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Abstract. We introduce a new neural signal model designed for efficient
high-resolution representation of large-scale signals. The key innovation
in our multiscale implicit neural representation (MINER) is an internal
representation via a Laplacian pyramid, which provides a sparse multi-
scale decomposition of the signal that captures orthogonal parts of the
signal across scales. We leverage the advantages of the Laplacian pyra-
mid by representing small disjoint patches of the pyramid at each scale
with a small MLP. This enables the capacity of the network to adaptively
increase from coarse to fine scales, and only represent parts of the signal
with strong signal energy. The parameters of each MLP are optimized
from coarse-to-fine scale which results in faster approximations at coarser
scales, thereby ultimately an extremely fast training process. We apply
MINER to a range of large-scale signal representation tasks, including
gigapixel images and very large point clouds, and demonstrate that it
requires fewer than 25% of the parameters, 33% of the memory foot-
print, and 10% of the computation time of competing techniques such
as ACORN to reach the same representation accuracy. A fast implemen-
tation of MINER for images and 3D volumes is accessible from https://
vishwa91.github.io/miner.

1 Introduction

Neural implicit representations have emerged as a promising paradigm for signal
representation and interpolation with pervasive applications in 3D view syn-
thesis [9,16,19,23], images [3], video [2], and linear inverse problems [3,25]. At
the core of such neural representations is one or several multi layer perceptrons
(MLPs) that produce a continuous mapping from signal coordinates to the values
of the signal at those coordinates.

The success of neural implicit representations relies on the ability to fit mod-
els accurately (high representation accuracy), rapidly (short training time), and
in a concise manner (small number of parameters). However, most state-of-the-
art implicit representations require training a single large MLP (parameters in
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Fig. 1. Multiscale Implicit Representations. We present a novel implicit repre-
sentation framework called MINER for large visual signals such as images, videos, and
3D volumes. We leverage the self-similarity of visual signals across scales to iteratively
represent models from coarse to fine scales, resulting in a dramatic decrease in inference
and training time, while requiring fewer parameters and less memory than state-of-the-
art representations. This figure demonstrates fitting of the Lucy 3D mesh over three
scales with scale 2 being the coarsest and 0 being the finest. MINER achieves high
quality results across all scales with high IoU value and achieves an IoU of 0.999 at the
finest scale in less than 30 min. In comparison, the state-of-the-art approach (ACORN)
results in an IoU of 0.97 in that time, while requiring far more parameters.

millions) that suffers from high computational cost, requiring large memory foot-
prints and long training times. While there have been several modifications to
the network architecture [13,20,22] and inference [31], neural implicit representa-
tions are not yet practical for handling extremely high dimensional signals such
as gigapixel images or 3D point clouds with several billion data points.

We introduce a multiscale implicit neural representation (MINER) that is
well-suited for representing very high dimensional signals in a concise manner.
Our key observation is that Laplacian pyramids of visual signals offer a sparse
and multiscale decomposition that naturally separates a signal’s frequency con-
tent across spatial scales. We leverage the multiscale decomposition by repre-
senting each spatial scale of the Laplacian pyramid with different MLPs. Instead
of using a single MLP at each scale, we represent a small disjoint image/volume
patch of fixed size with a small MLP, resulting in both a multiscale and multi-
patch decomposition. Such a multipatch decomposition is well-suited for sparse
signals as most patches will have near-zero intensity, thereby not requiring an
explicit MLP for that patch. MINER enables a fast and flexible multi-resolution
analysis, as representing the signal at lower resolution requires training 2× fewer
MLPs along each spatial dimension (due to fewer patches), An example on fit-
ting a 3D volume across three spatial scales on one billion points is shown in
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Fig. 2. MINER trains and predicts Laplacian pyramids. Visual signals are simi-
lar across scales and are compactly represented by Laplacian pyramids. MINER follows
a similar scheme where each scale of the Laplacian pyramid is represented by multiple,
local MLPs with a small number of parameters. The number of such MLPs increase
by a factor of 2 from coarse to fine scale, thereby representing a fixed spatial size at
each scale. This multi-scale representation naturally lends itself to a sequential, coarse-
to-fine scale training process that is fast and memory efficient.

Fig. 1. MINER provides a visually pleasing result even at the coarsest spatial
scale in six minutes with as few as 600k parameters. The finest scale converges
in 22 min. In contrast, for the same amount of training time, state-of-the-art
approaches such as ACORN result in many artifacts while also requiring 4×
more parameters. An overview of the MINER signal model is shown in Fig. 2.

The multiscale, multi-MLP architecture lends itself to a fast and memory
efficient training procedure. At each spatial scale, the parameters of the MLPs
are trained for the corresponding Laplacian pyramid scale. We then sequentially

train MLPs from coarsest scale to the finest scale. The near-orthogonality of the
Laplacian transform across scales ensures that new information is added at every
scale, thereby resulting in an iterative refinement framework. We leverage the
sparsity of the Laplacian transform by comparing the upsampled signal from the
fine block and the target signal at that fine block – if the error in representation
(or variance of signal) is smaller than a threshold, we prune out the blocks before
training starts. This leads to fewer blocks to train at finer resolutions.

MINER is 10× or more faster compared to state-of-the-art implicit repre-
sentations in terms of training process for a comparable number of parameters
and target accuracy. MINER can represent gigapixel images with greater than
38 dB accuracy in less than three hours, compared to more than a day with
techniques such as ACORN [13]. For 3D point clouds, MINER achieves an inter-
section over union (IoU) of 0.999 or higher in less than three minutes, resulting
in two orders of magnitude speed up over ACORN. Due to the multiscale repre-
sentation, MINER can be used for streaming reconstruction of images, as with
JPEG2000 [21], or efficiently sampling for rendering purposes with octrees [31]
– making neural representations ready for extremely large scale visual signals.
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2 Prior Work

MINER draws inspiration from classical multiscale techniques and more recent
neural representations. We outline some of the salient works here to set context.

Implicit Neural Representations. Implicit neural representations learn a contin-
uous mapping from local coordinates to the signal value such as intensity for
images and videos, and occupancy value for 3D volumes. The learned mod-
els are then used for a myriad of tasks including image representations [3],
multi-view rendering [16], and linear inverse problems solving [25]. Recent
advances in the choice of coordinate representation [27] and non-linearity [22]
have resulted in training processes that have high fitting accuracy. Salient works
related to implicit representations include the NeRF representations [16] and
its many derivatives that seek to learn the 3D geometry from a set of multi-
view images. Despite the interest and success of these implicit representations,
current approaches often require disproportionately large number of parameters
compared to the signal dimension. This culminates in a large memory footprint
and training times, precluding representation of very high-dimensional signals.

Architectural Changes for Faster Learning. Several interesting modifications
have been proposed to increase training or inference speed. KiloNeRF [20] and
deep local shapes [1] replaced the large MLP with multiple small MLPS that
fit only a small, disjoint part of the 3D space. Such approaches dramatically
speed up the inference time (often by 60×) and in some cases enable better gen-
eralization [15], but they have little to no effect on the training process itself.
ACORN [13] utilized an adaptive coordinate decomposition to efficiently fit vari-
ous signals. By utilizing a combination of integer programming and interpolation,
ACORN reduced training time for fitting of images and 3D point clouds by one
to two orders of magnitude compared to techniques like SIREN [22] and the
convolutional occupancy network [19]. However, ACORN does not leverage the
cross-scale similarity of visual signals, and this often leads to long convergence
times for very large signals. Moreover, the adaptive optimized blocks requires
several hundreds of thousands of gradient steps which can be prohibitively
expensive.

Multi-scale Representations. Visual signals are similar across scales, and this
has been exploited for a wide variety of applications. In computer vision and
image processing, the wavelet transform and Laplacian pyramids are often used
to efficiently perform tasks such as image registration [28], optical flow com-
putation [29], and feature extraction [11]. Multi-scale representations such as
octrees [4,14] and mip-mapping are used to speed up the rendering pipeline.
This has also inspired neural mipmapping techniques [9] that utilize neural net-
works to represent texture at each scale. Along the same lines, spatially adaptive
progressive encoding [6] enables a coarse-to-fine training approach that gradually
learns higher spatial frequencies. Multi-scale representations are also utilized for
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several linear inverse problems such as multi-scale dictionary learning for denois-
ing [24], compressive sensing [17], and sparse approximation [12]. Some recent
works have focused on a level-of-detail approach to neural representations [26]
(NGLOD) where the multiple scales are jointly learned. The implicit displace-
ment fields (IDF) approach [30] similarly learns a smooth approximation of the
surface, along with a high frequency displacement at each spatial point to repre-
sent the shape. While efficient in rendering, NGLOD and IDF have no advantage
in the training phase, as it relies on training all levels of detail at the same time.
MINER also results in an LOD representation, but the underlying approach is
significantly different. MINER relies on a block-wise representation at each scale
with sequential training from coarse to fine scales, which enables more compact
representation with faster training times.

3 MINER

MINER combines Laplacian pyramid with a block decomposition of the signal.
We now describe the MINER signal model and the training process.

3.1 Signal Model

Let x be the coordinate and I(x) be the target. We will assume that the coor-
dinates lie in [−1, 1]. Let Dj be the domain specific operator that downsamples
the signal by j times, and Uj be the domain-specific operator that upsamples
the signal by j times. We will leverage J implicit representations, Ij(x) ≈ Nj

for j ∈ [0, J − 1], where Nj is the MLP at the jth level of a Laplacian pyra-
mid, a multiscale representation which separates the input signal into scales
capturing unique spatial frequency bands. Two desirable properties of such a
bandpass pyramid is that signals across scales are approximately orthogonal to
one another [5] and are sparse. We found in our experiments that these proper-
ties dramatically reduce the training and inference times compared to a lowpass
pyramid such as the Gaussian pyramid (see Fig. 3a).

Letting Rj denote the MLP modeling the residual signal at scale j, our
Laplacian pyramid representation may be written as:

IJ−1(x) = DJ−1(I)(x) ≈ NJ−1(x) (1)

IJ−2(x) = DJ−2(I)(x) ≈ RJ−2(x) + U2(NJ−1(x/2)) (2)

...

I(x) ≈ R0(x) + U2(N1(x/2)) (3)

≈ N0(x) + U2(N1(x/2)) + · · · + U2J−1(NJ−1(x/2J−1)), (4)

where Eq. (1) is the coarsest representation of the signal. At finer scales (as in
Eq. (2)), we write the signal to be approximated as a sum of the upsampled
version of the previous scale and a residual term. This results in a recursive
multi-resolution representation that naturally shares information across scales.
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We make two observations about MINER:

– Signals at coarser resolutions are low-dimensional, and therefore require
smaller MLPs. These MLPs are faster for inference, which is beneficial for
tasks such as mipmapping and LOD-based rendering.

– The parameters of the MLPs up to scale j only rely on the signal at scales
q = j, j+1, · · · , J−1. This implies the MLPs can be trained sequentially from
coarsest to finest scale. We will see next that this offers a dramatic reduction
in training time without sacrificing quality.

Using Multiple MLPs per Scale. Equation (4) implies that obtaining a
value at a spatial point x requires evaluating a total of J MLPs across scales.
Such joint evaluation has no computational benefit compared to a single scale
approach like SIREN [22] with comparable number of parameters. Further, the
residual signals at finer scales are often low-amplitude, a consequence of visual
signals being composed of several smooth areas. To leverage this fact and make
inference faster, we split the signal into equal sized blocks at each scale. We
create an MLP for each block that requires significantly fewer parameters than
a single full MLP at that scale. Moreover, blocks with small residual energy can
be represented as a zero signal, and do not even need to be represented with an
MLP.

We now combine the Laplacian representation with the multi-MLP approach
stated above. Let x̃ be a local coordinate at the finest scale in a block with
coordinate (m,n), where m ∈ 1, 2, · · · M is the number of vertical blocks, and
n ∈ 1, 2, · · · , N is the number of horizontal blocks. To evaluate the signal at x,

I(x) = I

(
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[
mH

M
,
nW

N

])
= R

(m,n)
0

(
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[
mH

M
,
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N

])
+ · · ·

+ · · · U2

(
N
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1

(
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⌋
,
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nW
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, (5)

where �·� is the floor operator, and N
(m,n)
j is the MLP for block at (m,n) and at

scale j. With this formulation, we require evaluation of at most J small MLPs
instead of large MLPs, thereby dramatically reducing inference time.

3.2 Training MINER

MINER requires estimation of parameters at each scale and each block. We now
present an efficient sequential training procedure that starts at the coarsest scale
and trains up to the finest scale.

Training at Coarsest Sscale. The training process starts by fitting IJ−1(x), the
image at the coarsest scale. We estimate the parameters of each of the MLPs

N
(m,n)
J−1 by solving the objective function,

min
N

(m,n)
J−1

∥∥∥∥IJ−1

(
x̃ +

(
mH

2J−1M
,

nW

2J−1N

))
− N

(m,n)
J−1 (x̃)

∥∥∥∥
2

. (6)

Let ÎJ−1(xJ−1) be the estimate of the image at this stage.
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Fig. 3. Laplacian pyramid enables faster convergence. The plot in (a) shows
training error across time for a 2048 × 2048 image of Pluto. MINER when combined
with a Laplacian pyramid offers a significantly faster convergence as the MLPs at
finer scale capture orthogonal information. This also results in small jumps in training
accuracy that is strongly present when MINER is trained with a Gaussian pyramid,
or ACORN. (b) shows PSNR as a function of time for various approaches for a one
megapixel Pluto image. MINER achieves higher accuracy at all times, and converges
significantly faster than competing approaches. Moreover, the drop in accuracy when
changing from coarse to fine scale is less severe for MINER compared to when ACORN
re-estimates coordinate decomposition.

Pruning at Convergence. As the training proceeds, some MLPs, particularly
for blocks with limited variations, will converge to a target mean squared error
(MSE) earlier than the more complex blocks. We remove those MLPs that have
converged from the optimization process and continue with the remaining blocks.

Training at Finer Scales. As with the coarsest scale, we continue to fit small
MLPs to blocks at each finer scale. For scale J − 2, the target signal is given by

RJ−2(x) = IJ−2(x) − U2(̂IJ−1)(x/2). (7)

We leverage the fact that blocks within each scale occupy disjoint regions and
can optimize each MLP independently of one another:

min
R

(m,n)
J−2

∥∥∥∥RJ−2

(
x̃ +

(
mH

2J−2M
,

nW

2J−2N

))
− R

(m,n)
J−2 (x̃)
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2

. (8)

Pruning Before Optimization. Due to the sparseness of gradients of visual sig-
nals, we expect a large number of spatial regions to have little to no signal.
Nominally, the number of blocks and MLPs double along each dimension at
finer scales. However, some blocks may already be adequately represented by
the corresponding MLP at the coarser scale. In such a case, we do not assign an
MLP to that block and set the estimate of the residue to all zeros. Depending
on the frequency content in the image, this decision dramatically reduces the
number of total MLP parameters, and thereby the overall training and inference
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times. In cases where a priori information about residual energy is not avail-
able (such as view synthesis from images), we can rely on each block’s variance.
Blocks with low variance likely converge at the coarser scale and hence can be
pruned from training.

4 Experimental Results

Baselines. For fitting to images and 3D volumes, we compared MINER against
SIREN [22], KiloNeRF [20], and ACORN [13]. We also compared MINER against
convolutional occuppancy networks [19] for 3D volumes. We used code from the
respective authors and optimized the training parameters for a fair comparison.

Training Details. We implemented MINER with the PyTorch [18] framework.
Multiple MLPs were trained efficiently using the block matrix multiplication
function (torch.bmm) and hence, we required no complex coding outside of
stock PyTorch implementations. All our models were trained on a system unit
equipped with Intel Xeon 8260 running at 2.4 Ghz, 128 GB RAM, and NVIDIA
GeForce RTX 2080 Ti with 12 GB memory. For all experiments, we excluded
any time taken by logging activities such as saving models, images, meshes, and
computing intermittent metrics such as PSNR and IoU.

Fitting Images. We split up RGB images into 32 × 32 × 3 patches at all spatial
scales. For each patch and at each scale, we trained a single MLP with two hidden
layers and sinusoidal activation function [22]. We fixed the number of features to
be 20 for each layer. We did not add any further positional encoding. We used
the ADAM [8] optimizer with a learning rate of 5 × 10−4 and an exponential
decay with γ = 0.999. At each scale, we trained either for 500 epochs, or until the
change in loss function was greater than 2×10−7. We used an �2 loss function at
all scales with no additional prior. We pruned a block from the training pipeline
if the block MSE was smaller than 10−4. Similarly, a block was not added at the
starting of the training process if the block MSE was smaller than 10−4. The
effect of block-stopping threshold is analyzed in the supplementary material.

Figure 3a shows training error for a 4 megapixel (MP) image of Pluto across
epochs for MINER by representing a Laplacian pyramid, a Gaussian pyramid,
and ACORN. MINER converges rapidly to an error of 10−4 compared to other
approaches. Moreover, the periodic and abrupt increase in error are more preva-
lent in Gaussian representation, and ACORN, which further hamper their perfor-
mance, but not with Laplacian pyramid due to near-orthogonality of signal across
scales. Figure 3b shows training error for a 1 MP image for various approaches
with a fixed number of parameters (900k). MINER with four scales is nearly two
orders of magnitude faster than all approaches. Figure 4 shows the fitting result
for a 64 megapixel Pluto image across training iterations. The times correspond
to the instances when MINER converged at a given scale. MINER maintains high
quality reconstruction at all instances due to the multiscale training scheme and
rapidly converges to a PSNR of 40 dB within 50 s. In contrast, ACORN achieves



326 V. Saragadam et al.
M

IN
E
R
 (

7
.8

 m
il
. 

p
a
ra

m
s
)

T = 2s T = 3s T = 9s T = 24s T = 50s

25.4dB 26.1dB 28.6dB 32.2dB 40.0dB

K
il
o
N

e
R
F

(7
.8

 m
il
. 

p
a
ra

m
s
)

6.9dB 7.4dB 11.8dB 22.7dB 32.1dB

A
C
O

R
N

 (
9
.5

 m
il
. 

p
a
ra

m
s
)

20.5dB 25.2dB 26.9dB 26.1dB 30.8dB

Fig. 4. Image fit over time. The figure compares fitting of the 16 megapixel pluto
image at various times during the training process. A distinct advantage of MINER is
that the signal is similar to the final output (albeit downsampled) from the starting
itself which enables an easy visual debug of the fitting process.

qualitatively good results after 10 s and achieves a PSNR of 30.8 dB after 50
s, and KiloNeRF achieves a qualitatively good result only after 50 s. SIREN
Results are not shown in the plot as the first epoch was completed after 4 min.
Results with analysis on effect of parameters such as number of scales and patch
size is included in supplementary.

Figure 3b shows a plot of PSNR as a function of time for various approaches.
We also note that ACORN curve shows significant drop in accuracy as a result
of re-computation of coordinate blocks. In contrast, the drop in accuracy for
the MINER curve due to scale change is significantly smaller than ACORN.
Figure 5 shows results on training a 2 megapixel image with active blocks at all
scales. The blocks are concentrated around the high frequency areas (such as the
antennae of the grasshopper) as the scale increases from coarse to fine. MINER
took less than 10 s to converge to 40 dB fitting accuracy. In contrast, KiloNeRF
took 6 minutes to converge and ACORN took 7 min to converge to 40 dB with
approximately equal number of parameters.

Figure 6 compares MINER, KiloNeRF, and ACORN in terms of time taken
to achieve 36 dB and GPU memory for fitting a 16 MP image of Pluto. For
Fig. 6 (a), we used author’s implementation of ACORN with default batch size
and number of layers and only varied the number of hidden features. For Fig. 6
(b), we set batch size such that up to all pixels were trained simultaneously.
Similarly, we set the batchsize for MINER to train all pixels simultaneously to
keep comparisons fair. MINER consistently achieves 36 dB faster than competing
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Fig. 5. MINER adaptively selects window sizes. MINER adaptively selects the
appropriate scale for each local area resulting in patch sizes that are chosen according
to texture variations within the window. The figure above shows a macro photograph of
a grasshopper fit by MINER (left image). Large parts of the image such as background
have very smooth texture implying that they can be fit accurately at a coarser scale–
which translates to large spatial size for low frequency areas. In contrast, area around
the antennae are made of high spatial frequencies, which required fitting at finer scales.
ACORN provides a similar decomposition (right image) but represents image at only
a single image, thereby not being amenable to multiscale analysis.

Fig. 6. MINER requires shorter training time and memory footprint. The
plot shows the time taken to achieve 36 dB and the GPU memory utilization to fit
a 16MP image (Pluto) with ACORN and MINER for varying number of parameters.
MINER is an order of magnitude faster than ACORN and requires less than one third
of the GPU memory as ACORN–implying MINER is well-suited to train very large
models.

methods and requires significantly smaller memory footprint while being able to
train on the whole signal at a time, making it highly scalable for large-sized
problems.

MINER scales up graciously for extremely large signals. We trained ACORN
on a gigapixel image shown in Fig. 7 over 7 scales. We set the number of features
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Fig. 7. Fitting gigapixel images. The figure shows the results on fitting a gigapixel
image (20, 480 × 56, 420) with MINER and ACORN. MINER required 188 million
parameters and converged to 38.5 dB in 3.1 h. In contrast, even after 44 h of training,
ACORN, which required 175 million parameters, achieved only 32.6 dB.

per each block to be 9, and used a patch size of 32 × 32. MINER converged
to a PSNR of 38.5 dB in 3.1 h and required a total of 164 million parameters.
In contrast, after 44 h of training, ACORN converged to only 32.6 dB while
using a total of 175 million parameters. We trained both ACORN and MINER
on an 11 GB NVIDIA RTX 2080 Ti GPU, which required us to decrease the
maximum number of patches for ACORN to 3072 from the original authors’
implementation they ran on a 48 GB GPU. MINER also enables compression of
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Scale 2 | 6s | 4.4 mil. params. Scale 1 | 11s | 4.6 mil. params. Scale 0 | 1.3min | 5.5 mil. params.

Fig. 8. Active blocks reduce with increasing scale. The figure shows MINER
results at the end of training at each scale and the active blocks at each scale. As the
iterations progress, only the blocks on the surface of the object remain, which leads to
a dramatic reduction in non-zero blocks, and hence the total number of parameters.

the image. Storing the image image as 16-bit tiff format required 2.4 GB of
disk space. In contrast, MINER required 650 MB with 32 bit precision, implying
MINER enables very high compression for images with high dynamic range.

Fitting 3D Point Clouds. cnspired by Convolutional occupancy networks [19],
we utilized signed density function where the value was 1 inside the mesh and 0
outside. We sampled a total of one billion points, resulting in a 1024×1024×1024
occupancy volume. We then optimized MINER over four scales for a maximum
of 2000 iterations at each scale. We experimented with logistic loss and MSE
and found the MSE resulting in signficantly faster convergence. We divided the
volume into disjoint blocks of size 16 × 16 × 16. The learning rate was set to
10−3. We set the number of features to 16 and the number of hidden layers to
2 for MLP for each block at all scales. As with images, we set the per-block
MSE stopping threshold to be 10−4, and did not include positional encoding for
the inputs. We then constructed meshes from the resultant occupancy volumes
using marching cubes [10]. We compared our results against ACORN and convo-
lutional occupancy networks for accuracy and timing comparisons. For ACORN,
we used the implementation and the hyperparameters provided by the original
authors. For convolutional occupancy networks, we used 200,000 randomly sam-
pled points from the volume as input. Comparisons against screened Poisson
surface reconstruction (SPSR) [7], which does not utilize neural networks but
requires local normals, is included in the supplementary.

Figure 1 shows reconstructed meshes for the Lucy 3D model at each scale.
MINER converges in 22 min to an Intersection over Union (IoU) of 0.999. In the
same time, ACORN achieved an IoU of 0.97 with worse results than MINER.
ACORN took greater than 7 h to converge to an IoU of 0.999, clearly demon-
strating the advantages of MINER for 3D volumes. We also note that MINER
required less than a third of the number of parameters as ACORN – this is a
direct consequence of using a block-based representation – most blocks outside
the mesh and inside the mesh converge rapidly within the first few scales, requir-
ing far fewer representations than a single scale representation. An example of
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Fig. 9. Comparisons against state-of-the-art for 3D volume fitting. We 3D
occupancy fitting for a fixed duration with MINER, ACORN, and Convolutional
occupancy [19]. The number of parameters of MINER was chosen adaptively according
to model complexity. MINER achieves high accuracy in a short duration for arbitrarily
complex shapes, which is not possible with prior works, even though some models such
as the engine (second row) require significantly more parameters.

active blocks at each scale is shown in Fig. 8. As iterations progress, the num-
ber of active blocks after pruning reduce, which in turn results in more compact
representation, and fewer parameters. Figure 9 visualizes the meshes fit with vari-
ous reconstruction approaches for a fixed duration. The time for each experiment
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Table 1. Comparison on the Thai Statue 3D Point Cloud. For all experiments,
we fixed the batch size to the equivalent of 1024 16 × 16 × 16 blocks. MINER requires
lower training and testing times, similar GPU memory, fewer parameters, and smaller
size on disk compared to state-of-the-art techniques. MINER also occupies smaller disk
space compared to storing the mesh as a ply file, thereby enabling compression.

IOU GPU Mem. #Params. Test time Storage

MINER - scale 3 0.95 (17 s) 1.8 GB 900k 0.02 s 3.5 MB

scale 2 0.97 (42 s) 2.5 GB 1.3 million 0.04 s 4.8 MB

scale 1 0.98 (1.9 min) 5.0 GB 2.8 million 0.16 s 10.6 MB

scale 0 0.99 (6 min) 6.6 GB 9.9 million 0.8 s 37.9 MB

ACORN [13] 0.99 (53 min) 8.0 GB 17 million 18.1 s 68 MB

Conv. Occ [19] 0.82 5.8 GB 160k − 64 KB

ply file − − − − 180 MB

was chosen to be when MINER achieved an IoU of 0.999. MINER has superior
reconstruction quality compared to ACORN and convolutional occupancy net-
works [19]. Table 1 compares IoU after a fixed time, GPU memory for training,
number of parameters, testing (inference) time, and disk space for MINER at var-
ious scales, and competing approaches. The memory usage of ACORN increased
from 3.9 GB at the start (with no further splitting) to 8 GB, which we reported.
MINER achieves high accuracy (IoU) within 17 s at the coarsest scale where
GPU utilization, number of parameters (and hence size on disk) are low. At the
finest scale, MINER achieves very high accuracy, and requires fewer parameters,
thereby enabling training on very large meshes. Moreover, MINER occupies a
third of the size on disk compared to a standard ply file, thereby enabling mesh
compression.

5 Conclusions

We have proposed a novel multi-scale neural representation that trains faster,
requires same or fewer parameters, and has lower memory footprint than state-
of-the-art approaches. We demonstrated that the advantages of a Laplacian
pyramid including multiscale and sparse representation enable computational
efficiency. We showed that leveraging self-similarity across scales is beneficial
in reducing training time drastically while not affecting the training accuracy.
MINER naturally lends itself to rendering where level-of-detail is of importance
including representation and mipmapping for texture mapping. MINER can be
combined with fast, multiscale rendering approaches [31] to achieve real time
neural graphics. With the low computational complexity and fast training and
inference time, MINER opens avenues for rendering extremely large and complex
geometric shapes that was previously impractical.
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