 14th conference on computational
linguistics, Vol 1, pp 191-197. Stroudsburg PA: Association for
Computational Linguistics

Ristic B, Mancini S, Molinaro N, Staub A (2022) Maintenance cost in the
processing of subject-verb dependencies. ] Exp Psychol Learn Mem
Cogn 48:829-838.

Rosenkrantz SJ, Lewis PM II (1970) Deterministic left corner parser. In: IEEE
conference record of the 11th annual symposium on switching and
automata, pp 139-152. New York: Institute of Electrical and Electronics
Engineers.

Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT,
Eickhoff SB (2012) Modelling neural correlates of working mem-
ory: a coordinate-based meta-analysis. Neuroimage 60:830-846.

Santi A, Grodzinsky Y (2007) Working memory and syntax interact in
Broca’s area. Neuroimage 37:8-17.

Schrimpf M, Blank IA, Tuckute G, Kauf C, Hosseini EA, Kanwisher NG,
Tenenbaum JB, Fedorenko E (2021) The neural architecture of language:
integrative modeling converges on predictive processing. Proc Natl Acad
Sci UJS|A 118:¢2105646118.

Scott TL, Gallée J, Fedorenko E (2017) A new fun and robust version of an
fMRI localizer for the frontotemporal language system. Cogn Neurosci
8:167-176.

Sennrich R, Haddow B, Birch A (2016) Neural machine translation of rare
words with subword units. In: Proceedings of the 54th annual meeting of
the Association for Computational Linguistics, Vol 1, long papers, pp 1715-
1725. Stroudsburg PA: Association for Computational Linguistics.

Shain C (2019) A large-scale study of the effects of word frequency and
predictability in naturalistic reading. In: Proceedings of the 2019 con-
ference of the North American Chapter of the Association for
Computational Linguistics: human language technologies, Vol 1, long
and short papers, pp 4086-4094. Stroudsburg PA: Association for
Computational Linguistics.

Shain C, Schuler W (2018) Deconvolutional time series regression: a
technique for modeling temporally diffuse effects. In: Proceedings
of the 2018 conference on empirical methods in natural language proc-
essing, pp 2679-2689. Stroudsburg PA: Association for Computational
Linguistics.

Shain C, Schuler W (2021) Continuous-time deconvolutional regression for
psycholinguistic modeling. Cognition 215:104735.

Shain C, van Schijndel M, Futrell R, Gibson E, Schuler W (2016) Memory
access during incremental sentence processing causes reading time la-
tency. In: Proceedings of the workshop on computational linguistics for
linguistic complexity (CL4LC) (Brunato D, Dell'Orletta F, Venturi G,
Francois T, Blache P, eds), pp 49-58. Stroudsburg PA: Association for
Computational Linguistics.

Shain C, Blank IA, van Schijndel M, Schuler W, Fedorenko E (2020) fMRI
reveals language-specific predictive coding during naturalistic sentence
comprehension. Neuropsychologia 138:107307.

Shain C, Kean H, Lipkin B, Affourtit ], Siegelman M, Mollica F, Fedorenko E
(2021) “Constituent length” effects in fMRI do not provide evidence for
abstract syntactic processing. bioRxiv 467812. doi: 10.1101/2021.11.12.467812.

Shashidhara S, Mitchell DJ, Erez Y, Duncan J (2019) Progressive
recruitment of the frontoparietal multiple-demand system with
increased task complexity, time pressure, and reward. J Cogn
Neurosci 31:1617-1630.

Shashidhara S, Spronkers FS, Erez Y (2020) Individual-subject functional
localization increases Univariate activation but not multivariate pattern
discriminability in the “multiple-demand” frontoparietal network. J
Cogn Neurosci 32:1348-1368.

Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative func-
tional MRI response correlates with decreases in neuronal activity in
monkey visual area V1. Nat Neurosci 9:569-577.

Shrager Y, Levy DA, Hopkins RO, Squire LR (2008) Working memory
and the organization of brain systems. ] Neurosci 28:4818-4822.

J. Neurosci., September 28, 2022 - 42(39):7412-7430 - 7429

Sleve LR (2011) Saying what’s on your mind: working memory effects
on sentence production. J Exp Psychol Learn Mem Cogn 37:1503-
1514.

Smith NJ, Levy R (2013) The effect of word predictability on reading time is
logarithmic. Cognition 128:302-319.

Sprouse J, Wagers M, Phillips C (2012) A test of the relation between
working memory capacity and syntactic island effects. Language
88:82-123.

Stanojevi¢ M, Bhattasali S, Dunagan D, Campanelli L, Steedman M, Brennan
], Hale J (2021) Modeling incremental language comprehension in the
brain with combinatory categorial grammar. In: Proceedings of
the workshop on cognitive modeling and computational linguis-
tics, pp 23-38. Stroudsburg PA: Association for Computational
Linguistics.

Stowe LA, Broere CAJ, Paans AMJ, Wijers AA, Mulder G, Vaalburg W,
Zwarts F (1998) Localizing components of a complex task: sentence proc-
essing and working memory. Neuroreport 9:2995-2999.

Tahmasebi AM, Davis MH, Wild CJ, Rodd JM, Hakyemez H, Abolmaesumi
P, Johnsrude IS (2012) Is the link between anatomical structure and func-
tion equally strong at all cognitive levels of processing? Cereb Cortex
22:1593-1603.

Toneva M, Wehbe L (2019) Interpreting and improving natural-language
processing (in machines) with natural language-processing (in the brain).
Adv Neural Inf Process Syst 32:14954-14964.

Traxler MJ, Long DL, Tooley KM, Johns CL, Zirnstein M, Jonathan E (2012)
Individual differences in eye-movements during reading: working mem-
ory and speed-of-processing effects. ] Eye Mov Res 5:5.

Tyler LK, Marslen-Wilson WD, Randall B, Wright P, Devereux BJ, Zhuang J,
Papoutsi M, Stamatakis EA (2011) Left inferior frontal cortex and syntax:
function, structure and behaviour in patients with left hemisphere dam-
age. Brain 134:415-431.

Van Dyke JA, Johns CL (2012) Memory interference as a determinant of lan-
guage comprehension. Lang Linguist Compass 6:193-211.

Van Dyke JA, Lewis RL (2003) Distinguishing effects of structure and decay
on attachment and repair: a cue-based parsing account of recovery from
misanalyzed ambiguities. ] Mem Lang 49:285-316.

Van Dyke JA, McElree B (2006) Retrieval interference in sentence compre-
hension. ] Mem Lang 55:157-166.

Van Dyke JA, McElree B (2011) Cue-dependent interference in comprehen-
sion. ] Mem Lang 65:247-263.

van Schijndel M, Linzen T (2018) A neural model of adaptation in reading.
Proc Conf Empir Methods Nat Lang Process 2018:4704-4710.

van Schijndel M, Schuler W (2013) An analysis of frequency- and
memory-based processing costs. In: Proceedings of the 2013 con-
ference of the North American Chapter of the Association for
Computational Linguistics: human language technologies, pp 95-
105. Stroudsburg PA: Association for Computational Linguistics.

van Schijndel M, Schuler W (2015) Hierarchic syntax improves reading
time prediction. In: Proceedings of the 2015 conference of the North
American Chapter of the Association for Computational Linguistics:
human language technologies, pp 1597-1605. Stroudsburg PA:
Association for Computational Linguistics.

van Schijndel M, Exley A, Schuler W (2013) A model of language processing
as hierarchic sequential prediction. Top Cogn Sci 5:522-540.

Vandenberghe R, Nobre AC, Price CJ (2002) The response of left temporal
cortex to sentences. ] Cogn Neurosci 14:550-560.

Vasishth S, Lewis RL (2006) Argument-head distance and processing com-
plexity: explaining both locality and antilocality effects. Language 82:767-
794.

Vasishth S, Nicenboim B, Engelmann F, Burchert F (2019) Computational
models of retrieval processes in sentence processing. Trends Cogn Sci
23:968-982.

Vaswani A, Shazeer N, Parmar N, Uszkoreit ], Jones L, Gomez AN, Kaiser £,
Polosukhin I (2017) Attention is all you need. In: NIPS’17: proceedings
of the 31st international conference on neural information processing
systems, pp 5998-6008. Red Hook, NY: Curran Associates.

Vazquez-Rodriguez B, Sudrez LE, Markello RD, Shafiei G, Paquola C,
Hagmann P, Van Den Heuvel MP, Bernhardt BC, Spreng RN, Misic B
(2019) Gradients of structure-function tethering across neocortex. Proc
Natl Acad Sci U|S|A 116:21219-21227.



7430 - J. Neurosci., September 28, 2022 - 42(39):7412-7430

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for
a frontoparietal control system revealed by intrinsic functional connectiv-
ity. ] Neurophysiol 100:3328-3342.

Wang H, He W, Wu ], Zhang ], Jin Z, Li L (2019) A coordinate-based meta-
analysis of the n-back working memory paradigm using activation likeli-
hood estimation. Brain Cogn 132:1-12.

Wanner E, Maratsos M (1978) An ATN approach to comprehension. In:
Linguistic theory and psychological reality (Halle M, Bresnan J, Miller G,
eds), pp 119-161. Cambridge, MA: MIT.

Waters GS, Caplan D (1996) The capacity theory of sentence compre-
hension: critique of Just and Carpenter (1992). Psychol Rev
103:761-772.

Waters GS, Caplan D (2004) Verbal working memory and on-line syntactic
processing: evidence from self-paced listening. Q J Exp Psychol A
57:129-163.

Wilcox EG, Gauthier J, Hu J, Qian P, Levy R (2020) On the predictive power
of neural language models for human real-time comprehension behavior.

Shain et al. ® Working Memory in Naturalistic Language Processing

In: Proceedings of the 42nd Annual Meeting of the Cognitive Science
Society, pp 1707-1713. Austin, TX: Cognitive Science Society.

Willems RM, Frank SL, Nijhof AD, Hagoort P, den Bosch A (2016)
Prediction during natural language comprehension. Cereb Cortex
26:2506-2516.

Wilson SM, Saygin AP (2004) Grammaticality judgment in aphasia: deficits
are not specific to syntactic structures, aphasic syndromes, or lesion sites.
J Cogn Neurosci 16:238-252.

Woolgar A, Parr A, Cusack R, Thompson R, Nimmo-Smith I, Torralva
T, Roca M, Antoun N, Manes F, Duncan ] (2010) Fluid intelligence
loss linked to restricted regions of damage within frontal and parie-
tal cortex. Proc Natl Acad Sci U|S|A 107:14899-14902.

Woolgar A, Duncan J, Manes F, Fedorenko E (2018) Fluid intelligence is sup-
ported by the multiple-demand system not the language system. Nat
Hum Behav 2:200-204.

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011)
Large-scale automated synthesis of human functional neuroimaging data.
Nat Methods 8:665-670.



