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Abstract

We review recent progress and motivate the need for further developments in
nuclear optical potentials that are widely used in the theoretical analysis of
nucleon elastic scattering and reaction cross sections. In regions of the nuclear
chart away from stability, which represent a frontier in nuclear science over the
coming decade and which will be probed at new rare-isotope beam facilities
worldwide, there is a targeted need to quantify and reduce theoretical reaction
model uncertainties, especially with respect to nuclear optical potentials. We
first describe the primary physics motivations for an improved description of
nuclear reactions involving short-lived isotopes, focusing on its benefits for
fundamental science discoveries and applications to medicine, energy, and
security. We then outline the various methods in use today to build optical
potentials starting from phenomenological, microscopic, and ab initio meth-
ods, highlighting in particular, the strengths and weaknesses of each approach.
We then discuss publicly-available tools and resources facilitating the pro-
pagation of recent progresses in the field to practitioners. Finally, we provide a
set of open challenges and recommendations for the field to advance the
fundamental science goals of nuclear reaction studies in the rare-isotope beam
era. This paper is the outcome of the Facility for Rare Isotope Beams Theory
Alliance (FRIB-TA) topical program ‘Optical Potentials in Nuclear Physics’
held in March 2022 at FRIB. Its content is non-exhaustive, was chosen by the
participants and reflects their efforts related to optical potentials.

Keywords: optical potentials, nuclear reactions, phenomenological optical
model, many-body theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Nuclear reactions drive the chemical evolution of the Universe, enable a wide range of
societally beneficial technologies on Earth, and provide a tool to study the structure of atomic

Original content from this work may be used under the terms of the Creative Commons
By Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the
author(s) and the title of the work, journal citation and DOI.
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nuclei and properties of the nuclear force in the laboratory. In particular, nuclear reactions
involving exotic short-lived isotopes are fundamental to address numerous open questions in
contemporary nuclear science research to be investigated at frontier radioactive ion beam
facilities, such as the Facility for Rare Isotope Beams (FRIB). Nuclear reaction theories with
quantified uncertainties will be crucial to maximize the scientific impact of rare isotope
facilities worldwide. However, even the simplest reactions that involve light nuclei at low
center-of-mass energies are challenging to understand from fundamental ab initio nuclear
theory [1]. The continued development of microscopic models that capture salient features of
the quantum many-body problem, such as antisymmetry and multiple scattering, is therefore
needed to advance nuclear reaction science in the rare-isotope beam era.

The nuclear optical model is the primary tool to reduce the complexity of quantum many-
body scattering into a form that is tractable across a large range of energies, target isotopes, and
reaction channels. The idea is to replace fundamental two-body and many-body forces between
projectile and target with a complex and energy-dependent two-body local potential U(r, E) =V
(r, E) +1iW(r, E), in analogy with the scattering and absorption of light in a dielectric medium
with complex index of refraction [2-4]. The imaginary part, W(r, E), of the nuclear optical
model potential (OMP) accounts for the loss of flux in the elastic scattering channel due to open
reaction channels (e.g. inelastic, pick-up, break-up, and similar reactions) dictated by the pro-
jectile energy E. The energy dependence of the optical potential accounts for temporal non-
localities due to virtual excitations of the nucleus and implicitly accounts for spatial
nonlocalities that arise from exchange scattering on indistinguishable nucleons in the target.
Formally, spatial nonlocality gives rise to a momentum-dependent potential, but for elastic
scattering this can be approximated [5] in terms of an equivalent energy-dependent local mean
field. During the last 60 years, the nuclear optical model has been broadly applied to analyze
the elastic scattering of pions, nucleons and heavier ions by nuclei, over a wide range of
energies [2—4]. Inelastic scattering was included by the coupled-channels formalism [6, 7] and
consideration of dispersion effects from the requirement of causality [8] allows for the
description of both bound and scattering states by the same complex nuclear mean field [9-11].

Following decades of refinements [12-16], the phenomenological optical model has
achieved an impressive description of nucleon—nucleus scattering on stable target isotopes up
to projectile energies E < 200MeV. The functional form of modern phenomenological
optical potentials includes complex-valued volume, surface, and spin—orbit terms, together
with a central Coulomb interaction

U(r, E)=Vy(r, E) + Vp(r, E) + iWy(r, E) + iWp(r, E) + Vio(r, E) - §

+ iWo(r, E)YL - 5 + Ve(r). 4))
The energy dependence in equation (1) is typically decoupled from the radial dependence,
e.g.

Vy(r, E) = vw(E) f(r, Ry, ay), )

where the form factor f(r) is usually defined as a Woods—Saxon shape characterized by a
radius R and diffuseness a, i.e.
-
1+ e(r—R)/a '
Note that other radial dependencies can be used, such as Gaussian and squares of Woods—
Saxon form factors. Whereas the real and imaginary volume terms (Vy, Wy,) are proportional

to form factors, the real and imaginary surface contribution (Vp, Wp) and the spin—orbit
contributions (V,,, W,,) are proportional to the radial derivatives of these form factors. In

f(r,R, a) = 3
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general, the fitted parameters that describe the energy and geometry dependence also vary
with the mass number A and isospin asymmetry 6 = (N — Z)/A. In total, approximately 40
fitted parameters are used in the construction of the widely used non-dispersive
phenomenological global optical potential of Koning and Delaroche [14]. Enforcing the
appropriate dispersion relations

Im{U(E")}
E—F

allows the number of parameters to be significantly reduced. Moreover, the description of
both elastic scattering at incident energies below 5 MeV and the bound states is improved as
compared to non-dispersive approaches. For nuclear reactions involving unstable isotopes, for
which scattering data are scarce, the quality of phenomenological optical potential
extrapolations is uncertain. For this purpose, microscopic or semi-microscopic optical
potentials derived from fundamental nucleon—nucleon and many-nucleon forces may provide
useful starting points.

Since the 1950s, several approaches have been developed to derive nucleon—nucleus
optical potentials starting from microscopic many-body theory. These include the Watson
multiple scattering theory, Feshbach projection operator formalism, and Green’s function
theory. Before briefly presenting each approach, let us define the many-body Hamiltonian for
the (A 4 1)-body system

H= HA(?I???A) + h() + V(?’ 7‘]’-"’?A)a (5)

where H, is the Hamiltonian for the A-particles of the target nucleus with eigenstates
satisfying Hy®; = €Dy, ho is the kinetic energy of the projectile, and V is the many-body
interaction potential between projectile and nucleons in the target. The exact eigenvalues and
eigenstates of the (A 4 1)-particle system satisfy H¥ = EU.

The aim of the multiple scattering theory of Watson [17] and its later extension by
Kerman, McManus, and Thaler [18] is to derive an equation for the optical potential in terms
of free-space nucleon—nucleon scattering amplitudes. This can be formally justified only
under certain assumptions, including the so-called ‘impulse approximation’, whereby it is
assumed that the projectile nucleon is traveling at sufficiently high energy that it interacts
strongly with only one or few nucleons of the target at some instant in time. The theory is
therefore expected to be valid at energies sufficiently above the excitation energies of the
nucleus, i.e. larger than roughly 60 to 100 MeV, where impacts of Pauli-blocking and three-
body forces are diminished. In the impulse approximation and at leading order, the nucleon—
nucleus optical potential with kinetic energy E can be represented as [18]

Re{U(E)} = Pde' , )

Ok, k;E)= Y fd3ﬁ/d <k/*/|Ta(E)|kp>pa(*’+%,p+ )53(k/ +p' -k = p),
a=p,n
(6)

where the momenta k/ and & are the final and initial momenta of the projectile in the frame of
zero total nucleon—nucleus momentum, o sums over target neutrons and protons. The
quantity 7, (E) represents a nucleon—-nucleon amplitude, and p,, the ground-state density of
the target for protons (p) and neutrons (n). Note that extensions of this approach going beyond
the impulse approximation and including three-body forces are possible and will be discussed
further in the text.

At lower projectile energies, where Pauli blocking and three-body forces play an enhanced
role, optical model potentials may be constructed using either the Feshbach projection
formalism or Green’s function theory. Neglecting first the antisymmetrization between the
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projectile and the constituent nucleons in the target, Feshbach derived [19] an equation for the
projection PU(F, F,....74) = ¢o(F)Do(71,...,74) of the total wave function onto the elastic
scattering channel of the form

(ho + Voo + D, VOjijVko]% = E ¢, (N
J.k=0

where @ is the ground state of the target and £ = £ — ¢ is the nucleon—nucleus relative
energy defined from the ground-state target energy €,. We define in equation (7); the Green’s
function matrix element G

. 1
Gi= lim —— @®)
n— 0T E — Hy + in
from the Hamiltonian matrix element Hj and coupling potentials between the elastic
scattering channel and the inelastic ones Vy,

Hy = hoOjx + Vik + 05 and Vi = (9| V|Py). )
The optical potential is then identified as
1
Vopr = Voo + Y. Voj———— Vo (10)

jk=0 E— Hy+in

with 77— 0. The potential is complex, energy dependent, and nonlocal. This formulation
was later extended [20] to treat inelastic scattering processes and to properly account for
antisymmetrization between projectile and target. An alternative derivation of the optical
potential makes use of the language of second-quantized many-body theory and Green’s
functions. Here the propagation of particles and holes in a quantum many-body system is
characterized by the one-body Green’s function [21]

G, t; 7, t') = —(®|T [au(F, 1) a5 (F', t)]|Dy), (11)

where T is the time ordering operator, a}; and ay are creation/annihilation operators in the
Heisenberg representation. The time Fourier transform G (7, 7’; E) of the one-body Green’s
function can be expressed in terms of the free Green’s function Gy (¥, 7’; E), defined from the
free Hamiltonian Hy = hg + Hy, and the nucleon irreducible self-energy ¥* (¥, ¥/; E) through
the Dyson equation [21]

G(F. ¥ E) = Go(7, 7 E) + [&F [@5 Go(# 72 E) X (7. 57 B) GG ' E).
(12)

The self energy can then be shown [22, 23] to play the role of a nonlocal potential that
governs the spectrum of overlap functions ¢, (7 ) = (Pola (¥ )|¥) associated with positive-
energy elastic scattering states of the (A + 1)-body system according to the Schrodinger
equation

2
_Z_;¢0(7 )+ fE*(f, 7'y E) ¢o(7l) &’ = Epy (), (13)

where ©=1[A/(A+ Dlmy is the reduced mass and my is the nucleon mass. Hence,
>*(7, 7’5 E) can be identified with the nucleon—nucleus optical potential as well as providing
a similar interpretation for the properties of a removed nucleon [23].

Having briefly reviewed the different formalisms used to derive optical potentials, the rest
of the paper is organized as follows. In section 2, we motivate the need for modern optical
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potentials to address a wide range of applications from fundamental science discoveries to
astrophysics to nuclear energy and security. In section 3, we review recent advances in
constructing optical potentials from phenomenological, semi-microscopic and microscopic
approaches with emphasis on the nucleon—nucleus potential. We also comment on the use of
microscopic optical potentials to inform phenomenology and discuss limitations and model
uncertainties of the two-body approximation used in nearly all optical model applications. In
section 4, we present new tools and resources to facilitate the propagation of recent (and
future) progress in the field of nuclear optical models to experimentalists and practitioners. In
section 5, we compare the different approaches presented in this work and discuss their
accuracy for different systems. We end with a summary and outlook.

2. Applications of optical potentials

2.1. Direct reactions to probe exotic nuclei

Direct reactions have played a foundational role in the development of our understanding of
nuclear structure and will be an essential tool in the FRIB era [24]. In 1950, Butler had
already observed that proton angular distributions following the (d, p) reaction yield infor-
mation about the transferred neutron [25]. The rapid development of reaction theory there-
after, reliant on optical potential models, fostered their use to explore many facets of nuclear
structure. More specifically, direct reactions have been instrumental in enriching our
knowledge concerning shell evolution, weak binding, pairing, symmetries, deformation and
applications to nuclear astrophysics and fundamental symmetries.

In the mid-eighties, the development of radioactive-ion beams (RIBs) and new exper-
imental techniques enabled the study of nuclei away from stability, revealing exotic structures
and challenging the usual description of nuclei. In particular, in regions with extreme neutron-
to-proton ratios, nuclei exhibit single-particle levels with a non-standard spin-parity ordering,
forming the so-called islands of inversion [26-28]. Exploring nuclei far from stability helped
elucidate mechanisms for shell evolution, such as the ubiquitous action of the tensor
force [28, 29]. Even more surprising, halo nuclei can be found close to the drip lines. These
nuclei present a strongly clusterized structure, in which one or two loosely-bound nucleons
have a high probability of presence far from the rest of the nucleons. With several major
facilities around the world now capable of delivering beams of short-lived nuclei at Coulomb
barrier energies and beyond, in conjunction with specifically tailored instrumentation, a
wealth of direct-reaction data is expected.

In the absence of a universal, fully ab initio description of nuclear reactions and their
connection to nuclear structure, the theoretical description of the reaction process is often
simplified into a few-body one, where both projectile and target can be seen as composed of
one or more clusters of nucleons. In this few-body picture, the structure of the nuclei involved
in the reaction is described through an effective interaction reproducing properties of the low-
energy spectrum of the nuclei while the interactions between the clusters making up the
projectile and the target are simulated through optical potentials accounting in an effective
fashion for the neglected many-body structure. These cluster-cluster (or nucleus-nucleus)
optical potentials generalize the concept of nucleon—nucleus optical potentials. The accuracy
of the nuclear-structure information inferred from experimental data is therefore strongly
influenced by the reliability of both the optical potential and the few-body reaction model.

Among all nuclear reactions, elastic scattering, in which both the projectile and the target
nuclei remain in their ground states and the beam is deflected from its incident direction,
constitutes one of the simplest probes. The diffraction pattern of the angular distribution can
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be used to infer the size of the nucleus [30]. Resonant elastic scattering is also a powerful tool
for exploring isobaric analog resonances with RIBs [31]. The difference between the
incoming flux and the elastic one defines the reaction cross section, which corresponds to
processes in which the colliding species exchange energy and/or mass. As their magnitude
grows with the spatial extension of the projectile, reaction cross sections have played a key
role in the discovery of halo nuclei [32, 33].

Inelastic scattering is defined as an excitation of the target and/or the projectile during the
collision process. The magnitude of inelastic scattering cross sections provide information
about the system’s response to nuclear and electromagnetic probes [34], associated with the
degree of collectivity of the populated states. A high degree of collectivity is then often
associated with the excitation of a rotational band in deformed nuclei, or with vibrations of
the nuclear surface—it is anticipated that inelastic scattering will be a powerful complement
to Coulomb excitation studies in the FRIB era, especially in probing octupole deforma-
tion [35].

Another key nuclear-structure quantity is the Gamow-Teller (GT) strength, which pro-
vides an essential connection to nuclear 3 decays. GT strength distributions are typically
probed with charge-exchange reactions in which a proton in a target nucleus is exchanged for
a neutron in the projectile nucleus, or vice-versa. Charge-exchange cross sections also provide
insights on the isovector densities, i.e. the difference between proton and neutron densities
inside the nucleus [36], and play a role in understanding double-G decay nuclear matrix
elements [37, 38].

One-nucleon transfer reactions, such as (d, p) and (p, d), at energies a few MeV per
nucleon above the Coulomb barrier in both the entrance and exit channels (typically between
~5 and 50 MeV /nucleon, depending on the Q value), are highly selective probes to obtain
information about the nuclear response to nucleon addition and removal (single-particle
strength) [39—42]. The absolute value of the cross section is proportional to the single-particle
content of the populated state, namely the spectroscopic factor, while the shape of the angular
partial differential cross section is a strong signature of its orbital angular momentum. The
evolution of the single-particle strength along an isotopic/isotonic chain [43, 44] is an ideal
tool to explore correlations as a function of neutron—proton asymmetry, in particular as one
approaches the nucleon drip lines.

Multiple-nucleon transfer reactions, in which several nucleons are transferred from the
projectile to the target and vice-versa, are also commonly used to probe clustering and pairing
effects. In particular, o-transfer cross sections for processes such as (°Li, d) carry information
about the « clustering inside the nucleus (see, for example, [45]), and can be used to infer
reaction rates that are of astrophysical interest (see, for example, [46—49] and section 2.3). Two-
nucleon transfer reactions give insights on pairing modes and pairing correlations [S0-53].
Quasi-free scattering reactions, mentioned below, which knock out multiple nucleons [54-57]
and or clusters of nucleons, e.g. alpha particles [58], can probe similar properties.

The structure of loosely-bound exotic nuclei can also be studied through breakup
reactions [59-66] since the counting statistics are high owing to the fragile nature of these nuclei.
When performed on heavy targets, the Coulomb repulsion between the projectile’s clusters and the
target dominates, while on light targets, their nuclear interaction is responsible for most of
the breakup cross section. Consequently, the mechanisms driving the dissociation, and hence the
properties of the exotic nuclei probed by the reaction, depend strongly on the nature of the target.
For example, electromagnetic strength functions and capture rates of astrophysical interest can be
extracted from Coulomb-dominated breakup observables [34, 46, 48, 67-72].

Inclusive measurements of one-nucleon breakup at intermediate energies (>50MeV/
nucleon), often referred to as one-nucleon removal, or heavy-ion knockout, reactions [73-76],
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Figure 1. The chart of nuclides showing estimates of the reach of reaccelerated beams
at FRIB and ‘fast’ fragmentation beams at FRIB and the well-known astrophysical
processes. Also indicated (pink diamonds) are the nuclei whose properties were used to
constrain the Koning and Delaroche optical potential [14], highlighting the dramatic
extrapolations made.

have even higher counting statistics because only one fragment is measured after the collision.
This type of inclusive reaction typically uses a beryllium or carbon target and is the favored
probe for nuclei at the limits of stability for which only low-intensity beams are available. The
standard associated observable is the parallel-momentum distribution of the remaining core. It
acts as a key probe of the single-particle structure of the projectile, as it carries information on
the spin, parity and energy of single-particle states [73, 74, 77, 78]. These reactions have
therefore been widely used to study the shell structure evolution across regions of the nuclear
chart, i.e. from stable to exotic nuclei at the drip lines. An open question in the field has been
raised by such studies, relating to the nucleon asymmetry dependence of the quenching of
cross sections on the difference between proton and neutron separation energies [79-81]. This
issue ties together many of the direct-reaction probes mentioned in this section (see recent
review in [82] and references therein).

Quasifree (p, 2p) and (p, pn) scattering reactions are also a key probe of the single-particle
degrees of freedom of exotic nuclei [§3—85]. Contrary to one-nucleon removal reactions and
transfer, quasifree scattering probes the inner part of the single-particle wave function. This is
a consequence of the high energies at which these measurements are performed (typically
above 200 MeV /nucleon).

To interpret reaction measurements, to arrive at a more fundamental understanding of the
nuclear structure and reactions, and plan new experiments, it is crucial to develop accurate
reaction models coupled with realistic interactions between the relevant nuclei. In the context
of the direct reactions discussed here, optical potentials are responsible for most of the
uncertainties beyond the description of the bound states [86]. Historically, optical potentials
have been fitted to elastic-scattering data on stable targets. Thus, these interactions are not
well constrained for exotic nuclei. Figure 1 illustrates the nuclei used to derive the Koning
and Delaroche [14] optical model parametrization (pink diamonds), overlaid on the beams
expected to be available at FRIB, both for reaccelerated (Coulomb barrier) beams of
>100 particles per second (pps) and for ‘fast’” beams of >1 pps. Juxtaposed, figure 1 also
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contains the regions of the nuclear chart relevant for the various astrophysical processes.
Direct reactions involving these nuclei can be used to extract astrophysical rates [46, 48, 49].
It is clear that, in the FRIB era, using current phenomenological optical potentials carries
tremendous uncertainties when extrapolating to the driplines.

In order to enhance the accuracy of our predictions concerning the reactions to be mea-
sured at FRIB, and to provide the associated quantified uncertainties, there is an urgent need
for developing optical potentials across the whole nuclear chart at energies ranging from a
few MeV up to 400 MeV. These next-generation interactions should include more physics
constraints in order to reliably cover the variety of reactions to be studied at FRIB and
ultimately provide a comprehensive and accurate account of exotic nuclei.

2.2. Compound-nuclear reactions

Compound-nuclear reactions play an important role in nuclear physics and in applications.
Their cross sections are the required input for astrophysical simulations that describe stellar
evolution and nucleosynthesis and for modeling processes that are relevant to medical isotope
production, national security applications, and generating energy.

In a compound-nuclear reaction, a projectile fuses with a target to produce a highly-excited
intermediate nuclear system which equilibrates and subsequently decays by particle eva-
poration, fission, or gamma emission. Compound reactions are very slow; at very low
energies they produce narrow, isolated resonances and can be described in the framework of
the R-matrix formalism [87]. With increasing projectile energy, the resonances begin to
overlap, forming the unresolved-resonance region (URR) and, at even higher energies, one
enters a region in which the statistical Hauser—Feshbach (HF) formalism is applicable [88].
The demarcation between the various regimes depends on the projectile type and on the
structure of the compound nucleus (CN) formed. For reactions involving well-deformed
nuclei with large level densities (e.g. n+'>>Gd), the region of strongly overlapping resonances
lies at much lower energies than for reactions involving nuclei near closed shell (e.g.

—&—208Pb), see figure 2.

The HF formalism describes the average cross section for forming a CN at energy E,, by
fusing projectile a and target A (channel o) and subsequent decay into reaction products ¢ and
C (channel )

Oy (E) = 3" 0N (Eers I, M)GEY (B T, ) Wi (Eexs T, 7). (14)
Jr

Here a N(E,, J, 7) is the CN formation cross section for the o channel. The quantities
GCN (Eex, J, m) describe the competition between the decay channel of interest (x) and all

other competing channels. Calculating GCN requires nuclear structure information, such as
gamma-ray strength functions, fission bamers and level densities [15]. These are traditionally
written in terms of products of transmission coefficients (TCs) and level densities (in the
residual nuclei). The TC for gamma emission is related to the gamma-ray strength function,
the TC for fission describes tunneling through fission barriers. All other TCs describe the
probability for particles to be emitted from the CN and are obtained from a potential-model or
coupled-channels calculation that uses a nucleon—nucleus optical potential: 75 = 1 — |S, ‘jgt|2

where S"pl denotes the optical-model S-matrix, that can be obtained from projecting out all
non- elastlc channels coupled in the calculation.

Equation (14) above also contains a width fluctuation correction factor, W, (E,,, J, ),
which accounts for remnant correlations between the incoming and outgoing channels [90]. It
is a reminder that the reaction cannot be completely separated into two independent processes.
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Figure 2. Evaluated neutron capture cross sections for various stable targets [89]. The
depicted evaluations are based on a combination of calculations and measured data (not
shown) and illustrate the different energy regimes: resolved resonance region (RRR) at
lower energy where individual resonances can be distinguished, unresolved resonance
region (URR) at intermediate energy where resonance peaks are still visible but
overlapping, Hauser—Feshbach (HF) regime at higher energy where the cross section
has a smooth dependence on energy, representing an average over strongly overlapping
resonances. The high-energy behavior of the cross sections can be described in an
average way using the HF formalism.

Similarly, in most realistic cases (and in all nuclear reaction evaluations) there are additional,
non-compound, reaction processes that have to be accounted for when describing reaction
observables. For that reason, statistical reaction codes have capabilities well beyond the
evaluation of the HF expression. They include descriptions for direct reactions, pre-equili-
brium reactions, as well as CN reactions. As detailed in section 2.1, the description of direct-
reaction observables, in turn, requires OMPs. Statistical reaction codes also typically contain
subroutines or auxiliary codes to generate transmission coefficients using OMPs. In addition,
they need nuclear structure information—most modern ones can read this from databases,
such as the Reference Input Parameter Library (RIPL-3) [15]. Much work has been devoted to
improving statistical reaction calculations. Nuclear structure inputs have received much
attention over the past two decades, with multiple theoretical and experimental efforts aimed
at providing more reliable inputs for gamma-ray strength functions and nuclear level densities
in particular (see [91-95] and references therein).

Similarly, a large number of optical potentials have been made available for use with
statistical reaction codes [15]. This includes phenomenological nucleon—nucleus potentials,
such as the spherical potential by Koning and Delaroche [14], the semi-microscopic nucleon—
nucleus potential by Bauge et al [96-98], and the dispersive nucleon—nucleus potential by
Morillon and Romain [99]. For deformed nuclei, the relevant nucleon—nucleus transmission
coefficients are generated using coupled-channels calculations. Multiple efforts have focused
on developing appropriate coupling schemes and requisite potentials [100—102]. To describe

10
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fusion or emission of composite particles, optical potentials for light ions (7, *He, a, etc) are
required. These tend to have larger uncertainties, as there is less available data to place
constraints on the shapes and parameters of those potentials.

As they take various inputs, statistical reaction calculations are affected by multiple
sources of uncertainty: nuclear-structure information for the various possible decay channels
may be lacking, some reaction mechanisms, e.g. pre-equilibrium contributions, are not suf-
ficiently well-known and optical model uncertainties also affect the predicted cross sections.
Calculations for neutron-induced reactions on actinides are known to be sensitive to the
coupled-channels optical potential utilized [101, 102].

Level densities can be estimated by extrapolating from known discrete levels, and (ideally)
by measuring resonances in the interaction of two subsystems of the nucleus. Much better
physical accuracy is possible if an optical potential is known for the scattering of those two
subsystems. That is because we can simplify R-matrix theory when we can ignore inter-
ferences between resonances, and convert an average-ratio of widths to a ratio of average
widths (I"). Then the ratio of average width reads

L = Q (15)
D 27
where D is the average level spacing. The transmission coefficient T3 comes from the
S-matrix element for optical-model scattering, as explained above. Thus, given level densities
and optical potentials we can estimate average widths. These estimates are the basis of the HF
model of statistical reactions and decays that uses Porter—Thomas [103] distributions with
these statistical averages and also neglects interference between resonances.

These approximations should be tested to gauge the accuracy of the HF model. Much work
has gone into improving the average-ratio approximation, and now width fluctuation cor-
rections (WFC) are standard in HF models [104]. The neglect of interference still needs to be
tested but should be reasonable for angle-integrated data if not for angular distributions.
Improvements have also been given by Simonius [105] to equation (15) when the widths are
large, since the transmission coefficient has a maximum value of one.

One overall test of all these approximations is to derive the resonance parameters for a
typical HF model using the common approximations, and then see whether a full R-matrix
calculation with those parameters gives the HF predictions. The results of such a comparison
for n + "N elastic, inelastic and transfer reactions have been recently calculated. Figure 3
shows the "*N(n, a) cross sections as a function of neutron energy. We see that, as might be
expected, the best HF calculation (HF with WFC: the solid black line) is closest to the best
R-matrix statistical model (Ap: the solid blue line). The agreement is not perfect and this is
only a comparison between models, but it gives hope that, around the unresolved resonance
region, there is a domain where the R-matrix resonance treatment can match up with the HF
statistical treatment. This should help to constrain both the resonance parameters and optical
potentials in the two regimes.

It is instructive to briefly focus on specific ways that observables may inform optical
potential development and vice-versa. The connection between experiment and theory is, of
course, facilitated via interpretative or predictive calculations. In the rest of this section, we
will spotlight some examples of information exchange between experiment and theory.
Nuclear reaction yields are related to optical potentials through the transmission coefficients
discussed above. The shapes of the angular distributions of emitted particles are observables
that theoretical calculations can reproduce. Typically, the transmission coefficients for the
emitted particles will need to be modified to precisely fit the experimental data. The new
experimentally constrained transmission coefficients will correspond to a new set of optical
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Figure 3. "“N(n, o) cross sections as a function of neutron energy. The HF curves are
standard Hauser—Feshbach calculations, without and with the width fluctuation
corrections (WFC). The A curves follow Simonius [105] and the B curves are the
linear approximation given in the text. The Ap and Bp curves use the standard Porter—
Thomas statistical distributions [103] for the R-matrix parameters, while A and B
curves have fixed amplitude sizes but random signs.

potential parameters that are now phenomenologically constrained and available for future
calculations. These new parameters, locally fitted as they are, do not necessarily carry any
predictive value away from the vicinity of the target nucleus considered. This shortcoming is
becoming quite an issue for nuclear astrophysics applications in which a theoretical prediction
is, for most participating nuclei, the only possible way to determine the thermonuclear
reaction rates of interest (see e.g. figure 1). A second way to inform nuclear theory from
experimental data is by reproducing evaporation spectra from highly excited compound
nuclei. While the so-called evaporation technique [106] is typically suitable for determining
the level densities of the excited compound systems, recently, it has been demonstrated in the
literature [107] that the evaporated particle spectra can also provide some insight into optical
potential properties.

Beam time at premier experimental facilities such as FRIB is very expensive and the
number of available hours at large-scale radioactive ion beam facilities is often limited. This
raises the degree of importance placed on high-quality, reliable, and accurate simulations to
support the value of the proposed experiment. Optical potentials are necessary ingredients of
any such simulation or theoretical prediction. The value of such predicted cross sections is
profound for astrophysics applications involving thousands of species away from stability (for
example for r-process or i-process nucleosynthesis). Typically predictions are collected into
reaction rate libraries like the widely used JINA REACLIB [108]. An improved optical
potential thus can influence fields beyond nuclear physics that make use of such libraries.
Lastly, theoretical cross section calculations are typically collected into databases (e.g.
TENDL [109]) that are available for use with various simulation tools such as GEANT4 [110]
and MCNP [111] that are broadly utilized by experimentalists to optimize their instru-
mentation and interpret raw data.
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2.3. Astrophysically relevant reactions

Another area in which optical potentials are ubiquitous is nucleosynthesis. Astrophysical
modelling for a wide range of astrophysical sites requires large network of reactions. These
cannot all be measured, and instead, models use global optical potentials for the task. In some
scenarios, the reaction rates are needed away from stability, and typically the existing
parametrizations are extrapolated without an estimate of uncertainties (as alluded above). In
this section, we discuss a few examples to illustrate the ways in which a global optical
potential, with quantified uncertainties and valid away from stability, can benefit the field.
First, we consider neutron capture reaction rates with medium mass and heavy nuclei away
from stability. These are thought to be responsible for synthesizing the majority of elements
heavier than iron in the Universe through the so-called rapid neutron capture process
(r-process). The nucleosynthetic path of the r-process involves isotopes that are very neutron-
rich and are located closer to the neutron dripline than the valley of stability, where the optical
potential has been more thoroughly tested and constrained (see figure 1). The standard optical
potential parametrization suggested by Bohr and Mottelson takes into account the large
neutron—proton asymmetry away from stability through an isospin-dependent isovector term

1
Usso = 5 t; 0 Usym» (16)

where ¢, is the nucleon isospin component, § = (N — Z)/A and Uy, is the so-called symmetry
potential.

The symmetry potential is currently under active research investigation. Phenomenological
and semi-microscopic optical model parametrizations adjust the imaginary potential to agree
with experimental data [107]. It has been already suggested in 2007 [112] and recently
corroborated by experimental evidence [107] that the isovector component, constrained by
data near stability, does not adequately reproduce the effect of the neutron—proton asymmetry
that exists in nature. More experimental data and theoretical investigations are needed to
quantify this deficiency of modern theories. Still, the above works suggest a significant effect
on neutron captures relevant to the r-process but also on the less neutron-rich nuclei near
stability that may be of interest to nucleosynthesis occurring under conditions with lower
temperatures and neutron densities compared to the r-process, such as the i-process.

Significant as the effect of neutron excess may be, current theory does not appear to be
sensitive to it. Reaction rate calculations with the typically-used optical potentials developed
by Koning and Delaroche (KD) [14] and by Jeukenne, Lejeune and Mahaux (JLM) [113, 114]
produce very similar results even though the latter one is based on a microscopic calculation.
In figure 4, a number of neutron capture rate calculations using the two potentials are shown
for Fe, Mn, Co, and Ni isotopes spanning from stability up to several neutrons towards the
dripline. Despite the increasing neutron excess, the calculations reproduce a smooth change
with neutron number. The difference between the reaction rates computed with KD and JLM
decreases for increasing A, suggesting that no difference in the treatment of neutron excess
exists between the semi-microscopic and the phenomenological potential away from stability.
While we tested only two examples, there is no reason to assume that other potentials based
on similar phenomenological approaches would behave differently with increasing neutron
excess unless the theoretical description of the effect of neutron—proton asymmetry is fun-
damentally improved.

Nucleosynthesis in massive stars and in the proton-rich regions predicted to occur in neutrino-
driven winds during core-collapse supernovae involves rates of (n, p) and (n, o) reactions at
temperatures from approximately 1 GK down to hundreds of MK. In addition, photodisintegration

13



J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

neutron capture rates on and away from stability

108
107
)
£
2
E
A
o 108
©
4
c
ie]
©
(]
& 105
10 — Koning - Delaroche
'''' JLM .
Ni
10
55 60 65 70 75 80

A (Mass number)

Figure 4. Neutron capture rate calculations using the Koning-Delaroche and JLM
optical potentials for Fe, Mn, Co, and Ni isotopes far away from stability. Despite the
increasing neutron excess, the calculations produce a smooth change with neutron
number. Moreover, the resulting reaction rates are in increasingly better agreement with
each other as the neutron number increases, suggesting that, if anything, the semi-
microscopic JLM potential converges to the phenomenological Koning—Delaroche
potential for neutron-rich nuclei. This suggests that there is no meaningful benefit in
using the JLM potential compared to the KD one away from stability.

reactions (7, p) and (7, «) contribute to the production of the so-called p-nuclei, a class of isotopes
shielded from the neutron-induced nucleosynthesis processes [115, 116]. Unfortunately, data in the
astrophysically-interesting region below 1 MeV are sparse and of lower precision. At the same
time, the focus of most evaluated neutron reaction data libraries is in the broader region of
0-20 MeV, and this energy range translates to very few data at energies below 1 MeV. The fine
details of the cross section at these low energies, which can influence strongly nucleosynthesis
calculations, are therefore often not included. The accurate determination of these reactions rates
requires quantitative and predictive nucleon—nucleus optical potentials at energies reaching way
below 1 MeV.

We should also note the central role optical potentials play in sensitivity studies, parti-
cularly those involving nuclei away from stability. These are essential tools for nuclear
astrophysics that guide the experimental and modeling efforts [117]. Typically, a sensitivity
study involves calculating the same astrophysics ensemble multiple times, each time changing
the value of a ‘parameter’ that enters the calculation and recording how the results of the
calculation change. In nuclear astrophysics, the most common ‘parameters’ modified are the
values of individual reaction rates (see for example [118]). Ideally, reaction rates should
change systematically, connecting with the uncertainties of the underlying theory. An
example of such a calculation using the currently available optical potentials is shown in
figure 5 for proton-rich unstable nuclei relevant Reprinted (figure) with permission from
[170], Copyright (2018) by the American Physical Society.for the v-p process in supernovae.
One can note in figure 5 that these uncertainties are not smooth in mass numbers and in
isospin asymmetry.
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Figure 5. Maximum variation of the reaction rates at 1 GK for (n, p) reactions with
isotopes relevant to the neutrino-p process when the JLM scaling parameters A\, are
varied within the estimated valid range.

Such sensitivity studies are based on the assumption that the uncertainty of the varied
parameters is known to some reasonable degree in order for the result to be valuable. To
perform useful sensitivity studies, we need optical potentials that reproduce the changing
nuclear structure away from stability and have well-quantified uncertainties.

Although so far we have focused on nucleon—nucleus optical potentials, astrophysics also
has a dire need for global optical potentials on light ions, particularly a-nucleus optical
potentials. There are many a-induced reactions relevant for nuclear astrophysics due to the
heavy abundance of helium in the Universe after the Big Bang. Chemical elements above
*Fe are formed either via the slow neutron capture process (s-process) or through the rapid
neutron capture process (r-process). The main neutron sources for the s-process occurring in
asymptotic giant branch stars are (o, n) reactions on heavy nuclei such as '*C and **Ne. In
proton-rich explosive stellar environments such as novae and x-ray bursts, the dominant
nucleosynthesis (p, ) reaction sequence is halted at several waiting point nuclei due to low
(p, 7y) reaction Q-values resulting in a (p, ¥)-(7, p) equilibrium. a-capture on these waiting
point nuclei allows the nucleosynthesis of heavier nuclei via the ‘ap-process’, a sequence of
(a, p) reactions followed by (p, ) proton captures, which eventually leads to the successive
proton captures in the rapid proton capture process (rp-process) to synthesize heavier proton-
rich nuclei.

To effectively explain the observed abundances of chemical elements from such stellar
environments and nucleosynthesis processes, accurate stellar models are required. These
models require nuclear input parameters such as nuclear masses and reaction rates [118—121].
At present, many of the astrophysically-relevant (¢, 7), (o, n), and (o, p) reaction rates have
not been experimentally constrained within relevant Gamow energies, where measurements
are hindered by low counting rates. The reaction cross sections of relevant a-induced reac-
tions are instead deduced using HF statistical model calculations.

Statistical HF calculations for a-induced reactions require a robust set of a-OMPs.
Throughout the years, there have been various efforts to determine such OMPs [122-125].
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These OMPs are determined by fitting available elastic-scattering angular distribution data.
Compared to the amount of scattering data currently available for neutrons, protons and deu-
terons, the amount of available « scattering data are rather sparse, specially for nuclei further
away from stability. This is generally the case for A =3 and A =4 projectiles compared to
neutrons/protons. Additionally, elastic scattering data are generally obtained for higher energies
due to the influence of the Coulomb barrier. The a-OMPs by Avrigeanu et al [124, 125] has
been derived using « scattering data for target atomic masses ranging from 45 to 209. The
McFadden and Satchler a-OMPs [122] have recently been shown to agree with available
experimental data within a factor of ~2 for target atomic masses A =20 — 50 [126]. While
these a-OMPs can reasonably reproduce experimental reaction cross sections for certain target
masses and energies, for experimentally-inaccessible regions of the nuclei chart, they can
introduce significant uncertainties for the deduced reaction rates affecting various nucleo-
synthesis calculations. In order to overcome these difficulties, a cohesive effort by the nuclear
physics community is desired to obtain more scattering data which would aid in significantly
improving the nucleon-, deuteron- and a-OMPs for more accurate theoretical reaction rate
calculations.

2.4. Nuclear data for energy, security, medical, and other applications

A predictive theoretical capability of total, elastic and reaction cross sections is vital for a
wide range of applications [127]. Improved optical potential calculations enable sophisticated
modeling and guide the experimental efforts necessary to advance the technology readiness
level within a given application. Below, we list several specific areas in which more com-
prehensive and reliable optical potentials would have significant impact.

2.4.1. Energy and security applications. Most energy and security applications require high-
quality evaluated cross sections for neutron-induced reactions up to 20-30 MeV, such as those
present in evaluated nuclear data libraries like ENDF/B-VIILO [128]. The highest-priority
targets are actinides and structural /engineering materials. High-quality optical models provide
the starting point for reliable descriptions of reactions needed for modern comprehensive
evaluations of neutron induced reactions (e.g. see a recent evaluation of U-238 and U-235
neutron induced reactions [129] adopted into the ENDF/B-VIILO library [128]). Because of the
high societal impact of these applications, many (but not all) relevant cross sections have been
thoroughly examined, and sophisticated uncertainty quantification techniques developed and
applied [130-132]. The extensive high-quality experimental data collected to inform the
relevant cross sections mean that phenomenological models are in their range of validity,
provided sufficient physics—such as selection of the appropriate reaction model and detailed
structural information—are considered.

There are still needs for OMP development for materials used in next-generation reactor
architectures. In some designs such as those involving molten salts, potentials are needed for
isotopes beyond typical structural materials and actinides. Experimental data suitable for
improving a phenomenological potential on these isotopes are not always available, especially
because the bulk of single-nucleon scattering measurements were conducted more than thirty
years ago. Also relevant are reactions on light elements which are important both in their own
right and because they can provide important constraints on reverse reactions that are difficult
to access experimentally but important for neutron economy (e.g. '°O(n, a)!3C to improve
knowledge of *C(«, n)!°0O or vice-versa).
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2.4.2. Medical applications. An important application is the production of isotopes used in
medical diagnosis and treatment [133]. The two major methods for isotope production are (1)
reactor-based fission, capture, and (n, p) reactions and (2) charged-particle-induced reactions
using fast charged-particle and/or neutron beams [134-136]. For reactor-based isotope
production, neutron-induced reaction cross sections similar to those in the energy and security
applications are important, so there can be significant overlap in the theoretical and
experimental tools needed to constrain these cross sections [135]. For charged-particle-
induced reactions, much higher energies are required: up to tens of MeV in commercial
cyclotrons such as those found in hospital settings, and up to hundreds of MeV for dedicated
accelerator facilities such as Los Alamos Neutron Science Center (LANSCE).

Isotope production requires not only nuclear physics information which can be partially
obtained via an optical model, but also efficient chemical separation techniques that allow the
produced isotope to be extracted. As such, the most important reactions are those that change
the number of protons and thus the chemistry of the target, facilitating chemical separation
and increasing the specific activity of the product. For charged-particle beams, the charge-
exchange reactions (p, xn), (d, xn), (o, xn) are the most important [137-141]. In a similar
vein, the most important neutron-induced reactions in the reactor-based setting are (n, p),
fission, or multi-step reactions with subsequent - or a-decay, yielding a change in element of
the reaction products [135]. In some cases a direct production of the parent radionuclide is
feasible (e.g. '"°Mo (n, 2n) reaction is used to produce *Mo parent for production of the very
important *Tc generators) [139]. In each of these cases, secondary particle reactions often
contribute significantly to reaction yields, compounding the importance of proper reaction
modelling to consider all relevant channels. Because of the inherently complicated nature of
these reactions, it should be noted that the OMP provides only the first ingredient required for
reliable predictions of the needed cross sections, and that additional information—such as
from a statistical reaction and pre-equilibrium model—is essential. As currently-available
OMPs have been developed to describe p, n, d, or « scattering, several OMPs across a wide
range of energies may be needed simultaneously to describe secondary particle production
and follow-on reactions [15].

A further medical application is radiotherapy, where cross section information at energies
up to 250 MeV /nucleons are important. For example, in a proton radiotherapy procedure, the
dose delivered in the beam entrance region (before the Bragg peak) depends heavily on the
elastic scattering of protons on tissue, which is one of the easiest quantities to cleanly predict
using a suitable OMP and reaction code. However, this information must be combined with
atomic and radiological data that are often absent or highly uncertain. As is the case in
compound nuclear reactions that combine nuclear structure and OMP information, knowing
the relative uncertainty of the OMP versus other reservoirs of uncertainty (e.g. atomic data)
can help focus efforts on reducing the most impactful uncertainties first. There are also
important quantities that the OMP cannot fully inform, for example, activation data or the
production cross section for positron-emitting radionuclides (e.g. ''C). As uncertainty
quantification is still developing for many other types of physics data entering medical and
energy /security applications, better OMP uncertainty assessments can potentially provide a
methodological guidepost for other fields.

2.4.3. Space applications. The interaction of radiation with space-based systems is
important to understand for both national security and industry. Radiation shielding in
space is a balance between maximizing protection and minimizing the amount of shielding
material, as there is a strong cost motivation to minimize the overall weight of the system
[142]. In addition, radiation effects on electronic systems are often difficult to directly study in
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space-like environments [143]. Relevant models for both these cases often lack experimental
data [142]. Much like in other applications outlined above, secondary particle production
contributes significantly to the relevant doses. Knowledge of neutron production from proton-
induced reactions is very important and double-differential cross sections of produced
neutrons may be needed. In addition, gamma rays produced by inelastic scattering can
potentially have a large impact on overall dose delivered to a space-based system (for
example, an electronics circuit) by incoming neutrons [143]. Given that these reaction cross
sections are often poorly known, predictive and uncertainty-quantified OMPs, in concert with
other theoretical inputs, can have a significant impact. In particular, a recent survey of nuclear
data needs for space radiation protection has identified significant shortcomings in
experimental data [144]. Previous work has been done using optical models to predict
nuclear fragmentation processes relevant for space applications [145, 146].

3. Review of strategies to build nucleon—-nucleus optical potentials

3.1. Standard and dispersive phenomenological approaches

3.1.1. Standard optical potentials. Early developments of optical potentials sought to describe
single-nucleon cross sections phenomenologically, using a local, complex, one-body
potential (1)—(2) with parameters varying smoothly in E and A, analogous to the refractive
index for an absorptive medium. By the 1960s, enough cross section data had been collected to
contemplate training a ‘global’ optical potential suitable for predicting elastic scattering
cross sections across a broad range of nuclei and energies, with Becchetti and Greenlees the first
to do so [12]. Increases in computational power and the size of experimental databases led to
potentials with a growing number of free parameters and better empirical performance, including
the spherical CH89 [13] (40 <A, 10K E<65 MeV) and the Koning and Delaroche [14]
24 <A <K209, 1keV <E <200 MeV) potentials, which remain widely used. Most recent
phenomenological efforts include additional physics, such as enforcing dispersivity, including
non-locality, and/or describing deformation via a coupled-channels approach, each of which can
improve the accuracy needed for applications [15]. To simplify interpretation in terms of nuclear
asymmetry, many single-nucleon potentials adopt a Lane-consistent form where the OMP is
partitioned into isoscalar and isovector components so that the neutron and proton OMPs differ
only by a change in sign of the asymmetry-dependent components [98, 147]. Besides the high-
visilibity global efforts, over the decades many hundreds of experimental papers have included
isotope- or region-specific optical-potential analyses to assess the impact of their newly collected
data (for example, [148]). However, the basic formula for developing a phenomenological OMP
remains essentially unchanged since the 1950s: select a suitable collection of functional forms
dependent on A, E, and/or 6, compile experimental scattering data, predict reaction observables
given an OMP, and optimize OMP parameters according to y*> minimization.

As an example, consider the Koning—Delaroche OMP [14], one of the most widely used
OMPs since its introduction in 2003. The nominal range of validity in energy is 1keV to
200 MeV. Both global and several local versions are available, spanning near-spherical
systems with 24 < A < 209. To train the OMP, the authors used hundreds of proton and
neutron differential elastic scattering and analyzing power data sets from 27 < A < 209
collected from the 1950s to the 1990s, as well as proton reaction cross section data and
neutron total cross section data on natural and isotopic targets. The potential itself includes six
subterms with Woods—Saxon-like radial dependence separated from their energy dependence,
with a total of forty-six free parameters. Optimization was done using a combination of
‘computational steering’ and x* minimization, whereby a user manually guided potential
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parameters until predicted cross sections were visually close to experimental values, then
invoked a simulated annealing algorithm to find a parameter-vector optimum. The success of
the KD global OMP in reproducing its training data, particularly the elastic-scattering angular
distributions and neutron total cross sections above the resolved-resonance region, as well as
its ease of use, have led to its widespread adoption as a default OMP in reaction codes such as
TALYS [149, 150] and Finite Range with Exact Strong COuplings (FRESCO) [151].

There are limitations of this approach that are discussed in more detail in section 3.3.

3.1.2. Dispersive optical potentials. The Dispersive Optical Model (DOM), first introduced by
Mahaux and Sartor [8-10], is an optical model which makes use of a dispersion relation (4) that
relates the imaginary part of the potential to its real part over all energies. Equation (4) is a very
powerful constraint that provides a variety of advantages over non-dispersive optical models,
helping to reduce the number of model parameters (e.g. see [152]) and to achieve a better
description of neutron-induced cross sections for energies below ~5 MeV [153] compared to
traditional OMPs like Koning—Delaroche [14]. Dispersion integrals given by equation (4) can be
solved numerically [154] or analytically for selected imaginary potentials [10, 155, 156]. Several
different dispersive OMPs have been derived (starting from equation (4)) for a variety of
use-cases. One class of dispersive OMPs was derived to describe deformed nuclei assuming a
rigid-rotor structure like Rh, Au, W, Ta, Hf and actinides [157-159]. Another was derived
for spherical nuclei that are soft relative to vibrations assuming a soft-rotator structure like Fe, Ni,
Cr [160] and Zr [15]. Yet another class of dispersive coupled-channel potentials has been used to
describe both elastic and inelastic scattering data in a broad energy range up to 200 MeV. These
derived dispersive OMPs [101, 161-163] have been shown to be approximately Lane consistent,
i.e., the same OMP holds for incident neutrons and protons [164, 165] and the parametrization
becomes isospin dependent. The dispersion relation has also been used to provide a consistent
description of both bound and scattering data in spherical nuclei [11, 166] in some cases
allowing ‘data-driven’ extrapolations to the drip lines [167, 168].

We now briefly discuss efforts that augment the data set constraining the OMP to
negative energies by taking in structure information (charge density, energy levels, particle
number, etc), in addition to the elastic-scattering data corresponding to positive energies. As
mentioned in the Introduction, the optical potential can be interpreted as the irreducible self-
energy ¥X*(r, r’; E), in the Green’s function formalism. Moreover, X*(r, r’; E) generalizes
the exact nucleon—nucleus optical potential of Feshbach to include both bound and scattering
states (a more detailed discussion can be found in section 3.2.2). Connecting the optical
potential to the Green’s function, along with utilizing the dispersion relation in equation (4),
allows for a complete description of the nucleus over both the positive- and negative-energy
domains [11, 166]. Adjusting OMP parameters to describe data using equation (4) guarantees
that the irreducible self-energy stays well-defined [169, 170]. Currently, there are DOM fits
using this Green’s function formalism for spherical targets 16’180, 40’48Ca, 58’65Ni, ”2’124Sn,
and 2°®Pb for —200MeV < E <200 MeV [169-172]. In principle, a dispersive optical
potential can be applied in the same mass-number and energy range as a typical
non-dispersive potential (such as KD) can. Work is currently underway to implement a
global parametrization of a fully-dispersive optical potential for spherical targets [173].

Noting that Hartree—Fock potentials are already inherently nonlocal, it was demonstrated
that spatial nonlocality of the self-energy including its imaginary part must be treated
explicitly in order to describe properties below the Fermi energy [166]. To satisfy the
dispersion relation in equation (4), it is at present assumed that the energy dependence of
the imaginary part is the same for all spatial coordinates, which simplifies the numerical
effort. Typically, optical potentials approximate the spatial nonlocality with an energy
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Figure 6. “°Ca(e, ¢/p)*’K spectral functions in parallel kinematics, at an outgoing
proton kinetic energy of 100 MeV. The solid line is the calculation using the DOM
ingredients, while the points are from the experiment detailed in [179]. (a) Distribution

for the removal of the Od%. The curve contains the DWIA for the 3/2" ground state
including a spectroscopic factor of 0.71. (b) Distribution for the removal of the
ls% proton with a spectroscopic factor of 0.60 for the 1/2* excited state at 2.522 MeV.

The figure is adapted from figure 5 of [170]. Reprinted with permission from [170],
Copyright (2018) by the American Physical Society.

dependence [5]. However, this added energy dependence does not satisfy the dispersion
relation, which would lead to an incorrect description of the negative-energy observables.
Thus, the spatial nonlocality is treated explicitly with the so-called Perey—Buck form [5]

/ o2
UG, 7' E) = U(r +2 , E)e,ﬂ)7r3/263, (17)

where (3 is a nonlocality parameter which controls how much strength is distributed off
the diagonal. It is worth noting that the functional form in equation (17) is chosen out
of convenience, but is capable to represent essential features of microscopic
potentials [174, 175]. With this treatment of the nonlocality, along with the dispersion
relation in its subtracted form, quantities such as particle numbers, charge densities, and
ground-state binding energies are included in the DOM fit. This allows for data-informed
predictions of quantities such as the neutron skin of 48Ca and 2°*Pb (see [169, 171, 172, 176]
for more details).

The ability to describe both bound and scattering states of a nucleus is particularly useful
in the description of stripping, transfer and knockout reactions needed to fully utilize
FRIB [177, 178]. As a specific example, we briefly present the DOM calculation of
40Ca (e, €’p)*K cross sections [170]. This reaction, measured at NIKHEF [179], can be
described using a distorted-wave impulse approximation (DWIA), which assumes that the virtual
photon exchanged by the electron couples to the same proton that is detected and that the final-
state interaction can be described using an optical potential [180, 181]. The ingredients of the
DWIA therefore require a distorted wave describing the outgoing proton at the appropriate energy
and an overlap function for the removed proton and its associated spectroscopic factor. The DOM
allows for a consistent DWIA analysis in that the bound state wave function, spectroscopic factor,
and outgoing proton distorted wave can all be provided from the same self-energy. The resulting
momentum distributions, shown in figure 6, came straight from the DOM self-energy—the
“0Ca(e, ¢’p)**K data was not used in the DOM fit. The spectroscopic factors coming directly
from the DOM self-energy show a good description of the data—thus updating the previously

20



J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

obtained spectroscopic factors (found by scaling the previous DWIA analysis to match the data
points). Furthermore, this analysis was also done for **Ca(e, ¢/p)*’K providing a new
perspective on the quenching of spectroscopic factors [82, 182]. These results demonstrate how,
provided that sufficient elastic-scattering and structure data is available to constrain the fit, the
DOM potential applied in the appropriate reaction theory is a powerful way to consistently
describe knockout reactions and aspects of transfer reactions relevant to FRIB science.

3.1.8. Uncertainty quantification. Uncertainty quantification (UQ) for OMPs is an emerging
topic, with the majority of publications on the topic dating from the last five years.
The earliest systematic attempt at OMP UQ was by the authors of the Chapel Hill global
OMP [13], who used a bootstrap method to assess that the variances of parameters in their
OMP were very small (on the order of a percent). An attempt to estimate uncertainties of
potential parameters was discussed at the IAEA RIPL project, where rough estimates of
geometry and potential depth uncertainties were given [15]. Recent analyses using Bayesian
techniques [86, 131, 176, 183, 184] reveal much larger uncertainties (tens of percent for
elastic-scattering observables and up to a hundred percent for single-nucleon transfer cross
sections) indicating that the statistical assumptions used for training phenomenological
potentials can impact predictions as strongly as the data used for training. Due to the absence
of global OMPs with well-calibrated parametric uncertainties, OMP users often resort either
to tuning OMP parameters by hand or to performing ad hoc UQ by comparing predictions
from multiple OMPs—neither of which is easily extrapolated to the high-asymmetry regime
that will be probed at FRIB. Recently, Pruitt, Escher and Rahman have developed an
extension of the global spherical proton and neutron OMPs of KD [14] and CH89 [13] with
uncertainty quantification of the potential parameters, called KDUQ and CHUQ [185]. The
mass and energy range of validity are the same as the original KD and CH89, i.e
24 <A <209 and 0.001 MeV < E<200MeV for KDUQ and 40<A <209 and
10 MeV < E < 65MeV for CHUQ. This new development will support the quantification
of uncertainties in reaction observables. A natural next step to improve the constraint of these
parametrizations is to enforce dispersion relations, include data on highly asymmetric systems
and bound observables.

3.2. Microscopic approaches

As previously discussed, the phenomenological models have been built using experimental
data primarily from stable nuclei. Hence, it is uncertain whether the extrapolations of phe-
nomenological optical potentials to unstable isotopes would be reliable. For this purpose,
optical potentials based on microscopic or semi-microscopic nuclear structure calculations
prove to be vital. This section contains a description of various recent attempts to link the
OMP to the underlying interaction between nucleons in free space. All approaches have
strengths and weaknesses as well as limitations to their applicability which are discussed
below.

3.2.1. Constructing Green’s function from beyond mean-field approaches: Feshbach
formulation, nuclear structure model and optical potentials from effective Hamiltonians.

Feshbach formulation. One of the approaches used to integrate microscopic nuclear
structure information into the construction of optical potentials is by using the Feshbach
formulation [19], where the optical model potential for a nucleon scattering energy E is given
by equation (10). Equation (10) can be obtained from the set of coupled differential equations
written in terms of the reaction channels [19]. By solving this set of equations, the Green’s
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Figure 7. Schematic illustration of the obtention of the ‘arrow’ matrix from the weak
coupling approximation. v; correspond to the many-body states of the target, coupled
together by the incoming nucleon.

function matrix Gj can be diagonalized in the space of the excited states j, k = 0, but one can
also use the weak coupling approximation [19, 186—189], which neglects the couplings
between excited states, i.e. Vi = Vydjo. In this case the coupling potential is expressed in
terms of an ‘arrow’ matrix (figure 7), and equation (10) becomes

Vot = Voo + D, Vo;GjiVjos (18)
Jj=0

where only the diagonal elements of the Green’s function (8) enter. The coupling potentials
and the Green’s functions in the second term of equation (18) can be provided by nuclear
structure calculations.

The method works best for the low-energy region where nuclear structure models can
provide reliable and converged calculations (approximately <50 MeV). The versatility of this
approach lies in the variety of structure calculations it can accommodate. However, the
description of compound nucleus reactions, in which the relevant target-nucleon states are
statistical in nature, is an open challenge.

Nuclear structure method. Another method is to construct the potential from a
phenomenological effective NN interaction using the Green’s function formalism. It is called
the Nuclear Structure Method (NSM). The Green’s function formalism allows the
hierarchization of correlations and avoids double countings. Antisymmetrization due to the
fermionic nature of nucleons is taken into account. The NSM was first proposed for realistic
NN interactions by N Vinh Mau in the early 1970s [190]. Then it has been recast in order to
be used with density functionals such as Skyrme or Gogny [191].

When dealing with a spherical target nucleus (without pairing), the NSM potential is
made of two contributions: the Hartree—Fock potential and the Random Phase Approximation
potential. The mean-field term is energy-independent. Its exchange term (Fock term) turns out
to be nonlocal when using a finite-range interaction. The RPA contribution is a polarization
contribution. The absorption results from taking into account the coupling to inelastic
channels when the target nucleus is excited. Such excitations are described in the RPA
formalism. This term is non-local, energy dependent and complex. The NSM can be
interpreted as a Feshbach potential with consistent ingredients as the same functional is used
all along the calculation. Hence in equation (18), V, would be the equivalent of the Hartree—
Fock potential in the NSM whereas V();’s would be provided by RPA.
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A pioneering application of the method at lowest order with the Skyrme functional has
demonstrated the ability of the Hartree—Fock potential to grasp the main features of the real
part of the optical potential below 50 MeV incident energy [192]. Follow-up studies have
included second-order terms with particle—particle (pp) and particle-hole (ph) correlations.
The pp correlations are implicitly contained in the phenomenological NN interaction.
particle-hole correlations are then taken into account explicitly through the Random Phase
Approximation (RPA). In the beginning of the 1980s, several groups have worked on the
NSM and related methods mostly using Skyrme interactions [191, 193, 194]. More refined
versions of the NSM have been proposed including both inelastic excitations and (n, p)
charge exchange [195-197]. The NSM has been used as well to determine a-nucleus
potentials [198-200]. In the last decade, there has been a renewed interest in the NSM with
Skyrme [201-203] and Gogny interactions [204-206]. The NSM describes with relative
success, for both neutron and proton projectiles, the scattering off target nuclei such as:
'°0 [203, 207, 208], *°Ca [193, 195, 203, 204, 206], **Ca [203, 206] and ***Pb [203, 208],
for incident energy below 50MeV. A calculation fully handling continuum and self-
consistency has been proposed with Skyrme interactions [207]. The method has been applied
to neutron scattering off 'O below 30 MeV. This approach is particularly interesting because
it allows one to circumvent the pitfall of RPA calculations in a harmonic oscillator (HO) basis
that requires the introduction of ad hoc escape and damping widths [204]. Methods close to
the NSM have also been used to describe proton inelastic scattering [209].

The NSM works well for incident energies below 50 MeV. Thus the method is
complementary to g-matrix approaches in terms of energy range. In its current versions, it is
limited to target nuclei well-described within RPA, typically double-closed shell nuclei.
However, the extended reach of energy density functional based on structure calculations
(pairing, deformation and odd number of nucleons) [210] suggests that further versions of the
NSM will be suitable for a wide range of target nuclei. Some recent attempts have extended
the approach to scattering off target nuclei with pairing using Hartree—Fock—Bogolyubov
(HFB) formalism [211, 212]. The NSM will then be extended to include pairing correlations
within the HFB formalism with Quasiparticle-Random-Phase Approximation (QRPA) on top
of it. These new developments will eventually allow for the description of nucleon scattering
off deformed target nuclei with pairing.

We mention here also approaches that employ Skyrme [213-217] or Gogny [218]
functionals for infinite nuclear matter (see more extensive discussion of such methods in
section 3.2.4). The optical potential is then obtained using the local density approximation
(LDA) with a consistent density. This approach allows a satisfactory description of the elastic
scattering observables for energies up to 100 MeV. In this context, there have been several
attempts to fit new Skyrme functionals adding scattering constraints to the more usual
structure ones [215-217, 219].

Optical potentials from effective Hamiltonians. While it is alluring to use a single
interaction (e.g. Chiral) or pseudo—interaction (e.g. Gogny or Skyrme functionals) to
construct the nuclear structure properties for the ground state, excitations, and subsequently
the optical potential, it is also possible to combine effective Hamiltonians and interactions
without lack of generality. This strategy has the advantage of potentially reducing
computational costs or increasing the many-body expansion with respect to a calculation
that treats every component on equal footing.

Over the years, several approaches have used different effective interactions
and microscopic methods to construct the optical potential. The approach based on
Hartree—Fock [191, 220] consists in defining the real part of a local potential based on
an appropriate Skyrme functional. It is extended with additional couplings and
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absorption [208, 221]. Eventually, one can consider the optical potential as arising from
particle—vibration coupling, even extended in the continuum [209]. Another prominent
example is the nuclear field theory, where single-particle and collective degrees of freedom
are combined, eventually employing phenomenological coupling instead of a single
consistent Hamiltonian or functional [222]. The nuclear field theory have been lately
expanded, both in functional form [223], and using an effective coupling between multipolar
vibrations and mean field [224]. The coupling between degrees of freedom has been recast as
the solution to the Dyson equation [225], closely relating several structure and reaction
observables [226-229]. However, it is difficult for an explicit Dyson procedure to treat cases
where symmetry breaking is prominent, e.g. deformed nuclei, both in terms of guaranteeing
symmetry restored final states and adequate computational costs.

The generator coordinate method (GCM) can tackle symmetry restoration in both even
and odd nuclei. It is also appealing for its analogy with the resonating group method [230].
Developing effective Hamiltonians has the advantage of both formal consistency within
the projection procedure that is difficult to maintain using functionals and simplifying
the numerical calculations, all with excellent agreement with experimental structure
observables [231]. The GCM has been used to calculate scattering properties of stable and
exotic nuclei in several cases [230, 232, 233]. There is further work ongoing in connecting the
microscopic structure description in the GCM and the reaction observables in the form of the
construction of microscopic optical potential for deformed nuclei.

3.2.2. Computing the self-energy from ab initio predictions of nuclei: self-consistent Green’s
function and inversion of propagator using ab initio wavefunctions. ~As discussed in previous
sections, the irreducible self-energy X*(E) generalizes the exact nucleon—nucleus optical
potential of Feshbach to include both bound and scattering states [8, 23, 234]. Diagonalizing
the self-energy leads to the one-body Green’s function, also known as the propagator (see
equation (12)). Hence, many-body Green’s function theory provides a well-grounded
connection between structure and reactions [21] and it enables the direct computations of the
self-energy based on the best accurate ab initio methods. We present the state-of-the-art
frontiers and challenges of the Green’s function approach in the following.

Ab initio computations of the self-energy for finite nuclei can be approached in two ways:
(a) either by direct application of propagator theory to calculate its Feynman diagram
expansion, as done in the Self- consistent Green’s Function (SCGF) [235-237]; or (b)
inverting the propagators computed using an ab initio wave function approach, as done in the
coupled-cluster method (CCM) [238], the No-Core Shell Model (NCSM), and the Symmetry-
Adapted No-Core Shell Model (SA-NCSM) [239]. Ab initio methods can construct the optical
potential from chiral interactions, or other effective field theory (EFT) forces so that they
provide a direct link to the underlying symmetry and symmetry-breaking patterns of quantum
chromodynamics. They also provide a systematic approach to quantify theoretical
uncertainties arising from the nuclear force and the controlled many-body approximations.
Typical calculations for finite nuclei involve large but truncated model spaces that lead to a
discretization of the scattering continuum. In most cases, the greatest challenges relate to
dealing with such discretization and to handling a large number of degrees of freedom needed
to resolve the dynamics at several scattering energies [240, 241]; a very demanding task if
compared to typical successful ab initio computations of low-energy nuclear structure.

Direct computations of the self-energy. The SCGF approach involves computing a
converged series of Feynman diagrams based on prescriptions that are aimed at preserving
conservation laws. Modern nuclear physics applications exploit the Nambu—Gorkov
formulation to include pairing in spherical open-shell nuclei [242] and follow the algebraic
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Figure 8. Left: A comparison of n-°0 phase shifts obtained with SCGF calculations using
only the correlated mean field 3> at Ny.x = 11 (solid lines) and with the NCSM/RGM
(dashed lines), which includes only the ground state of 160, at Npax = 11. Both calculations
have been made using NNLO,, nucleon-nucleon interaction and 7€) =18 MeV.
Right: comparison of the predicted SCGF total cross section for elastic n-'°O as a function
of the energy when including different portions of doorway states: only the correlated mean
field X°° (dashed green line), with half of the 2p1h and 2hlp configurations (dotted dashed
orange line), and with complete ADC(3) (solid blue line). Computations are based on the
N2LO,, interaction. The experimental data is also shown (black dots). Reprinted with
permission from [249], Copyright (2019) by the American Physical Society.

diagrammatic construction (ADC) technique to devise a systematically improvable hierarchy
of many-body truncations [237]. Up to third order, or ADC(3), accurate ground state
observables and low-energy spectroscopy are achieved for several chains of isotopes near the
oxygen, calcium, nickel, and tin regions [243-246]. The Nambu—Gorkov approach has been
applied only at second order for open shells nuclei and it is now being implemented to the
previously unavailable ADC(3) level [247, 248].

In SCGF theory the self-energy is naturally split into a mean-field part, denoted as X,
and a dynamic contribution, $(E), which is energy dependent and accounts for coupling to
the virtual inelastic channels that give rise to the dispersion relation (4). Exploratory SCGF
computations of optical potentials are reported in [174, 236]. The X from SCGF agrees
qualitatively well with direct scattering computations with the no core-shell model with
resonating group method (NCSM/RGM, see [1] for a recent review and references therein)
when virtual excitations of the target are suppressed, as seen in [249] and illustrated in
figure 8 which compares the n-'°0 phase shifts obtained with both methods. To reach a more
predictive description of single-particle bound states and resonances, we include virtual states
of the target nucleus. By including low-lying excitations of '’O, the no-core-shell model with
continuum (NCSMC) accounts effectively for virtual target excitations and leads to two
bound states, namely 1 /2+ and 5/ 2", For SCGF, virtual excitations, contained in i(w),
correct single-particle states and generate a large number of narrow resonances across all
scattering energies. Results for low energy states are shown in [249] and there is qualitative
accord with the observation.

In the SCGF approach, the biggest challenge for an ab initio theory is calculating 3(w).
The SCGF-ADC(3) construction contains correlations from all two-particles one-hole (2plh)
and one-particle two-holes (1p2h) configurations and has a direct impact on the absorption of
the optical model. This is demonstrated for elastic neutron scattering off '°O by the right-hand
side of figure 8, where all 2p1h doorway states contribute to the solid blue line and are then
gradually frozen until only the mean-field X remains (dashed green line) [249]. The
2plh states become insufficient already at intermediate energies, where more complex
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configurations must enter into play. Truncations well beyond third order, ADC(n) with n > 3,
will most likely resolve this problem but will require groundbreaking advances in nuclear
many-body theory to automatically generate and efficiently sample the exponentially growing
number of diagrams.
Inversion of propagators using ab initio wave functions. The indirect approach first
evaluates the one-body Green’s function in configuration space,
(I)O > .

D > + < D
(19)

where o and 3 label the single-particle states and with n — 0. One then inverts equation (12)
for each scattering energy E to calculate the optical potential. To compute G,s(E), the
completeness of eigenstates |P4*!) can be used, which requires computationally intensive
calculations of many eigenstates, but in practice, the inverse Hamiltonian operator in
equation (19) is evaluated using one of a few available Lanczos algorithm methods [240, 250]
(see also [237, 251, 252] and references therein). Note that if one evaluates equation (19) in
the Lehmann representation using the completeness over |UA*!) | one is evaluating the
overlap functions (¥4 !a7|®,) that are in fact solutions. In this case, the approach is
equivalent to computing a discretized set of scattering waves and then solving an inverse
scattering problem.

The viability of the propagator inversion scheme was demonstrated for oxygen and
calcium isotopes using the particle attached and removed CCM, as discussed in [238] and is
being applied within NCSM frameworks [239, 253]. The SA-NCSM provides useful features
for nucleon—nucleus scattering such as its suitability describing deformation. Ab initio
descriptions of spherical and deformed nuclei up through the calcium region are now possible
in the SA-NCSM [254-256] without the use of interaction renormalization procedures and
effective charges. It has also been shown that the SA-NCSM can use significantly reduced
model spaces as compared to the corresponding ultra-large conventional NCSM model spaces
without compromising the accuracy of results for various observables. This allows the
SA-NCSM to accommodate larger model spaces needed for clustering, collective,
and continuum degrees of freedom, and to reach heavier nuclei such as 2ONe [255, 257],
Mg [258], Mg [259], *®Mg [260], as well as **Ne and **Ti [261]. Moreover, the
construction of self-energies for light nuclei starting from the NCSM/RGM and its extension
to the NCSMC are also currently being developed and are of interest as scattering states are
included explicitly in the many-body basis. As the NCSMC reproduces low-energy scattering
and bound-state observables [262-269] for light nuclei, the optical potentials derived within
this theory, along with the reach of the symmetry-adapted RGM (SA-RGM) to intermediate-
mass nuclei [256, 270], are expected to be accurate in a similar range of energies and masses.

Challenges and opportunities. Computationally, the most demanding task is the accurate
evaluation of the self-energy for all relevant scattering energies. Methods that scale
polynomially with the mass number, such as SCGF and CCM, are presently limited to simple
excitations (e.g. 2p1h and 2h1p) throughout the energy range and converge with respect to the
model space up to ~160 MeV [174, 271]. However, more complex configurations that are
important at intermediate energies are missing (see figure 8). The NCSM family of methods is
complementary and it performs a truncation based on the number of HO excitations, which
has two advantages. First, correlated multiple particle-hole configurations are well included at
low energies (e.g. SA-NCSM can capture giant resonances, which is important to describe
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scattering from 1 to 15 MeV per nucleon) but high scattering energies may pose a challenge.
Second, it ensures the exact separation of the motion of the center of mass.

Indeed, calculations of the one-body Green’s function that use laboratory coordinates
may pose issues due to spurious center-of-mass motions in both the target and the A &1
systems. Model spaces in typical ab initio computations are sufficiently large to decouple the
intrinsic and the center of mass wave functions [272]. Moreover, this separation is even exact
for NCSM calculations with HO-excitation truncations [273]. Nevertheless, the zero point
motion of the center of mass is still present and it can be a source of spuriosity. Johnson
discussed the technical difficulties with expressing a self-energy in a pure laboratory
system [274, 275] and suggested that a proper optical potential theory should be expressed in
Jacobi coordinates. Center of mass corrections are seen to be sizeable for light nuclei, such as
'°0 but become quickly negligible at larger masses where the self-energy approaches the one
in the laboratory frame. We note that the NCSM/RGM and NCSMC methods routinely
compute scattering among observables by handling these center-of-mass corrections [1]. A
similar development could also be valuable for reformulating the SCGF self-energy in proper
relative projectile-target coordinates.

A related technical question is the discretization of the scattering spectra due to the finite
model spaces. Both the Green’s function and the optical potential (i.e. the self-energy)
develop a real and an imaginary part in the continuum. For practical applications, the finite
size of the model space implies a set of discrete poles both in equation (19) and in the spectral
representation for ¥*(E). The correct continuum spectrum is recovered only taking the limit
1n— 0 while at the same time letting the density of intermediate states diverge (as per the
complete set of configurations in an infinite model space). Ideally, one would like to use a
finite 7 to impose a width as big as the distance between two neighboring levels, and check
that predictions for observables are unaffected by variations of 7 around such central value.
Note that the technical issue of handling the 77 — 0 limit is more compelling for the inversion
propagator approaches, since the diverging poles in equation (19) can lead to instabilities in
the inversion process. This has been studied with the CCM method using Berggren bases with
the continuum [276, 277]. For all cases, however, it should be clear that the choice for 7 sets
the energy resolution of the optical potential being computed. A higher resolution requires a
higher density of intermediate states, posing stronger demand on the ab initio method being
employed.

To conclude, constructing the self-energy starting from microscopic computations with a
single realistic Hamiltonian allows for a consistent description of the target structure and
reaction dynamics, to derive a nucleon—nucleus optical potential and calculate elastic
scattering observables. Contrary to phenomenological approaches whose applicability is
limited by the reliability of extrapolations, microscopic optical potentials rely only on the
knowledge of nuclear interactions and can be built in principle for any nucleus accessible by
the theory. Such nucleon—nucleus optical potentials could be also used for microscopic
descriptions of (d, p) and (d, n) [42].

Although elegant and with controlled approximations, ab initio methods are
computationally intensive, they require suitable approximations and still have to face
important challenges. In all cases, the quality of constructed microscopic potentials will
reflect the current status of high performance computing resources and the accuracy of the
many-body approach used. In particular, the coupling to possible intermediate states strongly
influences the absorption from the elastic channel, i.e. the magnitude of the elastic scattering
cross section. Moreover, the diffraction pattern, i.e. the position of the minima in the elastic-
scattering angular distribution, is determined by the root mean square radius of the target
posing important requirements on the quality of the realistic nuclear force used. The most
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compelling issue is to advance ab initio methods to reach complete and stable description of
intermediate configurations. Novel approaches as those discussed in [278, 279] will be key to
reach full predictive power at medium energies.

3.2.3. Multiple scattering approach. The theoretical approach to the elastic scattering of a
nucleon from a nuclear target pioneered by Watson [17, 280], made familiar by Kerman,
McManus, and Thaler (KMT) [18], and further developed as spectator expansion of multiple
scattering theory [281-284] is receiving renewed interest as an approach to the optical
potential that can combine advances in nuclear structure with, e.g. chiral nucleon—nucleon
(NN) interactions. A theoretical motivation for the spectator expansion derives from our
present inability to calculate the full many-body problem when the projectile energy exceeds
about 40-50 MeV (see sections 3.2.1 and 3.2.2). In this case, an expansion is constructed
within a multiple scattering theory assuming that two-body interactions between the projectile
and one of the nucleons in the target nucleus play the dominant role. In the spectator
expansion the leading (first) order term involves two-body interactions between the projectile
and one of the target nucleons, the next-to-leading (second) order term involves the projectile
interacting with two of the target nucleons, and so forth. Hence, this expansion derives its
ordering from the number of target nucleons interacting directly with the projectile, while the
residual target nucleus remains ‘passive’. Due to the many-body nature of the free propagator
for the nucleon-target system, there is an additional aspect to consider in the ordering of the
spectator series. The expansion of chiral NN forces not only leads to two-body forces but
naturally introduces three-body forces at next-to-next-to-leading order. The latter will not
contribute to the leading order in the spectator expansion. The calculation of an optical
potential relies on basic input quantities. For the leading order those are fully-off-shell NN
amplitudes (or -matrices), representing the current understanding of the NN force, and fully-
off-shell one-body density matrices representing the current understanding of the ground state
of the target nucleus. For any higher order, additional input like 3N amplitudes and two-body
density matrices for the target will be needed.

The standard approach to elastic scattering of a strongly interacting projectile from a
target of A-particles is the separation of the Lippmann—Schwinger equation for the transition
amplitude T

T=V+ VGy(E)T (20)
into two parts, namely an integral equation for T

T=UH+ UGy(E)PT, (21)
where U is the optical potential operator defined by a second integral equation

U=V+ VGy(E)QU. (22)

In the above equations the operator V = Zf’;l vo; consists of the two-body NN potential vy,
acting between the projectile and the ith target nucleon. The free propagator Gy(E) for the
projectile-target system is given by
1
Gy(EF) = ——— 23
B = TR T (23)
with 7 — 0", Though most applications use targets with 0" ground states, there is no need for
this to be the case [285]. In fact, to develop optical potentials valid for exotic nuclei, a variety
of targets with different ground state spin configurations will need to be considered.
The operators P and Q in equations (20) and (21) are projection operators with
P+ Q =1, and P being defined such that equation (21) becomes a one-body equation. In this
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case, P is conventionally taken to project on the elastic channel, such that [G(, P] =0, and is
defined as P = |®g)(Do|/(Po|Po). With these definitions, the transition operator for elastic
scattering can be defined as T,;, = PTP, in which case equation (21) can be written as

T,, = PUP + PUPGy(E)T,. 24)

The choice of the projector P fixes the scattering problem to be considered. A projection onto
the target ground state is the appropriate choice to derive an optical potential describing the
elastic scattering of a nucleon from a target nucleus, but when considering e.g. inelastic
scattering in a coupled-channel approach, this P-space should contain the excited states under
consideration. To our knowledge, this has not been attempted in a multiple scattering
approach.

The expression for the optical potential in equation (22) contains the projection operator
Q and thus, even in the leading order term where U is defined as U = ZiAzl Toi» the quantity
To; cannot readily be identified with a NN amplitude derived in free space. Working in
momentum space, it is straightforward to formulate an integral equation for the Watson
optical potential [286]

Toi = Voi + v0iGo(E)Q10i = Toi — T0iGo(E) PTo;, (25)

where 7; is the NN f-matrix given as a solution of a regular two-body Lippmann—Schwinger
equation, in which only the many-body Green’s function Gy(E) needs to be considered. The
standard impulse approximation turns this Green’s function into a two-body propagator. It
should be noted that the above equations follow in a straightforward derivation and
correspond to the first-order Watson scattering expansion [17, 280]. The integration of
equation (25) taking into account contributions from the Q space corresponds to an averaging
over inelastic channels and thus should only be applied for energies higher than
~30-40 MeV. Unfortunately, a similar formulation as in equation (25) cannot be made in
coordinate space. Here the closest to treating the operator Q is the averaging suggestion made
by Kerman, McManus, and Thaler [18] leading to the KMT factor (A-1)/A in the optical
potential. [286] showed that the explicit treatment of the operator Q is especially important for
scattering from very light nuclei, where the KMT factor is not close to one. The importance of
an explicit treatment of Q for nuclei far off the valley of stability needs to be explored. Studies
of reaction cross sections of the helium isotopes at energies below 100 MeV revealed that
treating Q exactly or via KMT did not lead to major differences: however, not treating Q at all
caused discrepancies of more than 10% in the reaction cross section.

A further equally important consideration for obtaining the optical potential is to find a
solution to equation (22), which still has a many-body character due to the propagator Go(E).
The standard impulse approximation assumes closure, i.e. ignores target excitations. For
projectile energies above ~80 MeV this is generally assumed to be a good approximation and
errors have not been studied yet. In the impulse approximation and at leading order, the
nucleon—nucleus optical potential for a certain kinetic energy E is given by equation (6). Let
us now discuss a possible extension of this formalism to include effects of the
antisymmetrization and to go beyond the impulse approximation.

The treatment of Pauli antisymmetry effects follows the philosophy growing out of the
early work of Watson [287, 288] and developed via the spectator expansion in [289]. In the
lowest order the two-body antisymmetry is achieved through the use of two-body #-matrices
which are themselves antisymmetric in the two ‘active’ variables (corresponding to the weak
binding limit in [288]).

Going beyond the impulse approximation in the spirit of the spectator expansion means
consider that more nucleons of the target are active. At the next order in the expansion, one
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needs to consider that two nucleons of the target i and j are active. The optical potential would
depend on propagators Go; that have the structure of three-body channel Green’s functions.
One can describe these propagators within a single particle description as
1
E—ho—hj—zvij—Hj‘i‘l.?],

i=j

Goi(E) =

(26)

where 7 — 0", H’ is the residual target Hamiltonian involving (A — 1) particles (excluding
particles 0 and j), A4, is the kinetic energy operator for nucleon j, and v;; is the interaction
between target nucleons i and j. One can then project this Green’s function onto a fixed
number of eigenstates of the residual target Hamiltonian H’. Due to the presence of Vv;j an
exact solution will require fully-off-shell two-body density matrices for the target nucleus as
well as three-body dynamics. Two-body density matrices from ab initio structure models are
calculable in principle, so there is an opportunity to consistently estimate the contribution of
the next order in the spectator expansion, and thus have a better understanding of its
convergence as function of projectile energy as well as mass number. This will be a very
challenging enterprise. A first attempt with nuclear densities derived from HFB mean field
calculations for heavier nuclei was made in [290, 291] where the interaction v;; was taken as
the corresponding nuclear mean field. The result of this study showed that at projectile
energies above 100 MeV the second-order correction is almost negligible, while starting to be
evident in the spin observables at energies below 100 MeV. At about 50 MeV, the second-
order correction is quite visible in the differential cross section.

Another approach to take into account the beyond-leading-order effects of three-body
forces was implemented in [292] by constructing a density-dependent NN interaction that
treats the 3N force in an approximate way [293, 294]. For energies above 100 MeV, few
effects were noticeable in the differential cross sections, though some effects were observed in
the analyzing power and spin rotation function.

Explicit calculation of the leading order term in the Watson approach. For explicit
calculations of reaction observables from the leading order term in the spectator expansion,
equation (6), one needs both, structure information (fully-off-shell one-body density matrices)
and reaction information (NN amplitudes). Current ab initio calculations of multiple
scattering theory are limited in their applicable mass range due to the available ab initio
structure inputs. To reach target nuclei beyond the A ~ 40 range, one-body density matrices
will need to be calculated from other structure models, e.g. SCGF, CCM and In-Medium
Similarity Renormalization Group (IM-SRG).

Recent work [295] showed that including the spin of the struck target nucleon has an effect
on the elastic scattering spin observables for neutron-rich systems, which implies consistent
calculations incorporating this term may be necessary to study nuclei off the valley of stability.
This additional term requires both, a scalar and spin-dependent one-body density matrix, and
guarantees that the scalar (Wolfenstein A), vector (Wolfenstein C), and tensor (Wolfenstein M,
G, H, and D) parts of the NN interaction are included?'. For J=0 to J = 0 transitions, it has
been shown that only A, C, and M contribute due to parity invariance, though this likely holds
for other transitions between the same spin states. Future work to develop ab initio treatments
of inelastic scattering in this framework are becoming possible and will allow for further
study of the tensor (Wolfenstein M, G, H, and D) parts of the NN interaction.

In addition to the theoretical uncertainties arising from the spectator expansion of the
multiple scattering theory (e.g. next-to-leading-order effects for three-body forces, as well as

21 For the definition and derivation of Wolfenstein amplitudes see [296, 297].
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energy-dependencies of the NN #-matrix [298])—which are expected to be small in the energy
regime above 60 MeV—there are additional theoretical uncertainties propagating from
the nuclear-structure calculations. This includes both model-related uncertainties (e.g. any
residual dependence on the size of the model space), as well as uncertainties from
the underlying NN interaction (e.g. uncertainties associated with truncating a chiral effective
field theory at a certain order, dependence on the fits of the low-energy constants (LECs),
and others). Different approaches can be taken to address each of these uncertainties,
but an accounting of them is necessary to extract reliable information about reaction
observables.

Explicit calculation of the leading order term in the g-matrix approach. This approach
starts directly from the general expression for the leading-order term of equation (6) and
realizes that from quite general considerations [299] the two-body (NN) amplitude 7, can be
recast as

=

dz

KphERF) = [ P V=) gz[%(W’ + Wb’ b ] @7

=

where g. represents a reduced interaction at the local coordinate Z. In this expression
W=k + P, and b=k — P)/2, the prior total and relative two-body momenta, respectively.
The same applies to the post momenta, denoted by primed marks. Additionally, the 7
coordinate is given by the average 7 = (7*/ + 5’ + 7 +5)/4, the center of gravity of the four
coordinates of the two-particles, 7, 7'/, 5, 5.

Assuming a density-dependent NN effective interaction, in [299] it is demonstrated quite
generally that the folding potential in momentum space can be expressed as the sum of two
terms,

UR, K E) =Y [dP 3,@: P) (E+e) + GE', K B), (28)
where
Uk', k; E)=
00 i P A - N -
=30y 4z T [ 55 [ad' 5 @la" — @) 9@ P)og(p,s B+ co). (29)

Here j (x)=3j,(x)/x, with j;(x) being the spherical Bessel function of order 1 and
0. (q; P)= gol (P + %L?) cpa(lB — %cf ), with ¢, the target single-particle wave function with
energy €,. Note that in the sum only occupied states should be considered. While 7,
represents the momentum-space free f-matrix (as present in the KMT term of the optical
potential [300-302]), the fully off-shell g-matrix can be modeled with the infinite nuclear
matter Brueckner—Hartree—Fock g-matrix. Assuming weak isospin asymmetry, the gradient
term 0.g =[0g/0pll0p/0z], is evaluated at a local isoscalar density p,. The
resulting nonlocal potential U (E 'k E) has been applied to nucleon elastic scattering, as
reported in [303, 304] An interesting interpretation of equation (29) for U is that intrinsic
medium effects take place mostly at the surface of the target, as modulated by 0.p, the
gradient of the density [303].

Finally, let us emphasize that there are other similar approaches which construct in
coordinate space nucleon- and nucleus-optical potentials, folding microscopic neutron and
proton densities with nucleon—nucleon effective interactions [305-312].
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3.2.4. Nuclear matter approaches: Whitehead—-Lim—Holt potential, G-matrix solutions of the
Brueckner—Bethe—Goldstone and the JLM folding model. Compared to finite nuclei, infinite
homogeneous nuclear matter represents a conceptually simpler physical system to study. In
particular, calculations of the nucleon optical potential in nuclear matter avoid many of the
technical difficulties and practical limitations faced when computing the nucleon optical
potential directly in a finite system. When combined with a local density approximation, the
nuclear matter approach can also be used to construct nucleon—nucleus optical potentials,
provided that the isoscalar and isovector densities of the target nuclei are known. A significant
advantage is that the nucleon optical potential in nuclear matter only needs to be computed
once over a wide range of densities and proton fractions and then may be applied across large
regions of the nuclear chart. Hence, the nuclear matter approach is naturally suited for the
construction of global optical potentials, which will be vital for the future of reaction theory
for rare isotopes. However, the assumptions of the nuclear matter approach that allow for the
ease of constructing global nucleon—nucleus optical potentials also omit phenomena such as
surface effects, resonances, and spin—orbit interactions. The nuclear matter approach also
tends to produce an overly absorptive imaginary term at high energies. Some of these
shortcomings may be straightforwardly remedied while for others the solution remains
unclear, for more details see [313]. Ultimately, the quality of theoretical predictions for
reaction cross sections from optical potentials derived within the nuclear matter approach
must be assessed by comparisons to experimental data.

The framework for utilizing nuclear matter calculations of the optical potential for finite
nuclei was built by Jeukenne, Lejeune and Mahaux in the late 1970s [113, 114]. They
implemented the Local Density Approximation (LDA)

U(E; r)ipa = V(E; )ipa + iIW(E; 7)ipa
=V(E; kf (r), ki (r)nm + iW (E; k7 (r), k7 (r))nm’ (30)

which relates the optical potential at a given position in the nucleus with the optical potential
of nuclear matter (denoted by NM) with the same local density and isospin asymmetry
through the neutron k7 (r) and proton k}’ (r) Fermi momenta. A key finding of [113] is that the
LDA is insufficient for reproducing elastic-scattering data, which requires a modification
called the Improved Local Density Approximation (ILDA) that takes into account the
nonzero-range of the nuclear force

1
(tJm)?

The ILDA introduces a Gaussian smearing of the optical potential over the range of densities
probed across the length scale #, typically chosen to be around ¢ ~ 1.2 fm, the effective range
of the nuclear force. The most important consequence is that the optical potential in the
interior of the nucleus changes little, while the surface diffuseness of the optical potential
increases due to finite-range effects.

Whitehead—Lim—Holt global optical potential. Recent advances [314, 315] in the nuclear
matter approach to constructing microscopic nucleon—nucleus optical potentials incorporate
consistent two-body and three-body forces [316] at various orders in the chiral expansion.
The nucleon self-energy in nuclear matter is calculated in the framework of many-body
perturbation theory (MBPT) [317, 318], which has already been used to produce accurate
models of the nuclear equation of state [319-323]. In addition to MBPT, there are other
many-body frameworks for microscopically calculating the self-energy. One notable example
is the work of Rios in SCGF theory [324].

—|F—
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In MBPT, the first-order (or Hartree—Fock) contribution to the nucleon self energy in
isospin-symmetric nuclear matter is given by

2(21]\),(]() = Z(E EISSI”IIVZNV; ﬁlsslttl)nl, (32)
1

where k , §, t are the momentum, spin, and isospin of the projectile, n; is the occupation
probability O(k;— h;) for a filled state with momentum hy below the Fermi surface, and the
summation is over intermediate-state momenta ﬁl, spins sy, and isospins ;.

The second-order perturbative contributions to the nucleon self energy in symmetric
nuclear matter are expressed as

209 (k: E) = lz (P, Ps 515301 15| VanlK i 582 t) |2ﬁ . (33)
v 25 Ete-—a-atip

1
SV (ki E) = —
E 2% E+e—€6 —6—1in

|(hhssys3ti|Vanlk Py sso i) |2 "

17213, (34)

where the occupation probability for particle states above the Fermi momentum is
fi; = 0(k; — k¢). The second-order contributions ¥ and ¥ are energy-dependent and
complex. In equations (33) and (34), the single-particle energies E and ¢ should be computed
self-consistently according to

k? )
E(k) = PYY; + Re X(k; E(k)). (35)

The use of chiral nuclear forces provides several advantages to the phenomenological
nuclear forces of the past. By virtue of being an effective field theory, chiral makes a concrete
connection to the underlying theory of quantum chromodynamics through its symmetries.
Furthermore, chiral nuclear forces are calculated in a perturbative expansion that allows for a
direct method of uncertainty quantification by assessing order-by-order convergence [325].

The wide applicability of the nuclear matter approach and uncertainty quantification
capabilities of chiral EFT were employed in [326] to construct both the first microscopic
global optical potential and the first global optical potential with uncertainty quantification.
Both of these advances are central to the development of reaction theory for the rare-isotope
beam era, where theoretical predictions for thousands of exotic isotopes will be needed to
drive scientific discovery and answer fundamental science questions in nuclear astrophysics.
Present microscopic optical potentials have sizable uncertainties, which may be reduced
within a Bayesian framework that incorporates experimental nucleon—nucleus scattering and
reaction data in Bayesian likelihood functions. In [326], five separate global optical potentials
were generated from a set of chiral potentials of different order in the chiral expansion and
with varied momentum-space cutoffs. These global optical potentials are expressed in terms
of Woods—Saxon functions that are parametrized in terms of energy, target mass, and target
isospin asymmetry (E, A, 6). Assuming the five optical potentials are drawn from a
multivariate Gaussian distribution in the space of optical potential parameters, one can then
propagate statistical uncertainties to scattering observables. This multivariate Gaussian
distribution of nucleon—nucleus optical potentials is referred to as the Whitehead—Lim—Holt
(WLH) global optical potential.

In figure 9, the real (left panel) and imaginary (right panel) terms of the WLH optical
potential for n4+*°Ca at E=5MeV and E = 100 MeV are shown in coordinate space. As the
energy increases, the real term decreases in depth while the imaginary term increases in depth.
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Figure 9. The real (left) and imaginary (right) terms of the WLH global optical potential
for n+*Ca at E=5MeV (red) and E = 100 MeV (blue).

Both terms have larger uncertainties as the energy increases reflecting the enlarging
uncertainties of chiral EFT at high energies. These potentials can be easily applied in open
source reaction codes to propagate uncertainties to reaction observables. The WLH global
optical potential yields good reproductions of experimental elastic scattering cross sections
for projectile energies of E < 150 MeV. Total reaction cross sections calculated from WLH
are in good agreement with data up to moderate energies, and then overestimate data at larger
energies due to an overly absorptive imaginary term. Beyond energies of E < 150 MeV,
predictions of the WLH optical potential are expected to have greater discrepancies with data
along with larger uncertainties. Predictions of WLH for a wide range of reactions are shown
in section 5.

G-matrix solutions of the Brueckner—Bethe—Goldstone. The nuclear matter approach also
gives access to direct inelastic scattering observables. In this case, the effective interaction
used to build the microscopic optical potential also serves to build the transition potentials
that enter the definition of the relevant Distorted Wave Born Approximation (DWBA) or
coupled-channels equations. For instance, nucleon elastic and inelastic scattering were
modeled from g-matrix solutions of the Brueckner—Bethe—Goldstone equations in
nuclear matter—two well-known examples are the Melbourne [327] and the Santiago
g-matrices [328]—and one-body density matrices through the calculation of non-local optical
and transition potentials (an example of the application to inelastic scattering with the
Melbourne g-matrix and RPA beyond mean-field approach is given in [329, 330]).

JLM folding potential. As these approaches have proven less suited at incident energy
below 30-50 MeV, one pragmatic solution to cover the missing low-energy range, quite
important for energy applications and experimental programs at RIBs, is to still rely on
effective interactions derived from nuclear matter calculations but which are slightly
renormalized to account for selected scattering observables. One such approach is the JLM
folding model mentioned above, which has been extensively used to describe elastic and
inelastic scattering of protons, neutrons, and composite particles within the double folding
method, for both spherical and deformed targets. A global Lane-consistent parametrization of
the JLM interaction was given by Bauge e al in 2001 [98] by adjusting the interaction to
reproduce many elastic scattering and charge-exchange observables between 1keV and
200 MeV. Many reactions were studied with this parametrization starting with HFB ground
state densities and transition densities from the QRPA nuclear structure calculations. Recent
examples are the determination of inelastic scattering to discrete states and to the continuum
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for neutron scattering below 30 MeV off spherical [331], and axially-deformed targets such as
actinides within the coupled-channel framework [332], as well as the modeling of proton
inelastic scattering off unstable targets [333]. The method’s ability to provide accurate
reaction observables is mostly related to the quality of the nuclear structure input, so it was
intensively used to challenge structure theory with hadron scattering observables. Despite its
phenomenological content, the method has displayed good predictive capabilities especially
for direct inelastic scattering, as no inelastic observables are used to constrain the interaction.
However, its phenomenological aspect makes the method’s precision hard to improve beyond
the use of better nuclear structure input, and it relies on simplified nuclear matter calculations
with old-fashioned bare interactions. Moreover, resulting potentials from the JLM folding
model are local and non-dispersive, while the optical potential is known to be non-local and to
obey dispersion relations. The spin—orbit component is ad hoc—it does not stem from an
underlying nuclear matter calculation—and uses a simple form factor given as a derivative of
the microscopic density. This approach could thus be revisited starting from modern nuclear
matter calculations such as those described above.

One aspect of inelastic scattering that deserves attention is the rearrangement correction
in [334], which has a large renormalization effect on inelastic cross sections [335]. This
correction, which stems from the density dependence of the effective interaction used for
inelastic scattering, is still now applied in an ad hoc manner when folding models are used.
We stress that this correction, which has been known for a long time to induce modifications
as large as the difference between the #- and the g-matrix [334], should be described from
more fundamental principles in order to reach a better description of inelastic scattering
within the microscopic framework of folding and full-folding approaches.

3.3. Synergies between microscopic approaches and phenomenology

There are three main limitations of the standard phenomenological approach that was pre-
sented in section 3.1. First, in selecting a potential form and parametrization (such as a
Gaussian nonlocality), the practitioner makes simplifying assumptions about the physics at
hand, pushing any unknown physics into changes of the potential parameters. As such, any
extrapolation away from the region of training data is perilous, especially to weakly bound
systems near the drip lines that will be probed with FRIB. Second, training phenomenological
potentials requires copious training data, the vast majority of which was collected between
1960 and 2000 in direct kinematics at smaller facilities such as university cyclotrons and
tandem accelerators. Without additional high-precision p, n, d, t, 3He,, « scattering data, it is
unlikely that traditional phenomenological OMPs can be meaningfully improved (except by
including additional physical input such as, e.g. deformation information), nor can micro-
scopic approaches be rigorously tested. If new phenomenological OMPs are to be developed
using data from radioactive beams in inverse kinematics, low statistics and large uncertainties
in the reaction theory used to constrain these OMPs with non-elastic cross sections present
serious problems. Finally, past optimization approaches for phenomenological OMPs have
focused almost exclusively on finding ‘best-fit’ parameters but lack meaningful parametric
uncertainties. Even the best phenomenological potentials fail to achieve x> /N values of ~1
that would indicate reasonable reproduction of the training data, an indication that either
important physics are missing from the phenomenological forms, training data uncertainties
are underestimated, or both.

While the phenomenological approaches described in section 3.1 offer better accuracy in
describing scattering on stable targets, their predictability in unknown regions is weak.
Similarly, phenomenological optical potentials that provide an excellent description of one
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reaction channel, can fail to describe other channels. In contrast, microscopic approaches,
having the correct symmetries, are more promising for extrapolations. However, as detailed in
section 3.2, the wide range of microscopic approaches have their own shortcomings. It is
therefore appropriate to develop strategies that marry the best of the two worlds. We next
discuss some explicit ways in which microscopic approaches can benefit from an appropriate
phenomenological calibration.

It is well-known that for a model to be able to reproduce the scattering diffraction pattern,
it is essential that the same model describe the size of the system correctly. This is particularly
relevant to ab initio methods, since various parametrizations of the chiral potentials used in
these models may not reproduce accurately the root mean square radius (see e.g. [336] for
selected medium-mass nuclei). Hence, for the description of reactions at low energies, it is
important that modern nuclear forces employed in the calculations capture nuclear radii [337]
while ensuring the proper treatment of dominant correlations, as discussed next.

Particle threshold energies (or resonance energies) are another important quantity for most
reactions and become even more relevant for reactions involving nuclei at the limits of
stability. In this regard, microscopic models cannot provide the level of precision needed for
an adequate description of the reaction (of the order of 0.1 MeV). As such, often microscopic
approaches find ways to adjust their calculations such that the model reproduces the
thresholds exactly [265, 269]. Given that it is unlikely that many-body methods will reach the
level of precision needed in the near future, one should better understand how these different
adjustments affect the optical potential and propagate to complex reaction observables.

As remarked in section 3.2, with the exception of the NCSM and derivatives (NCSMC,
SA-NCSM, etc), optical potentials derived from ab initio methods contain only simple
excitations, up to 2plh or 2hlp. In addition, collective correlations may be suppressed for
some methods and chiral potential parametrizations employed [338]. This leads to an
underestimation of the flux removed from the elastic channel, and thus an overestimation of
the elastic-scattering cross section””. While ab initio NCSM-type approaches are applicable to
medium mass, currently it is not feasible to extend NCSM methods to heavy systems to
include the level of complexity required for a good description of the total absorption
occurring in the scattering (for example configurations beyond 2p2h [238, 339]). Conse-
quently, some groups have devised strategies to incorporate the missing physics by hand as
for example the method discussed in section 3.2 involving doorway states.

A microscopically derived optical potential with known uncertainties, that has been well-
calibrated on the important inputs discussed above, has the potential to perform much better
than any phenomenological approach when exploring unknown regions of the nuclear chart.
There are a few well identified aspects in which the microscopic optical potential can provide
critical information to phenomenology.

First and foremost, since the nucleon—nucleon force contains the correct isospin symmetry,
microscopic approaches should in principle provide important guidance with respect to the
isospin dependence of the optical potential. This is particularly relevant to scientific programs
in facilities with rare isotope beams. Not only is the optical potential isospin dependence
important, but also it is critical to know how it varies with beam energy. Future studies
focused on extracting the isospin dependence of the microscopic optical potential from first-
principles are encouraged.

Another equally important aspect of the optical potential is the radial dependence of the
spin—orbit force. While there is a reason to model the radial dependence of the central force

2 By construction, NCSM-type approaches include higher orders of complexity in the model and therefore do not,
in principle, have the same issue, however, they are limited to applications on light to medium-mass nuclei.
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after the density distribution in the target nucleus, the basis for the radial dependence of the
spin—orbit force is not well established and for simplicity is taken to be the derivative of the
central term. Microscopic studies focused on determining the radial dependence of the spin—
orbit force will be very helpful to reduce ambiguous model dependencies in the global optical
potential.

Finally, as stated a number of times throughout this white paper, a microscopic optical
potential is intrinsically non-local. However, most phenomenological potentials have pre-
ferred to make the global potential local to avoid the additional computational cost, with the
exception of some DOM potentials (see section 3.1.2). This simplification introduces a very
strong energy dependence in the parameters. Despite it not being directly probed through
elastic scattering, the off-shell effects associated with non-locality do show up in other
reaction channels [340, 341] and therefore should be considered. In view of the incredible
advances in computing capacity, a non-local global optical potential is now feasible and
microscopic approaches should provide guidance to the radial form and its range. Current
microscopic studies have already shown that the simple Gaussian form for the non-locality
factor used by Perey and Buck (introduced in section 3.1.2) is not sufficient [276, 342, 343].
But one should also assess whether it is appropriate to separate this non-local factor in the first
place. Further microscopic studies along these lines will help establish a form for the non-
local potential that can then be used in phenomenology.

3.4. Model uncertainties beyond pairwise effective potentials

Complex reactions as discussed in section 2 are often described within a few-body model and
the dynamics are obtained from a Hamiltonian including the relevant degrees of freedom and
the corresponding pairwise interactions between the clusters. Thus, even when the full
dynamics is calculated, there is still a model uncertainty emerging from the reductions of the
many-body model into the few-body model. Quantifying the uncertainty introduced through
this simplification is not trivial. In this section, we discuss the first steps taken toward
this goal.

As an illustration, we consider reactions involving the deuteron, typically described within
a three-body model consisting of a neutron, a proton, and a target that consists of A nucleons,
interacting through pairwise phenomenological potentials. An exact solution to this three-
body problem is provided by the Faddeev formalism [344]. While the Faddeev formalism
enables a correct description of the three-body dynamics, its predictive power is limited, in
part, by the uncertainties in the effective phenomenological nucleon—nucleus potentials that
implicitly include the three-cluster interaction npA. Additionally, the formal projection of the
many-body problem onto the three-particle space gives rise to an irreducible three-body force
(3BF) which cannot be decomposed into a sum of pairwise interactions [345] and thus cannot
be constrained using nucleon—nucleus scattering data. Efforts to quantify the effects of the
irreducible nucleon—nucleon—nucleus forces have been carried out in [346, 347] by utilizing
multiple scattering theory to estimate the lowest order contributions to the 3BF arising from
the excitation of nucleons inside the nucleus A. While those works demonstrated that the 3BF
corrections to the pairwise potentials had a significant impact on deuteron-induced reaction
observables, there is some ambiguity coming from how the phenomenological potentials are
defined that does not allow for the disentanglement of irreducible three-body contributions.

The effects of the 3BF can be quantified without ambiguities by adopting microscopically
computed nucleon—nucleus potentials and grounding all calculations on a single microscopic
Hamiltonian using the same NN interactions. Uncertainties arising from the omission of the
irreducible 3BF in three-body model calculations were performed for deuterium-*He
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Figure 10. The differential cross section for elastic d 4 « scattering as a function of the
center-of-mass energy E.,, at the scattering angle 6.,, =38.7 deg. The solid lines
shows phase shifts computed using the NCSM/RGM while the Faddeev results are
depicted by dashed lines. The model space for the Faddeev calculation is restricted to a
total two-body angular momentum of J,,, < 3 and J,,,_, < 9/2 for the np and n/p-a
subsystems [348].

scattering and the °Li ground state [348]. This system has the advantage that it can be well-
described using microscopic reaction theory. First, the NCSM/RGM [349, 350] was used to
compute effective n/p — « potentials. Then the three-body Faddeev equations [351] are used
to compute the °Li ground state as well as d + « scattering observables. In parallel, the same
scattering observables are obtained directly from NCSM/RGM. The comparison between the
two approaches discloses the effects of the 3BF, arising from the antisymmetrization. The
study finds that the irreducible three-body force has a sizable effect on observables. Speci-
fically, the Faddeev approach yields a ®Li ground state that is approximately 600 keV shal-
lower than the one obtained with the NCSM/RGM. Additionally, the d-a three-body
calculations yield a 3" resonance that is located approximately 400 keV higher in energy
compared to the NCSM/RGM result (see figure 10). The shape of the d-« angular dis-
tributions computed using the two approaches also differ, owing to the different position of
the 3" resonance.

While the utilization of the NCSM/RGM allows for the determination of the contributions
to the 3BF stemming from Pauli exclusion effects, a similar study based on the no-core-shell
model with continuum [352, 353] (NCSMC) is necessary for the quantification of additional
components arising from excitations of the nucleons in *He. Lastly, a similar study that
encompasses several nuclei and a broader energy range can shed light on the mass and energy
dependence of the 3BF. Such work would inform the parametrization of the latter and thus
lead to improved three-body calculations for reactions.

4. Tools and resources

As discussed in section 3, there are multiple efforts to build reliable optical potentials which
are constructed from different approaches and have therefore various forms, e.g. local/non-
local and parametrized /numerical. To facilitate the development of accurate optical potentials
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and their use in applications, it is essential to efficiently share our codes and newly-developed
optical potentials. Having access to well-documented publicly-available reaction codes is a
real asset to developers of potential. In this way, the potentials for various observables, such
as direct and compound nuclear reaction cross sections (see section 2), can be easily tested
and their accuracy can be quantified. From the user side, because parametrizations of optical
potentials often involve many functionals, integrating new optical potentials in a reaction
code can be cumbersome.

To streamline the use of these potentials and to compare efficiently their accuracies for
reaction observables, it is time to list available resources in one platform. To fulfill these
needs, in the context of the workshop ‘Optical potentials in nuclear physics’ held in March
2022 at FRIB [354] gathering reaction codes and optical potential parametrizations was
created. We briefly present here the different resources that this website contains (more details
can be found in this website and in the references therein). Let us emphasize that the list
presented is non-exhaustive, this is a selected overview of tools available to the community.
In the future, the website will be updated with any resources that developers want to share.

Reaction codes. Because optical potentials approximate the absorption from the elastic
channel, their accuracy is often evaluated by looking at elastic scattering and polarization
data. Different codes, Scattering WAves off NonLocal Optical Potentials in the presence of
Coulomb interaction (SWANLOP) [355, 356], Schrodinger Integro-Differential equation Sol-
ver (SIDES) [357], equations Couplées en Itérations Séquentielles (ECIS) [358], Optical Model
with Nonaxiality (OPTMAN) [359-361] and FRESCO [151], provide these observables for any
numerical potential given as input. These solvers have complementary advantages, we
emphasize here some of their capabilities. SWANLOP and SIDES, developed by Arellano,
Blanchon et al, can handle non-local optical potentials exhibiting a Gaussian non-locality,
such as the one proposed in the early work of Perey and Buck [5]. Moreover, SWANLOP can
read optical potentials expressed in both coordinate and momentum spaces. ECIS and OPT-
MAN, developed respectively by Raynal and Soukhovitski, are connected to a comprehensive
database of parameters of local optical potentials as part of the IAEA RIPL project [15],
allowing to calculate consistently scattering cross sections for many targets in a broad energy
range. FRESCO [151], developed by Thompson, also contains a wrapper code SFRESCO, that
can be used to fit the optical potentials parameters to experimental data.

For more complex direct reactions, such as transfer and breakup, the codes FRESCO and
NonLocal Adiabatic Transfer (NLAT) [362] are the tools of choice. FRESCO calculates vir-
tually any direct or multi-step nuclear reaction which can be expressed in terms of countable
coupled-channels. In particular, FRESCO provides various cross sections for breakup and
transfer, obtained within the Continuum Discretized Coupled-Channel method [363-368]
(CDCC), Coupled Reaction Channels [369, 370] (CRC) or the DWBA. R-matrix and
Lagrange methods allow non-local potentials to be included non-iteratively. NLAT, developed
by Titus et al, calculates transfer cross sections for single-nucleon transfer reactions, (d, p),
(d, n), (n, d) or (p, d), including nonlocal nucleon-target interactions, within the finite-range
adiabatic distorted wave approximation [371] (ADWA) and DWBA. This code is suitable for
deuteron induced reactions in the range of E,;~ 10-70 MeV.

To compute compound reactions (see section 2.2), TALYS [149, 150], Yet Another Hauser
Feshbach Code (YAHFC) [372] and EMPIRE [373], relying on the HF formalism [88], are
available. These three codes, which have been widely used by the community, provide
predictions of nuclear reactions, including direct, pre-equilibrium and compound nucleus
reactions, through multiple different methods and inputs. In particular, they can treat various
optical models, spherical or deformed, through coupled-channels methods. These codes
are also connected to different optical potential libraries, EMPIRE is connected to RIPL
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database [15], and both YAHFC and TALYS have some popular global parametrizations
integrated in the code. There are some ongoing efforts to update YAHFC to integrate the
extended global spherical proton and neutron optical potentials of CH89 [13] and KD [14]
with uncertainty quantification of the potential parameters, respectively CHUQ and
KDUQ [185] (see section 3.1).

To solve coupled-channels problems in nuclear physics, the subroutine RMATRIX [374],
developed by Descouvemont, is also a practical tool as it can be easily integrated in any code.
This routine takes in input local or non-local coupling potentials at different nucleus-nucleus
distances. It also includes an efficient way to deal with long-range potentials with propagation
techniques, which significantly speeds up the calculations.

Available optical potential parametrizations. A comprehensive database of parameters for
local optical potentials for many targets in a broad energy range was developed during
the TAEA RIPL project [15]. A retrieval code (OMGET) is available from the RIPL3
webpage [375] at tab ‘OPTICAL’. This is a FORTRAN code that can prepare inputs for the
optical solvers ECIS and OPTMAN using the RIPL. OMP library.

As emphasized in section 3.1, there are a multitude of phenomenological optical potentials
that have been developed for the last fifty years. Some of these parametrizations for neutron-,
proton-, deuteron- and a-target systems have been collected by Kay in an excel spreadsheet.
Having such a compilation of phenomenological potentials makes it easier for the user who
wants to compare observables obtained with various optical potentials. This spreadsheet is a
work in progress and any suggestion is welcome.

Another recent effort has been made by Pruitt, Escher and Rahmanto quantify the
uncertainties of the potential parameters in the global spherical proton and neutron optical
potentials of KD [14] and CH89 [13] with uncertainty quantification, the so called KDUQ and
CHUAQ [185]. The mass and energy range of validity are the same as the original KD and
CHB&9, i.e 24 <A <209 and 0.001 MeV < E <200 MeV for KDUQ and 40 <A < 209 and
10MeV < E < 65 MeV for CHUQ. The optical potential parameters and tools for sampling
are available in the supplemental material of [185].

The recently developed microscopic global WLH nucleon—nucleus potential with quan-
tified uncertainties [314] (see section 3.2.4) has been parametrized to be easily integrated into
modern reaction codes, using a local Woods—Saxon form with parameters that vary smoothly
in energy, mass, and isospin asymmetry. This global potential is valid for targets with mass
12 <A <242 and energies 0 < E < 150 MeV. A python script sampling the WLH global
parametrization can be downloaded on the website [376].

Recommendations. Historically, optical potentials have been parametrized using a local
Woods—Saxon radial form with parameters depending smoothly on the beam energy and mass
of the target. Because these global potentials have simple expressions, they are easily shared
and often used for applications. In general, the newly developed microscopic optical
potentials are non-local and do not have an analytical parametrization. To facilitate colla-
boration between theorists and experimentalists, we propose recommendations for the non-
local optical potentials to be shared as easily as possible between makers and users.

Consider the case where the non-local potentials do not couple different partial waves j.
The radial forms Uj;(r, r'; E), defined on a two-dimensional (r, r’) radial grid, may then be
represented as a matrix and their eigen-expansions determined. At the specific incident
energies E where these potentials are targeted, some of its eigenvectors will have much higher
overlaps with the scattering wave functions than the others. It would therefore be more
efficient if just the eigensolutions with the largest product of overlaps and eigenvalues could
be retained without significant loss of accuracy. These eigenvectors would be the one-
dimensional form factors, such as f; j; s(r) corresponding to eigenvalues ), jiz, in the expansion
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Us(r, '3 B) = Upp(r) 64— 1) + 32 Mg . () i (7). (36)

i=1

The evaluator would choose expansion size 7 just sufficient to describe the important physical
effects that are not described by the local potential.

As well as saving space in publications, these separable expansions would allow the fast
solution of the scattering equations without needing R-matrix or Lagrange mesh bases that
require solving a set of linear equations defined by the radial grid. That is because the
scattering equation with a potential like equation (36) can be solved by the method of
equation (5) of [377], where a linear combination of inhomogeneous solutions (from each
fii;,e(r) as a driving term) is added to the regular solution to reproduce the effects of the
potential (36). Groups of only n + 1 linear equations now need to be solved.

Further efficiency would follow if the form factors f; ;; (r) could have analytic forms in
their radial and energy dependence. In general, the principal eigenvectors will not have
analytic shapes, but if the potential makers could fit some parametrized analytic forms, this
would make the interchange of non-local potentials even easier.

Despite the recent efforts to treat non-local optical potentials, there are still many methods
and codes that have not been generalized to non-local interactions. To move forward as a
community, we suggest that reaction codes need to be extended to deal with both local and
non-local potentials.

5. Comparing approaches

In this section, we provide a critical assessment and comparison of the different approaches
presented in this work, both in order to illustrate the content of the previous sections, and to
set the stage for the next one. We show in figures 11-14 a systematic comparison of pre-
dictions for a variety of observables. We consider two broad categories: phenomenological
(solid lines) and microscopic or semi-microscopic (dashed lines) models. The models for
which an uncertainty quantification (UQ) study has been performed are represented by their
95% uncertainty band. The acronyms used in this section, referring to the optical potentials
discussed throughout this paper, are listed in table 1. Features of each optical potential, e.g.
applicability in mass and in energy, are summarized in table 2.

In figure 11 we show angular differential cross sections for elastic scattering of neutrons
and protons on 40’48Ca, 16O, and '2C at several beam energies, indicated by each line on the
figure around zero degree. The overall reproduction of the data is encouraging: the agreement
of all phenomenological models (KD, DOM-STL, MR, MBR, KDUQ), semi-microscopic
(JLMB) and most microscopic models (MST-B, MST-V, NSM, WLH) is excellent at small
angles, while both the consistency between approaches and the agreement with the data
deteriorates at larger angles. This is to be expected since large scattering angles receive
contributions from other non-elastic channels, e.g. inelastic excitation, transfer and breakup,
tracing back to the imaginary part of the optical potentials. Another positive feature, the
diffraction pattern of maxima and minima in the angular distribution agrees well with the
data, suggesting that the bulk properties of the matter density distribution (such as the mean
squared radius) are reproduced.

In addition to these general remarks, there are a number of specific aspects that emerge
from these comparisons:

* In contrast with the other ab initio models, the SCGF optical potential, featured in the
n+*°Ca calculation, shows a consistent over-prediction of the elastic cross section,
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Table 1. List of abbreviations used to denote the OMPs discussed in the text.

List of abbreviations

KD Koning—Delaroche

KDUQ Koning—Delaroche with Uncertainty Quantification
DOM (STL) Dispersive Optical Model (Saint Louis)
MR Morillon—-Romain

MBR Morillon—-Blanchon—Romain

NSM Nuclear Structure Model

SCGF Self-Consistent Green’s Function
MST-B Multiple Scattering Theory—Burrows
MST-V Multiple Scattering Theory—Vorabbi
WLH Whitehead-Lim—Holt

JLMB Bruyeres Jeukenne—Lejeune—Mahaux

Table 2. Summary of the Optical Potential models discussed in the text, identified with
the acronyms detailed in table 1 and used in figures 11, 12, 13, and 14. In the second
and third columns, we indicate the applicability ranges in terms of mass and bom-
barding energy, respectively. The fourth column (D.) identifies dispersive potentials,
while the fifth one differentiates between microscopic (Mic.), i.e. based on structure
calculations, and phenomenological potentials. The sixth column indicates whether an
uncertainty quantification (UQ) analysis has been performed. The seventh column
(Bib.) points to the relevant references and the eighth column (Sec.) to the section in
which the model is discussed.

Mass Energy D. Mic. UuQ Bib section
KD 24 <A <209 1keV < E <200 MeV X X X [14] 3.1.1
KDUQ 24 <A <209 1keV < E <200 MeV X X v [185] 3.1.1
DOM C, O, Ca, Ni, — o0 < E <200 MeV v X v [172] 3.1.2
(STL) Sn, Pb isotopes [176]
MR 12<Z<83 E <200 MeV v X X [99] 3.1.2
MBR 12<Z<83 E <200 MeV v X x 3.1.2
NSM 40Ca, *¥Ca, 2°°pb E < 40 MeV v v X [204] 3.2.1
SCGF O, Ca, Ni isotopes E < 100 MeV v v X [249] 322
MST-B A <20 E 270 MeV X v X [295] 323
MST-V 4<AL16 E > 60 MeV X v X [292] 323
[285]
WLH 12<AL242 0 < E <150 MeV X v v [326] 324
JLMB A>30 1 keV < E < 340 MeV X v X [96] 324
[98]
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resulting from a lack of absorption. This is likely a consequence of the fact that the level
density at energies relevant for scattering phenomena is typically underpredicted by
current ab initio calculations, leading to a small imaginary component in the optical
potential. Note that the predictions presented here have been obtained with the NNLO-sat
chiral interactions, using other two- and three-nucleon forces will influence the diffraction
pattern and the absorption. One should also emphasize that the ab initio-derived SCGF
potential is the only one shown in figures 11-12 that does not rely on static densities or
mean field approximations. This characteristic is shared by all methods discussed
section 3.2.2.

* For the n+*°Ca at 2.35 MeV, only WLH is able to reproduce the shape of the angular
distribution and absolute value of the cross section. That can be easily understood by
noting that WLH is the only calculation including the contribution of compound elastic
processes, which are important for this case. Note that if these contributions were
included in the other calculations (KD, DOM-STL, MR, MBR, JLMB and KDUQ), they
may also reproduce the data.

The calculations based on multiple scattering theory (MST-B, MST-V) are only applied

to the n+'°0 and p+'2C elastic scattering at high energies, consistent with their range of

validity. These two models exhibit a similar level of agreement when compared to the
data. Although they are similar for smaller angles, there are significant differences at
larger angles. This may result from the different treatment of spin used in both approaches

as discussed in section 3.2.3.

The approach based on an RPA description of the collective low-energy nuclear spectrum

(NSM) are designed to be used at lower energies, where they indeed perform well.

* The semi-microscopic model JLMB is accurate over the whole energy range, as its
parameters were adjusted to reproduce neutron and proton elastic scattering observables
in the 1keV-200MeV energy range for A > 40. One can see here that although the
JLMB was not fitted on lighter nuclei, it agrees fairly well with experimental data on '°O
target. This indicates that the JLMB remains a good starting point for A < 40 nuclei.

* WLH performs well for all energies considered, however, the uncertainty intervals from
WLH are larger than those from KDUQ. This is particularly evident for p-+*Ca
scattering at large angles. While KDUQ was fitted to data, WLH results from a
microscopic calculation of the nucleon—nucleon interaction in nuclear matter and
therefore there is no reason why these uncertainties should be of the same magnitude.

We now turn to energy distributions (total cross sections in figure 12 and reaction cross
sections in figure 13). As for the angular distribution, here the phenomenological potentials
agree well with the n+*>*®Ca data at all energies. This is expected for the DOM para-
metrization which was fitted to reproduce both 4048 data. However, since the MR, MBR,
KD and KDUQ global optical potentials were only fitted to “°Ca data, the good agreement
with the *®Ca data suggest that the mass and isospin dependencies of these parametrizations
are accurate. The WLH also agrees well with the data within its uncertainty, although the
uncertainty interval is very large. For this observable too, the current imperfections of SCGF
ab initio calculations are apparent. Even if the available data are more scarce for the reaction
cross sections than for the total cross sections, the picture drawn by the comparisons in
figure 13 is similar to that from figure 12. The reaction cross section is largely associated with
the imaginary part of the optical potential, reflecting the role of the open reaction channels in
removing flux from the elastic one.

While the phenomenological approaches perform well, the NSM approach underestimates
the reaction cross section, which might point to the fact that it fails to account for important
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Figure 14. Asymmetry of the total cross section between *°Ca and **Ca, defined as
twice the ratio between the difference and the sum of the total cross sections, expressed
in percentage. The shaded areas correspond to 95% confidence intervals.

reaction processes at lower energies. Since the NSM takes explicitly into account direct
excitation of collective states in the low-lying spectrum, this result suggests that other reaction
channels, such as compound nucleus formation, charge exchange, and transfer, need to be
included in order to account for the total absorption. Note that the sharp variation in the NSM
results compared to the other potentials can be explained by the discrete energy positions of
the collective states predicted by RPA calculations, causing peaks in the reaction cross section
and hence the total cross section. Overall, figures 12 and 13 reflect the difficulty encountered
by microscopic theories in describing the variety of relevant reaction channels. However, the
good behaviour of the WLH potential (despite its wide uncertainty interval), based on
microscopic calculations of the nucleon—nucleon interaction in nuclear matter, is noteworthy.

Finally, we consider the asymmetry of the total cross section between *’Ca and **Ca as
shown in figure 14. This observable is very sensitive to the difference between neutron and
proton densities, and the fact that all the models reproduce the trend reasonably well suggests
that they can account for the isospin dependence of the cross section around stability.
However, the WLH potential somewhat underpredicts the energy of the first dip at around
30 MeV. The uncertainty bands associated with KDUQ and WLH capture the data at the 95%
confidence level, and contrary to the previous observables, they both have a similar width. A
likely explanation is that uncertainties associated with ratios of observables obtained con-
sistently within the same theory tend to cancel. In the WLH, all nuclei are derived consistently
within the same framework, and uncertainties can be traced back to its specific approxima-
tions (included here are the truncation level of the chiral EFT). It is unclear how systematic
uncertainties evolve for different nuclei in the case of phenomenological approaches. The
phenomenological dispersive optical potentials MR and MBR perform remarkably well
below 30 MeV, while KD is somehow worse. This situation is reversed above 40 MeV. While
this ratio of observable offers, in principle, an excellent constraint for the isospin dependence
of the optical potential, we must note the large experimental uncertainties associated with the
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data in figure 14. Dedicated experimental efforts devoted to new measurements with extended
range and improved error bars would be necessary for it to be useful in the extraction of the
isospin dependence of the optical potential. Since exotic systems are characterized by an
extreme neutron-to-proton ratio, we expect the cross section asymmetry to be a strong
indicator of the reliability of potentials away from stability.

Overall, phenomenological optical potentials with quantified uncertainties perform well for
stable nuclei even for observables and energies they have not been fitted to, as testified by
their ability to reproduce the asymmetry data shown in figure 14. A rigorous estimation of the
associated uncertainties, such as implemented in the KDUQ and WLH models, is a very
desirable feature. We also want to stress the importance of the implementation of dispersivity
in the DOM-STL, MR, and MBR phenomenological potentials. Some microscopic approa-
ches provide a good reproduction of elastic scattering for their ranges of validity: low energy
for NSM, and high energy for the multiple scattering potentials. However, advances in fully
ab initio potentials, represented here by the SCGF and multiple scattering theory models, are
still needed before they can be reliably used far from stability.

6. Outlook and recommendations

In conclusion, optical potentials are ubiquitous in nuclear physics. In this white paper, we
discuss multiple ongoing efforts in the theory community aimed at improving their reliability
and at quantifying associated uncertainties. Overall, results for nucleon elastic scattering on
stable targets show that the various methods do capture most of the physics, although as
expected discrepancies amongst the methods and with the data increase at backward angles.
The situation for nuclei away from stability is much more dire and requires dedicated future
programs. In this section, we summarize the key points that should be kept in mind moving
forward.

First and foremost, improving the determination of the optical potential for rare isotopes
requires a close collaboration between theory and experiment. Experiments specifically tar-
geted on constraining the optical potential are an imperative. While recent ab initio advances
on the optical potential are impressive, it is clear that to obtain predictability away from
stability, a careful validation of the current methods for systems with large isospin asymmetry
is essential. This implies working closely with the experimental community, such that the-
orists engage in both ends of the experimental endeavor, namely in providing input to
experimental design and helping in the interpretation of the measurements. We emphasize the
benefit of systematic studies, experimental setups that can measure multiple channels
simultaneously or cover a range of beam energies. To obtain constraints on the isospin
dependence of the optical potential, it is important to be able to extract observables that are
particularly sensitive to isospin asymmetry. As such, experiments that span multiple isobars
or measure a long isotopic chain are invaluable.

Secondly, future theoretical studies should strive to include uncertainty quantification in
deriving the optical potential. The field is ripe for merging the knowledge obtained from
microscopic approaches with experimental data within a Bayesian analysis. Such a statistical
framework provides a natural avenue, not just for uncertainty quantification, but also for
interpolating and extrapolating the optical potential, assessing the information content of
various observables, and for quantitatively discriminating between models. Theorists must be
better informed on the experimental data used, and a concerted effort needs to be made such
that experimental error bars incorporated in the optical model constraints include not just
statistical but also systematic errors.
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Concerning the progress in theory, there are many thrusts that need to be pursued and the
field can greatly benefit from stronger collaborations between theorists with differing
expertise. In general, ab initio methods need to be expanded beyond current truncations, so
they can include additional correlations and ameliorate the lack of absorption resulting from
the unphysically low density of states. As more ab initio methods extend into the continuum,
reaction data needs to be part of the standard protocols of validating ab initio theories
(currently theorists use mostly bound state spectra and root mean square radii to determine the
quality of their model). It is important to address nuclear collectivity in microscopic optical
model approaches at a global level. Although going beyond two-particle two-hole con-
tributions is very challenging for some many-body frameworks, the current status demon-
strates that including higher-order correlations is unavoidable. There are a variety of structure
quantities calculated within the microscopic approaches that serve as inputs to the con-
struction of optical potentials (e.g. one-body densities and two-body densities). It is important
that structure theorists calculate these quantities, test them for convergence and make them
widely available.

Several recent studies have demonstrated the added benefit of including the dispersion
relation, enforcing causality as a constraint on the optical potential. Especially when con-
sidering a global optical potential spanning several energy regimes, it is desirable to correct
the optical potential such that the real and imaginary parts of the extracted interaction are
related in the appropriate manner.

It is understood that non-locality does affect reactions beyond the elastic channel and
therefore its impact should be carefully considered. While in principle the optical potential is
non-local, following the earlier work by Perey and Buck, a global non-local nucleon optical
potential remains to be implemented. Studies have shown that the Gaussian shape assumed in
the Perey and Buck parametrization is likely too simplistic. Since the optical model non-
locality cannot be measured directly, this information must come from theory. Non-locality
should be inspected when extracting the optical potential from microscopic theories, parti-
cularly to understand its full off-shell behavior and the dependencies on model-space trun-
cations. For most of the existing codes, local potentials are computationally much more
efficient. However, methods to include non-local potentials can be very efficient when the
optical potentials are expressed in separable form.

In addition to non-locality, we identified two other features of the optical potential that
must rely mostly on theory. As one moves away from stability, details on the isospin
dependence become ever more important. Even with the new facilities, experiment will not be
able to cover the whole nuclear landscape and such extrapolations in isospin will be reliant on
theory. Testing this aspect of the microscopically derived optical potential is of paramount
importance. Another important term in the optical potential is the spin—orbit force. The
interplay of the spin—orbit force and the central term has been shown to be very important for
loosely-bound systems. Elastic scattering is not strongly sensitive to this term and therefore,
again, theory must provide guidance.

Despite the discussion in this white paper being mostly focused on the nucleon optical
potential, we must underline the necessity of optical potentials for complex probes (beyond
the neutron and the proton). Many experimental programs at rare isotope facilities require the
use of complex probes and progress on modern formulations for the nucleus-nucleus optical
potential has been slow. Future theoretical studies should include global deuteron, triton,
alpha and heavy-ion microscopic optical potentials, valid for nuclei away from stability.

Ultimately, progress in the theory for optical potentials does not immediately ensure
integration into the many applications in our field. It is critical that tools be updated so that the
whole community can benefit from their improvements. An integral part of this work was the
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creation of a website for the purpose of concentrating in one place the existing relevant codes.
These codes need to be regularly updated by their authors to incorporate the latest optical
potential developments. Only then will the field fully benefit from the theoretical advances.

Finally, it must be noted that while there has been increasing interest by the many-body
nuclear structure community in investigating the connection to the optical potential, the gap
between the existing effort and the needs is still very large. Workforce development in this
area is still critical and involves a particular skill set, including many-body nuclear formal-
isms, few-body reaction theory and modern statistical methods.

With the RIB factory in RIKEN in full force, FRIB having started operations earlier this
year and numerous other facilities around the world, we expect a plethora of rare isotope data,
directly relevant for the optical potential, in the coming years. Therefore, we anticipate this
topic will need to be revisited in the next 5-6 years.

Acknowledgments

The authors thank H Arellano for giving information on the the SCL-Bruyeres g-matrix
approach for the optical potential and K Launey for critical feedback and insights in the SA-
NCSM subsection. The authors also thank S Nikas and P Gastis for sharing the calculations
plotted in figures 4 and 5. This work is supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under the FRIB Theory Alliance award no. DE-
SC0013617. The work at Lawrence Livermore National Laboratory (LLNL) is performed
under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344
and was supported in part by the LLNL-LDRD Program under Project No. 21-ERD-006. The
work at Brookhaven National Laboratory is sponsored by the Office of Nuclear Physics,
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
98CH10886 with Brookhaven Science Associates, LLC. The work at Ohio University is
supported by the U.S. Department of Energy Office of Science under Grants DE-FGO02-
93ER40756. This work was also supported by the U.S. Department of Energy Office of
Science under grants DE-SC0021422, DE-SC0019209, DE-SC0019521, DE-ACO02-
06CH11357 and DE-NA0003841. This work is supported by the National Science Founda-
tion under Grant no. PHY-1913728, PHY-2209060, PHY1652199, PHY 1912643, and
PHY?2207756. Computing support for the NCSM/RGM and Faddeev results presented in
figures 8 and 10 came from the LLNL Institutional Computing Grand Challenge program.
Computing support for the SCGF results presented in figures 8 come from the DiRAC DiAL
system at the University of Leicester, UK, (funded by the UK BEIS via STFC Capital Grants
No. ST/K000373/1 and No. ST/R002363/1 and STFC DiRAC Operations Grant No. ST/
R001014/1) and from the National Energy Research Scientific Computing Center (DOE
Contract No. DE-AC02-05CH11231) using NERSC award NP-ERCAP0020946.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.

ORCID iDs

C Hebborn © https://orcid.org/0000-0002-0084-2561

49


https://sites.google.com/view/opticalpotentials/optical-potentials-in-nuclear-physics
https://orcid.org/0000-0002-0084-2561
https://orcid.org/0000-0002-0084-2561
https://orcid.org/0000-0002-0084-2561

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

F M Nunes © https://orcid.org/0000-0001-8765-3693

G Potel @ https://orcid.org/0000-0002-4887-7499

W H Dickhoff @ https://orcid.org/0000-0003-1738-3979
J W Holt @ https://orcid.org/0000-0003-4373-3856

M C Atkinson @ https://orcid.org /0000-0002-5423-1432
R B Baker © https://orcid.org/0000-0002-3909-4425

C Barbieri @ https://orcid.org/0000-0001-8658-6927

M Burrows @ https://orcid.org/0000-0002-4574-4711

R Capote @ https://orcid.org/0000-0002-1799-3438

P Danielewicz © https://orcid.org/0000-0002-1989-5241
Ch Elster @ https://orcid.org/0000-0002-2459-1226

J E Escher © https://orcid.org/0000-0002-0829-9153

L Hlophe © https://orcid.org/0000-0001-6675-6132

A Idini ® https://orcid.org/0000-0001-7624-8975

H Jayatissa © https://orcid.org/0000-0001-8746-0234

B P Kay © https://orcid.org/0000-0001-8675-0731

K Kravvaris ® https://orcid.org/0000-0002-1715-0967

J J Manfredi ® https://orcid.org/0000-0003-3703-7424
G Perdikakis ® https://orcid.org/0000-0002-8539-8737
C D Pruitt @ https://orcid.org/0000-0003-0607-9461

G H Sargsyan © https://orcid.org/0000-0002-3589-2315
M Vorabbi © https://orcid.org/0000-0002-1012-7238

T R Whitehead © https://orcid.org/0000-0001-8909-2033

References

[1] Navratil P, Quaglioni S, Hupin G, Romero-Redondo C and Calci A 2016 Phys. Scr. 91 053002
[2] Hodgson P 1963 The Optical Model of Elastic Scattering (Oxford: Clarendon Press)
[3] Hodgson P 1971 Nuclear Reactions and Nuclear Structure (Oxford: Oxford University Press)
[4] Hodgson P 1997 The nuclear optical model: introductory overview Proceedings of the Meeting
on Nucleon—Nucleus Optical Model up to 200 MeV (Paris: OECD)
[5] Perey F and Buck B 1962 Nucl. Phys. 32 353
[6] Buck B 1963 Phys. Rev. 130 712
[7] Tamura T 1965 Rev. Mod. Phys. 37 679
[8] Mahaux C, Ngd H and Satchler G 1986 Nucl. Phys. A 449 354
[9] Mahaux C and Sartor R 1991 Nucl. Phys. A 528 253
[10] Mahaux C and Sartor R 1991 Advances in Nuclear Physics vol 20 ed J W Negele and E Vogt
(New York: Plenum)
[11] Dickhoff W H, Charity R J and Mahzoon M H 2017 J. Phys. G: Nucl. Part. Phys. 44 033001
[12] Becchetti F D and Greenlees G W 1969 Phys. Rev. 182 1190
[13] Varner R, Thompson W, McAbee T, Ludwig E and Clegg T 1991 Phys. Rep. 201 57
[14] Koning A J and Delaroche J P 2003 Nucl. Phys. 713 231
[15] Capote R et al 2009 Nucl. Data Sheets 110 3107
[16] Weppner S P, Penney R B, Diffendale G W and Vittorini G 2009 Phys. Rev. C 80 034608
[17] Watson K M 1953 Phys. Rev. 89 575
[18] Kerman A, McManus H and Thaler R 1959 Ann. Phys. 8 551
[19] Feshbach H 1958 Ann. Phys. 5 357
[20] Feshbach H 1962 Ann. Phys. 19 287
[21] Dickhoff W H and Van Neck D 2008 Many-Body Theory Exposed! (Singapore: World Scientific)
2nd edn
[22] Bell J S and Squires E J 1959 Phys. Rev. Lett. 3 96
[23] Dickhoff W and Charity R 2019 Prog. Part. Nucl. Phys. 105 252
[24] Bonaccorso A 2018 Prog. Part. Nucl. Phys. 101 1

50


https://orcid.org/0000-0001-8765-3693
https://orcid.org/0000-0001-8765-3693
https://orcid.org/0000-0001-8765-3693
https://orcid.org/0000-0002-4887-7499
https://orcid.org/0000-0002-4887-7499
https://orcid.org/0000-0002-4887-7499
https://orcid.org/0000-0003-1738-3979
https://orcid.org/0000-0003-1738-3979
https://orcid.org/0000-0003-1738-3979
https://orcid.org/0000-0003-4373-3856
https://orcid.org/0000-0003-4373-3856
https://orcid.org/0000-0003-4373-3856
https://orcid.org/0000-0002-5423-1432
https://orcid.org/0000-0002-5423-1432
https://orcid.org/0000-0002-5423-1432
https://orcid.org/0000-0002-3909-4425
https://orcid.org/0000-0002-3909-4425
https://orcid.org/0000-0002-3909-4425
https://orcid.org/0000-0001-8658-6927
https://orcid.org/0000-0001-8658-6927
https://orcid.org/0000-0001-8658-6927
https://orcid.org/0000-0002-4574-4711
https://orcid.org/0000-0002-4574-4711
https://orcid.org/0000-0002-4574-4711
https://orcid.org/0000-0002-1799-3438
https://orcid.org/0000-0002-1799-3438
https://orcid.org/0000-0002-1799-3438
https://orcid.org/0000-0002-1989-5241
https://orcid.org/0000-0002-1989-5241
https://orcid.org/0000-0002-1989-5241
https://orcid.org/0000-0002-2459-1226
https://orcid.org/0000-0002-2459-1226
https://orcid.org/0000-0002-2459-1226
https://orcid.org/0000-0002-0829-9153
https://orcid.org/0000-0002-0829-9153
https://orcid.org/0000-0002-0829-9153
https://orcid.org/0000-0001-6675-6132
https://orcid.org/0000-0001-6675-6132
https://orcid.org/0000-0001-6675-6132
https://orcid.org/0000-0001-7624-8975
https://orcid.org/0000-0001-7624-8975
https://orcid.org/0000-0001-7624-8975
https://orcid.org/0000-0001-8746-0234
https://orcid.org/0000-0001-8746-0234
https://orcid.org/0000-0001-8746-0234
https://orcid.org/0000-0001-8675-0731
https://orcid.org/0000-0001-8675-0731
https://orcid.org/0000-0001-8675-0731
https://orcid.org/0000-0002-1715-0967
https://orcid.org/0000-0002-1715-0967
https://orcid.org/0000-0002-1715-0967
https://orcid.org/0000-0003-3703-7424
https://orcid.org/0000-0003-3703-7424
https://orcid.org/0000-0003-3703-7424
https://orcid.org/0000-0002-8539-8737
https://orcid.org/0000-0002-8539-8737
https://orcid.org/0000-0002-8539-8737
https://orcid.org/0000-0003-0607-9461
https://orcid.org/0000-0003-0607-9461
https://orcid.org/0000-0003-0607-9461
https://orcid.org/0000-0002-3589-2315
https://orcid.org/0000-0002-3589-2315
https://orcid.org/0000-0002-3589-2315
https://orcid.org/0000-0002-1012-7238
https://orcid.org/0000-0002-1012-7238
https://orcid.org/0000-0002-1012-7238
https://orcid.org/0000-0001-8909-2033
https://orcid.org/0000-0001-8909-2033
https://orcid.org/0000-0001-8909-2033
https://doi.org/10.1088/0031-8949/91/5/053002
https://doi.org/10.1016/0029-5582(62)90345-0
https://doi.org/10.1103/PhysRev.130.712
https://doi.org/10.1103/RevModPhys.37.679
https://doi.org/10.1016/0375-9474(86)90009-6
https://doi.org/10.1016/0375-9474(91)90090-S
https://doi.org/10.1088/1361-6471/44/3/033001
https://doi.org/10.1103/PhysRev.182.1190
https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/j.nds.2009.10.004
https://doi.org/10.1103/PhysRevC.80.034608
https://doi.org/10.1103/PhysRev.89.575
https://doi.org/10.1016/0003-4916(59)90076-4
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1103/PhysRevLett.3.96
https://doi.org/10.1016/j.ppnp.2018.11.002
https://doi.org/10.1016/j.ppnp.2018.01.005

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[25]
[26]
[27]

[28]
[29]
[30]
(31]
[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[40]

[47]
(48]
[49]

[50]
[51]
[52]
[53]

[54]
[55]
[56]
[57]
(58]
[59]
[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]

Butler S T 1950 Phys. Rev. 80 1095

Warburton E K, Becker J A and Brown B A 1990 Phys. Rev. C 41 1147

Thibault C, Klapisch R, Rigaud C, Poskanzer A M, Prieels R, Lessard L and Reisdorf W 1975
Phys. Rev. C 12 644

Otsuka T, Gade A, Sorlin O, Suzuki T and Utsuno Y 2020 Rev. Mod. Phys. 92 015002

Otsuka T, Suzuki T, Fujimoto R, Grawe H and Akaishi Y 2005 Phys. Rev. Lett. 95 232502

Di Pietro A et al 2010 Phys. Rev. Lett. 105 022701

Bradt J et al 2018 Phys. Lett. B 778 155

Tanihata I et al 1985 Phys. Lett. B 160 380

Tanihata I, Hamagaki H, Hashimoto O, Shida Y, Yoshikawa N, Sugimoto K, Yamakawa O,
Kobayashi T and Takahashi N 1985 Phys. Rev. Lett. 55 2676

Aumann T and Nakamura T 2013 Phys. Scr. 2013 014012

Butler P A 2016 J. Phys. G: Nucl. Part. Phys. 43 073002

Frekers D and Alanssari M 2018 Eur. Phys. J. A 54 177

Cappuzzello et al 2018 Eur. Phys. J. A 54 72

Cappuzzello F et al 2023 Prog. Part. Nucl. Phys. 128 103999

Schiffer J P et al 2012 Phys. Rev. Lett. 108 022501

Lee J et al 2010 Phys. Rev. Lett. 104 112701

Wimmer K 2018 J. Phys. G: Nucl. Part. Phys. 45 033002

Timofeyuk N and Johnson R 2020 Prog. Part. Nucl. Phys. 111 103738

Schiffer J P et al 2004 Phys. Rev. Lett. 92 162501

Manfredi J et al 2021 Phys. Rev. C 104 024608

Aumann T and Bertulani C A 2020 Prog. Part. Nucl. Phys. 112 103753

Tribble R E, Bertulani C A, Cognata M L, Mukhamedzhanov A M and Spitaleri C 2014 Rep.
Prog. Phys. 77 106901

Horowitz C J et al 2019 J. Phys. G: Nucl. Part. Phys. 46 083001

Nunes F, Potel G, Poxon-Pearson T and Cizewski J 2020 Ann. Rev. Nucl. Part. Sci. 70 147

Tumino A, Bertulani C A, La Cognata M, Lamia L, Pizzone R G, Romano S and Typel S 2021
Annu. Rev. Nucl. Part. 71 345

von Oertzen W and Vitturi A 2001 Rep. Prog. Phys. 64 1247

Potel G, Idini A, Barranco F, Vigezzi E and Broglia R A 2013 Rep. Prog. Phys. 76 106301

Frauendorf S and Macchiavelli A 2014 Prog. Part. Nucl. Phys. 78 24

Potel G and Broglia R A 2021 The Nuclear Cooper Pair (Cambridge: Cambridge University
Press)

Bertulani C 2006 Nucl. Phys. A 767 155

Simpson E C and Tostevin J A 2011 Phys. Rev. C 83 014605

Duer M et al 2022 Nature 606 678

Stevens S, Ryckebusch J, Cosyn W and Waets A 2018 Phys. Lett. B 777 374

Tanaka J et al 2021 Science 371 260

Bonaccorso A 2013 Phys. Scr. T152 014019

Baye D and Capel P 2012 Breakup reaction models for two- and three-cluster projectiles Clusters
in Nuclei (vol 2) vol 848 (Heidelberg: Springer)

Bertulani C A 2005 Phys. Rev. Lett. 94 072701

Ogata K and Bertulani C A 2010 Prog. Theor. Phys. 123 701

Bonaccorso A and Brink D 2021 Eur. Phys. J. A 57 171

Summers N C, Nunes F M and Thompson 1 J 2014 Phys. Rev. C 89 069901

Moro A M and Lay J A 2012 Phys. Rev. Lett. 109 232502

Goldstein G, Baye D and Capel P 2006 Phys. Rev. C 73 024602

Baur G and Typel S 2007 J. Phys. G: Nucl. Part. Phys. 35 014028

Baur G, Bertulani C and Rebel H 1986 Nucl. Phys. A 458 188

Summers N C and Nunes F M 2008 Phys. Rev. C 78 069908

Ogata K, Hashimoto S, Iseri Y, Kamimura M and Yahiro M 2006 Phys. Rev. C 73 024605

Moschini L and Capel P 2019 Phys. Lett. B 790 367

Moro A M, Lay J A and Gémez Camacho J 2020 Phys. Lett. B 811 135959

Hansen P and Tostevin J 2003 Annu. Rev. Nucl. Part. Sci. 53 219

Tostevin J A 2006 J. Phys.: Conf. Ser. 49 21

Sauvan E er al 2004 Phys. Rev. C 69 044603

Sauvan E et al 2000 Phys. Lett. B 491 1

51


https://doi.org/10.1103/PhysRev.80.1095.2
https://doi.org/10.1103/PhysRevC.41.1147
https://doi.org/10.1103/PhysRevC.12.644
https://doi.org/10.1103/RevModPhys.92.015002
https://doi.org/10.1103/PhysRevLett.95.232502
https://doi.org/10.1103/PhysRevLett.105.022701
https://doi.org/10.1016/j.physletb.2018.01.015
https://doi.org/10.1016/0370-2693(85)90005-X
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1088/0954-3899/43/7/073002
https://doi.org/10.1140/epja/i2018-12612-5
https://doi.org/10.1140/epja/i2018-12509-3
https://doi.org/10.1016/j.ppnp.2022.103999
https://doi.org/10.1103/PhysRevLett.108.022501
https://doi.org/10.1103/PhysRevLett.104.112701
https://doi.org/10.1088/1361-6471/aaa2bf
https://doi.org/10.1016/j.ppnp.2019.103738
https://doi.org/10.1103/PhysRevLett.92.162501
https://doi.org/10.1103/PhysRevC.104.024608
https://doi.org/10.1016/j.ppnp.2019.103753
https://doi.org/10.1088/0034-4885/77/10/106901
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1146/annurev-nucl-020620-063734
https://doi.org/10.1146/annurev-nucl-102419-033642
https://doi.org/10.1088/0034-4885/64/10/202
https://doi.org/10.1088/0034-4885/76/10/106301
https://doi.org/10.1016/j.ppnp.2014.07.001
https://doi.org/10.1016/j.nuclphysa.2005.12.014
https://doi.org/10.1103/PhysRevC.83.014605
https://doi.org/10.1038/s41586-022-04827-6
https://doi.org/10.1016/j.physletb.2017.12.045
https://doi.org/10.1126/science.abe4688
https://doi.org/10.1088/0031-8949/2013/T152/014019
https://doi.org/10.1103/PhysRevLett.94.072701
https://doi.org/10.1143/PTP.123.701
https://doi.org/10.1140/epja/s10050-021-00448-1
https://doi.org/10.1103/PhysRevC.89.069901
https://doi.org/10.1103/PhysRevLett.109.232502
https://doi.org/10.1103/PhysRevC.73.024602
https://doi.org/10.1088/0954-3899/35/1/014028
https://doi.org/10.1016/0375-9474(86)90290-3
https://doi.org/10.1103/PhysRevC.78.069908
https://doi.org/10.1103/PhysRevC.73.024605
https://doi.org/10.1016/j.physletb.2019.01.041
https://doi.org/10.1016/j.physletb.2020.135959
https://doi.org/10.1146/annurev.nucl.53.041002.110406
https://doi.org/10.1088/1742-6596/49/1/005
https://doi.org/10.1103/PhysRevC.69.044603
https://doi.org/10.1016/S0370-2693(00)01003-0

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

(771

[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]

[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[971

(98]
[99]
[100]

[101]
[102]

[103]
[104]
[105]
[106]

[107]
[108]
[109]

[110]
[111]
[112]
[113]
[114]
[115]
[116]

[117]
[118]

[119]
[120]

[121]

Tostevin J A, Bazin D, Brown B A, Glasmacher T, Hansen P G, Maddalena V, Navin A and
Sherrill B M 2002 Phys. Rev. C 66 024607

Hebborn C and Capel P 2021 Phys. Rev. C 104 024616

Gade A et al 2008 Phys. Rev. C 77 044306

Tostevin J A and Gade A 2014 Phys. Rev. C 90 057602

Tostevin J A and Gade A 2021 Phys. Rev. C 103 054610

Aumann T et al 2021 Prog. Part. Nucl. Phys. 118 103847

Aumann T, Bertulani C A and Ryckebusch J 2013 Phys. Rev. C 88 064610

Moro A M 2015 Phys. Rev. C 92 044605

Goémez-Ramos M and Moro A M 2018 Phys. Lett. B 785 511

Lovell A E, Nunes F M, Catacora-Rios M and King G B 2020 J. Phys. G: Nucl. Part. Phys. 48
014001

Lane A M and Thomas R G 1958 Rev. Mod. Phys. 30 257

Hauser W and Feshbach H 1952 Phys. Rev. 87 366

Chadwick M et al 2006 Nucl. Data Sheets 107 2931

Hilaire S, Lagrange C and Koning A J 2003 Ann. Phys. 306 209

Goriely S et al 2019 Eur. Phys. J. A 55 172

Zelevinsky V and Horoi M 2019 Prog. Part. Nucl. Phys. 105 180

Larsen A C, Spyrou A, Liddick S N and Guttormsen M 2019 Prog. Part. Nucl. Phys. 107 69

Savran D, Aumann T and Zilges A 2013 Prog. Part. Nucl. Phys. 70 210

Bracco A, Lanza E G and Tamii A 2019 Prog. Part. Nucl. Phys. 106 360

Bauge E, Delaroche J P and Girod M 1998 Phys. Rev. C 58 1118

Bauge E, Delaroche J P, Girod M, Haouat G, Lachkar J, Patin Y, Sigaud J and Chardine J 2000
Phys. Rev. C 61 034306

Bauge E, Delaroche J and Girod M 2001 Phys. Rev. C 63 024607

Morillon B and Romain P 2007 Phys. Rev. C 76 044601

Nobre G P A, Palumbo A, Herman M, Brown D, Hoblit S and Dietrich F S 2015 Phys. Rev. C 91
024618

Soukhovitskii E S, Capote R, Quesada J M, Chiba S and Martyanov D S 2016 Phys. Rev. C 94
064605

Soukhovitskii E S, Capote R, Quesada J M, Chiba S and Martyanov D S 2020 Phys. Rev. C 102
059901

Porter C E and Thomas R G 1956 Phys. Rev. 104 483

Emebjerg M and Herman M 2005 AIP Conf. Proc. 769 1233

Simonius M 1974 Phys. Lett. B 52 279

Voinov A V, Grimes S M, Brune C R, Hornish M J, Massey T N and Salas A 2007 Phys. Rev. C
76 044602

Voinov A V et al 2021 Phys. Rev. C 104 015805

Cyburt R H et al 2010 Astrophys. J., Suppl. Ser. 189 240

Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M and van der Marck S 2019 Nucl.
Data Sheets 155 1

Agostinelli S et al 2003 Nucl. Instrum. Methods. Phys. Res. A 506 250

Schweda K and Schmidt D 2002 Nucl. Instrum. Methods. Phys. Res. A 476 155

Goriely S and Delaroche J P 2007 Phys. Lett. B 653 178-83

Jeukenne J P, Lejeune A and Mahaux C 1977 Phys. Rev. C 16 80

Jeukenne J P et al 1976 Phys. Rep. 25 83

Arnould M and Goriely S 2003 Phys. Rep. 384 1

Rauscher T, Dauphas N, Dillmann I, Frohlich C, Fiilop Z and Gyiirky G 2013 Rep. Prog. Phys.
76 066201

McKay J, Denissenkov P, Herwig F, Perdikakis G and Schatz H 2020 Mon. Not. R. Astron. Soc.
491 5179

Nikas S, Perdikakis G, Beard M, Surman R, Mumpower M R and Tsintari P 2020 arXiv:2010.
01698

Bliss J, Arcones A, Montes F and Pereira J 2020 Phys. Rev. C 101 055807

Denissenkov P A, Herwig F, Perdikakis G and Schatz H 2021 Mon. Not. R. Astron. Soc.
503 3913

McKay J E, Denissenkov P A, Herwig F, Perdikakis G and Schatz H 2019 Mon. Not. R. Astron.
Soc. 491 5179

52


https://doi.org/10.1103/PhysRevC.66.024607
https://doi.org/10.1103/PhysRevC.104.024616
https://doi.org/10.1103/PhysRevC.77.044306
https://doi.org/10.1103/PhysRevC.90.057602
https://doi.org/10.1103/PhysRevC.103.054610
https://doi.org/10.1016/j.ppnp.2021.103847
https://doi.org/10.1103/PhysRevC.88.064610
https://doi.org/10.1103/PhysRevC.92.044605
https://doi.org/10.1016/j.physletb.2018.08.058
https://doi.org/10.1088/1361-6471/abba72
https://doi.org/10.1088/1361-6471/abba72
https://doi.org/10.1103/RevModPhys.30.257
https://doi.org/10.1103/PhysRev.87.366
https://doi.org/10.1016/j.nds.2006.11.001
https://doi.org/10.1016/S0003-4916(03)00076-9
https://doi.org/10.1140/epja/i2019-12840-1
https://doi.org/10.1016/j.ppnp.2018.12.001
https://doi.org/10.1016/j.ppnp.2019.04.002
https://doi.org/10.1016/j.ppnp.2013.02.003
https://doi.org/10.1016/j.ppnp.2019.02.001
https://doi.org/10.1103/PhysRevC.58.1118
https://doi.org/10.1103/PhysRevC.61.034306
https://doi.org/10.1103/PhysRevC.63.024607
https://doi.org/10.1103/PhysRevC.76.044601
https://doi.org/10.1103/PhysRevC.91.024618
https://doi.org/10.1103/PhysRevC.91.024618
https://doi.org/10.1103/PhysRevC.94.064605
https://doi.org/10.1103/PhysRevC.94.064605
https://doi.org/10.1103/PhysRevC.102.059901
https://doi.org/10.1103/PhysRevC.102.059901
https://doi.org/10.1103/PhysRev.104.483
https://doi.org/10.1063/1.1945230
https://doi.org/10.1016/0370-2693(74)90040-9
https://doi.org/10.1103/PhysRevC.76.044602
https://doi.org/10.1103/PhysRevC.104.015805
https://doi.org/10.1088/0067-0049/189/1/240
https://doi.org/10.1016/j.nds.2019.01.002
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(01)01422-X
https://doi.org/10.1016/j.physletb.2007.07.046
https://doi.org/10.1016/j.physletb.2007.07.046
https://doi.org/10.1016/j.physletb.2007.07.046
https://doi.org/10.1103/PhysRevC.16.80
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1016/S0370-1573(03)00242-4
https://doi.org/10.1088/0034-4885/76/6/066201
https://doi.org/10.1093/mnras/stz3322
http://arxiv.org/abs/2010.01698
http://arxiv.org/abs/2010.01698
https://doi.org/10.1103/PhysRevC.101.055807
https://doi.org/10.1093/mnras/stab772
https://doi.org/10.1093/mnras/stz3322

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[122]
[123]
[124]
[125]
[126]
[127]

[128]
[129]
[130]
[131]
[132]
[133]
[134]

[135]

[136]
[137]
[138]
[139]
[140]
[141]
[142]

[143]

[144]
[145]

[146]
[147]
[148]

[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]

[160]
[161]
[162]
[163]

[164]
[165]

McFadden L and Satchler G 1966 Nucl. Phys. 84 177

Demetriou P, Grama C and Goriely S 2002 Nucl. Phys. A 707 253

Avrigeanu M and Avrigeanu V 2010 Phys. Rev. C 82 014606

Avrigeanu V, Avrigeanu M and Mindilescu C 2014 Phys. Rev. C 90 044612

Mohr P 2015 Eur. Phys. J. A 51 56

Bernstein L A, Brown D A, Koning A J, Rearden B T, Romano C E, Sonzogni A A,
Voyles A S and Younes W 2019 Annu. Rev. Nucl. Part. 69 109-36

Brown D et al 2018 Nucl. Data Sheets 148 1

Capote R et al 2018 Nucl. Data Sheets 148 254

Capote R, Smith D and Trkov A 2010 EPJ Web Conf 8 04001

Koning A 2015 Eur. Phys. J. A 51 184

Capote R et al 2020 Nucl. Data Sheets 163 191

Nichols A and Capote R 2014 Nucl. Data Sheets 120 239

Gul K ez al 2001 Charged particle cross-section database for medical radioisotope production:
diagnostic radioisotopes and monitor reactions IAEA Technical Report IAEA-TECDOC-1211
IAEA, Vienna, Austria

Bétdk E, Caldeira A and Capote R e a 2011 Nuclear data for the production of therapeutic
radionuclides IAEA Technical Reports Series No. 473 International Atomic Energy Agency,
Vienna, Austria

Paige Abel E et al 2019 J. Phys. G: Nucl. Part. Phys. 46 100501

Hermanne A er al 2018 Nucl. Data Sheets 148 338

Hermanne A, Téarkanyi F, Ignatyuk A, Takdcs S and Capote R 2021 Nucl. Data Sheets 173 285

Téarkanyi F et al 2019 J. Radioanal. Nucl. Chem. 319 487

Tarkéanyi F et al 2019 J. Radioanal. Nucl. Chem. 319 533

Engle J et al 2019 Nucl. Data Sheets 155 56

Slaba T C, Bahadori A A, Reddell B D, Singleterry R C, Clowdsley M S and Blattnig S R 2017
Life Sci. Space Res. 12 1

Quartemont N J, Peterson G, Moran C, Samin A, Wang B, Yeamans C, Woodworth B,
Holland D, Petrosky J C and Bevins J E 2021 Nucl. Instrum. Methods. Phys. Res. A 1016
165777

Norbury J W, Miller J, Adamczyk A M, Heilbronn L H, Townsend L W, Blattnig S R,
Norman R B, Guetersloh S B and Zeitlin C J 2012 Radiat. Meas. 47 315

de Wet W C, Townsend L W, Ford W P, Werneth C M, Norman R B and Slaba T C 2020 Nucl.
Instrum. Methods. Phys. Res. B 480 115

Ramsey C R, Townsend L W, Tripathi R K and Cucinotta F A 1998 Phys. Rev. C 57 982

Danielewicz P, Singh P and Lee J 2017 Nucl. Phys. A 958 147

Guss P P, Byrd R C, Howell C R, Pedroni R S, Tungate G, Walter R L and Delaroche J P 1989
Phys. Rev. C 39 405

Koning A J, Hilaire S and Goriely S 2008 Nucl. Phys. A 810 13

Koning A and Rochman D 2012 Nucl. Data Sheets 113 2841

Thompson I J 1988 Comput. Phys. Rep. 7 167

Molina A, Capote R, Quesada J M and Lozano M 2002 Phys. Rev. C 65 034616

Morillon B and Romain P 2004 Phys. Rev. C 70 014601

Capote R, Molina A and Quesada J M 2001 J. Phys. G: Nucl. Part. Phys. 27 B15

Quesada J M, Capote R, Molina A and Lozano M 2003 Comp. Phys. Commun. 153 97

Quesada J M, Capote R, Molina A, Lozano M and Raynal J 2003 Phys. Rev. C 67 067601

Capote R, Soukhovitskii E S, Quesada J M and Chiba S 2005 Phys. Rev. C 72 064610

Soukhovitskii E S, Capote R, Quesada J M and Chiba S 2005 Phys. Rev. C 72 024604

Capote R, Chiba S, Soukhovitskii E S, Quesada J M and Bauge E 2008 J. of Nucl. Sc. Tech.
45 333

Li R, Sun W, Soukhovitskii E S, Quesada J M and Capote R 2013 Phys. Rev. C 87 054611

Quesada J M, Capote R, Soukhovitskii E S and Chiba S 2007 Phys. Rev. C 76 057602

Quesada J M, Soukhovitskii E S, Capote R and Chiba S 2013 EPJ Web Conf. 42 02005

Zhao X, Sun W, Capote R, Soukhovitskii E S, Martyanov D S and Quesada J M 2020 Phys. Rev.
C 101 064618

Lane A M 1962 Phys. Rev. Lett. 8 171

Lane A 1962 Nucl. Phys. 35 676

53


https://doi.org/10.1016/0029-5582(66)90441-X
https://doi.org/10.1016/S0375-9474(02)00756-X
https://doi.org/10.1103/PhysRevC.82.014606
https://doi.org/10.1103/PhysRevC.90.044612
https://doi.org/10.1140/epja/i2015-15056-5
https://doi.org/10.1146/annurev-nucl-101918-023708
https://doi.org/10.1146/annurev-nucl-101918-023708
https://doi.org/10.1146/annurev-nucl-101918-023708
https://doi.org/10.1016/j.nds.2018.02.001
https://doi.org/10.1016/j.nds.2018.02.005
https://doi.org/10.1051/epjconf/20100804001
https://doi.org/10.1140/epja/i2015-15184-x
https://doi.org/10.1016/j.nds.2019.12.004
https://doi.org/10.1016/j.nds.2014.07.056
https://doi.org/10.1088/1361-6471/ab26cc
https://doi.org/10.1016/j.nds.2018.02.009
https://doi.org/10.1016/j.nds.2021.04.008
https://doi.org/10.1007/s10967-018-6142-4
https://doi.org/10.1007/s10967-018-6380-5
https://doi.org/10.1016/j.nds.2019.01.003
https://doi.org/10.1016/j.lssr.2016.12.003
https://doi.org/10.1016/j.nima.2021.165777
https://doi.org/10.1016/j.nima.2021.165777
https://doi.org/10.1016/j.radmeas.2012.03.004
https://doi.org/10.1016/j.nimb.2020.07.014
https://doi.org/10.1103/PhysRevC.57.982
https://doi.org/10.1016/j.nuclphysa.2016.11.008
https://doi.org/10.1103/PhysRevC.39.405
https://doi.org/10.1016/j.nuclphysa.2008.06.005
https://doi.org/10.1016/j.nds.2012.11.002
https://doi.org/10.1016/0167-7977(88)90005-6
https://doi.org/10.1103/PhysRevC.65.034616
https://doi.org/10.1103/PhysRevC.70.014601
https://doi.org/10.1088/0954-3899/27/8/402
https://doi.org/10.1016/S0010-4655(03)00157-7
https://doi.org/10.1103/PhysRevC.67.067601
https://doi.org/10.1103/PhysRevC.72.064610
https://doi.org/10.1103/PhysRevC.72.024604
https://doi.org/10.1080/18811248.2008.9711442
https://doi.org/10.1103/PhysRevC.87.054611
https://doi.org/10.1103/PhysRevC.76.057602
https://doi.org/10.1051/epjconf/20134202005
https://doi.org/10.1103/PhysRevC.101.064618
https://doi.org/10.1103/PhysRevLett.8.171
https://doi.org/10.1016/0029-5582(62)90153-0

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[166]

[167]
[168]
[169]
[170]

[171]
[172]

[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]

[203]

[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]

Mahzoon M H, Charity R J, Dickhoff W H, Dussan H and Waldecker S J 2014 Phys. Rev. Lett.
112 162503

Charity R J, Sobotka L. G and Dickhoff W H 2006 Phys. Rev. Lett. 97 162503

Charity R J et al 2007 Phys. Rev. C 76 044314

Mahzoon M H, Atkinson M C, Charity R J and Dickhoff W H 2017 Phys. Rev. Lett. 119 222503

Atkinson M C, Blok H P, Lapikds L, Charity R J and Dickhoff W H 2018 Phys. Rev. C 98
044627

Pruitt C D, Charity R J, Sobotka L G, Atkinson M C and Dickhoff W H 2020 Phys. Rev. Lett.
125 102501

Atkinson M C, Mahzoon M H, Keim M A, Bordelon B A, Pruitt C D, Charity R J and
Dickhoff W H 2020 Phys. Rev. C 101 044303

Pruitt C D 2022 Private communication

Waldecker S J, Barbieri C and Dickhoff W H 2011 Phys. Rev. C 84 034616

Dussan H, Waldecker S J, Dickhoff W H, Miither H and Polls A 2011 Phys. Rev. C 84 044319

Pruitt C D er al 2020 Phys. Rev. C 102 034601

Potel G et al 2017 Eur. Phys. J. A 53 178

Hebborn C and Potel G 2023 Phys. Rev. C 107 014607

Kramer G J et al 1989 Phys. Lett. B 227 199

Giusti C and Pacati F D 1988 Nucl. Phys. A 485 461

Boffi S, Giusti C and Pacati F D 1980 Nucl. Phys. A 336 416

Atkinson M C and Dickhoff W H 2019 Phys. Lett. B 798 135027

King G B, Lovell A E, Neufcourt L and Nunes F M 2019 Phys. Rev. Lett. 122 232502

Phillips D R et al 2021 J. Phys. G: Nucl. Part. Phys. 48 072001

Pruitt C D, Escher J E and Rahman R 2023 Phys. Rev. C 107 014602

Rao C L, Reeves M 1III and Satchler G R 1973 Nucl. Phys. A 207 182

Lev A, Beres W P and Divadeenam M 1974 Phys. Rev. C 9 2416

Lev A and Beres W P 1974 Phys. Rev. C 10 1223

Coulter P W and Satchler G R 1977 Nucl. Phys. A 293 269

Vinh Mau N 1970 Theory of Nuclear Structure (Vienna: IAEA) p 931

Bernard V and Van Giai N 1979 Nucl. Phys. A 327 397

Dover C B and Van Giai N 1972 Nucl. Phys. A 190 373

Vinh Mau N and Bouyssy A 1976 Nucl. Phys. A 257 189

Bouyssy A, Ngo H and Vinh Mau N 1981 Nucl. Phys. A 371 173

Osterfeld F, Wambach J and Madsen V A 1981 Phys. Rev. C 23 179

Osterfeld F and Madsen V A 1981 Phys. Rev. C 24 2468

Osterfeld F and Madsen V A 1985 Phys. Rev. C 32 108

Lassaut M and Vinh Mau N 1982 Nucl. Phys. A 391 118

Dermawan H, Osterfeld F and Madsen V A 1982 Phys. Rev. C 25 180

Leeb H and Osterfeld F 1985 Phys. Rev. C 32 789

Hao T V N, Loc B M and Phuc N H 2015 Phys. Rev. C 92 014605

Nhan Hao T V, Nhu Le N, Koh M H, Quang Hung N, Ngoc Duy N, Pham V N T and
Hoang Tung N 2018 Int. J. Mod. Phys. E 27 1850052

Hoang Tung N, Quang Tam D, Pham V N T, Lam Truong C and Hao T V N 2020 Phys. Rev. C
102 034608

Blanchon G, Dupuis M, Arellano H F and Vinh Mau N 2015 Phys. Rev. C 91 014612

Blanchon G, Dupuis M and Arellano H F 2015 Eur. Phys. J. A 51 165

Blanchon G, Dupuis M, Bernard R N and Arellano H F 2017 Eur. Phys. J. A 53 88

Mizuyama K and Ogata K 2012 Phys. Rev. C 86 041603

Hao T V N, Loc B M and Phuc N H 2015 Phys. Rev. C 92 014605

Mizuyama K and Ogata K 2014 Phys. Rev. C 89 034620

Hilaire S and Girod M 2007 Eur. Phys. J. A 33 237

Mizuyama K, Le N N, Thuy T D and Hao T V N 2019 Phys. Rev. C 99 054607

Mizuyama K, Cong Quang H, Dieu Thuy T and Nhan Hao T V 2021 Phys. Rev. C 104 034606

Kuprikov V, Pilipenko V and Soznik A 2006 Phys. At. Nucl. 69 6

Kuprikov V, Pilipenko V, Soznik A, Tarasov V and Shlyakhov N 2009 Phys. At. Nucl. 72 975

Pilipenko V V, Kuprikov V I and Soznik A P 2010 Phys. Rev. C 81 044614

Pilipenko V V and Kuprikov V I 2012 Phys. Rev. C 86 064613

Xu Y, Guo H, Han Y and Shen Q 2014 J. Phys. G: Nucl. Part. Phys. 41 015101

54


https://doi.org/10.1103/PhysRevLett.112.162503
https://doi.org/10.1103/PhysRevLett.97.162503
https://doi.org/10.1103/PhysRevC.76.044314
https://doi.org/10.1103/PhysRevLett.119.222503
https://doi.org/10.1103/PhysRevC.98.044627
https://doi.org/10.1103/PhysRevC.98.044627
https://doi.org/10.1103/PhysRevLett.125.102501
https://doi.org/10.1103/PhysRevC.101.044303
https://doi.org/10.1103/PhysRevC.84.034616
https://doi.org/10.1103/PhysRevC.84.044319
https://doi.org/10.1103/PhysRevC.102.034601
https://doi.org/10.1140/epja/i2017-12371-9
https://doi.org/10.1103/PhysRevC.107.014607
https://doi.org/10.1016/S0370-2693(89)80022-X
https://doi.org/10.1016/0375-9474(88)90548-9
https://doi.org/10.1016/0375-9474(80)90218-3
https://doi.org/10.1016/j.physletb.2019.135027
https://doi.org/10.1103/PhysRevLett.122.232502
https://doi.org/10.1088/1361-6471/abf1df
https://doi.org/10.1103/PhysRevC.107.014602
https://doi.org/10.1016/0375-9474(73)90030-4
https://doi.org/10.1103/PhysRevC.9.2416
https://doi.org/10.1103/PhysRevC.10.1223
https://doi.org/10.1016/0375-9474(77)90099-9
https://doi.org/10.1016/0375-9474(79)90266-5
https://doi.org/10.1016/0375-9474(72)90148-0
https://doi.org/10.1016/0375-9474(76)90627-8
https://doi.org/10.1016/0375-9474(81)90063-4
https://doi.org/10.1103/PhysRevC.23.179
https://doi.org/10.1103/PhysRevC.24.2468
https://doi.org/10.1103/PhysRevC.32.108
https://doi.org/10.1016/0375-9474(82)90222-6
https://doi.org/10.1103/PhysRevC.25.180
https://doi.org/10.1103/PhysRevC.32.789
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1142/S0218301318500520
https://doi.org/10.1103/PhysRevC.102.034608
https://doi.org/10.1103/PhysRevC.91.014612
https://doi.org/10.1140/epja/i2015-15165-1
https://doi.org/10.1140/epja/i2017-12268-7
https://doi.org/10.1103/PhysRevC.86.041603
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1103/PhysRevC.89.034620
https://doi.org/10.1140/epja/i2007-10450-2
https://doi.org/10.1103/PhysRevC.99.054607
https://doi.org/10.1103/PhysRevC.104.034606
https://doi.org/10.1134/S1063778806010029
https://doi.org/10.1134/S1063778809060106
https://doi.org/10.1103/PhysRevC.81.044614
https://doi.org/10.1103/PhysRevC.86.064613
https://doi.org/10.1088/0954-3899/41/1/015101

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
[228]

[229]
[230]
[231]
[232]
[233]

[234]
[235]
[236]
[237]

[238]
[239]

[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]

[256]
[257]

[258]
[259]
[260]
[261]

[262]
[263]

Lopez-Moraiia J and Vifias X 2021 J. Phys. G: Nucl. Part. Phys. 48 035104

Xu Y, Guo H, Han Y and Shen Q 2017 Phys. Rev. C 96 024621

Dover C B and Van Giai N 1971 Nucl. Phys. A 177 559

Anh N L and Loc B M 2021 Phys. Rev. C 103 035812

Bortignon P, Broglia R, Bes D and Liotta R 1977 Phys. Rep. 30 305

Idini A 2013 Renormalization effects in nuclei PhD Thesis University of Milan

Idini A, Barranco F and Vigezzi E 2012 Phys. Rev. C 85 014331

Idini A, Barranco F, Vigezzi E and Broglia R 2011 J. Phys. Conf. Ser. 312 092032

Potel G, Idini A, Barranco F, Vigezzi E and Broglia R A 2013 Phys. Rev. C 87 054321

Idini A, Potel G, Barranco F, Vigezzi E and Broglia R A 2015 Phys. Rev. C 92 031304

Broglia R A, Bortignon P F, Barranco F, Vigezzi E, Idini A and Potel G 2016 Phys. Scr. 91
063012

Potel G, Idini A, Barranco F, Vigezzi E and Broglia R A 2017 Phys. Rev. C 96 034606

Friedrich H 1981 Phys. Rep. 74 209-75

Ljungberg J, Carlsson B G, Rotureau J, Idini A and Ragnarsson 12022 Phys. Rev. C 106 014314

Wintgen D, Friedrich H and Langanke K 1983 Nucl. Phys. A 408 239

Lukyanov V, Kadrev D, Zemlyanaya E, Antonov A, Lukyanov K, Spasova K and Gaidarov M
2014 Bull. Russ. Acad. Sci.: Phys. 78 1101

Escher J and Jennings B K 2002 Phys. Rev. C 66 034313

Dickhoff W H and Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377

Barbieri C and Jennings B K 2005 Phys. Rev. C 72 014613

Barbieri C and Carbone A 2017 Self-Consistent Green’s Function Approaches (Berlin:
Springer) p 571

Rotureau J 2020 Front. Phys. 8 285

Burrows M B, Launey K D, Baker R B, Sargsyan G H, Dytrych T and Draayer J P 2021 Ab initio
optical potentials for elastic scattering at low energies using the symmetry- adpated no-core
shell model APS Division Nucl. Phys. Meeting 2021

Soma V, Barbieri C and Duguet T 2014 Phys. Rev. C 89 024323

Hagen G, Papenbrock T, Hjorth-Jensen M and Dean D J 2014 Rep. Prog. Phys. 77 096302

Soma V, Duguet T and Barbieri C 2011 Phys. Rev. C 84 064317

Soma V 2020 Front. Phys. 8 340

Soma V, Navritil P, Raimondi F, Barbieri C and Duguet T 2020 Phys. Rev. C 101 014318

Arthuis P, Barbieri C, Vorabbi M and Finelli P 2020 Phys. Rev. Lett. 125 182501

Soma V, Barbieri C, Duguet T and Navratil P 2021 Eur. Phys. J. A 57 1

Soma V, Cipollone A, Barbieri C, Navratil P and Duguet T 2014 Phys. Rev. C 89 061301

Barbieri C, Duguet T and Soma V 2022 Phys. Rev. C 105 044330

Idini A, Barbieri C and Navrétil P 2019 Phys. Rev. Lett. 123 092501

Marchisio M A, Barnea N, Leidemann W and Orlandini G 2003 Few Body Syst. 33 259

Dagotto E 1994 Rev. Mod. Phys. 66 763

Nevo Dinur N, Barnea N, Ji C and Bacca S 2014 Phys. Rev. C 89 064317

Burrows M B et al 2022 in preparation

Launey K D, Dytrych T and Draayer J P 2016 Prog. Part. Nucl. Phys. 89 101

Dytrych T, Launey K D, Draayer J P, Rowe D J, Wood J L, Rosensteel G, Bahri C, Langr D and
Baker R B 2020 Phys. Rev. Lett. 124 042501

Launey K D, Mercenne A and Dytrych T 2021 Annu. Rev. Nucl. Part. Sci. 71 253

Dreyfuss A C, Launey K D, Escher J E, Sargsyan G H, Baker R B, Dytrych T and Draayer J P
2020 Phys. Rev. C 102 044608

Ruotsalainen P et al 2019 Phys. Rev. C 99 051301

Henderson J et al 2018 Phys. Lett. B 782 468-73

Williams J et al 2019 Phys. Rev. C 100 014322

Launey K D, Mercenne A, Sargsyan G H, Shows H, Baker R B, Miora M E, Dytrych T and
Draayer J P 2018 Emergent clustering phenomena in the framework of the ab initio symmetry-
adapted no-core shell model Proc. of the 4th Int. Workshop on ‘State of the Art in Nuclear
Cluster Physics’ (SOTANCP4) vol 2038 (AIP Conf. Proc.) (Galveston, Texas48, May 2018)

Hupin G, Quaglioni S and Navrétil P 2015 Phys. Rev. Lett. 114 212502

Dohet-Eraly J, Navritil P, Quaglioni S, Horiuchi W, Hupin G and Raimondi F 2016 Phys. Lett. B
757 430-6

55


https://doi.org/10.1088/1361-6471/abcdf8
https://doi.org/10.1103/PhysRevC.96.024621
https://doi.org/10.1016/0375-9474(71)90308-3
https://doi.org/10.1103/PhysRevC.103.035812
https://doi.org/10.1016/0370-1573(77)90018-7
https://doi.org/10.1103/PhysRevC.85.014331
https://doi.org/10.1088/1742-6596/312/9/092032
https://doi.org/10.1103/PhysRevC.87.054321
https://doi.org/10.1103/PhysRevC.92.031304
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1088/0031-8949/91/6/063012
https://doi.org/10.1103/PhysRevC.96.034606
https://doi.org/10.1016/0370-1573(81)90131-9
https://doi.org/10.1016/0370-1573(81)90131-9
https://doi.org/10.1016/0370-1573(81)90131-9
https://doi.org/10.1103/PhysRevC.106.014314
https://doi.org/10.1016/0375-9474(83)90583-3
https://doi.org/10.3103/S1062873814110173
https://doi.org/10.1103/PhysRevC.66.034313
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1103/PhysRevC.72.014613
https://doi.org/10.3389/fphy.2020.00285
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/PhysRevC.84.064317
https://doi.org/10.3389/fphy.2020.00340
https://doi.org/10.1103/PhysRevC.101.014318
https://doi.org/10.1103/PhysRevLett.125.182501
https://doi.org/10.1140/epja/s10050-021-00437-4
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.105.044330
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1007/s00601-003-0017-z
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevC.89.064317
https://doi.org/10.1016/j.ppnp.2016.02.001
https://doi.org/10.1103/PhysRevLett.124.042501
https://doi.org/10.1146/annurev-nucl-102419-033316
https://doi.org/10.1103/PhysRevC.102.044608
https://doi.org/10.1103/PhysRevC.99.051301
https://doi.org/10.1016/j.physletb.2018.05.064
https://doi.org/10.1016/j.physletb.2018.05.064
https://doi.org/10.1016/j.physletb.2018.05.064
https://doi.org/10.1103/PhysRevC.100.014322
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1016/j.physletb.2016.04.021
https://doi.org/10.1016/j.physletb.2016.04.021
https://doi.org/10.1016/j.physletb.2016.04.021

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[264]

[265]
[266]

[267]
[268]
[269]

[270]

[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]

[286]
[287]
[288]
[289]
[290]
[291]
[292]

[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]

[303]
[304]
[305]
[306]
[307]
[308]

[309]
[310]

[311]
[312]

Calci A, Navrdtil P, Roth R, Dohet-Eraly J, Quaglioni S and Hupin G 2016 Phys. Rev. Lett. 117
242501

Hupin G, Quaglioni S and Navrétil P 2019 Nat. Commun. 10 351

Kravvaris K, Quinlan K R, Quaglioni S, Wendt K A and Navrétil P 2020 Phys. Rev. C 102
024616

Kravvaris K, Quaglioni S, Hupin G and Navritil P 2020 arXiv:2012.00228

Kravvaris K, Navritil P, Quaglioni S, Hebborn C and Hupin G 2022 arXiv:2202.11759

Hebborn C, Hupin G, Kravvaris K, Quaglioni S, Navratil P and Gysbers P 2022 Phys. Rev. Lett.
129 042503

Mercenne A, Launey K, Dytrych T, Escher J, Quaglioni S, Sargsyan G, Langr D and Draayer J
2022 Comp. Phys. Comm. 280 108476

Idini A and Barbieri C 2022 in preparation

Hagen G, Papenbrock T and Dean D J 2009 Phys. Rev. Lett. 103 062503

Navriétil P 2004 Phys. Rev. C 70 054324

Johnson R C 2017 Phys. Rev. C 95 064610

Johnson R C 2019 Phys. Rev. C 99 044608

Rotureau J et al 2017 Phys. Rev. C 95 024315

Rotureau J et al 2018 Phys. Rev. C 98 044625

Arthuis P, Barbieri C, Pederiva F and Roggero A 2023 Phys. Rev. C arXiv:2203.16167

Prokof’ev N V and Svistunov B V 2008 Phys. Rev. B 77 125101

Francis N C and Watson K M 1953 Phys. Rev. 92 291

Siciliano E R and Thaler R M 1977 Phys. Rev. C 16 1322-32

Emst D J, Londergan J T, Miller G A and Thaler R M 1977 Phys. Rev. C 16 537-55

Tandy P C and Thaler R M 1980 Phys. Rev. C 22 2321

Crespo R, Johnson R C and Tostevin J A 1992 Phys. Rev. C 46 279

Vorabbi M, Gennari M, Finelli P, Giusti C, Navratil P and Machleidt R 2022 Phys. Rev. C 105
014621

Chinn C R, Elster C and Thaler R M 1993 Phys. Rev. C 47 2242

Takeda G and Watson K M 1955 Phys. Rev. 97 1336

Goldberger M L and Watson K M 1964 Collision Theory (New York: Wiley)

Picklesimer A and Thaler R M 1981 Phys. Rev. C 23 42

Chinn C R, Elster C and Thaler R M 1993 Phys. Rev. C 48 2956

Chinn C R, Elster C, Thaler R M and Weppner S P 1995 Phys. Rev. C 51 1418

Vorabbi M, Gennari M, Finelli P, Giusti C, Navrétil P and Machleidt R 2021 Phys. Rev. C 103
024604

Holt J W, Kaiser N and Weise W 2009 Phys. Rev. C 79 054331

Holt J W, Kaiser N and Weise W 2010 Phys. Rev. C 81 024002

Burrows M et al 2020 Phys. Rev. C 102 034606

Wolfenstein L and Ashkin J 1952 Phys. Rev. 85 947

Wolfenstein L 1954 Phys. Rev. 96 1654

Elster C and Weppner S P 1998 Phys. Rev. C 57 189

Arellano H F and Bauge E 2007 Phys. Rev. C 76 014613

Elster C, Cheon T, Redish E F and Tandy P C 1990 Phys. Rev. C 41 814

Crespo R, Johnson R C and Tostevin J A 1990 Phys. Rev. C 41 2257

Arellano H F, Brieva F A and Love W G 1990 Phys. Rev. C 41 2188

Arellano H F, Brieva F A and Love W G 1990 Phys. Rev. C 42 1782

Aguayo F J and Arellano H F 2008 Phys. Rev. C 78 014608

Arellano H F and Bauge E 2011 Phys. Rev. C 84 034606

Durant V, Capel P, Huth L, Balantekin A and Schwenk A 2018 Phys. Lett. B 782 668-74

Durant V, Capel P and Schwenk A 2020 Phys. Rev. C 102 014622

Durant V and Capel P 2022 Phys. Rev. C 105 014606

Chamon L C, Carlson B V, Gasques L R, Pereira D, De Conti C, Alvarez M A G, Hussein M S,
Céndido Ribeiro M A, Rossi E S and Silva C P 2002 Phys. Rev. C 66 014610

Pereira D, Lubian J, Oliveira J, de Sousa D and Chamon L 2009 Phys. Lett. B 670 330-5

Furumoto T, Horiuchi W, Takashina M, Yamamoto Y and Sakuragi Y 2012 Phys. Rev. C 85
044607

Minomo K, Kohno M and Ogata K 2017 Phys. Rev. C 96 059906

Khoa D T, Phuc N H, Loan D T and Loc B M 2016 Phys. Rev. C 94 034612

56


https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1038/s41467-018-08052-6
https://doi.org/10.1103/PhysRevC.102.024616
https://doi.org/10.1103/PhysRevC.102.024616
http://arxiv.org/abs/2012.00228
http://arxiv.org/abs/2202.11759
https://doi.org/10.1103/PhysRevLett.129.042503
https://doi.org/10.1016/j.cpc.2022.108476
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevC.70.054324
https://doi.org/10.1103/PhysRevC.95.064610
https://doi.org/10.1103/PhysRevC.99.044608
https://doi.org/10.1103/PhysRevC.95.024315
https://doi.org/10.1103/PhysRevC.98.044625
http://arXiv.org/abs/2203.16167
https://doi.org/10.1103/PhysRevB.77.125101
https://doi.org/10.1103/PhysRev.92.291
https://doi.org/10.1103/PhysRevC.16.1322
https://doi.org/10.1103/PhysRevC.16.1322
https://doi.org/10.1103/PhysRevC.16.1322
https://doi.org/10.1103/PhysRevC.16.537
https://doi.org/10.1103/PhysRevC.16.537
https://doi.org/10.1103/PhysRevC.16.537
https://doi.org/10.1103/PhysRevC.22.2321
https://doi.org/10.1103/PhysRevC.46.279
https://doi.org/10.1103/PhysRevC.105.014621
https://doi.org/10.1103/PhysRevC.105.014621
https://doi.org/10.1103/PhysRevC.47.2242
https://doi.org/10.1103/PhysRev.97.1336
https://doi.org/10.1103/PhysRevC.23.42
https://doi.org/10.1103/PhysRevC.48.2956
https://doi.org/10.1103/PhysRevC.51.1418
https://doi.org/10.1103/PhysRevC.103.024604
https://doi.org/10.1103/PhysRevC.103.024604
https://doi.org/10.1103/PhysRevC.79.054331
https://doi.org/10.1103/PhysRevC.81.024002
https://doi.org/10.1103/PhysRevC.102.034606
https://doi.org/10.1103/PhysRev.85.947
https://doi.org/10.1103/PhysRev.96.1654
https://doi.org/10.1103/PhysRevC.57.189
https://doi.org/10.1103/PhysRevC.76.014613
https://doi.org/10.1103/PhysRevC.41.814
https://doi.org/10.1103/PhysRevC.41.2257
https://doi.org/10.1103/PhysRevC.41.2188
https://doi.org/10.1103/PhysRevC.42.1782
https://doi.org/10.1103/PhysRevC.78.014608
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1016/j.physletb.2018.05.084
https://doi.org/10.1016/j.physletb.2018.05.084
https://doi.org/10.1016/j.physletb.2018.05.084
https://doi.org/10.1103/PhysRevC.102.014622
https://doi.org/10.1103/PhysRevC.105.014606
https://doi.org/10.1103/PhysRevC.66.014610
https://doi.org/10.1016/j.physletb.2008.10.066
https://doi.org/10.1016/j.physletb.2008.10.066
https://doi.org/10.1016/j.physletb.2008.10.066
https://doi.org/10.1103/PhysRevC.85.044607
https://doi.org/10.1103/PhysRevC.85.044607
https://doi.org/10.1103/PhysRevC.96.059906
https://doi.org/10.1103/PhysRevC.94.034612

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[313]
[314]
[315]
[316]

[317]
[318]
[319]
[320]
[321]

[322]

[323]
[324]
[325]
[326]
[327]

[328]
[329]
[330]
[331]
[332]

[333]
[334]
[335]
[336]
[337]

[338]
[339]
[340]
[341]
[342]
[343]
[344]
[345]
[346]
[347]
[348]
[349]
[350]
[351]
[352]
[353]
[354]
[355]
[356]
[357]

[358]

Holt J W and Whitehead T R 2022 arXiv:2201.13404

Whitehead T R, Lim Y and Holt J W 2019 Phys. Rev. C 100 014601

Whitehead T R, Lim Y and Holt J W 2020 Phys. Rev. C 101 064613

Sammarruca F, Coraggio L, Holt ] W, Itaco N, Machleidt R and Marcucci L E 2015 Phys. Rev. C
91 054311

Holt J W, Kaiser N, Miller G A and Weise W 2013 Phys. Rev. C 88 024614

Holt J W, Kaiser N and Miller G A 2016 Phys. Rev. C 93 064603

Bogner S K, Schwenk A, Furnstahl R J and Nogga A 2005 Nucl. Phys. A 763 59

Hebeler K, Bogner S K, Furnstahl R J, Nogga A and Schwenk A 2011 Phys. Rev. C 83 031301

Gezerlis A, Tews I, Epelbaum E, Gandolfi S, Hebeler K, Nogga A and Schwenk A 2013 Phys.
Rev. Lett. 111 032501

Coraggio L, Holt J W, Itaco N, Machleidt R, Marcucci L E and Sammarruca F 2014 Phys. Rev. C
89 044321

Drischler C, Carbone A, Hebeler K and Schwenk A 2016 Phys. Rev. C 94 054307

Rios A 2020 Front. Phys. 8 387

Melendez J A, Wesolowski S and Furnstahl R J 2017 Phys. Rev. C 96 024003

Whitehead T R, Lim Y and Holt J W 2021 Phys. Rev. Lett. 127 182502

Amos K, Dortmans P J, von Geramb H V, Karataglidis S and Raynal J 2000 Adv. Nucl. Phys.
25 275

Arellano H F and Bauge E 2011 Phys. Rev. C 84 034606

Dupuis M, Karataglidis S, Bauge E, Delaroche J P and Gogny D 2008 Phys. Lett. B 665 152

Dupuis M 2017 Eur. Phys. J. A 53 1

Dupuis M, Haouat G, Delaroche J P, Bauge E and Lachkar J 2019 Phys. Rev. C 100 044607

Dupuis M, Bauge E, Hilaire S, Lechaftois F, Péru S, Pillet N and Robin C 2015 Eur. Phys. J. A
511

Cortés M L et al 2018 Phys. Rev. C 97 044315

Cheon T, Takayanagi K and Yazaki K 1985 Nucl. Phys. A 437 301

Dupuis M and Bauge E 2016 EPJ Web Conf. 122 06001

Maris P et al 2022 Phys. Rev.C 106 064002

Ekstrom A, Jansen G R, Wendt K A, Hagen G, Papenbrock T, Carlsson B D, Forssén C,
Hjorth-Jensen M, Navrétil P and Nazarewicz W 2015 Phys. Rev. C 91 051301

Tews I et al 2022 Few-Body Syst. 63 67

Idini A et al 2019 Phys. Rev. Lett. 123 092501

Ross A, Titus L J and Nunes F M 2016 Phys. Rev. C 94 014607

Titus L J, Nunes F M and Potel G 2016 Phys. Rev. C 93 014604

Arellano H F and Blanchon G 2018 Phys. Rev. C 98 054616

Arellano H F and Blanchon G 2021 Eur. Phys. J. A 57 27

Faddeev L D 1961 Soviet Phys. JETP 12 1014

Johnson R C and Timofeyuk N K 2014 Phys. Rev. C 89 024605

Dinmore M J, Timofeyuk N K, Al-Khalili J S and Johnson R C 2019 Phys. Rev. C 99 064612

Dinmore M J, Timofeyuk N K and Al-Khalili J S 2021 Phys. Rev. C 104 034614

Hlophe L, Kravvaris K and Quaglioni S 2023 Phys. Rev.C 107 014315

Quaglioni S and Navrdtil P 2009 Phys. Rev. C 79 044606

Navrétil P and Quaglioni S 2011 Phys. Rev. C 83 044609

Alt E O, Grassberger P and Sandhas W 1967 Nucl. Phys. B 2 167

Baroni S, Navratil P and Quaglioni S 2013 Phys. Rev. Lett. 110 022505

Baroni S, Navritil P and Quaglioni S 2013 Phys. Rev. C 87 034326

https: / /sites.google.com/view /opticalpotentials /

Arellano H and Blanchon G 2019 Phys. Lett. B 789 25661

Arellano H and Blanchon G 2021 Comp. Phys. Commun. 259 107543

Blanchon G, Dupuis M, Arellano H, Bernard R and Morillon B 2020 Comp. Phys. Commun. 254
107340

Soukhovitski E S, Chiba S, Iwamoto O, Shibata K, Fukahori T and Morogovskij G 2004 Physics
and numerical methods of optman: a coupled-channels method based on soft-rotator model for
a description of collective nuclear structure and excitation JAERII - Data/Code 2004-002
Japan Atomic Energy Research Institute

57


http://arxiv.org/abs/2201.13404
https://doi.org/10.1103/PhysRevC.100.014601
https://doi.org/10.1103/PhysRevC.101.064613
https://doi.org/10.1103/PhysRevC.91.054311
https://doi.org/10.1103/PhysRevC.88.024614
https://doi.org/10.1103/PhysRevC.93.064603
https://doi.org/10.1016/j.nuclphysa.2005.08.024
https://doi.org/10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevC.94.054307
https://doi.org/10.3389/fphy.2020.00387
https://doi.org/10.1103/PhysRevC.96.024003
https://doi.org/10.1103/PhysRevLett.127.182502
https://doi.org/10.1103/PhysRevC.84.034606
https://doi.org/10.1016/j.physletb.2008.05.061
https://doi.org/10.1140/epja/i2017-12293-6
https://doi.org/10.1103/PhysRevC.100.044607
https://doi.org/10.1140/epja/i2015-15168-x
https://doi.org/10.1103/PhysRevC.97.044315
https://doi.org/10.1016/S0375-9474(85)90091-0
https://doi.org/10.1051/epjconf/201612206001
https://doi.org/10.1103/PhysRevC.106.064002
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1103/PhysRevC.94.014607
https://doi.org/10.1103/PhysRevC.93.014604
https://doi.org/10.1103/PhysRevC.98.054616
https://doi.org/10.1140/epja/s10050-020-00328-0
https://doi.org/10.1103/PhysRevC.89.024605
https://doi.org/10.1103/PhysRevC.99.064612
https://doi.org/10.1103/PhysRevC.104.034614
https://doi.org/10.1103/PhysRevC.107.014315
https://doi.org/10.1103/PhysRevC.79.044606
https://doi.org/10.1103/PhysRevC.83.044609
https://doi.org/10.1016/0550-3213(67)90016-8
https://doi.org/10.1103/PhysRevLett.110.022505
https://doi.org/10.1103/PhysRevC.87.034326
https://sites.google.com/view/opticalpotentials/
https://doi.org/10.1016/j.physletb.2018.12.004
https://doi.org/10.1016/j.physletb.2018.12.004
https://doi.org/10.1016/j.physletb.2018.12.004
https://doi.org/10.1016/j.cpc.2020.107543
https://doi.org/10.1016/j.cpc.2020.107340
https://doi.org/10.1016/j.cpc.2020.107340

J. Phys. G: Nucl. Part. Phys. 50 (2023) 060501 C Hebborn et al

[359]

[360]

[361]

[362]
[363]
[364]
[365]
[366]
[367]
[368]
[369]
[370]
[371]
[372]
[373]

[374]
[375]
[376]
[377]

Raynal J 1972 Optical-model and coupled-channel calculations in nuclear physics International
Atomic Energy Agency Report IAEA-SMR-9/8 p 281 https://inis.iaea.org/collection/
NCLCollectionStore/_Public/36/116/36116778.pdf

Soukhovitski E S, Chiba S, Iwamoto O, Shibata K, Fukahori T and Morogovskij G 2005
Programs Optman and Shemman Version 8 Report JAERI Data/Code 2005-002 https://inis.
iaea.org/collection/NCLCollectionStore /_Public/36/116/36116793.pdf

Soukhovitskii E S, Chiba S, Capote R, Quesada J] M, Kunieda S and Morogovskij G B 2008
Supplement to Optman Code JAERI-Data/Code 2008-025 https://jopss.jaca.go.jp/pdfdata/
JAEA-Data-Code-2008-025.pdf

Titus L J, Ross A and Nunes F 2016 Comp. Phys. Commun. 207 499

Rawitscher G H 1974 Phys. Rev. C 9 2210

Rawitscher G H 1975 Phys. Rev. C 11 1152

Rawitscher G H 1975 Nucl. Phys. A 241 365

Yahiro M and Kamimura M 1981 Prog. Theor. Phys. 65 2046

Sakuragi Y, Yahiro M and Kamimura M 1986 Prog. Theor. Phys. Suppl. 89 136

Yahiro M, Ogata K, Matsumoto T and Minomo K 2012 Prog. Theor. Exp. Phys. 2012 01A206

Cotanch S R and Vincent C M 1976 Phys. Rev. C 14 1739

Imanishi B, Ichimura M and Kawai M 1974 Phys. Lett. B 52 267

Johnson R and Tandy P 1974 Nucl. Phys. A 235 56

Ormand W E YAHFC https://github.com/LLNL/Yet-Another-Hauser-Feshbach-Code

Herman M, Capote R, Carlson B, Oblozinsky P, Sin M, Trkov A, Wienke H and Zerkin V 2007
Nucl. Data Sheets 108 2655

Descouvemont P 2016 Comp. Phys. Commun. 200 199

https://nds.iaea.org /RIPL

https: / /trwhitehead.com /WLH.html

Frantz L M, Mills R L, Newton R G and Sessler A M 1958 Phys. Rev. Lett. 1 340

58


https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/116/36116778.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/116/36116778.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/116/36116793.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/116/36116793.pdf
https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2008-025.pdf
https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2008-025.pdf
https://doi.org/10.1016/j.cpc.2016.06.022
https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1103/PhysRevC.11.1152
https://doi.org/10.1016/0375-9474(75)90393-0
https://doi.org/10.1143/PTP.65.2046
https://doi.org/10.1143/PTPS.89.136
https://doi.org/10.1093/ptep/pts008
https://doi.org/10.1103/PhysRevC.14.1739
https://doi.org/10.1016/0370-2693(74)90037-9
https://doi.org/10.1016/0375-9474(74)90178-X
https://github.com/LLNL/Yet-Another-Hauser-Feshbach-Code
https://doi.org/10.1016/j.nds.2007.11.003
https://doi.org/10.1016/j.cpc.2015.10.015
https://nds.iaea.org/RIPL
https://www.trwhitehead.com/WLH.html
https://doi.org/10.1103/PhysRevLett.1.340

	1. Introduction
	2. Applications of optical potentials
	2.1. Direct reactions to probe exotic nuclei
	2.2. Compound-nuclear reactions
	2.3. Astrophysically relevant reactions
	2.4. Nuclear data for energy, security, medical, and other applications
	2.4.1. Energy and security applications
	2.4.2. Medical applications
	2.4.3. Space applications


	3. Review of strategies to build nucleon–nucleus optical potentials
	3.1. Standard and dispersive phenomenological approaches
	3.1.1. Standard optical potentials
	3.1.2. Dispersive optical potentials
	3.1.3. Uncertainty quantification

	3.2. Microscopic approaches
	3.2.1. Constructing Green's function from beyond mean-field approaches: Feshbach formulation, nuclear structure model and optical potentials from effective Hamiltonians
	3.2.2. Computing the self-energy from ab initio predictions of nuclei: self-consistent Green's function and inversion of propagator using ab initio wavefunctions
	3.2.3. Multiple scattering approach
	3.2.4. Nuclear matter approaches: Whitehead–Lim–Holt potential, G-matrix solutions of the Brueckner–Bethe–Goldstone and the JLM folding model

	3.3. Synergies between microscopic approaches and phenomenology
	3.4. Model uncertainties beyond pairwise effective potentials

	4. Tools and resources
	5. Comparing approaches
	6. Outlook and recommendations
	Acknowledgments
	Data availability statement
	References

