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Challenges and potential solutions for studying the 
genetic and phenotypic architecture of adaptation in 
microbes 
Leandra Brettner1, Wei-Chin Ho1, Kara Schmidlin1,  
Sam Apodaca1, Rachel Eder1,2 and Kerry Geiler-Samerotte1,2   

All organisms are defined by the makeup of their DNA. Over 
billions of years, the structure and information contained in that 
DNA, often referred to as genetic architecture, have been honed 
by a multitude of evolutionary processes. Mutations that cause 
genetic elements to change in a way that results in beneficial 
phenotypic change are more likely to survive and propagate 
through the population in a process known as adaptation. 
Recent work reveals that the genetic targets of adaptation are 
varied and can change with genetic background. Further, 
seemingly similar adaptive mutations, even within the same 
gene, can have diverse and unpredictable effects on 
phenotype. These challenges represent major obstacles in 
predicting adaptation and evolution. In this review, we cover 
these concepts in detail and identify three emerging synergistic 
solutions: higher-throughput evolution experiments combined 
with updated genotype-phenotype mapping strategies and 
physiological models. Our review largely focuses on recent 
literature in yeast, and the field seems to be on the cusp of a 
new era with regard to studying the predictability of evolution. 
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Introduction 
Evolution, as a dynamic process, has proven to be hard 
to predict. One way populations evolve is through 

adaptation, or the acquisition of traits that provide an 
increase in fitness in a given environment. Adaptation is 
an inherently competitive process, as adaptive mutations 
in asexually reproducing microbes must survive chal
lenges such as clonal interference, genetic drift, dele
terious hitchhiking, etc. to overcome their peers. 
Gaining a better understanding of the genetic and 
phenotypic changes that allow organisms to adapt to 
changing environments, and the broader effects of these 
changes, is critical to improving the predictability of 
evolution. In the simplest situation, the possible adap
tive genetic targets in a given context are limited or all 
share similar characteristics, e.g. they all fall into the 
same handful of genes or molecular pathways that affect 
similar phenotypes, and the routes to adaptation are easy 
to predict. This is sometimes true, for example, in sce
narios with incredibly strong selective pressures such as 
adaptation to an essential gene knockout, to nearly fatal 
antibiotic drug concentrations, etc. [1–3]. However, this 
has not borne out to be the case in the majority of si
tuations, those in which selection is non-lethal, and the 
development of reliable tools or rules to predict adap
tation have eluded us. 

Here, we discuss challenges and recent advances in 
understanding the genetic architecture of adaptation, 
many of which also apply more generally to under
standing genotype-phenotype mapping [4–6]. Many 
advances in this field were made possible due to the use 
of higher-throughput technologies that were developed 
in or have been applied to the model organism budding 
yeast, S. cerevisiae. These higher-throughput studies 
have revealed three problems (Figure 1) that impede 
evolutionary prediction: 1) the genetic targets of adap
tation are often more complex than previously realized, 
2) the genetic targets of adaptation change with genetic 
background, and 3) seemingly similar adaptive mutants 
have diverse and unpredictable effects on phenotype. 
We discuss these three problems in the first half of this 
review, then we suggest possible solutions that may 
yet allow evolutionary predictions in the future. 

Problem 1: the genetic targets of adaptation can be 
numerous and varied 
Some studies suggest that only a handful of genes re
present potential targets of adaptation to a given stressor. 
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Figure 1  

Current Opinion in Genetics and Development

The problems associated with predicting adaptation. (a) Problem 1: the genetic targets of adaptation can be numerous and varied. Traditional 
methods of isolating adaptive mutants from experimental evolutions were often too low-throughput to catch lower frequency adaptive lineages, 
leading to the hypothesis that selection only targeted a handful of genes in a given context. (b) Problem 2: the genetic basis of adaptation changes 
with genetic background. Mutations rarely affect phenotype in a way that is independent of the existing genetic background (dark blue yeasts). 
Instead, often epistasis leads to unpredictable phenotypes when a new mutation interacts with its genetic context (multicolored yeasts). (c) Problem 3: 
seemingly similar adaptive mutants have diverse and unpredictable effects on phenotype. Mutants evolved in a given condition, the ‘home’ 
environment, have a similar phenotype: increased fitness in the home environment. One might expect them to have an equally uniform response to a 
new, ‘non-home’, environment. However, the pleiotropic effects of mutations often make the response to novel conditions discordant and 
unpredictable. 
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In cases where this is true, it yields simpler predictions 
about how adaptation will proceed. For example, it is 
widely accepted in Saccharomyces cerevisiae and 
Plasmodium falciparum that resistance to the drug pyr
imethamine is acquired by ordered, sequential fixation 
of mutations in DHFR or pfdhfr, respectively [7–9]. And 
indeed, P. falciparum clinical samples follow these pre
dictions as four-point mutations (N51I, C59R, S108N 
and I164L) in pfdhfr tend to result in failed treatment  
[10–12]. Unfortunately, this one drug-one gene model is 
the exception rather than the rule. One study in
vestigating the genetic basis of azole resistance evolved 
six yeast populations in a clinically relevant concentra
tion of fluconazole and identified four genes, CDR1, 
CDR2, MDR1 and ERG11 as possible targets of adapta
tion [13]. Further complicating matters, within a single 
gene, ERG11, not all mutations observed in the clinic 
provide resistance [14]. Furthermore, more recent stu
dies have identified additional genes that can be in
volved in azole resistance, such as ERG3, TAC1, MRR1, 
UPC2 and PDR3, some of which provide resistance to 
different levels of drug than others [15,16]. It is be
coming increasingly clear that the diversity of adaptive 
mutations is more varied than previously thought [15]. 

Larger and larger experiments are beginning to really 
highlight this problem. A recent study using pooled 
populations of genetically barcoded yeast enabled 
~500,000 evolutionary replicates to be performed si
multaneously [17•]. The researchers were able to detect 
~25,000 unique adaptive lineages that had improved in 
their ability to survive glucose limitation; this is orders of 
magnitude more than any previous study. While many of 
the lineages carried the same or similar adaptive muta
tions, the lineages carrying smaller effect beneficial 
mutations would not have been detected in studies that 
utilized fewer replicates and/or had less power to dis
tinguish low-frequency adaptive mutations from se
quencing errors (Figure 1a). These lower frequency 
adaptive mutants are likely to be important, given 
follow-up studies showing that the most adaptive 
lineages often possess two mutations, including one from 
this low-frequency category [18]. Additional experi
mental designs using barcodes or other high replicate 
approaches continue to improve our ability to collect a 
fuller spectrum of mutations that are adaptive in a given 
conditions [19–22]. For example, recent work evolved S. 
cerevisiae to 80 different chemical compounds and iden
tified 1405 mutations in 137 genes that provided re
sistance to at least one compound [20]. While several of 
these mutations were in known targets of adaptation, the 
most frequently hit genes were transcription factors, 
many of which had not previously been associated with 
drug resistance. While the focus of this review is on yeast 
as a model organism, we note that extensive experi
mental evolution data in bacteria also support the di
versity of adaptive solutions [23–25]. These examples 

demonstrate there are many mutations available to solve 
an evolutionary challenge, making predictability in any 
given case that much harder. 

Problem 2: the genetic basis of adaptation changes with 
genetic background 
Adding further complications, new adaptive mutations 
can interact with existing genetic variation in un
predictable ways (i.e. epistasis, Figure 1b) [26•–28]. For 
example, several studies have shown that if an organism 
is already relatively fit, subsequent beneficial mutations 
will have a diminishing impact. This observation may 
reflect a global constraint, as fitness cannot increase 
linearly indefinitely — there are ceilings and floors on 
fitness (i.e. diminishing returns epistasis) [29–31]. 
However, recent studies suggest diminishing returns 
epistasis can also arise from idiosyncratic interactions 
among mutations to a small number of genes [32,33•]. 
Other studies of epistasis have shown more generally 
that the impact of a mutation can differ across geneti
cally diverse strains [26•,34,35]. For example, Jerison 
et al. [34] evolved 230 yeast offspring that each differ by 
approximately 25,000 base pairs, finding that fitness ef
fects of adaptive mutations were different in different 
offspring. A related complication is that the effects of 
subsequent mutations can depend on those that 
emerged in a previous round of adaptation, meaning that 
the outcome of adaptation becomes increasingly un
predictable with each successive mutation that fixes in 
the population [9,36–38]. Similarly, multiple mutations 
might arise in the same lineage in a short time period 
(relative to the generation time of the organism). Non- 
beneficial mutations that appear concurrent with adap
tive genotypes can rise in frequency in a population in a 
phenomenon called hitchhiking. The stochastic ap
pearance of these hitchhiker mutations reduces the re
producibility of evolution and thus its 
predictability [39–41]. 

Problem 3: seemingly similar adaptive mutants have 
diverse and unpredictable effects on phenotype 
In addition to the unpredictable interactions between 
adaptive mutations and their genetic backgrounds, the 
phenotypic effects of adaptive mutations can also be 
surprisingly difficult to predict [42•–44•]. This lack of 
predictability at the phenotypic level exists despite 
several studies showing that the mutations that help an 
organism survive a particular stress tend to fall into genes 
with similar functions [18,45], despite suggestion that 
the phenotypic basis of adaptation should be less com
plex than the genetic basis [42•,46], and despite strate
gies in evolutionary medicine that aim to exploit 
predictability at the phenotypic level [47,48]. But why 
are the phenotypic effects of adaptive mutants so un
predictable? More specifically, why do mutations that are 
all similarly adaptive in one “home” environment 
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behave differently in other “non-home” environments 
(Figure 1c)? 

Several recent studies find that mutations are often 
pleiotropic in that they do not necessarily affect only a 
single trait [42•–44•,49–51]. Pleiotropy can negatively 
impact predictions about the fitness of mutations in 
novel environments, if the suite of traits affected by each 
mutant differs. For example, Kinsler et al. investigated 
the number of phenotypes individual adaptive muta
tions can affect by measuring the fitnesses of hundreds 
of yeast strains adapted to a single environment in a 
range of non-home environments. They found that very 
similar seeming adaptive mutations to negative reg
ulators of the same pathway, or even within the same 
gene, can affect different sets of phenotypes and thus 
behave dissimilarly in non-home environments [42•]. 
This idea was reaffirmed by the experimental evolutions 
of Bakerlee et al. which demonstrated that lineages 
evolved in one condition had divergent fitness trajec
tories in new environments [43•]. Surprisingly, some 
lineages are more fit in non-home environments than 
their home environments, which may suggest evolving 
in the home environment is not necessarily the only or 
even the fastest way to adapt to that condition  
[42•,43•,51]. These studies highlight that the effects of 
adaptive mutations in non-home environments can be 
difficult to predict. 

Why trying to predict adaptation is a 
worthwhile endeavor, despite the three 
aforementioned problems 
The many factors that confound predictions of adapta
tion may cast doubt on the usefulness and practicality of 
the endeavor, but we believe the benefits of such pre
dictions have the potential to be wide-reaching. A better 
understanding of how small effect mutations, interac
tions with genetic background, and pleiotropy all affect 
adaptation will shed light on the evolution of complex 
traits, especially since polygenic models of adaptation 
and complex trait architecture are becoming increasingly 
prevalent [52–54]. The applications of these predictions 
will extend beyond evolutionary biology to fields as di
verse as medicine, agriculture, and conservation, for 
example, potentially allowing us to predict how patho
gens will adapt to a drug or how organisms will be af
fected by climate change [44•,55–58]. 

Strategies to make evolutionary predictions 
that take the complex genetic and phenotypic 
architecture of adaptation into account 
We propose three potential, but not exclusive, solutions 
to the above problems when trying to predict adaptation. 
The first involves leveraging recent high-throughput 
technologies to collect richer data. This will inform us 

about how the effects of adaptation change with contexts 
like genetic background or environment. The second 
involves building more complex and accurate mathe
matical models of the genotype–phenotype map that 
take phenomena like epistasis and pleiotropy into ac
count [59]. Finally, the third involves drawing insights 
from cell biology that can form the basis of physiological 
models that explain and predict the impacts of mutation 
on phenotypes and fitness [60–62]. 

Strategy 1: leveraging recent technologies to collect 
richer data 
A key difficulty in predicting adaptation remains that we 
have not surveyed the possible adaptive mutations 
deeply enough, and that we do not understand the ex
tent to which these adaptive solutions are equivalent 
(e.g. do all mutations behave similarly in all genetic 
backgrounds or environments). For example, while low 
replicate evolution experiments suggest mutations that 
resist one drug often induce ubiquitous sensitivity to a 
second drug, higher replicate studies uncover multiple 
resistance mechanisms with different tradeoffs [63•]. 
Thus, higher replicate evolution experiments are es
sential for comprehensively understanding the genetic 
architecture of adaptation. Formerly, performing very 
high replicate evolution experiments, and then sur
veying the behavior of diverse adaptive mutants in new 
environments and/or genetic backgrounds, presented a 
labor-intensive and time-consuming challenge. Happily, 
recent technologies, many of which were developed in 
budding yeast, allow this sort of rich experimental de
sign. For example, the use of genomically integrated 
DNA barcodes has vastly expanded the number of re
plicate lineages that can be evolved in the laboratory  
[17•,37,43•,64–67], and has also hastened surveys of 
adaptive mutant fitnesses in diverse novel (e.g. non- 
home) environments [42•,43•,68]. Such surveys of how 
adaptive mutations impact fitness or phenotype can also 
be accomplished via high-throughput single-celled 
methods, such as microscopy [50] or emerging ultra- 
high-throughput single-cell RNA sequencing techniques  
[69•–73]. Yeast also leads the way in terms of surveying 
the impacts of adaptive mutations across diverse genetic 
backgrounds, mainly because genetically diverse strains 
can be easily mated to generate thousands of unique 
genetic recombinants [26•,34,74]. In sum, many tech
nologies are emerging in yeast that allow high- 
throughput genome engineering [20,75] or recombinant 
strain construction [26•,34,74], high-replicate evolution  
[17•], and high throughput phenotyping and fitness 
measurement of adaptive mutants [42•,43•,68,69•]. 
These technologies are opening doors to long-standing 
questions about the repeatability of evolution, the pre
dictability of adaptation, and the architecture of the 
genotype-phenotype map. 
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Strategy 2: building more complex models of the 
genotype–phenotype map 
In order to create predictive models of adaptation, it is 
necessary to develop novel mathematical frameworks 
that can analyze the humongous datasets generated by 
new methodologies described under Strategy 1. One 
approach involves examining the extent to which the 
phenotypic effects of different mutants are correlated in 
order to predict which mutants will behave similarly in 
novel contexts, rather than assuming that mutations that 
evolved in the same home environment will always have 
similar behavior in non-home environments (Figure 1c)  
[63•]. In the past, genotype-phenotype maps were 
usually represented by simple bipartite gene-trait maps 
(Figure 2a.i), which lacked the complexity to model the 
degree to which pleiotropic adaptive mutations affect 
overlapping or completely dissimilar groups of traits. 
Recently, several new models that allow pleiotropic 
genotype-phenotype maps and leverage the complex 
correlations among multiple phenotypes have been 
proposed (Figure 2a.ii) [42•,44•,50,76]. For example, 
models using a framework of correlated evolution of 
traits can be built to model the emergence of cross re
sistance or cross sensitivity to multiple drugs [44•,47,76]. 

In addition, correlative modeling techniques such as 
singular-value decomposition, principal component 
analysis, or machine learning can be applied to datasets 
that measure the fitness of different adaptive mutants 
across many environments in order to construct fitness 
predictions [42•,77,78]. A different framework for in
terpreting the massive amounts of data pertaining to 
adaptive mutants and their effects may involve meta- 
analysis comparing different approaches. For example, 
comparing different statistics used for studying the level 
of convergence among adaptive mutations helps better 
understand the mapping among mutations, phenotypes, 
and fitness during adaptation [46]. As more technologies 
emerge to yield more data about the genetic architecture 
of adaptation, more modeling approaches must follow. 

Strategy 3: drawing insights from cell biology that can 
form the basis of physiological models 
Building molecular and biochemical models informed by 
physiology also helps us understand the genetic archi
tecture of adaptation and predict the effects of adaptive 
mutants in new genetic backgrounds and environments. 
For example, if a cell gains an adaptation to a high drug 
condition by overexpressing an efflux pump, we might 

Figure 2  

Current Opinion in Genetics and Development

Illustrations of concepts described in Strategies 2 and 3. (a) genotype-to-phenotype maps. i. a simple bipartite model in which a single phenotype 
predictably correlates with genotype. ii. a more realistic, complex model in which genotype affects many correlated phenotypes through direct and 
indirect actions. (b) the network effects of mutations. Network models could help explain the pleiotropic and epistatic interactions of mutations. 
Detailing how genes interact can give us a basis for predicting mutational effects. For example, when a hub gene is hit with a mutation (blue), the 
effects of that mutation may extend to all of the genes with which it interacts.   
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be able to predict that the cell will also have higher 
fitness in conditions with other environmental toxins. 
Since the mechanisms of adaptation often extend be
yond a single pump, we need more complicated models 
incorporating more knowledge of the cell. Several types 
of modeling approaches have been considered. Here we 
will discuss two: network modeling and growth law 
theory. 

Interaction networks summarize the connections among 
different elements in the cell (e.g. transcriptional net
works, protein-protein interactions, etc.), and may pro
vide insights about the effects of adaptive mutations. 
For example, consider a transcription factor that reg
ulates stress-related genes. If it gains a mutation that 
affects its DNA binding dynamics to favor stronger ex
pression, we might expect similar fitness gains under 
diverse stressful environments. Previous studies have 
suggested that adaptive mutations within the same 
network may improve fitness via similar phenotypic 
changes [18]. This intuition was supported by work 
showing that the beneficial effects of mutations in si
milar functional units were often not additive when 
combined, presumably because their effects are re
dundant [45,79]. But more recent work has revealed that 
even similar seeming adaptive mutations can have dis
similar fitness effects in non-home environments  
[42•,43•]. Thus, more complex network models are 
emerging that interrogate network structure to predict 
the epistatic and pleiotropic effects of mutation  
[59,80–82]. For example, the number of interacting 
partners (i.e. hubness) for a component, and the nature 
of these interactions (i.e. whether they are activating or 
repressing) (Figure 2b), may inform the amount of 
pleiotropy [79,83] and the amount and type of epis
tasis [84]. 

The network modeling mentioned above tends to re
quire an exhaustive survey of genetic or metabolomic 
components per cell type. Opposingly, there are also 
attempts to use phenological models with less mole
cular-level details to model the physiology of microbes. 
One potential approach considers the ‘growth laws’, 
which model the rates of microbial growth as being set 
by one simple parameter: the percentage of proteome 
allocation to ribosomes [62,85–88]. For example, Scott 
et al. used a growth law model to predict how E. coli 
changes their growth rates when there is a ribosome- 
inhibiting antibiotic in the medium or ribosome-dis
rupting mutations in the genome [62]. Similarly, You 
et al. predicted the growth rates of E. coli under the 
disruption of signaling pathways critical for the starva
tion condition [88]. And Kavčič et al. predicted the 
growth-rate change of E. coli by the interactions between 
ribosome-inhibiting antibiotics and expression changes 
of translation-regulating genes [89•]. These examples 
highlight the potential usage of growth-law models to 

understand and predict interactions among adaptive 
mutations (posing a solution to Problem 2) and the en
vironment-specific effects of adaptive mutations (posing 
a solution to Problem 3). 

Conclusion 
In conclusion, evolution is hard to predict. There are 
many routes to adaptation, and mutations can interact 
with existing genetic context and/or have unforeseeable 
effects on many phenotypes. However, we believe the 
expansion of high-throughput techniques, large data 
sets, and new mathematical and representative models 
that integrate these data can begin to explore the para
meter space of adaptation, and generate predictive tools 
that will enable us to better forecast evolutionary tra
jectories in the future. 
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