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All organisms are defined by the makeup of their DNA. Over
billions of years, the structure and information contained in that
DNA, often referred to as genetic architecture, have been honed
by a multitude of evolutionary processes. Mutations that cause
genetic elements to change in a way that results in beneficial
phenotypic change are more likely to survive and propagate
through the population in a process known as adaptation.
Recent work reveals that the genetic targets of adaptation are
varied and can change with genetic background. Further,
seemingly similar adaptive mutations, even within the same
gene, can have diverse and unpredictable effects on
phenotype. These challenges represent major obstacles in
predicting adaptation and evolution. In this review, we cover
these concepts in detail and identify three emerging synergistic
solutions: higher-throughput evolution experiments combined
with updated genotype-phenotype mapping strategies and
physiological models. Our review largely focuses on recent
literature in yeast, and the field seems to be on the cusp of a
new era with regard to studying the predictability of evolution.
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Introduction
Evolution, as a dynamic process, has proven to be hard
to predict. One way populations evolve is through

adaptation, or the acquisition of traits that provide an
increase in fitness in a given environment. Adaptation is
an inherently competitive process, as adaptive mutations
in asexually reproducing microbes must survive chal-
lenges such as clonal interference, genetic drift, dele-
terious hitchhiking, etc. to overcome their peers.
Gaining a better understanding of the genetic and
phenotypic changes that allow organisms to adapt to
changing environments, and the broader effects of these
changes, is critical to improving the predictability of
evolution. In the simplest situation, the possible adap-
tive genetic targets in a given context are limited or all
share similar characteristics, e.g. they all fall into the
same handful of genes or molecular pathways that affect
similar phenotypes, and the routes to adaptation are easy
to predict. This is sometimes true, for example, in sce-
narios with incredibly strong selective pressures such as
adaptation to an essential gene knockout, to nearly fatal
antibiotic drug concentrations, etc. [1-3]. However, this
has not borne out to be the case in the majority of si-
tuations, those in which selection is non-lethal, and the
development of reliable tools or rules to predict adap-
tation have eluded us.

Here, we discuss challenges and recent advances in
understanding the genetic architecture of adaptation,
many of which also apply more generally to under-
standing genotype-phenotype mapping [4-6]. Many
advances in this field were made possible due to the use
of higher-throughput technologies that were developed
in or have been applied to the model organism budding
yeast, §. cerevisiae. These higher-throughput studies
have revealed three problems (Figure 1) that impede
evolutionary prediction: 1) the genetic targets of adap-
tation are often more complex than previously realized,
2) the genetic targets of adaptation change with genetic
background, and 3) seemingly similar adaptive mutants
have diverse and unpredictable effects on phenotype.
We discuss these three problems in the first half of this
review, then we suggest possible solutions that may
yet allow evolutionary predictions in the future.

Problem 1: the genetic targets of adaptation can be
numerous and varied

Some studies suggest that only a handful of genes re-
present potential targets of adaptation to a given stressor.
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The problems associated with predicting adaptation. (a) Problem 1: the genetic targets of adaptation can be numerous and varied. Traditional
methods of isolating adaptive mutants from experimental evolutions were often too low-throughput to catch lower frequency adaptive lineages,
leading to the hypothesis that selection only targeted a handful of genes in a given context. (b) Problem 2: the genetic basis of adaptation changes
with genetic background. Mutations rarely affect phenotype in a way that is independent of the existing genetic background (dark blue yeasts).
Instead, often epistasis leads to unpredictable phenotypes when a new mutation interacts with its genetic context (multicolored yeasts). (c) Problem 3:
seemingly similar adaptive mutants have diverse and unpredictable effects on phenotype. Mutants evolved in a given condition, the ‘home’
environment, have a similar phenotype: increased fitness in the home environment. One might expect them to have an equally uniform response to a
new, ‘non-home’, environment. However, the pleiotropic effects of mutations often make the response to novel conditions discordant and
unpredictable.
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Genetic and phenotypic architecture of adaptation Brettner et al. 3

In cases where this is true, it yields simpler predictions
about how adaptation will proceed. For example, it is
widely accepted in  Saccharomyces  cerevisiae and
Plasmodium falciparum that resistance to the drug pyr-
imethamine is acquired by ordered, sequential fixation
of mutations in DHFR or pfdhfr, respectively [7-9]. And
indeed, P. falciparum clinical samples follow these pre-
dictions as four-point mutations (N51I, C59R, S108N
and 1164L) in pfdifr tend to result in failed treatment
[10-12]. Unfortunately, this one drug-one gene model is
the exception rather than the rule. One study in-
vestigating the genetic basis of azole resistance evolved
six yeast populations in a clinically relevant concentra-
tion of fluconazole and identified four genes, CDRI,
CDR2, MDR1I and ERGI1 as possible targets of adapta-
tion [13]. Further complicating matters, within a single
gene, KRGI1, not all mutations observed in the clinic
provide resistance [14]. Furthermore, more recent stu-
dies have identified additional genes that can be in-
volved in azole resistance, such as LRG3, TACI, MRRI,
UPC2 and PDR3, some of which provide resistance to
different levels of drug than others [15,16]. It is be-
coming increasingly clear that the diversity of adaptive
mutations is more varied than previously thought [15].

Larger and larger experiments are beginning to really
highlight this problem. A recent study using pooled
populations of genetically barcoded vyeast enabled
~500,000 evolutionary replicates to be performed si-
multaneously [17¢]. The researchers were able to detect
~25,000 unique adaptive lineages that had improved in
their ability to survive glucose limitation; this is orders of
magnitude more than any previous study. While many of
the lineages carried the same or similar adaptive muta-
tions, the lineages carrying smaller effect beneficial
mutations would not have been detected in studies that
utilized fewer replicates and/or had less power to dis-
tinguish low-frequency adaptive mutations from se-
quencing errors (Figure 1a). These lower frequency
adaptive mutants are likely to be important, given
follow-up studies showing that the most adaptive
lineages often possess two mutations, including one from
this low-frequency category [18]. Additional experi-
mental designs using barcodes or other high replicate
approaches continue to improve our ability to collect a
fuller spectrum of mutations that are adaptive in a given
conditions [19-22]. For example, recent work evolved .
cerevisiae to 80 different chemical compounds and iden-
tified 1405 mutations in 137 genes that provided re-
sistance to at least one compound [20]. While several of
these mutations were in known targets of adaptation, the
most frequently hit genes were transcription factors,
many of which had not previously been associated with
drug resistance. While the focus of this review is on yeast
as a model organism, we note that extensive experi-
mental evolution data in bacteria also support the di-
versity of adaptive solutions [23-25]. These examples

demonstrate there are many mutations available to solve
an evolutionary challenge, making predictability in any
given case that much harder.

Problem 2: the genetic basis of adaptation changes with
genetic background

Adding further complications, new adaptive mutations
can interact with existing genetic variation in un-
predictable ways (i.e. epistasis, Figure 1b) [269-28]. For
example, several studies have shown that if an organism
is already relatively fit, subsequent beneficial mutations
will have a diminishing impact. This observation may
reflect a global constraint, as fitness cannot increase
linearly indefinitely — there are ceilings and floors on
fitness (i.e. diminishing returns epistasis) [29-31].
However, recent studies suggest diminishing returns
epistasis can also arise from idiosyncratic interactions
among mutations to a small number of genes [32,33¢].
Other studies of epistasis have shown more generally
that the impact of a mutation can differ across geneti-
cally diverse strains [26¢,34,35]. For example, Jerison
et al. [34] evolved 230 yeast offspring that each differ by
approximately 25,000 base pairs, finding that fitness ef-
fects of adaptive mutations were different in different
offspring. A related complication is that the effects of
subsequent mutations can depend on those that
emerged in a previous round of adaptation, meaning that
the outcome of adaptation becomes increasingly un-
predictable with each successive mutation that fixes in
the population [9,36-38]. Similarly, multiple mutations
might arise in the same lineage in a short time period
(relative to the generation time of the organism). Non-
beneficial mutations that appear concurrent with adap-
tive genotypes can rise in frequency in a population in a
phenomenon called hitchhiking. The stochastic ap-
pearance of these hitchhiker mutations reduces the re-
producibility of  evolution and thus its
predictability [39-41].

Problem 3: seemingly similar adaptive mutants have
diverse and unpredictable effects on phenotype

In addition to the unpredictable interactions between
adaptive mutations and their genetic backgrounds, the
phenotypic effects of adaptive mutations can also be
surprisingly difficult to predict [42e—44e]. This lack of
predictability at the phenotypic level exists despite
several studies showing that the mutations that help an
organism survive a particular stress tend to fall into genes
with similar functions [18,45], despite suggestion that
the phenotypic basis of adaptation should be less com-
plex than the genetic basis [42¢,46], and despite strate-
gies in evolutionary medicine that aim to exploit
predictability at the phenotypic level [47,48]. But why
are the phenotypic effects of adaptive mutants so un-
predictable? More specifically, why do mutations that are
all similarly adaptive in one “home” environment
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4 Evolutionary Genetics

behave differently in other “non-home” environments
(Figure 1¢)?

Several recent studies find that mutations are often
pleiotropic in that they do not necessarily affect only a
single trait [42e—44e 49-51]. Pleiotropy can negatively
impact predictions about the fitness of mutations in
novel environments, if the suite of traits affected by each
mutant differs. For example, Kinsler et al. investigated
the number of phenotypes individual adaptive muta-
tions can affect by measuring the fitnesses of hundreds
of yeast strains adapted to a single environment in a
range of non-home environments. They found that very
similar seeming adaptive mutations to negative reg-
ulators of the same pathway, or even within the same
gene, can affect different sets of phenotypes and thus
behave dissimilarly in non-home environments [42¢].
"This idea was reaffirmed by the experimental evolutions
of Bakerlee et al. which demonstrated that lineages
evolved in one condition had divergent fitness trajec-
tories in new environments [43e]. Surprisingly, some
lineages are more fit in non-home environments than
their home environments, which may suggest evolving
in the home environment is not necessarily the only or
even the fastest way to adapt to that condition
[42¢,43e 51]. These studies highlight that the effects of
adaptive mutations in non-home environments can be
difficult to predict.

Why trying to predict adaptation is a
worthwhile endeavor, despite the three
aforementioned problems

The many factors that confound predictions of adapta-
tion may cast doubt on the usefulness and practicality of
the endeavor, but we believe the benefits of such pre-
dictions have the potential to be wide-reaching. A better
understanding of how small effect mutations, interac-
tions with genetic background, and pleiotropy all affect
adaptation will shed light on the evolution of complex
traits, especially since polygenic models of adaptation
and complex trait architecture are becoming increasingly
prevalent [52-54]. The applications of these predictions
will extend beyond evolutionary biology to fields as di-
verse as medicine, agriculture, and conservation, for
example, potentially allowing us to predict how patho-
gens will adapt to a drug or how organisms will be af-
fected by climate change [44 55-58].

Strategies to make evolutionary predictions
that take the complex genetic and phenotypic
architecture of adaptation into account

We propose three potential, but not exclusive, solutions
to the above problems when trying to predict adaptation.
The first involves leveraging recent high-throughput
technologies to collect richer data. This will inform us

about how the effects of adaptation change with contexts
like genetic background or environment. The second
involves building more complex and accurate mathe-
matical models of the genotype—phenotype map that
take phenomena like epistasis and pleiotropy into ac-
count [59]. Finally, the third involves drawing insights
from cell biology that can form the basis of physiological
models that explain and predict the impacts of mutation
on phenotypes and fitness [60-62].

Strategy 1: leveraging recent technologies to collect
richer data

A key difficulty in predicting adaptation remains that we
have not surveyed the possible adaptive mutations
deeply enough, and that we do not understand the ex-
tent to which these adaptive solutions are equivalent
(e.g. do all mutations behave similarly in all genetic
backgrounds or environments). For example, while low
replicate evolution experiments suggest mutations that
resist one drug often induce ubiquitous sensitivity to a
second drug, higher replicate studies uncover multiple
resistance mechanisms with different tradeoffs [63e].
Thus, higher replicate evolution experiments are es-
sential for comprehensively understanding the genetic
architecture of adaptation. Formerly, performing very
high replicate evolution experiments, and then sur-
veying the behavior of diverse adaptive mutants in new
environments and/or genetic backgrounds, presented a
labor-intensive and time-consuming challenge. Happily,
recent technologies, many of which were developed in
budding vyeast, allow this sort of rich experimental de-
sign. For example, the use of genomically integrated
DNA barcodes has vastly expanded the number of re-
plicate lineages that can be evolved in the laboratory
[17¢,37,432.64-67], and has also hastened surveys of
adaptive mutant fitnesses in diverse novel (e.g. non-
home) environments [42¢.43¢ 68]. Such surveys of how
adaptive mutations impact fitness or phenotype can also
be accomplished via high-throughput single-celled
methods, such as microscopy [50] or emerging ultra-
high-throughput single-cell RNA sequencing techniques
[69e—73]. Yeast also leads the way in terms of surveying
the impacts of adaptive mutations across diverse genetic
backgrounds, mainly because genetically diverse strains
can be casily mated to generate thousands of unique
genetic recombinants [26¢,34,74]. In sum, many tech-
nologies are emerging in vyeast that allow high-
throughput genome engineering [20,75] or recombinant
strain construction [26¢,34,74], high-replicate evolution
[17¢], and high throughput phenotyping and fitness
measurement of adaptive mutants [42¢,43¢,68,69¢].
These technologies are opening doors to long-standing
questions about the repeatability of evolution, the pre-
dictability of adaptation, and the architecture of the
genotype-phenotype map.
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lllustrations of concepts described in Strategies 2 and 3. (a) genotype-to-phenotype maps. i. a simple bipartite model in which a single phenotype
predictably correlates with genotype. ii. a more realistic, complex model in which genotype affects many correlated phenotypes through direct and
indirect actions. (b) the network effects of mutations. Network models could help explain the pleiotropic and epistatic interactions of mutations.
Detailing how genes interact can give us a basis for predicting mutational effects. For example, when a hub gene is hit with a mutation (blue), the
effects of that mutation may extend to all of the genes with which it interacts.

Strategy 2: building more complex models of the
genotype-phenotype map

In order to create predictive models of adaptation, it is
necessary to develop novel mathematical frameworks
that can analyze the humongous datasets generated by
new methodologies described under Strategy 1. One
approach involves examining the extent to which the
phenotypic effects of different mutants are correlated in
order to predict which mutants will behave similarly in
novel contexts, rather than assuming that mutations that
evolved in the same home environment will always have
similar behavior in non-home environments (Figure 1c¢)
[63¢]. In the past, genotype-phenotype maps were
usually represented by simple bipartite gene-trait maps
(Figure 2a.i), which lacked the complexity to model the
degree to which pleiotropic adaptive mutations affect
overlapping or completely dissimilar groups of traits.
Recently, several new models that allow pleiotropic
genotype-phenotype maps and leverage the complex
correlations among multiple phenotypes have been
proposed (Figure 2a.i1) [42¢.44¢.50,76]. For example,
models using a framework of correlated evolution of
traits can be built to model the emergence of cross re-
sistance or cross sensitivity to multiple drugs [44e,47.76].

In addition, correlative modeling techniques such as
singular-value decomposition, principal component
analysis, or machine learning can be applied to datasets
that measure the fitness of different adaptive mutants
across many environments in order to construct fitness
predictions [42¢.77,78]. A different framework for in-
terpreting the massive amounts of data pertaining to
adaptive mutants and their effects may involve meta-
analysis comparing different approaches. For example,
comparing different statistics used for studying the level
of convergence among adaptive mutations helps better
understand the mapping among mutations, phenotypes,
and fitness during adaptation [46]. As more technologies
emerge to yield more data about the genetic architecture
of adaptation, more modeling approaches must follow.

Strategy 3: drawing insights from cell biology that can
form the basis of physiological models

Building molecular and biochemical models informed by
physiology also helps us understand the genetic archi-
tecture of adaptation and predict the effects of adaptive
mutants in new genetic backgrounds and environments.
For example, if a cell gains an adaptation to a high drug
condition by overexpressing an efflux pump, we might
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be able to predict that the cell will also have higher
fitness in conditions with other environmental toxins.
Since the mechanisms of adaptation often extend be-
yond a single pump, we need more complicated models
incorporating more knowledge of the cell. Several types
of modeling approaches have been considered. Here we
will discuss two: network modeling and growth law
theory.

Interaction networks summarize the connections among
different elements in the cell (e.g. transcriptional net-
works, protein-protein interactions, etc.), and may pro-
vide insights about the effects of adaptive mutations.
For example, consider a transcription factor that reg-
ulates stress-related genes. If it gains a mutation that
affects its DNA binding dynamics to favor stronger ex-
pression, we might expect similar fitness gains under
diverse stressful environments. Previous studies have
suggested that adaptive mutations within the same
network may improve fitness via similar phenotypic
changes [18]. This intuition was supported by work
showing that the beneficial effects of mutations in si-
milar functional units were often not additive when
combined, presumably because their effects are re-
dundant [45,79]. But more recent work has revealed that
even similar seeming adaptive mutations can have dis-
similar fitness effects in non-home environments
[42¢43e]. Thus, more complex network models are
emerging that interrogate network structure to predict
the epistatic and pleiotropic effects of mutation
[59,80-82]. For example, the number of interacting
partners (i.e. hubness) for a component, and the nature
of these interactions (i.e. whether they are activating or
repressing) (Figure 2b), may inform the amount of
pleiotropy [79,83] and the amount and type of epis-
tasis [84].

The network modeling mentioned above tends to re-
quire an exhaustive survey of genetic or metabolomic
components per cell type. Opposingly, there are also
attempts to use phenological models with less mole-
cular-level details to model the physiology of microbes.
One potential approach considers the ‘growth laws’,
which model the rates of microbial growth as being set
by one simple parameter: the percentage of protcome
allocation to ribosomes [62,85-88]. For example, Scott
et al. used a growth law model to predict how K. coli
changes their growth rates when there is a ribosome-
inhibiting antibiotic in the medium or ribosome-dis-
rupting mutations in the genome [62]. Similarly, You
et al. predicted the growth rates of K. co/i under the
disruption of signaling pathways critical for the starva-
tion condition [88]. And Kav¢i¢ et al. predicted the
growth-rate change of E. co/i by the interactions between
ribosome-inhibiting antibiotics and expression changes
of translation-regulating genes [89¢]. These examples
highlight the potential usage of growth-law models to

understand and predict interactions among adaptive
mutations (posing a solution to Problem 2) and the en-
vironment-specific effects of adaptive mutations (posing
a solution to Problem 3).

Conclusion

In conclusion, evolution is hard to predict. There are
many routes to adaptation, and mutations can interact
with existing genetic context and/or have unforeseeable
effects on many phenotypes. However, we believe the
expansion of high-throughput techniques, large data
sets, and new mathematical and representative models
that integrate these data can begin to explore the para-
meter space of adaptation, and generate predictive tools
that will enable us to better forecast evolutionary tra-
jectories in the future.
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