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ABSTRACT Mitochondria originated from an ancient bacterial endosymbiont that
underwent reductive evolution by gene loss and endosymbiont gene transfer to the nu-
clear genome. The diversity of mitochondrial genomes published to date has revealed
that gene loss and transfer processes are ongoing in many lineages. Most well-studied
eukaryotic lineages are represented in mitochondrial genome databases, except for the
superphylum Retaria—the lineage comprising Foraminifera and Radiolaria. Using single-
cell approaches, we determined two complete mitochondrial genomes of Foraminifera
and two nearly complete mitochondrial genomes of radiolarians. We report the com-
plete coding content of an additional 14 foram species. We show that foraminiferan
and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced
mitochondrial gene complement compared to other sequenced rhizarians. In contrast to
animals and fungi, many protists encode a diverse set of proteins on their mitochondrial
genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages
(euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial
gene content and lack all ribosomal genes. Similar to these reduced outliers, we show
that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain
truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-
coding genes, including nadl, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6,
and -9, with forams and radiolarians additionally carrying nad2 and nadé, respectively. In
radiolarian mitogenomes, a noncanonical genetic code was identified in which all three
stop codons encode amino acids. Collectively, these results add to our understanding of
mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial
sequence databases.

IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian
lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genom-
ic approaches, we found that foraminiferan and radiolarian mitochondrial genomes con-
tain an overlapping but reduced mitochondrial gene complement compared to other
sequenced rhizarians. An alternative genetic code was identified in radiolarian mitoge-
nomes in which all three stop codons encode amino acids. Collectively, these results
shed light on the divergent nature of the mitochondrial genomes from an ecologically
important group, warranting further questions into the biological underpinnings of
gene content variability and genetic code variation between mitochondrial genomes.
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ndosymbiosis, the functional integration of one cell into another, has shaped the

evolution of eukaryotes (1, 2). The oldest extant endosymbioses, those of mitochon-
dria and chloroplasts, both originate from ancient bacterial endosymbionts (3, 4). From
their origin to the present, mitochondrial and chloroplast genomes have undergone
reductive evolution by gene loss or endosymbiont gene transfer (EGT) to the nuclear
genome (3, 5-7). For mitochondrial genomes, most of this reduction occurred prior to
the emergence of the last eukaryotic common ancestor (LECA). What was once a bac-
terial genome encoding thousands of proteins became a mitochondrial genome en-
coding fewer than a hundred proteins in the LECA (3). Plants and many protist lineages
still retain a diverse set of between 30 and 70 protein-coding genes on their mitochon-
drial genomes (3, 8-11). In addition to electron transport chain (ETC) components from
complexes | to V, mitochondrial genomes can encode upward of 40 other proteins
involved in transcription, translation, complex maturation, and transport (9, 12). In extreme
cases of reduction, the highly reduced mitochondrion-related organelles (MROs) have
entirely lost their organellar genomes (3, 13-15). Although these extreme cases of reduc-
tion are associated with anaerobic lifestyles, several aerobic lineages have also undergone
major reductions in their mitochondrial genome content, mostly via EGT to the nucleus
(16-19). Why the organelle retains certain mitochondrial genes is hotly debated (20-25),
and it remains unclear what functional consequences varying gene complements might
entail.

Mitochondria are best known for their role in synthesizing ATP using a proton gra-
dient across their inner membrane (26). In fact, mitochondrial genomes largely code
for proteins directly or indirectly related to the function of the ETC and ATP synthase
(27). Furthermore, when the need for the ETC is lost in anaerobic lineages, the mito-
chondrial genome is also lost (14, 28). In aerobic lineages, a few components of the
ETC (e.g., parts of complexes |, lll, and IV) and the mitochondrial rRNAs are always en-
coded in mitochondrial genomes (29). Apart from these few components, all other
genes can be lost, replaced (30), or transferred to the nuclear genome. In the lineages
leading to animals and fungi, all genes encoding ribosomal proteins (except rps3 in
most fungi [31]) were independently transferred to the nuclear genomes (19). Thus,
most animal and fungal mitochondrial genomes encode only rRNAs, tRNAs, and 13 or
14 proteins (fewer if complex | is lost, as in Saccharomyces cerevisiae), all of which are
involved in electron transport or ATP synthesis (32).

In addition to the mitochondrial genome reductions seen in animals and fungi,
some aerobic protist lineages also exhibit ancient reductions of their mitochondrial
coding repertoire and contain many fewer proteins, few or no tRNAs, and highly diver-
gent or fragmented rRNAs. For example, myzozoans, which include apicomplexans
and dinoflagellates, encode only one to four ETC proteins in addition to highly frag-
mented and extremely divergent rRNAs (33-37); euglenids like Euglena gracilis encode
8 ETC proteins and very short divergent rRNAs (38, 39); and chlorophycean algae like
Chlamydomonas reinhardtii encode 7 ETC proteins and extremely fragmented rRNAs
(40, 41). In addition to these major aerobic lineages, one aerobic genus, the red alga
Galdieria (42), has also lost its mitoribosomal proteins from its mitochondrial genomes
via EGT. Thus, although mitochondrial genomes often encode many proteins, certain
evolutionary circumstances result in massive gene loss or EGT, resulting in reduced mi-
tochondrial genome coding content.

While several orphan taxa still lack representation in mitochondrial genome data-
bases, only one major eukaryotic lineage is completely absent: the Retaria, the rhizarian
lineage, comprising the phyla Foraminifera and Radiolaria (43). As a whole, rhizarians are
important members of marine communities (44-47), contributing significantly to marine
biogeochemical cycling (48-50). Retarians are aerobes (although some forams thrive
under anoxic conditions [51]) and are abundant in many environments, especially in the
global ocean. With ~9,000 recognized mostly marine extant species, Foraminifera are
estimated to account for ~25% of present-day carbonate production (52, 53). Silicified
Radiolaria, with their 600 to 800 named species, are estimated to account for between 2
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and 19% of total biogenic silica production (54). Despite their importance, the paucity of
retarian genomes and transcriptomes in sequence databases has made a deeper under-
standing of these lineages impossible (55-60).

In order to obtain mitochondrial genome sequences from Retaria, we chose to use single-
cell approaches. Single-cell genomics can effectively recover mitochondrial genomes from
diverse protists (10, 61, 62). Even though most species of Foraminifera and Radiolaria are
not in culture, contain a multitude of symbionts (63, 64), and show high levels of intrage-
nomic polymorphisms (65, 66), we show that single-cell approaches can effectively
recover mitochondrial genomes from these complex assemblages. Our data demonstrate
that foraminiferan and radiolarian mitochondrial genomes have an overlapping but
reduced gene complement compared to other sequenced rhizarians, similar to other
reduced mitochondrial genomes from other lineages. Retarian mitochondrial genomes do
not encode ribosomal proteins or tRNAs. However, they do contain truncated and diver-
gent small and large rRNAs and contain only 14 or 15 protein-coding genes, including
nad1,-3,-4,-4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radio-
larians additionally carrying nad2 and nadé, respectively. An alternative genetic code was
identified in radiolarian mitogenomes in which all three stop codons encode amino acids
(TGA = W, TAG =Y, and TAA = Y/stop). These results further add to our understanding of
mitochondrial genome evolution across the eukaryotic tree of life.

RESULTS AND DISCUSSION

Retarian mitochondrial, but not nuclear, genomes can be readily recovered
using single-cell methods. We isolated individual cells and Illumina sequenced and
assembled mini-metagenomes of 31 Foraminifera from 15 species (which are impossible
to separate from their symbionts) and single-cell amplified genomes (SAGs) of 5 Radiolaria
from 2 species (see Table S1 in the supplemental material for a complete list). Foram mini-
metagenomes are referred to here as SAGs. One additional foraminiferan metagenome
(Globobulimina sp.) was downloaded and reassembled from the NCBI sequence read
archive (SRA accession number SRX3312059 [67]). Assemblies from Calcarina, Neorotalia,
Lithomelissa, and Acanthometra SAGs are available for BLAST at SAGdb (https://evocellbio
.com/SAGdb/macher_et_al/).

Both forams and radiolarians associate with many eukaryotic and bacterial endo-
symbionts (68-70), making it difficult to obtain bona fide sequence data from either lin-
eage. To assess the contamination in foram and radiolarian SAGs, we collected all 18S
and 16S sequences from all assemblies using Cafeteria roenbergensis 18S and Escherichia
coli 16S sequences as BLAST queries. We found foraminifera 18S genes or gene fragments
in 23 of 31 SAGs from 13 of 15 species (Table S1). We also identified specific symbiont
28S sequences (from a dinoflagellate symbiont) or rbcL (from diatom symbionts) in all
foram SAGs and species except Calcarina mayori and the reassembled Globobulimina
(which is expected, since Globobulimina does not contain photosymbionts) (Table S2).
The inability to identify the foram 18S genes in all specimens is likely due to their extreme
within-cell variability (65, 71), which prevented proper assembly. 16S BLAST searches
recovered diatom symbiont chloroplast and mitochondrial genes. In addition, 16S
sequences from two common bacterial genera were also recovered (Burkholderia and
Cutibacterium). Blob plots from foram assemblies confirm 18S BLAST findings as large
contigs of symbiont organelles (Fig. STA and B). From these data, we concluded that our
foram SAG assemblies predominantly contain symbiont contigs, with only some repre-
sentation from the host nuclear genome.

In radiolarians, we obtained high-coverage contigs with complete 18S sequences
only from radiolarians (Table S2). In Acanthometra and Amphibelone (nc69, -78, -87, and
-96) SAGs, a few contaminating 18S sequences (e.g., diatom, cryptophyte, and ciliate)
were detected, but these contigs were fragmented with low coverage, indicating rela-
tively few eukaryotic contaminants. Similarly, only a few fragmented low-coverage 16S
contigs were recovered, again indicating very little prokaryotic contamination. These
results are corroborated by blob plots showing relatively little contamination in acan-
tharian SAGs (Fig. S1C). In the Lithomelissa SAG (r2m), only radiolarian 18S sequences
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were recovered. However, many high-coverage bacterial contigs containing 16S sequences
were identified, indicating that eukaryotic contamination in this SAG was low but bacterial
contamination was very high. These 18S and 16S results are corroborated by blob plots
showing a degree of bacterial and eukaryotic contamination but a large proportion of
“unknown” reads with no similar hits in the NCBI nonredundant database (Fig. S1D). To
assess the contamination of our nuclear data, we used a phylogenetic placement approach
to assess SAG contamination (Fig. S2). Forams were excluded because they lacked sufficient
identifiable nuclear contigs. Briefly, we extracted BUSCO proteins from SAG assemblies and
added them to existing alignments from EukProt (72). Even with low radiolarian BUSCO
scores (nc69, 10.6%; nc78, 5.1%; and nc96, 6.3% for Acanthometra SAGs; nc87, 3.9% for
Amphibelone SAGs; and 11.4% for Lithomelissa SAGs), Acanthometra SAGs were correctly
placed with full support alongside the only radiolarian (Astrolonche serrata) in the EukProt
data set (Fig. S2). Conversely, the Lithomelissa SAG was placed within alveolates with full
support (Fig. S2), suggesting unseen eukaryotic contamination, even though no contam-
inating 18S could be detected. Collectively, these data indicate that our radiolarian SAGs
contain a substantial amount of radiolarian nuclear contigs, though the Lithomelissa SAG
contains a large degree of bacterial and possibly eukaryote contamination.

Since mitochondrial genomes are often overrepresented in genome assemblies (10),
we sought to identify foram and radiolarian mitochondrial genomes in our SAGs. Using
protein sequences encoded by the Andalucia godoyi mitochondrial genome, one of the
most gene-rich mitogenomes known (12), we identified several putative retarian mito-
chondrial contigs in foram and most radiolarian SAGs. Amphibelone SAG nc87 (96% iden-
tical 18S sequences to other nc SAGs) lacked any obvious mitochondrial contigs and was
not investigated further. Since many assemblies exhibited both eukaryotic and prokary-
otic contamination, great care was taken to inspect the validity of each contig manually.
In forams, the putative mitochondrial contigs had orders-of-magnitude-higher read cov-
erage and much lower GC content than symbiont or putative foram nuclear contigs
(seen clearly in blob plots [Fig. STA and B]). Contigs representing nearly complete or
complete symbiont organelle genomes were also found in many foram SAGs, though
these contigs had much lower coverage than the foram mitochondrial genomes (Fig. STA
and B). In radiolarians, the results were less clear-cut. While the coverage (~40 to 60x) of
the putative mitochondrial contigs was much higher than the median for the SAG (~3 to
5x for the Acanthometra SAGs and ~11 for Lithomelissa, likely due to some very high-
coverage contigs [Fig. S3]), the GC content was similar to that of the putative nuclear con-
tigs (Fig. S1). Thus, though these contigs had relatively high coverage, they were not
clearly separated from the majority of contigs in blob plots. The coverage of mitochon-
drial genome contigs and contigs containing radiolarian 18S sequences had similar cover-
age (~40 to 60x). Since both mitochondrial genomes and 18S sequences are generally
found in multiple copies in a cell, we reasoned that we likely sequenced bona fide mito-
chondrial genomes and not nuclear mitochondrial genomes (NuMts), which would likely
have much lower read coverage.

Retarian mitochondrial genomes carry a reduced gene complement. From each
assembly, we extracted mitochondrial contigs collectively representing the putatively
complete mitochondrial gene complement from 16 foraminiferan and two radiolarian
species (Fig. 1). We obtained complete circular-mapping mitochondrial genomes of
the forams Calcarina hispida and Neorotalia gaimardi. The mitogenomes were 46 kb
(Calcarina hispida) and 50 kb (Neorotalia gaimardi) long, and each had the same set of
14 protein-coding genes (Fig. 2). We recovered contigs with mitochondrial genes from
two species of radiolarians (Lithomelissa sp. and Acanthometra sp.) that almost com-
pletely overlap the foraminiferan complement (Fig. 1A). We concluded from these data
that we likely extracted the complete, or nearly complete, coding complement of these
radiolarian mitochondrial genomes. However, we were unable to recover complete cir-
cular mitochondrial genomes from either radiolarian, likely due to repetitive intergenic
regions that prevented proper assembly. To complete these genomes, we attempted
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FIG 1 Mitochondrial genomes of forams and radiolarians overlap in gene content. Gene content of rhizarian mitochondrial genomes. Half-filled boxes
indicate the presence of fragmented and shortened genes. Mitochondrial genes present in other mitochondrial genomes but absent from all sequenced
rhizarian mitochondrial genomes are not listed. “Cercozoan SAGs” refers to the singly amplified genomes published previously (10).

to link contigs using primers designed to PCR amplify missing regions between contigs
but were unsuccessful, likely due to complex repetitive regions.

Between the two phyla, retarians displayed a near-identical gene complement, includ-
ing cytochrome ¢ oxidase subunits (cox1, cox2, and cox3), cytochrome b (cob), and ATP
synthase subunits (atp1, atp6, and atp9) and NADH dehydrogenase subunits (nad1, nad3,
nad4, nad4l, nad5, and nad7; nad2 is missing from radiolarians and nadé6 is missing from
foraminifera), The lack of nad2 in both radiolarian mitochondrial genomes and the lack of
nadé6 in one radiolarian and both foram mitochondrial genomes is not without precedent,
as both are either lost or extremely diverged and transferred to the nuclear genome in
euglenids (73). Fragments of large-subunit (LSU)-rRNA (rrL) and small-subunit (SSU)-rRNA
(rrnS) genes were identified in the mitogenomes of the foraminiferans Calcarina hispida
and Neorotalia gaimardi and the radiolarian Lithomelissa sp., while only rrnL was identified
in the mitogenome of the radiolarian Acanthometra sp.; however, neither full-length ribo-
somal protein-coding genes nor tRNAs were detected (Fig. 1). The nad9 gene was not
found in our retarian mitochondrial genomes, even though all other sequenced rhizarian
mitochondrial DNAs contain this gene (10, 74-77) (except for Brevimastigomonas, which
has lost complex | altogether). Since most core complex | subunit genes appear to be
retained in rhizarian mitogenomes (including those of retarians), missing complex | genes
could be carried by the nuclear genome; however, these genes have not been identified
in the nuclear genomes of euglenids (73). However, we were unable to find any complex |
components in the nuclear assemblies, likely indicative of their incompleteness (BUSCO
scores < 10%). Another conspicuous absence from retarian mitochondrial genomes is
atp8, which encodes subunit 8 of ATP synthase. Subunit 8 is likely an essential component
of ATP synthase in most organisms (77) but appears to be absent in Caenorhabditis elegans
(78) and cannot be identified in many rhizarian mitochondrial genomes (77, 79). To further
confirm that we collected bona fide mitochondrial contigs, we reconstructed the phylog-
eny of forams with radiolarians as an outgroup using concatenated mitochondrial proteins
predicted from the contigs (Fig. S4). The resulting phylogeny at the family level recapitu-
lates the topology seen in 18S rDNA trees of Foraminifera (80-82), except for Peneroplidae
clustering within the Soritidae.

We also obtained 25 fragmented mitochondrial genomes from 14 additional forami-
niferan species (see Table S1 for a list of samples) that could not be linked in a single con-
tig but had the same set of 14 protein-coding genes (all for ETC subunits) present in the
circular-mapping mitochondrial genomes of Calcarina hispida and Neorotalia gaimardi.
We also downloaded the available (meta)genomes of the foraminiferans Reticulomyxa
filosa (55) and Astrammina rara (56) but could not identify mitochondrial genes.

Retarian mitochondrial genomes have large intergenic regions. Since we found
large intergenic regions in both foraminiferan and radiolarian mitochondrial genomes,
we conducted searches for genes or gene fragments within these intergenic regions
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FIG 2 Retarian mitochondrial genomes contain large noncoding intergenic regions. Complete circular-mapping of mitochondrial genomes of the
Foraminifera Calcarina hispida (A) and Neorotalia gaimardi (B) and the inferred nearly complete mitogenomes of the Radiolaria Lithomelissa sp. (C) and
Acanthometra sp. (D). Protein-coding genes are highlighted in red; rRNAs (rrnL and rrnS) are highlighted in yellow. Gene fragments are shown in black.
Gaps in the radiolarian mitochondrial genomes show the start and end of assembled mitochondrial contigs. Photos were taken of each individual organism
before lysis.

using blastx (v.2.11.0) (83), mfannot (https://github.com/BFL-lab/Mfannot), and hmmer
(v3.3.2) (84). Twenty-four regions were identified as putatively homologous to genes typ-
ically encoded by rhizarian mitochondrial genomes (Fig. 2, black lines). Eighteen of these
are very similar to fragments of genes present elsewhere within the retarian mitochon-
drial genomes (atp1, atp6, cob, nad4, nad5, nad7, and cox2). The remaining six fragments
are homologous to genes normally present in rhizarians, including nad2 and nad9 in
radiolarians and rps712 in a foram and a radiolarian. These fragments could represent
pseudogenes or horizontally transferred DNA sequences (85, 86) or could reflect past ge-
nomic recombinations and rearrangements. In all mitochondrial contigs, small (~50-bp)
stretches were nearly identical in many places, differing by one or two nucleotides. In
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FIG 3 All three stop codons have been recoded to sense codons in radiolarian mitochondrial genomes. Proteins encoded in diverse
mitochondrial genomes were aligned with their orthologues from radiolarians. Consensus (>50%) amino acids at sites containing
internal radiolarian stop codons (TGA, TAG, and TAA) were noted. Amino acids were grouped based on their biochemical properties
(nonpolar, polar, charged, or aromatic). When a large proportion of sites are occupied by a particular amino acid, this suggests that the

in-frame stop codon encodes that amino acid.

the Lithomelissa sp. SAG, a large contig with similar read coverage was detected that con-
tained these ~50-bp pseudorepeats but no mitochondrial genes or fragments (Fig. 2C).
Perhaps the missing mitochondrial rRNAs have diverged beyond recognition.

All three standard stop codons are likely recoded in radiolarian mitochondrial
genomes. Deviations from the ancestral standard genetic code have evolved in
numerous lineages (87, 88). In particular, lineages with extremely low GC content and
limited opportunities for recombination (i.e., organellar genomes) exhibit genetic code
changes more frequently (89, 90). One common trend of genetic code variability, and
the easiest to detect, is when stop codons are reassigned as sense codons. The most
common version of stop codon reassignment by far is the TGA stop codon being
recoded to tryptophan (normally encoded only by TGG) (91). This change has occurred
several times across mitochondrial genomes and in other bacterial lineages. The TAA
and TAG stop codons can also be recoded. For example, in the mitochondrial genome
of certain thraustochytrid stramenopiles, a new stop codon (TTA) (GenBank accession
no. AF288091.2) evolved and, in some species, both TAA and TAG were recoded to ty-
rosine (normally encoded by TAT and TAC) (10). All three stop codons have been
recoded in the nuclear genomes of the ciliate Condylostoma magnum (92) and the
kinetoplastid genus Blastocrithidia (93, 94). In both cases, TGA encodes tryptophan,
and TAA and TAG encode glutamine (normally encoded only by CAA and CAG). For
Blastocrithidia, authors showed that highly expressed genes have fewer TAA and TAG
codons and speculate that changes in tRNA usage enable ribosomes to read through
TAA and TAG sense codons in the middle of genes with moderate and low levels of
expression, while TAA is still used as a termination codon at the end of transcripts (93,
94). Here, we identified a similar example in radiolarian mitochondria, where all three
stop codons are likely recoded to sense codons.

To determine the genetic code of radiolarian mitochondrial genomes, we aligned
predicted proteins with mitochondrion-encoded proteins from diverse protists. These
alignments revealed that in-frame TGA and TAG codons occur at sites often occupied by
tryptophan and tyrosine residues, respectively (Fig. 3). Conversely, relatively few in-frame
TAA codons are present in conserved domains. The majority of in-frame TAA codons
occurred at locations for which there was no consensus amino acid in the alignment
(Fig. 3). In Acanthometra, only two genes contained in-frame TAAs (nad5 [8 TAAs] and
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cox2 [2 TAAs]). All eight nad5 TAA codons were in the 3’ region, which appears to have
diverged compared to the same region of other nad5 genes. Similarly, the two cox2 TAA
codons were also in regions of the gene that are not highly conserved. In Lithomelissa,
eight genes contained in-frame TAA codons. Like Acanthometra, Lithomelissa contained
a few TAAs that aligned with conserved residues (one glutamine, one arginine, and the
other tyrosine) in the middle of protein alignments (nad7 and cox3).

When assessing pairwise alignments of the radiolarian proteins (e.g., pairwise align-
ment of Lithomelissa and Acanthometra coxT), of the 29 in-frame TAA codons, nearly half
(14 TAAs) aligned with a tyrosine, phenylalanine, or tryptophan, and the majority (19
TAAs) aligned with a hydrophobic residue. In addition, 25 of 27 radiolarian mitochondrial
protein-coding genes had a TAA codon near where the end of the protein is predicted.
Two Acanthometra genes (nad4L and cox2) lacked stop codons and were contiguous
with the open reading frames of cob and nad1, respectively. These data all suggest that
a mechanism similar to the one proposed for the Blastocrithidia nuclear genome may be
in place in radiolarian mitochondrial genomes. While TGA and TAG encode tryptophan
and tyrosine, respectively, TAA appears to have a dual role, likely encoding tyrosine in
some proteins at a few locations but acting primarily as a stop codon. Curiously, several
proteins lack any in-frame TAA codon. Perhaps, similar to the case in Blastocrithidia, the
most highly expressed mitochondrial proteins lack in-frame stop codons. The atp9 gene
is among the most highly expressed and has no TAA or TAG present in either radiolarian.
These data indicate that the mitochondrial genetic code in radiolarians has diverged
from the ancestral code and has recoded all three stop codons to code for amino acids.
While TGA and TAG are recoded to tryptophan and tyrosine, TAA codons sometimes
encode tyrosine but are the primary, and likely only, stop codon.

Retarian mitochondrial genomes contain fragmented rRNA genes, divergent
atp6 genes, and split nad genes. In most eukaryotic lineages, mitochondrial genomes
encode a combination of proteins involved in electron transport and ATP synthesis, ri-
bosomal proteins, and a few auxiliary proteins involved in protein maturation or trans-
location (3). However, five major lineages (euglenids, retarians, chlorophycean algae,
myzozoans, and animals [Fig. 4]) have completely transferred all genes for mitoriboso-
mal proteins to the nucleus, and two others are close behind (fungi contain only rps3,
and glycomonads [Euglenozoa] contain at most rps3 and rpsi12) (34, 77, 95-97). In all
these lineages except animals and fungi, the EGT of mitoribosomal proteins has coin-
cided with an extreme reduction or fragmentation of the mitochondrial rRNAs (Fig. 4,
dark blue circles) (98). Animal and fungal mitochondrial rRNAs are truncated, but not
to the extent of other mitochondrial rRNAs that are extremely divergent and nearly
undetectable.

In addition to highly divergent rRNA genes, euglenozoans, retarians, chlorophycean algae,
and myzozoans possess extremely divergent atp6 genes (Fig. 4, yellow circles). Since a few
TAA codons appear in the 5’ region of the Lithomelissa atp6 gene, we decided to model
the Atp6 protein using Alphafold2 (99) to determine if the N-terminal extension is part of
the protein or represents a noncoding upstream sequence. Alphafold2 modeled full-length
subunit a into a structure that better resembles the classic subunit a (Fig. S5). This suggests
that the TAA codons are in part of the coding sequence of Lithomelissa atp6. Divergence of
ATP synthase structure can have consequences for mitochondrial crista morphologies (e.g.,
chlorophycean algae, euglenids, kinetoplastids, and apicomplexans all have unique crista
morphologies) (100-103). Since mitochondrial crista architecture that departs from classic
lamellar and tubular morphologies present in most other eukaryotes has also been
reported for Foraminifera (104) and Radiolaria (105, 106), retarian ATP synthase structures
represent excellent candidates for future investigation into the structural and functional di-
versity of this amazing protein complex (107).

Curiously, nad1 is split into two parts in the Foraminifera Calcarina hispida and
Neorotalia gaimardi. This suggests that some trans-splicing might be present in Retaria,
similar to what has been reported for mitochondrial genes in other eukaryotes (108, 109).
It is also possible that two peptides are separately expressed and merged into a func-
tional protein, as has been found in Chromera plastids (110). Furthermore, we identified a

March/April 2023  Volume 14 Issue 2

10.1128/mbio.00302-23

mBio

8

Downloaded from https://journals.asm.org/journal/mbio on 01 June 2023 by 149.169.85.208.


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00302-23

Mitochondrial Genomes of Foraminifera and Radiolaria

Paleoproterozoic
2200 Ma
|

1600

Mesoproterozoic

1000
I

Neoproterozoic

Phanerozoic
540

1
Radiolaria

Foraminifera

Cercozoa

Stramenopila

Haptista

Other chlorophytes

— Chlamydomonadales

[ ]
(0)

[ J
O

@
O
Streptophyta
Glaucophyta
Rhodophyta
Cryptista
Glycomonada_ 4@
2

Euglenida<8

Heterolobosea

Jakobida

Metazoa

Choanoflagellata

Filasteria

Fungi

Nucleariae

Amoebozoa

aejue(dIpUIA

epnse|daeyoly

mBio

FIG 4 Divergent mitochondrial traits have persisted for hundreds of millions of years. Schematic phylogeny of extant eukaryotes with divergence times
approximated based on reference 118. Clades highlighted in red have lost all mitoribosomal protein-coding genes from the mitochondrial genome. Dark
blue circles indicate groups with short or fragmented mitochondrial rRNA genes. Yellow circles indicate groups with highly divergent mitochondrial atp6

genes. Lineages possessing these traits diverged in the mid-Neoproterozoic or earlier (emphasized with a branch highlighted in yellow).
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conserved frameshift in cox? of all four analyzed species of the foraminiferan order
Miliolida, which suggests that a mechanism for stop codon read-through or posttran-
scriptional MRNA modification of this codon exists in this lineage. Manual insertion of a
single N into the miliolid sequences resulted in a continuous open reading frame (ORF),
which, when translated, spans the entire length of the cox7 protein sequence (111).
Posttranscriptional insertion modifications have evolved in several protist lineages,
including euglenids and diplonemids (95, 112). As the same pattern was found in all ana-
lyzed miliolid Foraminifera but not in any rotaliid species, we conclude that this is a
unique feature of Miliolida mitochondria, which might be of interest in the future charac-
terization of this group.

Conclusions. Why do mitochondrial genomes vary so drastically across eukaryotes?
Specifically, what triggers the wholesale transfer of mitochondrial ribosomal genes to
the nucleus in so many lineages? There are several possible benefits to mitochondrion-
to-nucleus gene transfer (113), and given enough time, mitochondrion-to-nucleus EGT
is considered mathematically inevitable (114). Perhaps the diversity of mitochondrial
genomes is simply a result of these evolutionary forces playing out over billions of
years, with no functional cell biological consequences. However, this seems a some-
what unsatisfying answer given the diversity of mitoribosomal structures that have
recently been solved (115-117).

In any case, retarian mitochondrial genomes represent a newly discovered ancient in-
dependent reduction in organellar gene content. The reduced gene complement of
retarians displays more similarities to the mitochondrial genomes of euglenozoans,
myzozoans, chlorophycean algae, animals, and fungi than it does to that of other rhizar-
ians (Cercozoa). While several of these lineages may seem obscure and disparate, it is im-
portant to note that each lineage diverged in the mid-Neoproterozoic or earlier (118)
(Fig. 4). These lineages therefore possess histories as deep and rich as those of animals
and fungi, which are each traditionally considered independent “kingdoms.” Given the
ancient divergence of forams and radiolarians, the strikingly reduced mitochondrial
genomes of Retaria have persisted without substantial change for over 500 million years.
The persistence of mitochondrial gene content over large time spans suggests that mito-
chondrion-to-nucleus gene transfer does not occur consistently but rather occurs in rela-
tively short macroevolutionary bursts. Further investigations into more deeply branching
taxa at nodes of apparent sudden mass EGT will clarify this notion. In sum, the retarian
mitochondrial genomes presented here bridge a major gap in our understanding and
provide the first glimpse into the mitochondria of this diverse group of ancient protists.

MATERIALS AND METHODS

Sample collection. (i) Foraminifera samples. We analyzed 31 benthic Foraminifera cells (15 spe-
cies) from the Spermonde Archipelago in Indonesia and from Coral Bay in Australia (see Table S1 for
samples and locations). All specimens were stored in >90% ethanol after sampling and transferred to
the Naturalis Biodiversity Centre laboratory for morphological species identification and molecular anal-
yses. Specimens were sorted into morphotypes and identified and photographed using a ZeissDiscovery
v12 stereomicroscope (Zeiss, Oberkochen, Germany).

(ii) Radiolaria samples. Marine surface water plankton samples were collected from the Pacific
Ocean near the California coast (33.454219, —117.705215) by towing an 87-um-mesh plankton net from
the back of a kayak on 7 February 2021 at 10:00 a.m. Bulk environmental plankton samples were imme-
diately aliquoted into 15-mL Falcon tubes and preserved with RNAlater. Plankton samples were stored
on ice during transportation to the lab. Radiolarian cells were identified by morphology and imaged
prior to single-cell isolation under an inverted microscope using a micropipette. Individual cells were
washed four times in DNase- and RNase-free water to remove extracellular material from each radiolar-
ian. This process was repeated twice with new water each time before each cell was transferred to 4 uL
of RNAlater and then stored at —20°C before further processing.

DNA extraction and sequencing. (i) Foraminifera. Single Foraminifera specimens were dried in ster-
ile 1.5-mL Eppendorf tubes and ground to a fine powder using a porcelain mortar and pestle. Total genom-
ic DNA extraction was carried out using the QlAamp DNA Micro kit (Qiagen; Hilden, Germany) as described
in reference 111. After extraction, DNA quantification was conducted using the FragmentAnalyzer system
(Agilent Technologies, Santa Clara, CA, USA). Since extracted DNA was already fragmented to an average
length of less than 500 bp, no further fragmentation using ultrasonication or enzymes was conducted.

Shotgun metagenomic libraries were prepared using the NEBNext Ultra Il DNA library preparation kit
(New England Biolabs, Ipswich, MA, USA) with the corresponding NEBNext multiplex oligonucleotides
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for lllumina, following the manufacturer’s protocol but reducing volumes by 50%. Final concentration
and fragment size were checked on the Tapestation system (Agilent Technologies, Santa Clara, CA, USA).
All samples were pooled in equimolar amounts before being sent for sequencing on the lllumina
NovaSeq 6000 platform (2 x 150-bp read length) at Baseclear (Leiden, The Netherlands), targeting 5 mil-
lion reads per sample.

(ii) Radiolaria. Single-cell DNA extractions were performed using the MasterPure DNA and RNA puri-
fication kit (Epicentre Biotechnologies) following the protocol as written, with the addition of a 30-min
incubation with a solution of lysis buffer and proteinase K at 65°C and 1,000 rpm. Purified total genomic
DNA was eluted into 4 ulL Tris-EDTA (TE) buffer and quantified using a Qubit HS double-stranded-DNA
(dsDNA) kit.

Genomic DNA from each cell was amplified using the Repli-G Advanced DNA single-cell kit and pro-
tocol (Qiagen) for amplifying purified genomic DNA. Final concentration and fragment size were
checked using the Tapestation and Qubit systems. An aliquot of each singly amplified genome contain-
ing a total of 500 ng DNA was provided to the ASU Genomics Facility for library preparation using KAPA
Biosystem'’s LTP library preparation kit before the samples were sequenced on the lllumina NovaSeq
6000 platform targeting 10 million 2 x 150-bp reads per sample.

Bioinformatic analysis. (i) Foraminifera. MultiQC (119) was used for the quality assessment of raw
reads. Megahit (120) was used for the initial assembly of reads into contigs, which were loaded into
Geneious Prime (v.2020) together with raw reads. Contigs were mapped against the mitochondrial ge-
nome of the rhizarian Lotharella oceanica deposited in GenBank (accession number NC_029731.1 [77])
with up to 50% mismatch, a word length of 5, and up to 10% gaps (gap size, 10) allowed. Since none of
the assembled contigs could be mapped, raw reads and contigs were mapped against the L. oceanica
reference with the settings mentioned above and against Foraminifera mitochondrial cytochrome oxi-
dase subunit | (COI) barcode sequences published in reference 121. Regions with high coverage of
mapped reads or with mapped contigs were manually inspected. When mapped contigs did not repre-
sent a full mitochondrial genome (which was the case only for Neorotalia gaimardi), mapped reads were
used as a reference for repeated mapping with the Geneious Prime mapper, with a minimum of 100 bp
overlap, a maximum of 1% mismatch, and no gaps allowed. Mapping was repeated until no further
reads could be mapped. The resulting contigs were checked for ORFs with mitochondrial translation ta-
ble 4, which was reported previously for protist mitochondrial genomes (10).

Contigs were submitted to the mfannot mitochondrial annotation web server of the University of
Montréal (https://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotinterface.pl). ORFs identified as
the cytochrome oxidase subunit 1 gene (cox1) were searched against the NCBI GenBank reference data-
base (122) and the Foraminifera cox1 database (121) using BLASTn to identify the cox7 sequence stem-
ming from putative symbionts and the putative foraminiferal cox7. Annotations were manually curated
in Geneious Prime. ORFs that were not annotated by mfannot were translated to proteins, subjected to
transmembrane prediction with TMHMM (123), and searched against Pfam (124), UniProt (125), Swiss-
Prot (126), and Ensembl (127) databases using the hmmer web server (84) to check for potential matches
with known mitochondrial genes. When a complete mitochondrial genome could not be obtained, the
putative foraminiferal mitochondrial genes were identified by mapping reads against the newly
assembled Calcarina hispida and Neorotalia gaimardi mitochondrial genomes as described above.

To verify that foraminiferal mitochondrial genes could also be obtained from previously published
data sets, we downloaded the Globobulimina (order Rotaliida) metagenome from the NCBI Sequence Read
Archive (accession number SRX3312059 [67]) and assembled the foraminiferal mitochondrial genes as
described above. Furthermore, we downloaded the genomic contigs of the foraminiferans Reticulomyxa
filosa (55) and Astrammina rara (56) and searched for mitochondrial genes as described above, though
none could be found.

(ii) Radiolaria. MultiQC (119) was used to trim and filter raw fastq reads, which were then normal-
ized with BBNorm (an addition to BBMap v.38.12). SAGs were assembled using SPAdes (v.3.15.2) (128).
Normalized reads were mapped back to contigs with BBMap, and genome completeness was assessed
with BUSCO (v.5.1.2) (129). BlobTools (v.1.0) (130) was used to visualize contigs with similar read coverage
and GC content. Mitochondrial contigs were identified using Andalucia godoyi mitochondrion-encoded
proteins as queries in tblastn searches against radiolarian SAG assemblies. The mitochondrial contigs iden-
tified were manually stitched together by identifying regions with overlaps of >50 bp between contigs
with similar read coverages.

Putative mitochondrial contigs were submitted to the mfannot mitochondrial annotation (https://
megasun.bch.umontreal.ca/apps/mfannot/) web server. Because mfannot did not identify full-length rRNA
genes within our mitochondrial genomes, nhmmer (131) was used to search each genome for rRNA genes
using manually curated rRNA databases. Fragments of mitochondrial genes were also identified by search-
ing intergenic regions and open reading frames that were not annotated by mfannot against a manually
curated database of mitochondrial protein sequences with representatives from all protist genera with a
sequenced mitochondrial genome in NCBI GenBank using blastx. Intergenic regions and ORFs with at least
four hits from the same gene were considered significant enough for annotation on the mitochondrial ge-
nome maps. Annotations were added manually using Geneious Prime.

Stop codon analysis. Amino acid multiple sequence alignments were used to assess the locations
within a mitochondrial gene at which radiolarians have a stop codon. Alignments were generated with
MUSCLE (132) using radiolarian genes identified by mfannot and genes from every available protistan ge-
nus in GenBank. If more than one mitochondrial genome existed for a genus in GenBank, then the most
recent two mitochondrial genomes from different species were chosen as representatives of that genus.
The total number of stop codons present within each mitochondrial gene from the two radiolarian
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mitochondrial genomes was visually counted. The 50% consensus amino acid identities at locations for
which a radiolarian mitochondrial gene had an in-frame stop codon were also tallied to assess which
amino acids radiolarian stop codons are potentially coding for instead. Radiolarian stop codons that
occurred at locations where the consensus alignment contained a gap or where the majority of genes
within the alignment were not present (the very beginnings and ends of the alignment) were not counted.
Pairwise alignments of radiolarian mitochondrion-encoded proteins were performed using MUSCLE and
inspected manually.
Phylogenetic analysis of Foraminifera and Radiolaria. Twelve mitochondrial protein-coding genes
(cox1, cox2, cox3, cob, nad3, nad4, nad4L, nad5, nad7, atp1, atp6, and atp9) were aligned with MAFFT
(v7.450) (133). The split nad1 gene was excluded from phylogenetic analyses. Aligned protein sequences
per gene were manually trimmed to the same length, and stop codons were removed. All analyzed
genes were manually concatenated. Gaps in the alignment were manually removed, resulting in an
alignment of 2,137 amino acids. A phylogenetic tree was calculated using the IQ-TREE web server (134)
with the JTT+F+G4 model and 1,000 iterations of Ultrafast Bootstrap (134). We visualized the resulting
tree using FigTree (v1.4.4) (https://github.com/rambaut/figtree/).
Data availability. Raw reads are available in the NCBI Sequence Read Archive (SRA) under BioProject
number PRJNA743004. The full mitochondrial genomes of Calcarina hispida and Neorotalia gaimardi have
been deposited in NCBI GenBank (accession numbers OP965949 and OP965950). The radiolarian genome
assemblies, multiple sequence alignments, and predicted mitochondrial gene sequences have been de-
posited at Figshare (10.6084/m9.figshare.16734961). Assemblies can be searched using BLAST on a
SequenceServer (135) at https://evocellbio.com/SAGdb/macher_et_al/.
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