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Employing Boundary Element Approach With
Genetic Algorithm to Increase Travel Range of

Repulsive Actuators
Yu Tian, Ronald N Miles, Shahrzad Towfighian

Abstract— The design of repulsive electrostatic actuators having enlarged travel range is achieved by combining the
boundary element approach and a genetic algorithm. The boundary element method enables calculating the electrostatic
forces without time consuming finite element simulations. Once a static equation that uses a model of effective
lumped mass solves the travel ranges, the GA maximizes travel ranges by optimizing the dimensional parameters. The
effectiveness of the scheme is demonstrated with extensive experimental results showing the travel ranges of a micro
out-of-plane actuator are increased by up to 190%. The developed platform can improve the signal-to-noise ratios and the
performance of general multi-electrode systems.

Index Terms— electrostatic MEMS, out-of-plane actuator, optimization, boundary element approach, genetic algorithm

I. INTRODUCTION

THE employment of out-of-plane actuators in microelec-
tromechanical systems (MEMS) is found in applications

of switches and attenuators [1]–[5], high-resolution displays
[6]–[8], and maskless lithography [9]–[11]. Micro-actuators
can be driven by electrothermal, piezoelectric, electromag-
netic, and electrostatic mechanisms. During the past few
decades, electrostatic actuation has attracted broad attention
because it has tremendous advantages over other mechanisms.
The electrostatic actuators are compatible with IC processes
because they use voltage sources in the electronic circuits to
generate electric fields. Electrostatic actuators consume very
low amounts of power (<1mW) and only when they are
moving out-of-plane to connect circuits (e.g., switching to
the ON state). The developed micro machining technologies
make out-of-plane micro actuators easy to fabricate for diverse
structures and meet various needs in different optical appli-
cations. In the scheme of electrostatic actuation, the out-of-
plane movements are controlled by the electrostatic forces. If
the out-of-plane movements are translational, the actuators can
statically or dynamically make and break electric circuits and
often work as switches. With rotational movements driven by
electrostatic forces, the out-of-plane movements of actuators
can accomplish many tasks; for example, in an array of
micro mirrors they can adjust the reflection of incident lights
precisely to target angles and steer the optical paths.

Because of the nature of electrostatic actuation, the travel
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ranges of out-of-plane actuators depend on the levels of
applied voltages. The speed of travel is related to the rate
of change of the voltages. Meanwhile, the travel range must
be constrained to a range that does not allow unstable out-
of-plane motions, which would lead to unpredictable, uneven,
and unreliable actuation. Because a large travel range allows
an out-of-plane electrostatic actuator to be used for more
tasks, much effort has been put into expanding the range.
For the out-of-plane actuators of classic parallel-plate designs,
the primary limitation is that the two electrodes unavoidably
collapse when the displacement is driven beyond 30% of
the initial gap. Strategies to mitigate pull-in instability in-
clude devising deformable actuators [12] or applying flexible
connecting structures such as levers [13], integrated torsional
flexures [14], and rotation transformers [15]. They all exhibited
efficiency but could not avoid the inevitable collapsing of
the two electrodes. Control-based techniques [16]–[18] can
adjust the parasite capacitance before the pull-in instability
and slightly improve the travel range for electrostatic out-of-
plane actuators. However, none of them eliminates the pull-in
instability that fundamentally limits the travel range for out-
of-plane actuators of conventional designs, and the problem of
instability risks damaging the devices once collapse happens.

Using a multi-electrode design, He et al. introduced re-
pulsive actuation [19]–[21], which was followed by many
researchers [22]–[25]. Pull-in collapse has been successfully
overcome, which makes repulsive out-of-plane actuators prac-
tical and reliable in a variety of applications needing out-of-
plane movements. A cross-section of the electrode layout in
repulsive out-of-plane actuators is shown in Fig.1. As demon-
strated by the colored electric potential, the movable structure
and the fixed center electrode under it are grounded (blue
color shows the smallest potential) while the two additional
fixed side electrodes are charged with same level of voltage Vs

(red color shows the greatest potential). The relative closeness
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of the electric field lines reveals that the upward attractive
electric forces, around the upper edge and the top corners
of the movable structure, are much more intense than the
downward attractive forces around the lower edge of the
movable structure [26]. This subtle arrangement of the four
electrodes creates net upward electrostatic forces pushing the
movable structure away from the substrate (termed repulsive
forces).

Theoretical computations and experiments have shown that
when we increase the applied side voltages Vs, no pulled-
in collapse happens to the actuators and the upward stroke
of the movable structure gets larger until the repulsive forces
equal the mechanical restoring forces. Movements are allowed
within the maximum of achievable strokes, the travel range.
The travel range of the out-of-plane repulsive actuators relies
on the dimensional parameters as well as the applied voltages.
The former decides the effective exertion of actuation and the
latter actively actuates the movable structure. For present de-
signs of dimensional parameters, a travel range of 12 microns
often needs at least 170V applied [8], [21], [27]. Electrostatic
actuators are normally made of polysilicon, which cannot
safely employ much higher voltages. Not to mention, when
the voltages are generated at such high levels by the electronic
circuits, designers face several challenges. The components
tend to consume extra-large amounts of power or devote
considerably large portions of resources to generate large
voltages [28]. Amplified voltages make MEMS devices prone
to the simultaneously amplified noise, and the performance of
MEMS devices is inevitably hampered [29].

To avoid the drawbacks of high applied voltages, a lot of
effort has been put into improving the travel range of out-of-
plane actuators at relatively low voltage levels. Increasing the
number of repulsive out-of-plane actuators can be effective, but
it sacrifices huge areas of micro chips and the increased mass
undoubtedly decreases the natural frequencies and then the
responding speed of devices. Based on the previous discussion,
many works focus on optimizing the dimensional parameters
in designs. Lifting the side electrodes instead of fixing them
during the out-of-plane motions was demonstrated by Chao et
al. [8]. The side-electrode design increased the total repulsive
forces because the attractive forces are strengthened and
the saturation position was improved slightly. The expenses
are more complex electrostatic fields and stronger coupling
between active fingers, which bring more challenges to the
design of actuators. Towfighian et al. [26] took two consecutive
steps to simulate with finite element analysis (FEA) tools, and
optimize the dimensional parameters including widths of all
four electrodes (Ws, Wc, Wm) as well as the lateral spacing
(Gsc) to successfully increase the repulsive forces. Chao et al.
[30] altered the width of side electrodes, Ws, from constant
to double-step values, and that produced a 36% improvement
for the travel range of rotation angles.

In the preceding optimization processes, dimensional pa-
rameters are often manually adjusted based on researchers’
knowledge and experience. Many potential sets of the param-
eters can be excluded at the same time. It is very possible
to miss the global optimal solutions. Thus, there is a need to
explore the global solutions to the optimization problem for
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Fig. 1. Cross sectional view of the electrode layout of the repulsive
actuation with their dimensional parameters: fixed side electrodes (1 and
4), fixed center electrode (2), and movable structure (3). The geometry
is assumed to be uniform in the direction normal to this figure.

enhancing the travel range of out-of-plane actuators.
The main purpose of the present paper is to demonstrate the

combination of a boundary element approach with a genetic
algorithm to implement a design strategy involving multiple
dimensional parameters in a repulsive electrode design. The
design parameters shown in Fig.1 (Ws, Gsc, Wc, Tf , Wm, Tm)
are simultaneously considered and optimized for maximum
static displacement at several target voltages Vs. Experimental
results are presented showing that the proposed scheme con-
vincingly leads to a design having extended the travel range.

Once a design is obtained that has enhanced travel range, the
influence of the optimized dimensional parameters is analyzed
for a variety of values of their target voltages for repulsive
out-of-plane actuators. This provides a comprehensive under-
standing of optimization on repulsive out-of-plane actuators
and similar multi-electrode systems.

The outline of this paper is as follows: in Section II, the op-
timization problem is given, and the boundary element/genetic
algorithm scheme is proposed. Section III illustrates a case of
optimizing travel ranges for a repulsive micro actuator. The
experimental setup and methods are described to demonstrate
the enlargement of the travel range for the static and dynamic
responses. Section IV concludes this article.

II. PROPOSED SCHEME FOR ENLARGEMENT OF
ACTUATION RANGE

The optimization problem studied in this article is to max-
imize the static, out of plane displacement (taken to be the
cost function) of the repulsively actuated structure shown in
Fig.1 when the side electrodes are charged with voltage Vs. To
increase the static displacement, multiple dimensional param-
eters, listed in Table-I, are gradually varied in a way that is
consistent with their constraints imposed by micro fabrication.
Finally, the design having these optimized parameters will
enable the target voltages to generate a repulsive electric field
that produces the largest static displacement possible, meaning
the travel range of the actuator reaches its electromechanical
limits. The optimization process is shown in Fig.2.

Based on Newton’s second law, we can derive a general
governing equation of the out-of-plane motion for the movable
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Fig. 2. Overview of the optimization process. The proposed BEA-GA scheme is emphasized in the blue block.

TABLE I
DIMENSIONAL PARAMETERS IN OPTIMIZATION

Variable Definition
x1 (Ws) Width of side electrode
x2 (Gsc) Lateral distance between fixed electrodes
x3 (Wc) Width of center electrode
x4 (Tf ) Thickness of fixed electrodes
x5 (Wm) Width of moving electrode
x6 (Tm) Thickness of moving electrode

structure under repulsive forces as

mf z̈ =
∑

F

=− c(z) · ż − kf (z) · z

+
∑

F (z, Vs;Ws, Gsc,Wc, Tf ,Wm, Tm)

(1)

where z represents the out-of-plane displacement of the
movable structure, mf is the effective mass, kf (z) is the
effective stiffness function and c(z) is the the damping func-
tion. The effective stiffness function kf (z) can include mid-
plane stretching effect for micro clamped-clamped beams
[22], clamped-guided beams or stiff plates [24], when large
out-of-plane displacements are observed compared to their
thicknesses. Also, both the stiffness and damping functions
can include nonlinearities that come from the compressibility
of the air in the applied environment of very high pressure.∑

F (z, Vs;Ws, Gsc,Wc, Tf ,Wm, Tm) is the total repulsive
force dependent on displacement and Vs and has dimensional
parameters described in Table-I.

A. Solver: Boundary Element Approach
The boundary element approach (BEA) was applied to esti-

mate of capacitance in various capacitive microphone designs
by Miles [31]. Here, we employ it to model the very nonlinear
electric field generated by the layout of the electrodes with
their cross-section shown in Fig.1. The boundary element

approach is applied to electrodes having the parameters given
in Table-III. Electrodes 1 to 4 are discretized having N1, N2,
N3 and N4 finite segments along their edges respectively. After
establishing the global coordinates of the segments, we obtain
the length as Li for each tiny segment with midpoint i. After
we charge the two fixed side electrodes (1 and 4) and ground
the fixed center electrode (2) and the movable structure (3),
the electric potential vector can be represented by

(V )N×1 =


(V1)N1×1

(V2)N2×1

(V3)N3×1

(V4)N4×1

 =


(Vs)N1×1

(0)N2×1

(0)N3×1

(Vs)N4×1

 (2)

The electric potential on each segment Li is contributed by all
charged segments Lj , including Li itself. The electric potential
on Li, i.e. vi, can be computed by

vi =
1

Li

N∑
j=1

qj
4πϵR(i, j)

Lj =


Vs, 1≤i≤N1

0, 1≤i−N1≤N2

0, 1≤i−N1 −N2≤N3

Vs, others
(3)

where N =
∑4

k=1 Nk is the total number of segments, qj is
the unknown charge on segment Lj , and R(i, j) is the distance
between midpoints of Li and Lj . When domains of summation
are two-dimensional, as shown in Fig. 1 and contain only
single lines, Eq.3 is given by

vi =
N∑
j=1

[G]ijqj =
N∑
j=1


−qj

log(R(i, j))

2πϵ
, i ̸= j

−qj
log(Li − 1.5)

2πϵ
, i = j

(4)

For a detailed derivation of Eq.4, one can refer to [32]. If the
movable structure in Fig.1 is a repulsively actuated beam, the
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Fig. 3. Electrostatic repulsive force profile for the electrode layout
shown in Fig.1 calculated from BEA and the comparison with FEA
simulation by COMSOL. Saturation position at around zst = 45µm
for the dimensional parameters of the previous design given in Table-III.

electrostatic force on it can be calculated as the gradient of
electric potential energy multiplied by its length L∑

F (z, Vs;Ws, Gsc,Wc, Tf ,Wm, Tm)

= ∇E(z) · L

= ∇
(
1

2
(Q)t(V )

)
· L

= ∇
(
1

2
([G]−1(V ))t(V )

)
· L

= f(z, Vs;Ws, Gsc,Wc, Tf ,Wm, Tm) · L

(5)

where (Q), (V ), and [G] represent the charge vector, elec-
tric potential vector, and the inverse of capacitance matrix,
respectively. We can determine the electric potential energy
even if the charge distribution of every segment is unknown.
The potential energy function is very important as it reveals
forces on the repulsive actuators.

Fig.3 shows how the electrostatic force per length profiles
obtained from the boundary element approach and that from a
finite element mode by COMSOL are almost identical when
N1 = N2 = N3 = N4 = 400. We successfully verified
that the boundary element method could provide a sufficiently
accurate force per length profile. In addition, boundary element
calculation needed 42 seconds while the finite element method
provided by COMSOL needed 29 minutes to do the analysis;
the boundary element method is much more computationally
efficient.

For any set of dimensional parameters, (Ws, Gsc, Wc, Tf ,
Wm, Tm), the repulsive force

∑
F (z, Vs) is similarly obtained

from the boundary element calculation, fit with a polynomial
of the vertical displacement z, and substituted into Eq.1. The
static displacement zst = zst(Vs) is obtained by solving the
algebraic equation, Eq.6, at a certain supplied Vs with time-
dependent terms dropped and regarded as the travel range for
each set of dimensional parameters.

kf (zst) · zst =
∑

F (zst, Vs;Ws, Gsc,Wc, Tf ,Wm, Tm) (6)

B. Optimizer: Genetic Algorithm (GA)
We investigated the suitability and reliability of approaches

to simultaneously optimize multiple dimensional parameters

listed in Table I to maximize the static displacement zst(Vs).
As this is a derivative-free optimization problem with con-
strained and multi-objective coupling, several optimization
techniques such as hybrid simulated annealing, generalized
pattern search, particle swarm optimization, and genetic algo-
rithm (GA) are popularly deployed. Our research determined
that GA is the most suitable optimizer for our problem
as it globally searches for solutions with more efficiency,
robustness, and stability [33].

We first pick a target voltage, Vs. We expect that the opti-
mized solutions should perform best at that applied voltage.
As the GA works according to the flow shown in Fig.2, it
first randomly generates some initial population, I0=(Ws, Gsc,
Wc, Tf , Wm, Tm)0, within the constraints of the dimensional
parameters. After the initialization, GA calls BEA to solve
the static displacement zst,0(Vs) at the target Vs for every
individual, and they are regarded as their fitness values. In the
following two cases, we will give more details of constraints
along with their target voltages. Based on the fitness values, we
assign each individual a probability of being kept for the next
operations. This step uses roulette wheel selection, and the
probability of selecting each individual Iik in kth generation
(k=0,1,2,..) is

P{Iik} =
zist,k(Vs)∑
zist,k(Vs)

(7)

which secures individuals Iik with greater fitness values
zist,k(Vs) are more likely to be selected than individuals with
lesser fitness values. The selected parents will crossover and
create the next generation of individuals, the offspring I1,
which are presumably better than the parents I0 as long as
we have enough individuals. We then add some mutations to
the offspring. Extra population are also generated from the
merging of them with their parents I0. After we conduct all
the preparations and generate enough individuals as I1, we
need to check and adjust to ensure the I1 remain constrained.
BEA is called again to solve Eq.6 for dimensional parameters,
I1, and new parents I2 are selected again based on their fitness
values, zst,1(Vs). GA is an iterative process that repeats all of
the preceding steps until the prescribed number of iterations is
reached. The optimal result after each iteration m is recorded
as max(zst,k(Vs)). Here we set the final generation as the
100th generation and the solutions I100=(Ws, Gsc, Wc, Tf ,
Wm, Tm)100 are output as optimized dimensional parameters
which gives optimized displacement max(zst,100(Vs)) at the
target voltage Vs.

III. OPTIMIZATION FOR ENHANCING TRAVEL RANGES

In practical design optimization problems for out-of-plane
actuators, most constraints involve the processes in micro
fabrication. For example, dimensions or differences of two
overlapping dimensions must have certain values, which
avoids misalignment-caused fabrication defects. In this paper,
constraints of the dimensional parameters will primarily in-
clude fabrication rules by PolyMUMPs [34]. The constraints
are listed in Table-III. The exact values of all thicknesses
and minimum difference between Wc and Wm are ruled
by PolyMUMPs. Other constraints assume a sufficient area
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on the chip for fabricating the out-of-plane actuators (micro
cantilever) and, to enlarge the travel range of the out-of-plane
actuator, any reasonable values of dimensional parameters
within the generous limitations are acceptable. PolyMUMPs
is a developed and commercially available process offering
successful yields and small fabrication costs, and we will use
products by PolyMUMPs to experimental verify most static
and dynamic results.

The proposed BEA-GA scheme is applied to a micro can-
tilever actuator with repulsive forces. For a cantilever of length
L (properties listed in Table-II) modeled with the Bernoulli-
Euler beam theory, the governing equation Eq.1 can be defined
as

ρA
∂2z

∂t2
+ c∗

∂z

∂t
+ EI

∂4z

∂x4

+ V 2
s fe(z;Ws, Gsc,Wc, Tf ,Wm, Tm) = 0

(8)

where out-of-plane displacement z is related to the position
along the length of the beam, x, and time, t. A = Wm ·
Tm is the area of the cross-section. The displacement of the
cantilever beam is assumed to be product of first mode shape,
ϕ(x), and time-dependent function as shown

z(x, t) = ϕ(x) · q(t)
ϕ(x) = cosh(λx)− cos(λx)− µ(sinh(λx)− sin(λx))

µ =
sinh(λL)− sin(λL)

cosh(λL) + cos(λL)
(9)

After separation of variables, the governing equation of the
beam, Eq.8, is multiplied by ϕ(x) and integrated over x from
0 to L to yield the general form as

mf q̈ =
∑

F

=− c · q̇ − kf · q
+ V 2

s Fe(q;Ws, Gsc,Wc, Tf ,Wm, Tm)

(10)

where the effective mass mf , effective stiffness kf and the
damping c are given in Eq.11 and Q is the quality factor.
Fe is the electrostatic force related to specific dimensional
parameters, (Ws, Gsc, Wc, Tf , Wm, Tm).

mf = ρA

∫ L

0

ϕ2(x)dx

kf = EI

∫ L

0

ϕ′′′′(x)ϕ(x)dx

c = c∗
∫ L

0

ϕ2(x)dx =
kf
Q

Fe(q;Ws, Gsc,Wc, Tf ,Wm, Tm)

=

∫ L

0

fe(q;Ws, Gsc,Wc, Tf ,Wm, Tm) · ϕ(x)dx

(11)

As described in II-A, we write the static governing equation
after eliminating the time-dependent terms in Eq.10 as

kf · qst + V 2
s Fe(qst;Ws, Gsc,Wc, Tf ,Wm, Tm) = 0 (12)

Now that the travel range can be obtained as the static
displacement at the tip of the beam as zst = ϕ(L) · qst,
optimization is conducted to enlarge the travel range for this

TABLE II
BEAM MATERIAL AND GEOMETRIC PROPERTIES

Property Symbol Value
Cantilever length (µm) L 500

Density (kg/m3) ρ 2330
Elastic modulus (GPa) E 150

Beam-center electrode gap (µm) d 2

TABLE III
DIMENSIONAL PARAMETERS OF MICRO ACTUATOR AND CONSTRAINTS

(UNIT: µm)

Previous Optimized Optimized
Variable Constraints design design 1 design 2
x1 (Ws) 4≤Ws≤38 28 38 38
x2 (Gsc) 4≤Gsc≤25 20.5 4 4
x3 (Wc) 8≤Wc −Wm≤25 12.5 8 8
x4 (Tf ) Tf = 0.5 - - -
x5 (Wm) 10≤Wm≤25 17.5 10 17.5
x6 (Tm) Tf = 2 - - -

micro actuator. For optimization, the target voltages are set
to values from Vs = 40V to Vs = 140V with a step of
20V. The BEA-GA optimization ensures the maximum travel
range for the micro-cantilever when the voltage for each step
is applied to the side electrodes. Optimization is conducted six
times for the six target voltages and the optimized dimensional
parameters are recorded. Four runs of BEA-GA optimization
out of many trials of target voltage Vs = 120V are shown in
Fig.6 and demonstrate that 100 iterations are quite adequate
to converge to the optimized design 1 in III. The convergent
situation is similar for the other target voltages.

Our investigation reveals that when the target voltages vary
from Vs = 40V to Vs = 140V with a step of 20V, the solutions
are identical to be the optimized design 1 in Table-III. The
optimized dimensional parameters I100 are maximizing the
width of side electrodes Ws while minimizing all of the other
parameters to the boundary values. The optimized dimensional
parameters are reasonable as they establish a much more
compact electrostatic field in which the provider of repulsive
forces, side electrodes, are maximized.

After those steps, we require to preserve the size of the
micro actuator, i.e. fixing the value of Wm, and re-do the
optimization for the target voltages from Vs = 40V to Vs =
140V with a step of 20V. We build optimized design 2 as
the optimal solution for all target voltages. Fig.4 shows the
repulsive force profiles for the previous design, optimized de-
sign 1 and optimized design 2. The figure shows the optimized
dimensional parameters substantially improve the electrostatic
forces in a range of vertical displacement between 0µm and
17µm, which is the applicable range for micro cantilevers. At
the same time, the saturation position where the force vanishes
is decreased from 45µm to 30µm. It is still far away from the
usable range so it is not concerning.

IV. EXPERIMENTAL RESULTS

New chips with beams of optimized design 1 and optimized
design 2 were fabricated to the PolyMUMPs standard and a
comparison of the dimensional parameters with our previous
design is shown in Fig.5. Beams as tiny as 10µm wide are
made and are fabricated with small chamfers on both sides
of the fixed end to make them less vulnerable to break.
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Fig. 4. Comparison of electrostatic repulsive force profiles for the
electrode layouts of three designs in Table-III.
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Fig. 5. Comparison of microscopic views of the fabricated cantilever
beams of: (a) previous design (17.5µm-wide); (b) optimized design 1
(10µm-wide); and (c) optimized design 2 (17.5µm-wide). Beams are
500 um long. Red lines indicate the components of the electrode layout
as in Fig.1 and the red circle indicates the chamfers added for the narrow
beam.
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TABLE IV
ADJUSTED VALUES AND RATE OF ADJUSTMENT

Item Value Standard value Rate of adjustment (%)
Design 1: L (µm) 495 500 -1%

Design 1: Tm (µm) 1.8 2 -10%
Design 1: λL 1.98 1.875 -5.6%

Design 2: L (µm) 505 500 +1%
Design 2: Tm (µm) 1.82 2 -9%

Design 2: λL 1.97 1.875 -5.1%

Thus, as can be seen in Fig.5, the actuated length of the
10µm-wide beam is slightly smaller than 500µm. Because
both of the new beams (b)(c) are very long, inevitable initial
curling from residual stress happens when the beams are
released in micro fabrication. Also, the connection to an
anchor is not a perfectly fixed constraint so the hanging parts
should be considered to adjust the length of the beam model.
One effective way to account for the initial curvature of the
structures and imperfections from fabrication and make the
established theoretical model fit well with the experiments, is
to slightly adjust the natural frequency number, λL, in Eq.9
[35], lengths and thicknesses. The adjustment taken here is
listed and compared with standard value of cantilever beams
as in Table-IV

A. Enhanced static response

The chip is placed in a vacuum chamber and the static
displacements versus varying side voltages of the cantilever
beams are measured with a Polytec MSA-500 laser vibrometer
as in Fig.7. The theoretical static displacements from Eq.6 are
in good agreement with tip-measured experimental data. There
is a significant enlargement of the travel range for the six steps
in voltage from 40V to 120V compared with the previous
design. Optimized design 2 provides a travel range with 49%
to 130% improvement, and optimized design 1 achieves an
unprecedented enlargement of 105% to 192%. The improved
travel ranges suggest that we can use much lower supplied
voltages, i.e. 80V, to accommodate the same level of behaviors
that had required 140V as applied voltage level by the previous
design.

Before conducting experimental measurement for the dy-
namic tests, we need to determine the fundamental natural
frequencies of the actuators. The theoretical natural frequen-
cies are computed from the eigenvalues of the Jacobian of Eq.1
at the displacement in Fig.7. In the chamber, the air pressure
Pa is reduced to approximately 300mtorr. Side voltages from
40V to 140V are applied with a small white random noise to
the side electrodes. The velocity measurements are taken by
Polytec MSA-500 laser vibrometer at around 30µm from the
anchor of the micro actuators and a fast Fourier transformation
is used to the signal and the fundamental natural frequencies
are recorded as in Fig.8. The theoretical and experimental
results of natural frequencies show an increasing trend as the
applied side voltages are increased. Optimized design 1 and
optimized design 2 have much higher natural frequencies than
the previous design, which is a result that the electrostatic
forces are greatly strengthened by the dimensional parameters
after optimization.
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indicate displacements measured under the vibrometer. The location
of the measurement is approximately 30µm from the tip of the micro
actuators.
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Fig. 8. Changes in the fundamental natural frequencies with applied
side voltages Vs. Solid lines and circles with dotted lines indicate
the theoretical and experimental results, respectively. The location of
the measurement is approximately 30µm from the tip of the micro
actuators.

B. Enhanced dynamic responses

1) Fundamental resonance: The enlarged travel ranges al-
low much larger vibrating amplitudes for dynamic applications
of the micro actuators. The theoretical dynamic amplitudes in
fundamental resonance for previous design, optimized design
1 and optimized design 2 are calculated by solving Eq.1 with
long-time integration in MATLAB, shown in Fig.9. During
the measurement of dynamic resonant responses, a pressure
Pa =300mtorr and side voltages Vs = Vdc+Vaccos(Ωt) were
used in the forward and backward frequency sweeping. The
displacements were recorded around 30µm from the tip and
compared with the theoretical results shown in Fig.10. With
a significantly enlarged travel range, optimized design 1 can
accommodate a 110% larger dynamic amplitude and optimized
design 2 allows an 81% improved dynamic amplitude. Those
high amplitudes were not obtained with the previous design.
Even though there is a slight difference between the bandwidth
of theoretical results and experimental data, the theoretical
results predict the allowed amplitudes very efficiently. Improv-
ing the effective terms in Eq.11 to include more modes can
improve the agreement.

2) Principal parametric resonance: Principle parametric res-
onance is another distinct mechanism of excitation for out-
of-plane actuators and happens when the driving frequencies
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Fig. 9. Theoretical fundamental resonance at Vdc = 120V and
Vac = 0.5V and an air pressure Pa = 300mtorr.
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Fig. 10. Fundamental resonance at Vdc = 120V and Vac = 0.5V
and an air pressure Pa = 300mtorr. Solid lines indicate theoretical
results and experimental data measured under vibrometer in backward
frequency sweeping (squares) and forward frequency sweeping (stars).
Quality factors, Q, for design 1 and design 2 are 200 and 500.

are close to twice the natural frequencies. Because of the
significantly large amplitudes and less dependence on damping
in the environments, it has been extensively investigated for
out-of-plane actuators. In previous works, voltages needed
by repulsive actuators of the same size to establish a large
enough travel range to accommodate parametrically resonated
amplitudes as large as 10µm are often greater than 165V [23],
[36]. With theoretical amplitudes and experimentally measured
data from the new chips in Fig.11, we observe an enlarged
accommodation of 10µm parametric excitation with applied
side voltages as low as 80V. Large amplitudes at significantly
smaller voltages allow actuators to obtain greatly-improved
signal-to-noise ratios, which vastly improves the sensing and
actuation capabilities of many applications.

It is valuable to mention that with such low side voltages
applied, dynamic amplitudes grow significantly. The paramet-
rically resonated beams will get very close to the substrate.
To predict the amplitudes, we need to consider the nonlinear
damping and stiffness caused by the compressed air under
the beam [23]. The squeeze-film damping effect is extensively
described in [37] and the nonlinear air spring and air damping
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Fig. 11. Principal parametric resonance at Vdc = 80V and
Vac = 0.5V and an air pressure Pa = 300mtorr. Solid lines
indicate theoretical results in backward sweeping and squares represent
experimental data measured under vibrometer in backward frequency
sweeping. No parametric resonance is available in previous design at
these voltages.

terms are given by

kair(z) =
64σ2Pa(L ·Wm)

π8(z + d)

1(
1 + (Wm

L )2
)2

+ σ2

π4

cair(z) =
64σPa(L ·Wm)

π6Ω(z + d)

1 + (Wm

L )2(
1 + (Wm

L )2
)2

+ σ2

π4

(13)

where Pa is the air pressure, Ω is the oscillation frequency
and σ is the squeeze number defined as

σ =
12(L ·Wm)Ωµf

Pa(z + d)
2 (14)

where µf is the effective viscosity of the air and equals
1.0464 × 10−8 when Pa is 300mtorr. The nonlinear air
spring will provide additional stiffness besides the mechanical
stiffness in Eq. 11 and the nonlinear air damping will be
dominant and replace the linear damping in Eq. 11. Because
the analytical expression in Eq. 13 is obtained with assumption
of compressed air in a very large area, they can predict the
response of the wider beam (optimized design 2) much better
than the thinner beam (optimized design 1). Nevertheless, one
can observe that the theoretical amplitudes predict the allowed
amplitudes very well for the parametric resonance. To improve
the match, one can take the nonlinear forms of the spring and
damping in the squeeze-film damping model and identify the
coefficients from experimental data [23].

V. CONCLUSION

In this paper, a methodology combining the boundary
element approach (BEA) and genetic algorithm (GA) was
proposed to enlarge the travel range of the out-of-plane micro
actuator with repulsive actuation. BEA acted as an efficient
and accurate solver of electrostatic forces for nonlinear elec-
tric fields. The travel ranges were calculated by solving the
nonlinear equations exploiting the nonlinear terms appearing
in large movements. Based on the results, GA was splendidly
employed for optimizing the dimensional parameters globally
at different target voltages. Our theoretical and experimental
results demonstrate that for micro actuator beams with opti-
mized dimensional parameters, travel ranges can be enlarged

by 40% to 130% from the previous design. Accommodated
dynamic amplitudes in fundamental resonance and principal
parametric resonance verified the significant improvement of
travel ranges. This proposed scheme and the explanation of
enhancing travel ranges are useful for all MEMS designs that
benefit from repulsive actuation.
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