
Learning Deep Semantics for Test Completion

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

UT Austin, USA

{pynie,rahulb517,jessy,mooney,gligoric}@utexas.edu

Abstract—Writing tests is a time-consuming yet essential task
during software development. We propose to leverage recent
advances in deep learning for text and code generation to assist
developers in writing tests. We formalize the novel task of test
completion to automatically complete the next statement in a test
method based on the context of prior statements and the code
under test. We develop TECO—a deep learning model using code
semantics for test completion. The key insight underlying TECO

is that predicting the next statement in a test method requires
reasoning about code execution, which is hard to do with only
syntax-level data that existing code completion models use. TECO

extracts and uses six kinds of code semantics data, including the
execution result of prior statements and the execution context
of the test method. To provide a testbed for this new task,
as well as to evaluate TECO, we collect a corpus of 130,934
test methods from 1,270 open-source Java projects. Our results
show that TECO achieves an exact-match accuracy of 18, which
is 29% higher than the best baseline using syntax-level data
only. When measuring functional correctness of generated next
statement, TECO can generate runnable code in 29% of the cases
compared to 18% obtained by the best baseline. Moreover, TECO

is significantly better than prior work on test oracle generation.
Index Terms—test completion, deep neural networks, program-

ming language semantics

I. INTRODUCTION

Software testing is the most common approach in industry to

check the correctness of software. However, manually writing

tests is tiresome and time-consuming.

One option is to automatically generate tests. Researchers

have proposed a number of techniques in this domain, in-

cluding fuzz testing [1]–[3], property-based testing [4]–[10],

search-based testing [11], [12], combinatorial testing [13],

etc. Despite being effective in detecting software bugs, these

techniques generate tests with stylistic issues, as test code

generated through these techniques rarely resemble manually-

written tests [14]–[16] and can be hard to maintain. As a

result, these automated techniques end up being used only

as supplements to manually-written tests.

Another option is to use machine learning (ML), namely

training a model on existing manually-written tests and apply-

ing it when writing new tests, which is a plausible methodol-

ogy supported by the naturalness of software [17], [18]. Ad-

vances in deep learning such as recurrent neural networks [19],

[20] and large-scale pre-trained transformer models [21]–[24]

have led to promising new research in a variety of software

engineering tasks, such as code completion [25]–[30] and code

summarization [31]–[35]. Code generated with modern models

are intelligible to humans, yet we cannot fully rely on them

to generate large chunks of meaningful code, or expect them

to understand larger project context.

Our goal is to design machine learning approaches to aid

developer productivity when writing tests. We present a novel

task—test completion—to help developers write tests faster.

Specifically, once a developer starts writing a test method, she

can leverage test completion to automatically obtain the next

statement in the test code (at any point she desires).

Despite being closely related to code completion [25]–[29],

test completion is distinct in that test code has several unique

characteristics. First, the method under test provides extra

context that can be leveraged when completing a test method.

Second, test code follows a different programming style that

focuses on exercising the method under test. Specifically,

a test method usually consists of a sequence of statements

in the following order: prepare inputs to the method under

test, execute method under test, and check the results of the

execution using assert statements (i.e., test oracles).

We present the first deep learning solution—TECO—that

takes into account these unique characteristics of tests.

TECO uses code semantics as inputs for novel ML

models and performs reranking via test execution.

Code semantics refers to the information related to test/code

execution not available in the syntax-level data (i.e., source

code). TECO extracts code semantics (e.g., types of local

variables) using software engineering tools and feeds them

directly to the model. Once top-k predictions are produced,

TECO further ensures the output quality by executing the gen-

erated statements, and prioritize the runnable and compilable

statements over the others.

We design the code semantics used by TECO based on our

experience with software analysis in order to best capture the

unique characteristics of the test completion task. In total, we

consider six different kinds of code semantics that can be

grouped to two categories: (1) execution result, including the

types of the local variables and whether fields are initialized;

(2) execution context, including the setup and teardown meth-

ods, the last called method in the test method, and statements

in non-test code with similar previous statements.

We implemented TECO to support test methods written

in Java. We evaluate TECO on a newly collected corpus

consisting of 130,934 test methods with 645,633 statements

from 1,270 projects. We release this corpus to the community

as a testbed for the test completion task.

We performed extensive evaluations of TECO on this

corpus—covering lexical similarity, functional correctness,

and downstream application—to show the importance of
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combining code semantics with deep learning. We report

results comparing the generated statements against the gold

manually-written statements using a suite of automatic met-

rics: exact-match accuracy, top-10 accuracy, BLEU [36],

CodeBLEU [37], edit similarity [29], and ROUGE [38]. TECO

significantly outperforms baselines that use only syntax-level

data on all metrics. We also measure functional correctness

by trying to compile and run the generated statements. TECO

can produce a runnable next statement 29% of the time,

while the figure for the best baseline model is only 18%.

Moreover, we also evaluated TECO on the task of test oracle

generation [39], [40], which is a downstream application of

test completion. TECO achieves an exact-match accuracy of

16, which significantly outperforms the prior state-of-the-art’s

exact-match accuracy of 9.

The main contributions of this paper include the following:

• Task. We propose a novel task, test completion, with the

goal to help developers write test methods faster.

• Idea. We propose using code semantics and code execution

when designing ML models targeting code-related tasks.

• Model. We developed TECO, the first transformer model

trained on large code semantics data for test completion.

Furthermore, TECO performs reranking by execution. The

use of code semantics is vital for correctly modeling the

execution process in the test methods.

• Corpus. We created a large corpus of 130,934 test methods

from 1,270 open-source projects. We believe this corpus will

also be useful to many other tasks related to testing.

• Evaluation. Our extensive evaluation shows that TECO

significantly outperforms strong baselines on all automatic

metrics, both on test completion and its downstream applica-

tion: test oracle generation. We also evaluate the functional

correctness of generated code by compiling and running the

generated statements.

TECO and our corpus are publicly available on GitHub:

https://github.com/EngineeringSoftware/teco.

II. TASK

In this section, we more formally describe the test comple-

tion task and illustrate the task using an example.

Given an incomplete test method, our goal is to auto-

matically generate the next statement in that test method.

We assume that the following inputs are provided to a test

completion system: (1) the code under test, which includes

both the test method’s associated method under test as well as

other non-test-method code in the project, (2) the test method

signature, (3) prior statements in the incomplete test method

(which can be zero or more statements).

We illustrate our task in Fig. 1. The example shows (in the

yellow boxes) the method under test, the test method signature,

and the prior statements (only one statement in this example),

as well as (in the last green box) the next statement that should

be generated by a test completion system.

public GMOperation addImage(final File file) {

if (file == null) {

throw new IllegalArgumentException(

"file must be defined"); }

getCmdArgs().add(file.getPath());

return this; }

method under test

@Test

public void addImage_ThrowsException_WhenFileIsNull()

throws Exception

test method signature

exception.except(IllegalArgumentException.class);

prior statements

sut.addImage((File) null);

next statement

Fig. 1: Example of test completion: given the code under test

(represented by the method under test), test method signature,

and prior statements, the goal is to generate the next statement.

Code from sharneng/gm4java in class GMOperationTest.

We seek to generate statements in the body of the test

method, thus the test method signature (including the annota-

tion and the name of test method) are only used as inputs and

they are not the prediction target of the test completion task.

We also do not consider the context of other already available

test methods from the same project when completing a test

method, to prevent any model from cheating by copying code

from other similar test methods. Our defined test completion

task is applicable to the situation when a developer already

knows what to test (thus knows the method under test and

the test method signature), and wants to complete the next

statement at any point when writing the test method, regardless

of whether the project has existing tests or not. We also

focus on modeling the body of test methods as a sequence of

statements, because test methods with control flows (e.g., if

statements, loops, and try blocks) are rare; we found less than

10% test methods have control flows in our experiments. Most

testing frameworks recommend sequential test method body

and provide annotations to replace control flows, for example,

@ParameterizedTest for replacing loops in JUnit 5 [41].

III. EXTRACTION OF CODE SEMANTICS

In this section, we describe the six kinds of code semantics

extracted and used by TECO.

For each kind of code semantics, we design and implement

a static analysis algorithm to extract it. Static analysis is the

analysis of code without executing it, guided by the grammar

and semantics of programming languages. The advantage of

using static analysis is that it does not require configuring

the runtime environment which can be cumbersome for some

projects, and can be applied on partial code (for example,

without accessing the dependency libraries of a project, which

is needed when executing the code). It is also much faster

than executing the code directly, which enables us to collect

code semantics on a large corpus of code. However, static

2









TABLE I: Statistics of our corpus. #proj = number of projects;

#test = number of test method; #stmt = number of statements;

len(test) = average number of tokens in test method; len(MUT)

= average number of tokens in method under test.

#proj #test #stmt len(test) len(MUT)

all 1,270 130,934 645,633 79.57 40.88
training 1,163 120,521 584,924 79.58 40.61
validation 43 5,413 30,515 73.24 45.09
evaluation 64 5,000 30,194 86.26 42.85

the corpus in Spring 2022. To ensure corpus quality, we try

to use the latest stable revision of each project by finding its

latest git-tag; but if it does not have any git-tag on or after Jan

1st, 2020, we use its latest revision.

To extract test methods from these projects, we first col-

lected the set of code elements from each project using the

same toolchain for the collection phase of TECO’s static

analysis (Section III). We identified the test methods written

in JUnit 4 [52] and JUnit 5 [41] testing frameworks, which

are the main frameworks used for writing tests in Java.

Specifically, we searched for methods with a test annotation

(@org.junit.Test or @org.junit.jupiter.api.Test) and

without an ignored-test annotation (@org.junit.Ignore or

@org.junit.jupiter.api.Disabled). This initial search re-

sulted in 221,666 test methods in all projects.

Then, we further filtered the test methods to ensure corpus

quality. We filtered test methods that are badly named (e.g.,

test0; 2,490 cases) or do not follow the required signature of

tests (e.g., parameter list is not empty, return type is not void;

1,908 cases). Then, we tried to locate the method under test

for each test method, using the following enhanced procedure

originally proposed by Waston et al. [39]:

1) If there is only one call to a method, select it (as the method

under test);

2) If a class under test can be found by removing “Test” from

the test class’s name:

a) If there is only one call to a method declared in class

under test, select it;

b) Select the last method declared in class under test

called before the first assertion statement, if any;

3) Select the last method called before the first assertion

statement, if any;

4) Select the last method called, if any.

We removed 36,818 test methods for which we could not

locate the method under test after this procedure.

We used the line number table to find the bytecode in-

structions corresponding to each statement, and we removed

633 cases where we could not do this because of multiple

statements on the same line. After that, we set size constraints

on the data: the test method should have at least 1 statement

(filtered 5 cases) and at most 20 statements (filtered 8,222

cases); the method under test should have at most 200 tokens

(filtered 9,787 cases); the method under test and the test

method together should have at most 400 tokens (filtered 1,288

cases); each statement in the test method should have at most

100 tokens (filtered 1,726 cases).

We also removed several cases that introduce extra overhead

during analysis: test methods with if statements, loops, and try

blocks, because they entail non-sequential control flow which

is not suitable to be modeled by predicting the next statement

given prior statements (22,435 cases); and test methods using

lambda expressions [55], because they prevent many static

analysis algorithms from working (5,420 cases). We plan to

lift these limitations in future work.

Lastly, we mask the string literals in the data by replacing

them with a common token “STR”, similar to prior work on

code completion [29]. Although string literals are frequently

used in test methods, for example as logging messages,

test inputs, or expected outputs, they pose challenges for a

pure-deep-learning solution to generate because they have a

different style than other parts of the code and can sometimes

be very long. Thus, we focus on predicting the next statement

with masked string literals, and leave predicting the content

of the string literals as future work.

After filtering, we obtained a corpus with 1,270 projects

(removed 265 projects because no data was left after filtering),

130,934 test methods, and 645,633 statements.

We follow the same project-level training/validation/evalua-

tion split as CodeSearchNet. Because CodeT5, the pre-trained

model that TECO uses in our experiments, also followed the

same project-level split, our experiments will not have data

leakage issues of evaluating on the data that the model was

pre-trained on. Table I shows the statistics of our corpus, where

the first row is for the entire corpus, and the other three rows

are for each set after the split. Out of the 130,934 test meth-

ods, 101,965 (77.88%) are runnable following our procedure

described in Section IV-D. Note that with the masking of string

literals, some test methods that would originally pass may be

considered as “not runnable” in our current corpus (e.g., when

the test method compares a variable with a string literal).

VI. EXPERIMENTS SETUP

We assess the performance of TECO by answering the

following research questions:

RQ1: What is the performance of TECO on the test completion

task and how does it compare to baselines?

RQ2: On the runnable subset of evaluation set, how frequently

can TECO predict a compilable and runnable next statement?

RQ3: What is the performance of TECO on test oracle

generation, which is a downstream application of the test

completion task, and how does it compare to prior work?

RQ4: How does reranking by execution help with more

accurately predicting the next statement?

RQ5: How does each kind of code semantics help with more

accurately predicting the next statement, and how complemen-

tary are different kinds of code semantics?
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To answer these questions, we setup an experiment to

evaluate TECO and baseline models on our test completion

corpus. We train each model on the training and validation sets

(validation set is used for tuning hyper-parameters and early

stopping), apply the model to predict each statement of each

test method in the evaluation set (or subsets of the evaluation

set), and measure the quality of the prediction via a number

of evaluation metrics, both intrinsically and extrinsically.

All models are trained and evaluated on machines equipped

with 4 NVidia 1080-TI GPUs and Intel(R) Xeon(R) CPU E5-

2620 v4 @ 2.10GHz. We ran each experiment three times

with different random seeds and report average values. When

comparing models, we conducted statistical significance tests

using bootstrap tests [56] with a 95% confidence level.

We next describe the TECO models (Section VI-A) and

baseline models (Section VI-B) used in the experiments, the

subsets of the evaluation set for computing compilable and

runnable metrics and evaluating on the test oracle generation

task (Section VI-C), and the evaluation metrics (Section VI-D).

A. TECO Models

We run a TECO model that uses all six kinds of code

semantics and with reranking by test execution. To study RQ4,

we run a TECO-noRr model that uses the same code semantics

but does not use reranking. To study RQ5, we run six TECO

models with only one kind of code semantics at a time, which

we call TECO-ID (e.g., TECO-S1 only uses S1).

B. Baseline Models

We compare our TECO models to the following baseline

models that only use syntax-level data.

CodeT5 [35] is a pre-trained encoder-decoder transformer

model for code-related tasks, and is built on top of Google’s

popular T5 framework [24]. CodeT5 was pre-trained on eight

commonly used programming languages (including Java) us-

ing both mask language modeling and identifier name recov-

ering tasks. We fine-tune TECO models based on CodeT5. As

such, we compare to a baseline CodeT5 model that is finetuned

on syntax-level data. For completeness, we also compare to a

CodeT5-noFt that is only pre-trained and not fine-tuned.

CodeGPT [54] is a decoder-only transformer model built on

GPT-2 [22]. We used the java-adapted version of it, which

is initialized from GPT-2 pre-trained on natural language, and

then further pre-trained on a corpus of Java code. Svyatkovskiy

et al. [29] used a very similar model (which is not publicly

available) for code completion. As CodeGPT tends to gen-

erate longer code than a statement (without generating the

⟨/s⟩ subtoken to stop the generation), we slightly modify its

decoding algorithm to terminate upon generating the first ‘;’

subtoken for the test completion task.

Test oracle generation is the task of generating the assertion

statement given the code under test (including the method un-

der test), test method signature, and prior statements before the

assertion statement. When studying this task, we additionally

compare to the following two deep learning baseline models

for test oracle generation developed in prior work, both of

which only use syntax-level data. Following the prior works,

we only consider generating the first assertion statement in

each test method.

ATLAS [39] is a RNN encoder-decoder model for test oracle

generation. We used the “raw model” version of it, i.e., that

does not abstract out the identifiers in code.

TOGA [40] is a transformer encoder-only model for classify-

ing the suitability of an assertion statement for an incomplete

test method without assertions. It can be used for test oracle

generation by first generating a set of assertion statements and

then using the model to rank them and select the best one. The

model is initialized from CodeBERT [49], which is also pre-

trained on the CodeSearchNet corpus [53].

For all baseline models, we use the default hyper-parameters

and training configurations recommended by the authors.

We train CodeT5 and CodeGPT on the entire training and

validation set of our corpus. We train ATLAS and TOGA on

a subset of our training and validation set that only predicts the

first assertion statement in each test method, which contains

92,567 statements and 3,050 statements, respectively.

C. Subsets of the Evaluation Set

To study the ability of models in predicting a compilable and

runnable next statement, we evaluate models on the runnable

subset. That is, the subset of the evaluation set where the gold

(i.e., developer-written) statement is runnable. We follow the

same procedure to check if the gold statement is runnable

as described in Section IV-D. Not all gold statements can be

successfully executed because of the difficulties in setting up

the proper runtime environment, such as missing resources

(that may need to be downloaded or generated via other

commands), requiring other runtime environments than Java,

etc. Our runnable subset contains 25,074 statements (83.04%

of all statements in the evaluation set) from 4,223 test methods.

To study the test oracle generation task, we evaluate models

on the oracle subset: the subset of the evaluation set where

the statement to generate is the first assertion statement in

the test method, which contains 4,212 statements. To compute

compilable and runnable metrics on the test oracle generation

task, we evaluate models on the oracle-runnable subset: the

subset of the oracle subset where the gold statement is

runnable, which contains 3,540 statements.

D. Evaluation Metrics

(1) Lexical-level metrics: We use the following automatic

metrics to measure how close the predicted statements are to

the gold statements; these metrics have been frequently used in

prior work on code generation and comment generation [31],

[33], [57], [58]:

Exact-match accuracy (XM) is the percentage of predicted

statements matches exactly with the gold. This metric is the

most strict one; each point of improvement directly entails a

larger portion of code that is both syntactically and semanti-

cally correct, yet it does not take into account paraphrases or

give any partial credit.
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TABLE II: Results for TECO and baseline models. The best number for each metric is bolded. In each table, numbers marked

with the same greek letter prefix are not statistically significantly different.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40
CodeT5-noFt 0.00 0.00 0.00 3.36 1.68 0.02
CodeGPT 12.20 22.67 36.30 31.84 59.09 61.10

TECO 17.61 27.20 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 25.39 39.26 34.55 61.36 63.15
CodeT5-noFt 0.00 0.00 0.00 0.00 0.00 3.35 1.65 0.03
CodeGPT 53.77 15.13 12.95 24.03 37.19 32.46 59.75 61.90

TECO 76.22 28.63 18.96 28.40 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63
CodeT5-noFt α0.00 0.00 0.00 1.18 1.86 0.01
CodeGPT 10.56 27.19 40.91 33.33 67.63 67.94
ATLAS α0.21 0.66 21.55 13.39 54.06 50.70
TOGA 9.01 9.01 25.46 24.73 29.60 28.06

TECO 16.44 27.41 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 24.37 40.26 32.23 67.08 67.42
CodeT5-noFt 0.00 0.00 α0.00 0.00 0.00 1.26 1.87 0.01
CodeGPT 47.39 16.13 10.41 28.17 41.56 33.79 67.78 68.43
ATLAS 3.62 1.45 α0.23 0.68 21.81 13.56 54.19 50.87
TOGA 25.61 9.37 9.10 9.10 26.51 25.74 31.00 29.38

TECO 67.93 30.29 17.37 27.39 44.27 36.98 68.43 69.35

Top-10 accuracy (Acc@10) is the percentage of any top-

10 predicted statements matches exactly with the gold. This

metric evaluates the use case where the developer can see and

select from the top-10 predictions of the model.

BLEU [36] calculates the number of n-grams (consecutive

n subtokens) in the prediction that also appear in the gold;

specifically, we compute the 1 ∼ 4-grams overlap between

the subtokens in the prediction and the subtokens in the

gold, averaged between 1∼ 4-grams with smoothing method

proposed by Lin and Och [59].

CodeBLEU [37] is an improved version of BLEU adapted

for code. It is a combination of the traditional BLEU, the

BLEU if only considering keywords, syntactical AST match,

and semantic data-flow match.

Edit similarity (EditSim) = 1 - Levenshtein edit distance,

where the Levenshtein edit distance measures the amount

of single-character edits (including insertion, substitution, or

deletion) that need to be made to transform the prediction to

the gold, normalized by the maximum number of characters

in the prediction and the gold. This metric was proposed and

used in prior work on code completion [29].

ROUGE [38] measures the overlap between the prediction

subtokens and the gold subtokens based on the Longest

Common Subsequence statistics, using F1 score.

(2) Functional correctness: The aforementioned metrics

only capture the lexical similarity between the prediction

against the gold, but the gold statement may not be the only

correct solution for competing the next statement. Namely, the

prediction can be functionally correct despite being different

from the gold statement. To measure the functional correct-

ness, we additionally use the following automatic metrics:

%Compile is the percentage of the predicted statements that

are compilable when appended to the incomplete test.

%Run is the percentage of the predicted statements that are

compilable and runnable when appended to the incomplete

test, without incurring assertion failures or runtime errors.

Note that %Compile and %Run are over-estimations of

the functional correctness, as they do not consider whether

the underlying logic of the code is meaningful. That said,

most functional correctness errors relevant to tests, such as

generating the wrong expected outputs, can be captured by the

%Run metric. Prior work has used a similar methodology to
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TABLE III: Results for TECO without and with reranking by execution. The best number for each metric is bolded. The

differences between models for each metric are statistical significant.

(a) On the evaluation set.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 38.33 33.88 60.81 62.40
TECO-noRr 15.25 40.84 36.34 62.92 64.71
TECO 17.61 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 39.26 34.55 61.36 63.15
TECO-noRr 60.80 19.49 15.99 41.64 36.82 63.38 65.42
TECO 76.22 28.63 18.96 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 39.03 31.03 66.50 66.63
TECO-noRr 9.92 40.81 32.90 67.32 67.92
TECO 16.44 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 40.26 32.23 67.08 67.42
TECO-noRr 48.13 18.45 9.62 41.55 33.44 67.57 68.41
TECO 67.93 30.29 17.37 44.27 36.98 68.43 69.35

evaluate the functional correctness of text-to-code transduction

by running generated code with test cases [30], which was

performed on a rather small dataset because of the difficulty

in collecting manual labelled data. Thanks to the executable

nature of tests, we are able to design the two automatic

functional correctness metrics for a large corpus.

VII. RESULTS

A. RQ1: Performance of TECO vs. Baseline Models

Table IIa shows the results of TECO and baseline models

on solving the test completion task. Our model TECO sig-

nificantly outperforms all baseline models on all automatic

metrics. TECO achieves 17.61 exact-match accuracy, which

is 29% higher than the best baseline model, CodeT5’s 13.57.

This indicates that using code semantics and reranking by exe-

cution can greatly improve deep learning model’s performance

on test completion.

The non-fine-tuned baseline model, CodeT5-noFt, is not

capable of solving test completion task. This is because the

model is optimized to solve different tasks during pre-training

and does not have the domain knowledge of the input-output

format of the test completion task.

CodeGPT has shown to be effective on the task of code

completion [29], [54], where the primary goal is to continue

generating code similar to the context code. However, it

performs slightly worse than the encoder-decoder baseline

CodeT5 on test completion, because the task requires gen-

erating statement in the test method which has different style

than the method under test in the provided context.

B. RQ2: Functional Correctness

Table IIb shows the results of TECO and baseline models

on the runnable subset, with %Compile and %Run metrics

that measure the functional correctness of the generated state-

ments. Our model, TECO can generate runnable statements for

28.63% of the time, and compilable statements for 76.22%

of the time, much higher than the best baseline model’s

17.62% and 54.84%. On this runnable subset, TECO also

outperforms all baseline models on other metrics measuring

lexical similarity.

The other two baseline models, CodeT5-noFt and

CodeGPT, fail to generate any compilable or runnable state-

ments. After closer inspection, we found that CodeT5-noFt

always generate broken non-code outputs, as it is not fine-

tuned to process the inputs; and CodeGPT always generate

code that is not a valid statement in Java, e.g., code that starts

with a method signature.

C. RQ3: Performance on Test Oracle Generation

Tables IIc and IId show the results of the downstream

application of test oracle generation, on the oracle subset and

the oracle-runnable subset, respectively. TECO significantly

improves the exact-match accuracy on this task by a large

margin (by 82%), from 9.01 for the prior state-of-the-art,

TOGA, to ours 16.44. Note that TOGA’s exact-match accuracy

is on-par with CodeT5, the model that TECO is fine-tuned

from, which confirms that TECO’s improvements primarily

come from using code semantics and reranking by execution.

TOGA is the strongest prior model on this task in terms of

exact-match accuracy. However, it is worse than the CodeT5
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baseline model on other metrics that consider partial matches.

This is because TOGA is a classification model that ranks a set

of assertion statement candidates generated using heuristics,

and when the gold statement is not in the set, the model fails

to correctly rank a sub-optimal candidate.

D. RQ4: Improvements from Reranking by Execution

Table III shows the results of TECO-noRr (the top-10

accuracy for TECO-noRr is always the same as TECO, because

the reranking is performed on top-10 predictions, thus we did

not include this metric in the table).

Comparing TECO with TECO-noRr on the evaluation set

(Table IIIa), reranking by execution alone contributes to 2

points in exact-match accuracy. However, the improvements

over other similarity metrics, which take into account partial

matches, are smaller. This indicates that reranking by exe-

cution is effective in prioritizing the exact correct generated

statement than other non-runnable candidates most of the

times, but in a few cases it may prioritize runnable candidates

that are less similar to the gold statement than the original top-

1. TECO-noRr still significantly outperforms CodeT5 on all

metrics. On the runnable subset (Table IIIb), TECO improves

both %Compile and %Run over TECO-noRr by large margins,

which shows that reranking by execution is an effective

strategy for improving the quality of generated statements.

Reranking by execution ended up being very important for

improving performance on the task of test oracle generation, as

shown on the oracle subset (Table IIIc) and the oracle-runnable

subset (Table IIId). For example, TECO outperforms TECO-

noRr by 6–8 points in exact-match accuracy and 12 points in

%Run. This is because logical errors in assertion statements

can be easily found by execution (e.g., generating the wrong

expected value will cause an assertion to fail).

E. RQ5: Comparisons of Code Semantics

Tables IVa and IVb show the results of the TECO models

with only one kind of code semantics, comparing with the

strongest baseline model CodeT5, on the full evaluation set

and the oracle subset, respectively. We did not perform statisti-

cal significance tests for the results here as the performances of

the models are too close. Each model outperforms CodeT5 on

at least one metric, meaning that each code semantics provides

some information useful for test completion. In Table IVa,

TECO-S2 (absent types) is the best model in terms of BLEU,

CodeBLEU, EditSim and ROUGE metrics, and TECO-S4

(setup teardown) is the best model in terms of exact-match

accuracy and top-10 accuracy, which indicates that these two

kinds of code semantics are relatively more important than

others. Interestingly, in Table IVb, the models that achieved the

best performance among single-data models changed: TECO-

S3 (unset fields) is the best model in terms of BLEU, EditSim,

and ROUGE, and TECO-S6 (similar statement) is the best

model in terms of exact-match accuracy, top-10 accuracy, and

CodeBLEU. Thus, different kinds of code semantics provide

complementary information for test completion.

TABLE IV: Results for TECO models with only one kind of

code semantics on the evaluation set. The best number for

each metric is bolded.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40

TECO-S1 13.88 24.93 39.12 34.66 61.58 63.51
TECO-S2 14.06 25.11 39.56 35.17 62.20 63.92
TECO-S3 14.04 24.40 38.81 34.24 61.21 62.87
TECO-S4 14.44 25.55 39.39 35.00 61.63 63.40
TECO-S5 14.05 24.78 38.74 34.34 61.26 63.00
TECO-S6 14.13 24.74 38.70 34.36 60.86 62.52

(b) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63

TECO-S1 8.86 24.37 38.03 29.93 65.59 65.95
TECO-S2 8.23 23.69 38.13 30.27 65.52 65.98
TECO-S3 8.72 23.57 39.90 31.96 67.20 67.44
TECO-S4 8.14 23.84 38.54 30.77 65.59 65.92
TECO-S5 8.43 24.10 38.67 30.85 66.17 66.23
TECO-S6 9.81 25.47 39.88 32.20 66.89 66.97

VIII. LIMITATIONS AND FUTURE WORK

We discuss several limitations of our work and the future

work inspired by those limitations.

Usability. We envision our models being integrated into an

IDE. At any point, a user would be able to see top-k results

from our models and potentially decide to use one of the

suggestions. This is similar to email completion that has

recently been integrated into several popular web-based email

clients, e.g., GMail.

Structured representation. Currently we do not considering

using any structured representation of code, e.g., abstract

syntax trees (ASTs). Such a representation could enhance

performance of our models and enable a quick check of

validity of generated code. We leave this for future work.

Test-Driven Development (TDD). We assume that code under

test is written before tests when defining the test completion

task, which is the opposite order of TDD. Future work could

explore the mirror task of code completion with a test method

context that is applicable to projects adopting TDD.

Testing frameworks. We focused on tests written in the JUnit

style. Although other testing frameworks are available (e.g.,

TestNG), JUnit is the most popular among Java projects.

Large language models for code. Recent large language

models that scale up to billions of parameters create new

state-of-the-art for many code-related tasks [30], [60], [61].

However, these models do not perform well on simple code

execution tasks [50]. Incorporating code semantics into large

language models for code is a promising direction which we

leave as future work.
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IX. RELATED WORK

Automated test generation. Existing automatic test gener-

ation work includes fuzz/random testing [1]–[3], property-

based testing [4]–[10], search-based testing [11], [12], and

combinatorial testing [13]. The typical goal in automated test

generation techniques, e.g., Randoop [1] and EvoSuite [12],

is to achieve high code coverage of the code under test

by generating a large amount of tests, either randomly or

systematically. However, the generated tests would not be

added to the manually written tests in the code repository

due to their low quality and the excessive amount. Some prior

work explored improving the quality of the generated tests, for

example: Helmes et al. [9] proposed to use relative LOC to

guide the choosing of test generation targets; Reddy et al. [62]

proposed to use reinforcement learning to guide the random

input generator in property-based test generation. So far, these

automated techniques are used only in addition to manually

written tests. In contrast, we focus on improving developers’

productivity when writing manual tests.

Another disadvantage of the automated test generation ap-

proaches is the lack of test oracles. To remedy that, prior

work explored extracting test oracles from code comments,

focusing on test oracles related to exceptional behaviors, null

pointer checks, and boundary conditions [63]–[66]. These

techniques target generating/completing test oracles, but we

target completing any part of the tests, including test oracles.

Prior work also explored using deep learning models for

test oracle generation without the use of comments, including

ATLAS [39] and TOGA [40]. We have described both models

in Section VI-B and compared TECO with them on the task of

test oracle generation, which can be considered as downstream

application of our test completion task.

Tufano et al. [67] developed a code generation technique

for tests based on a BART architecture pre-trained on English

and code corpora. While they target to generate the entire test

method as a whole, we target to complete one statement at a

time, which allows the developer to observe and control the

process of writing a test method.

Test recommendation. Prior work also explored improving

developers’ productivity in testing by test recommendation:

given a method under test, suggest relevant test methods from

the existing test suite using a recommendation system [68]–

[71]. These techniques rely on having a set of relevant existing

tests to recommend tests from, which is usually not the case

when developers are starting a new project or adding tests

to a project without tests. Our technique helps developers by

providing completions while they are writing tests and does

not have this limitation.

ML for SE. The applications of ML models on SE tasks

is an active research area in recent years. One of the most

studied task is code completion, which improves develop-

ers’ productivity by suggesting next tokens or statements as

developers are writing code [26]–[29], [35], [54], [72]–[76].

Researchers have also studied developing ML models for other

SE tasks, including code summarization [31]–[33], [47], [57],

[58], [77], [78], code and comment maintenance [79]–[82],

bug fixing [83]–[85], etc. In this work, we propose the novel

task of test completion, which brings several unique features

(e.g., method under test) and necessitates reasoning about code

execution. We also compared TECO to recent work on code

completion [35], [54].

Prior work explored the use of code execution data in ML

for SE. Wang et al. [86] proposed to train semantic code

embeddings from execution traces, which can be used to

improve the performance of program repair models. Wang and

Su [87] blended syntactical and semantic code embeddings

and applied them in a method naming model. Nie et al. [88]

developed Roosterize, a model for suggesting lemma names

in verification projects which is trained using the runtime

representations of lemmas. Pei et al. [89] developed a transfer

learning framework called TREX that learns execution se-

mantics from forced-execution traces to detect similar binary

functions. Pi et al. [90] proposed PoEt that improves the

reasoning capabilities of language models by pre-training on

code execution data. Shi et al. [91] proposed to improve

code generation models’ outputs using a minimum Bayes risk

decoding algorithm based on execution results. TECO is the

first model designed with code execution in the testing domain,

specifically on the test completion task, where reasoning about

the execution of the code under test is needed. Moreover,

TECO integrates execution to improve both training (using

code semantics) and inference (using reranking via execution)

of the model.

X. CONCLUSION

We introduced an idea of designing ML models for code-

related tasks with code semantics inputs and reranking based

on test execution outcomes. Based on this idea, we developed

a concrete model, named TECO, targeting a novel task: test

completion. We evaluated TECO on a new corpus, containing

130,934 methods and 101,965 executable methods. Our results

show that TECO significantly outperforms the state-of-the-

art on code completion and oracle generation tasks, across

a number of evaluation metrics. We believe that TECO is only

a starting point in the exciting area of ML for code with code

semantics and execution data.
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1 public GMOperation addImage(final File file) {

2 if (file == null) {

3 throw new IllegalArgumentException("file must be

defined");

4 }

5 getCmdArgs().add(file.getPath());

6 return this;

7 }

8

9 // Here is a test for the above method. Please complete

the next statement of the test

10 @Test public void

addImage_ThrowsException_WhenFileIsNull() throws

Exception {

11 exception.except(IllegalArgumentException.class);

12 // Please compete the next statement:

Fig. 6: The prompt to Codex for the example test completion

task in Fig. 1.

APPENDIX A

COMPARISONS WITH LARGE LANGUAGE MODELS

Recent large language models for code that scale up to

billions of parameters, such as Codex [30], have been shown to

be promising for many code-related tasks. In parallel with our

work, researchers applied large language models to generate

tests [92]–[94]. In this appendix, we perform an additional

experiment to evaluate the performance of large language

models on test completion and compare with TECO.

The large language model we used is Codex [30], which is

the state-of-the-art specialized large language model for code.

Following the contemporary work on using large language

models for test generation [92]–[94], we used Codex to per-

form test completion in the zero-shot learning setup [95], i.e.,

providing Codex with a prompt that contains the method under

test, test method signature, and prior statements, and letting it

generate the next statement. Because Codex is pre-trained to

complete code, the prompt needs to be carefully designed as

a code fragment to be completed. Fig. 6 illustrates the prompt

format we used. We configured Codex to generate until seeing

the first ‘;’, similar to the way we used CodeGPT. Because the

current generation speed of Codex is quite slow, we configured

Codex to only generate the top-1 next statement using the

greedy decoding algorithm. We used the code-davinci-002

version of the Codex model. Running Codex on our evaluation

set (with 30,194 statements) took 18 hours.

Table V shows the results of Codex for the test comple-

tion task with comparisons to TECO and the other baseline

models; the results are organized into four parts—on the full

evaluation set, runnable subset, oracle subset, and oracle-

runnable subset—as explained in Section VI. TECO statis-

tically significantly outperforms Codex on all metrics, which

confirms the importance of using code semantics and code

execution together with ML. Compared with the other baseline

models (CodeT5/CodeGPT), Codex has better performance on

some metrics (e.g., %Run on the runnable subset and oracle-

runnable subset; exact-match accuracy on the oracle subset and

oracle-runnable subset) but has slightly worse performance on

others. Although Codex is expected to be much more powerful

than CodeT5/CodeGPT due to the larger scale (billions of

parameters vs. millions of parameters) and more pre-training

data, we hypothesize that fine-tuning CodeT5/CodeGPT on our

large test completion corpus helped with improving their per-

formance. Codex performs better on the test oracle generation

task than the test completion task, which may be because of

the more prior statements context available when performing

test oracle generation.
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TABLE V: Results for Codex, TECO, and other baseline models on test completion. The best number for each metric is bolded.

In each table, numbers marked with the same greek letter prefix are not statistically significantly different.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 12.69 N/A 34.53 29.91 58.08 56.04
CodeT5 13.57 24.11 38.33 33.88 60.81 62.40
CodeT5-noFt 0.00 0.00 0.00 3.36 1.68 0.02
CodeGPT 12.20 22.67 36.30 31.84 59.09 61.10

TECO 17.61 27.20 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 38.80 19.12 12.88 N/A 34.89 30.12 58.44 56.58
CodeT5 54.84 17.62 14.38 25.39 39.26 34.55 61.36 63.15
CodeT5-noFt 0.00 0.00 0.00 0.00 0.00 3.35 1.65 0.03
CodeGPT 53.77 15.13 12.95 24.03 37.19 32.46 59.75 61.90

TECO 76.22 28.63 18.96 28.40 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 12.30 N/A 35.09 30.24 59.59 57.67
CodeT5 8.45 24.04 39.03 31.03 66.50 66.63
CodeT5-noFt α0.00 0.00 0.00 1.18 1.86 0.01
CodeGPT 10.56 27.19 40.91 33.33 67.63 67.94
ATLAS α0.21 0.66 21.55 13.39 54.06 50.70
TOGA 9.01 9.01 25.46 24.73 29.60 28.06

TECO 16.44 27.41 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

Codex 39.46 20.73 12.15 N/A 35.05 30.12 59.79 57.86
CodeT5 44.45 16.87 8.79 24.37 40.26 32.23 67.08 67.42
CodeT5-noFt 0.00 0.00 α0.00 0.00 0.00 1.26 1.87 0.01
CodeGPT 47.39 16.13 10.41 28.17 41.56 33.79 67.78 68.43
ATLAS 3.62 1.45 α0.23 0.68 21.81 13.56 54.19 50.87
TOGA 25.61 9.37 9.10 9.10 26.51 25.74 31.00 29.38

TECO 67.93 30.29 17.37 27.39 44.27 36.98 68.43 69.35
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