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Quasi-local mass on unit spheres at
spatial infinity

Po-NinG CHEN, Mu-TAo WANG, YE-KAT WANG,
AND SHING-TUNG YAU

In this note, we compute the limit of the Wang-Yau quasi-local
mass on unit spheres at spatial infinity of an asymptotically flat
initial data set. Similar to the small sphere limit of the Wang-
Yau quasi-local mass, we prove that the leading order term of the
quasi-local mass recovers the stress-energy tensor. For a vacuum
spacetime, the quasi-local mass decays faster and the leading order
term is related to the Bel-Robinson tensor. Several new techniques
of evaluating quasilocal mass are developed in this note.
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1. Introduction

In general relativity, a spacetime is a 4-manifold NV with a Lorentzian metric
Jap satisfying the Einstein equation

R
Raop — 59@4,3 = 8nT,g,

where R, 3 and R are the Ricci curvature and the scalar curvature of the met-
ric gog, respectively. On the right hand side of the Einstein equation, Ti,g is
the stress-energy tensor of the matter field, a divergence free and symmetric
2-tensor. For most matter fields, 7,3 satisfies the dominant energy condi-
tion. For a vacuum spacetime where T,,3 = 0 (which implies R,g = 0), one
way of measuring the gravitational energy is to consider the Bel-Robinson
tensor [1]

o 1 oT
(11) Q,u,uaﬁ = Wp” aWpuoB + Wpugﬁwpuaa - §g,uVWap WBpoTa

where W,z3+5 is the Weyl curvature tensor of the spacetime V. For a vacuum
spacetime, the Bel-Robinson tensor is a divergence free and totally symmet-
ric 4-tensor which also satisfies a certain positivity condition [11, Lemma
7.1.1].

We recall that given a spacelike 2-surface ¥ in a spacetime IV, the Wang-
Yau quasi-local energy E(3,X,Tp) (see (2.1)) is defined in [27, 28] with
respect to each pair (X,7p) of an isometric embedding X of ¥ into the
Minkowski space R*! and a constant future timelike unit vector Ty € R31.
If the spacetime satisfies the dominant energy condition and the pair (X, Tp)
is admissible (see [28, Definition 5.1]), it is proved that E(X, X, Tp) > 0. The
Wang-Yau quasi-local mass is defined to be the infimum of the quasi-local
energy among all admissible pairs (X', Tp). The Euler-Lagrange equation for
the critical points of the quasi-local energy is derived in [28]. The Euler-
Lagrange equation, coupled with the isometric embedding equation, is re-
ferred to as the optimal embedding equation, see (2.2). A solution to the
equation is referred to as an optimal embedding.

When studying different notions of quasi-local energy, it is natural to
evaluate the large sphere and the small sphere limits of the quasi-local energy
and compare with the known measures of the gravitational energy in these
situations. One expects the following [12, 23]:
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1) For a family of surfaces approaching the spatial/null infinity of an
isolated system (the large sphere limit), the limit of the quasi-local energy
recovers the total energy-momentum of the isolated system.

2) For a family of surfaces approaching a point p (the small sphere
limit), the limit of the quasi-local energy recovers the stress-energy tensor
for spacetimes with matter fields and the Bel-Robinson tensor for vacuum
spacetimes.

There are many works on evaluating the large sphere and the small
sphere limits of different notions of quasi-local energy. See for example [3—
6, 14, 15, 1820, 22, 29-31]. The list here is by no means exhaustive. For
a more comprehensive review of different notions of quasi-local energy and
their limiting behaviors, see [25] and the references therein.

In a series of papers [5, 6, 29|, the above expectations for the Wang-
Yau quasi-local energy were verified. One of the key observations in [29]
(see [29, Theorem 2.1]) is that for a family of surfaces ¥, and isometric
embeddings X, the limit of E(X,, X,,Tp) is a linear function of Tj under
the compatibility condition

- |Hol

(1.2) Thﬂnq[}o T 1,

where H and Hj are the mean curvature vectors of ¥, in N and the im-
age of the isometric embedding &, in R3!, respectively. The compatibility
condition (1.2) holds naturally in the large sphere limit (rg = co) at both
spatial and null infinity and the small sphere limit (ro = 0) around a point.
In particular, [29, Theorem 2.1] is used throughout the sequence of papers
[5, 6, 29].

In addition to the large sphere limit and the small sphere limit, there is
another interesting situation where the compatibility condition holds nat-
urally, namely, the limit of the quasi-local mass on unit spheres at infinity
of an asymptotically flat spacetime. In a series of papers [9, 10], we eval-
uated the limit at null infinity to capture the information of gravitational
radiation. In particular, this is carried out in [10] for the Vaidya spacetime.
In this note, we evaluate the limit for unit spheres at spatial infinity of an
asymptotically flat spacetime, namely, at infinity of an asymptotically flat
initial data set.

Theorem 1.1. Let (M, g, k) be an asymptotically flat initial data set as
n (2.1). Let v be a geodesic on M which is parametrized by arc-length and
extends to infinity. Let p = y(d) be a point on v and ¥ be the unit geodesic
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sphere in M that is centered at p = y(d). The quasi-local mass E(%, X, Tp)
for Ty = (ap, —a1, —az, —as) has the following asymptotic behavior as d — oo
for each of the following isometric embeddings X of 3.

1) For the isometric embedding X : ¥ — R3, we have

B(S,2,Ty) = ¢ (aon(p) — a0 (p)) +Od ™),

where . and J* are defined in (2.5) and (2.6).

2) Suppose the initial data set (M, g, k) satisfies the vacuum constraint
equation (2.7). Let N be the future development of (M, g, k) with Weyl
curvature W. Let eq, e1, ea, e3 be an orthonormal basis at p with eg the
unit timelike normal of M in N. For (X,Ty) solving the leading order
of the optimal embedding equation (2.2), we have

1 1 - — i _4-3¢4
E(Ea‘X?TO) - % (Q(€0a€07€07T0) + %WOinWO 0J> +O(d 4-3 )

Here Woi0; = W (eo, €i, €0, €)(p), Q is the Bel-Robinson tensor of N at p,
and Ty is identified with the timelike vector ageg + Z?:l aze; at p.

Our investigation begins with the Brown-York mass. We compute the
derivative of the Brown-York mass and use it to rewrite the Brown-York
mass as a bulk integral. The integrand consists of the scalar curvature and
quadratic terms of the difference of the physical and the reference data,
see Lemma 3.1. We use Lemma 3.1 to evaluate the limit in Theorem 3.3.
The scalar curvature corresponds to the stress-energy tensor whereas the
quadratic terms, which decay faster than the scalar curvature, correspond
to the Bel-Robinson tensor.

In the remaining part of this article, we consider the Wang-Yau quasi-
local mass for initial data sets which are not necessarily time-symmetric.
We start by solving the optimal embedding equation. The structure of the
equation is similar to that of [6] for the small sphere limit and of [10] for unit
spheres at null infinity of the Vaidya spacetime. After obtaining the optimal
embedding, we use it as the Dirichlet boundary value to solve Jang’s equation
in the bulk. Using the Schoen-Yau identity from [24] and the canonical gauge
for the quasi-local mass from [27], we obtain Theorem 4.1 which generalizes
Theorem 3.3 for the Wang-Yau quasi-local mass. While the formula is more
complicated, it still consists of the integral of the stress-energy tensor and
some quadratic terms. In Section 5, we compute the terms appearing in
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Theorem 4.1 explicitly and evaluate the limit. Theorem 1.1 is obtained after
assembling these results. We observe that the answer is very similar to the
small sphere limit obtained in [6]. In Section 6, we demonstrate how the new
approach of this article can be applied to recover the result of [6] for the
small sphere limit.

2. Review of the Wang-Yau quasi-local mass and
asymptotical flatness

Let X be a closed spacelike 2-surface in a spacetime N with spacelike mean
curvature vector H. Denote the induced metric and connection one-form of

> by o and
J H
_ N
o) = <V<~>|H|’ |H|>

where J is the reflection of H through the incoming light cone in the normal
bundle. Given an isometric embedding X : ¥ — R*! and future timelike
unit Killing field Ty in R3!, we consider the projected embedding X into
the orthogonal complement of Tp, and denote the induced metric and the
mean curvature of the image surface ¥ by ¢ and H.

The quasi-local energy with respect to (X, Tp) is

(2.1) E(S,X,Tp) = /HdZ

_ / (VIT V7P cosh0lH]| ~ Vr - V0 — agr (V7)) d.
87T b))

where V and A are the gradient and Laplace operator of o, 7 = —(X, Tp) is
considered as a function on the 2-surface, and

0 = sinh™! —4r )
|H|\/1+ |VT|?

Moreover, we say that 7 solves the optimal embedding equation if

AT
2.2 : — V |sinh ! (-2 - -
(2.2) div, (pVT \% [sm (’HOHH’)} am, + OéH> 0,

where

\/|HO|2 + 1—HV7’|2 \/|H|2 + 1—HV7’|2

V1+|VT|?

Next we recall the definition of an asymptotically flat initial data set.
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Definition 2.1. (M3, g, k) is an asymptotically flat initial data set if, out-
side a compact set, M3 is diffeomorphic to R3\ {|z| < ro} for some ro > 0
and under the diffeomorphism, we have

9ij — 65 = O(|z|7*),  8gi; = O(Jz|7'7%),

(2.3) N 3a
829ij = O(|1’| 2 )a 8391']' = O(|$| 3 )’
and
(2.4) kij = O(|x|717), 0ki; = O(|z|7>7), 0%kij = O(|z|~>7%)

for some a > % Here O denotes the partial differentiation on R3. Further-
more, we shall assume that for the constraint equation, we have

(25) 5 (Rlo) + (k) — [KP) =, = O ), 0 = Olal =)

(2.6) D'(kij — (trk)gij) = Jj,  J = O(|z|7>7*),0J = O(|2| ")
Recall that an initial data set satisfies the dominant energy condition if
p=|J|

On the other hand, an initial data set satisfies the vacuum constraint equa-
tion if

(2.7) i=0and J=0.

In this case, there is a unique spacetime N with initial data (M3, g, k) which
solves the vacuum Einstein equation.

Let v be a geodesic on M which is parametrized by arc-length and
extends to infinity. We consider p = ~y(d) for d — co. Consider the normal
coordinate (X!, X2, X3) centered at p and let X(s) be the sphere of radius
s in the normal coordinate. The goal is to evaluate the quasi-local mass of
the surface ¥ = ¥(1). In particular, we are interested in the leading order
term in d.

The set-up of our calculation can be described as the following. On a unit
ball B of R3, there is a family of Riemannian metrics g;;(d) and symmetric
2-tensors k;j(d) parametrized by d. The metrics g;;(d) (the symmetric 2-
tensors k;;j(d), respectively) are the pull back of the metrics (the symmetric
2-tensors, respectively) on the unit geodesic ball centered at v(d), dy < d <
00, a geodesic on M that extends to spatial infinity. We assume that
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1) the standard Cartesian coordinate system (X!, X2, X3) is a geodesic
coordinates system for each g;;(d) such that the origin of the coordi-
nates system corresponds to y(d);

2) with respect to (X1, X2, X3), the asymptotic flat conditions (2.3) and
(2.4) are satisfied with |z| replaced by d;

3) the constraint equations (2.5) and (2.6) are satisfied with |z| replaced
by d.

Namely,

(2.8) 9ij(d) — 05 = O(d™®), gij(d) = O(d~17),
| Pgij(d) = 0(d %), 8gy(d) = O(d*"%),
and

(29)  hij(d) = O(d%), dkyy(d) = O(d>~), 8hyj(d) = O(d~*~)

for some a > %, where 0 now denotes the partial differentiation with respect
to X1, X2, X3 Moreover,

(R(g) + (trk)* = k) =, p=0(d"**),0n=0(d"*"*)
(2.11) D'(kij — (trk)gij) = Jj, J = O(d™>"*),0J = O(d~*~°).

N

In particular, let R;;(d) denote the Ricci curvature of g;;(d), by the
Taylor expansion at a point in B with respect to the geodesic coordinate
system (X!, X2, X3), we have

(2.12) gij(d)(X17X27X3) = 0;j — %Rikjl(d)(O,O,O)Xle i O(d,g,a)7
(2.13)  Ri;(d)(X', X2, X%) = Ri;(d)(0,0,0) + O(d~*),

(2.14) ki (d) (X', X2 X?) = kij(d)(0,0,0) + 9pkij(d)(0,0,0) X™
+0(d™379).

These expansions will be abbreviated as

1 —3-a
(2.15) gij = 0ij — gRikjl(p)Xle +0(d™7),
(2.16) Rij = Rij(p) + O(d—>~%),

(2.17) kij = kij(p) + Omkij(p)X™ + O(d ).
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We will also use the spherical coordinate system (s,u!,u?) on B such that

the coordinate transformation (s,u!,u?) — (X1, X2, X3) is given by X¢ =
st (ul,u?),i = 1,2,3, where &*,i = 1,2,3 are the three standard coordinate

functions on the standard unit sphere in R3.

Notation: Einstein summation notation will be used throughout the paper,
where 4, j, - -- sum from 1 to 3. Since we are working in normal coordinates,
we can freely raise or lower indices for tensors at p = (d).

3. The Brown-York mass

In this section, we consider a time-symmetric initial data set and compute
the limit of the Brown-York quasi-local mass. The starting point is the
following lemma for the Brown-York quasi-local mass: Given a surface ¥ in
a 3-manifold (M, g), let R be the scalar curvature of g. Let Q be the region
in M bounded by ¥. Suppose 2 is foliated by surfaces ¥(s) with positive
Gauss curvature where 0 < s < 1, ¥(1) = X, and 3(s) shrinks to a point as
s tends to 0. Let o(s) be the induced metric on ¥(s). The positivity of the
Gauss curvature of o(s) guarantees an isometric embedding into R3. Denote
the mean curvature of 3(s) in M by H(s) and the mean curvature of the
isometric embedding of ¥(s) into R3 by Hy(s). Let h(s) and ho(s) be the
second fundamental form of 3(s) in M and R?, respectively.

Lemma 3.1. The Brown-York quasi-local mass, mpy (X), of ¥ is

1

- mw/Q (Iho(s) = h(s)? = (Ho(s) — H(s))* + R)

mpy (%)

where R is the scalar curvature of g.

Proof. Assume that X(s) are given by F(z,s):X x (0,1] - M with
DF(%S)(%) = f(z, s)v(z,s) where v(z,s) is the unit normal of ¥(s). We
first show that the derivative of the Brown York quasi-local mass is given
by

d

(3.1) —E(X(s)) = / S (]ho —h|?—(Hy— H)? + R) .
dS E(S) 2

The above formula is known, see [21, Theorem 3.1] for example. For com-

pleteness, we include the proof here. We have

d
ga(s) =2fh.
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By Proposition 6.1 of [28],

d

3.2 —
(3.2) a5 Jre

Hy(s) = / f(HoH — h - hy).
Z(s)
On the other hand, from the second variation formula, we have
d
(3.3) / H(s) = / f(H? — Ric(v,v) — |h|%).
ds Jsis) S(s)
The Gauss equations of ¥(s) in R? and M imply:

1
K =3 (H3 ~ [hol?)

1
K :g — Ric(v,v) + §(H2 — ).
Taking the difference of the two Gauss equations, we obtain
- _R 1o e 2
(3.4) Ric(v,v) = 5 + 2(H |h|* — HF + |hol?).

The claim follows from subtracting (3.3) from (3.2) and using (3.4) to replace
the Ricci curvature term in the result. The lemma follows from integrating
(3.1) along the foliation. O

In our setup, X(s) is the sphere of radius s in the normal coordinates
centered at p = y(d) € M. The induced metric and second fundamental form
of ¥(s) are given by

- 1 i i ko _a_
Oab = 8% (Gap — gRika(P)$Z$i$k$l) +0(d™%)

h($)ab = 5Gap + O(d~>7%)

where R;ij is the Riemann curvature tensor of the metric g on M and 572
is a shorthand for 9,%".

We first compute the difference of the mean curvature and second fun-
damental form of ¥(s) in M and R3.

Lemma 3.2. Consider the surface ¥(s). We have
(3.5) Ho(s) — H(s) = —sR;j(p)3'# + O(d**)
and

(3.6) ho(s) — h(s) = s> Rij(p)TL @) + O(d—37).
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Proof. We will use repeatedly an implication of (2.5) that R = O(d~ 3-ay,
Let h and ho denote the traceless second fundamental forms. By the Gauss
equations,

1 1~
2K = R — 2Ric(v,v) + 5H2 — Q]h‘Q
1 1 —~
— “H?2 _ Z|hal2.
2 0 2|h0’
Since the unit normal of X(s) is v = 7 6X +0(d3%) and Ric(v,v) =
Rij:i’i:f;j +0(d=37%), we get Ho(s) — H(s) = —sRy;i FE 4 O(d39).

Taking the difference of the Codazzi equations for ¥(s) in M and R3
implies

~ ~

-~ 1
V(ha(s) = hoas(s)) = —50h(Ho(s) — H(s)) — Ric(v,0p) + O(d~"7**)
= Op(sRi;#'%7) + O(d—37).
One readily checks that

~ ~ 3
hav(s) = hoas(s) = s° Ri; @4 i+ Rl]x o

satisfies the above equation. Indeed, we find the unique solution as there is
no divergence-free, traceless symmetric 2-tensor on S2. (]

We obtain the following result for the limit of the Brown-York mass:

Theorem 3.3. On ¥ = X(1), we have

mpy(S) = ~u(p) + 0(d47).

6

For an initial data set satisfying the vacuum constraint equation, we have

1
—Q(eo, €o, €0, €0) + O(d572%)

mey (%) = &5

where @ is the Bel-Robinson tensor (1.1) at p of the solution to the vacuum
FEinstein equation with the time-symmetric initial data (M, g).
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Proof. On Q, R = R(p) + O(d=*~%) by (2.5). Applying Lemma 3.1, together
with
[h(s) = ho(s)| =0(d~>~%)

|
(3.7) Ho(s) — Hi(s) =0(d~>),

we obtain the first formula.
For a vacuum initial data set, we compute

|ho(s) — h(s)[> = (Ho(s) — H(s))
= 82 Rij Ry (6107 — 5837 5™ — §9mg'zly + O(d—5729).
Since R = 0, we have

1 odm (1 e 1 y 5
mpy (2) = 1Ry R - 3/0 stds + O(d™°7%%) = oY +0(d 2ay,
Finally, if N is the solution to the Einstein equation with time-symmetric

initial data (M, g), its Weyl curvature satisfies

Woioj = Rij.,
WOijk =0.
This finishes the proof of the theorem. U

4. Optimal embedding equation and the Jang equation

In this section, we describe our strategy to handle the second fundamental
form k;;. We study the optimal embedding equation on ¥ and the Jang
equation on 2. In particular, we first solve the optimal embedding equation
on the boundary. Then we solve the Jang equation on the bulk € using the
solution of the optimal embedding equation as the boundary value

Consider the product manifold Q x R with the product metric dt? +
gijdX i{dX7. The data kij, pu, J are extended parallelly along the R factor.
Jang’s equation for u € C%(Q) reads

. D'uDIu D;D;u
4.1 V- —— | | kij— ——— | =0
(1) <9 1+|Du\2> ( Vi rDuP)

Denote the graph of v in Q x R by Q and & = 9. Let é4 be the down-

0 - _ _ _ D% 9 5
ward normal of Q and Y; = | k W) (axi ) 64).
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Let g be the induced metric of Q. Let Hy be the mean curvature of the
isometric embedding of X into R3. We recall

E(X2

(/ HydY — / V1+|V7|2cosh |H| + A0 — aH(VT)] d2>

where sinh# = — AT By [28, Theorem 4.1],

|H|\/1+[V7]?

1 ~ -
E(S,X,Ty) = — (/ [HO CHA Y, é3>} ds
8T
+ / [|H\\/ 1+ |V7|2(cosh @ — cosh @) + AT(6' — 9)} dZ),
where 0’ is defined by
cosh ¢e3 — sinh ey = cosh el — sinh @'ell

with sinh ¢ = — . By the Schoen-Yau identity [24, (2.29)]

w/1+|v BN
2

DiDju

kau I S —
Y /1 + [Duf? ;

Together with Lemma 3.1, we obtain

2(pn— J(é)) = R — —2|Y |2+ 2D';.

Theorem 4.1.

B X.T0) = o [ (n- J(e) dd

1 D;D;u ~
+ — kij — ———2—| +2|Y|2| dQ
167r/ T VIEIDuP|, ¥
1 -
+ 15 | [ho(s) = h(s)|* = (Ho(s) — H(s))?] dQ2

1
+ 5 / []H|\/ 1+ |V7|2(cosh @ — cosh @) + A7(0' — 9)} ax
7r
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5. Limit of the Wang-Yau mass

In this section, we study the optimal embedding equation and the Jang
equation with respect to the observer

To = (ap, —ai, —az, —as).

Before restating our main result, Theorem 1.1, recall that in the vacuum
case we view the initial data set (M, g,k) as a spacelike hypersurface in
its future development N and denote the Weyl curvature of N by W. Let
ep, €1, €2, e3 be an orthonormal basis at p with eg the unit timelike normal
of M in N and identify T with the timelike vector apeq + Z?:1 a;e; at p.

Theorem 5.1. The quasi-local mass E(3,X,Ty) for Ty = (ag, —a1, —az,
—as) has the following asymptotic behavior as d — oo for each of the follow-
ing isometric embeddings X of 3.

1) For the isometric embedding X : ¥ — R3, we have
1 ; 3 94
E(2, X, T) = ¢ (aon(p) = aiJ'(p)) + O(d %),

where i and J* are defined in (2.5) and (2.6).

2) Suppose the initial data set (M, g, k) satisfies the vacuum constraint
equation (2.7). For (X,Ty) solving the leading order of the optimal
embedding equation (2.2), we have

1 1 - — i 430
E3,X,Ty) = 90 <Q(60,60,€0,T0) + %WOMWO 0]> +0(d 4-3 ).

Here Woioj = W (eo, €;, €0, €)(p) and Q is the Bel-Robinson tensor of N at p.

Remark 5.2. We mostly work at the initial data level and the error term
has order O(d—°72%). Only when the result is expressed in terms of the space-
time curvature using the Gauss equation of N, Wol'oj = R;; + O(d_z_zo‘),
does the error become O(d—473%).

The outline of this section is as follows. We solve the optimal embedding
equation and the Dirichlet problem of Jang’s equation in the first two sub-
sections and then evaluate each integral in Theorem 4.1 in the subsequent
three subsections. Finally, we put everything together to prove Theorem 5.1.
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5.1. Optimal embedding

Let us begin with the optimal embedding equation.

Lemma 5.3. The following pair Ty = (ag, —a1, —ag, —as) and

1 1 szn man i
X0 :51%( PIEE + <Ok ()T + p)eP e

o 1 .
X' =3"— ng(p)i“" — ngn(p):EmJE”i“Z

6a0

solves the first two order of the optimal embedding equation. In particular,
the above solution gives a time function T = —(X,Ty) with

; 1
(5.1) T=a; "+ ao [

1 . Lo
Skis ()T + LOikjm (P)T'HE™ | — cailty (p)T"

Proof. With Ty = (ag, —a1, —a2, —as), the optimal embedding equation reads
1 il v 1 v
§A(A +2)X° = divay + ;i [dw((Ho — |H))VzZ') + iA((HO —|H|)z")

0
+0(d=37%).

See [7, Section 7]. We first compute

trek
H

21%:): 3 —20,, k”x i+ 8 kizh

(p)a = —k(Oa,v) + 04 < ) L O(d 3

— §amkl-j§: FIET 4+ O(d7379).
Using the Codazzi equation, 9;kim, = Omki; + O(d=372%), we obtain
divay = —2k;; (67 — 33'%7)

L 1 ... 1 .. . 1 .. )
+ 100 ki <mfxm - 0V — " — 55]’%1) +0(d™37%)

Note that 6% — 3337 and #'3/3™ — %(Wi’m - %(5“"9%4 — %(Vmici are —6 and
—12 eigenfunctions respectively.
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On the other hand, by Lemma 3.2 and |H| = \/H? — (truk)?, we have
Hy— |H| = —R;;#'%7 + O(d™*2%)
and

. . 1 »
div((Ho — [H|)VZ') + SA((Ho — |H|)z")
= 10R 33" %" — AR, 3" + O(d™*72)
It follows that the given X0 satisfies the equation up to error of the order
O(d7272a)'

For the X, we use the well-known formula of Riemann curvature tensor
in 3-dimension

R
(5.2) Rikji = 9ij Byt — guRij + gruRij — grjRi — 5(9@'%1 — il9kj)

and (2.5) to show that the induced metric is
. | R T 9
Oap = Oap — nginxé — gRijazlmjaab 4+ O(d—2729).

The lemma follows from the linearized isometric embedding equation into
R3. O

5.2. Jang’s equation

We work in local coordinates and  is identified with B; ¢ R®. We discuss
the solution of Dirichlet problem of Jang’s equation

ij _ D'uD’u o _DiDju ) _ .
(5.3) (g l—HDuP) <k’LJ \/m) 0 in By
u=T on 0B

Let bij = Gij — (5@' + %Rikjl(p)Xle and Cij = kz’j — kij (p) — 8mk7ij (p)Xm By
Definition 2.1 and (2.12), we have

(5.4) 1bijllor (s llijllonpy < Cd™°

Lemma 5.4. Let u be the solution of the Dirichlet problem of Jang’s equa-
tion on Q with boundary value T given in (5.1). Then u = a; X'+ ;X' +
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%aokinin + %BiijinXm - %aiRan + v, where

1 2 - 1
Ty = ————  —aa;W," 7 - 2q,R!
m 4_}_% aoala] 0m (p)+4+ai§ aj m(p)

1 da, -
+ . a;a; R (p)
+HET S @

a 1
Bijm = go(t%k‘jm(p) + 0jkim(p) + Omki;j(p)) — 5(5iij + 8im T + 0miTy),

and ||v]|c2s < C'd=37% for some constant C' and 0 < B < 1 depending only
on C in (5.4).

Proof. We write
u=a; X" +bX"+ iagk‘in X7 + éBUmX XIX™m — gaszX “+ v

for constants b;, B;jm to be determined from the leading order of Jang’s
equation.
Define a symmetric 3-tensor

a
Tijm = go(aikjm + 0jkmi + Omkij) — Bijm.
We need to show that 7 — w is perpendicular to all —2 and —12 eigen-

functions on dB; = S? which, by the expression (5.1) of 7, is equivalent
to

1 o ,
/ (ijxxjxm - b:n) #ds? =0,
52 6
. 1 1 1
/ Tijmd@ 7 5™ (3 3757 — 5:#5?‘1 - 5@?5‘# -~ 5:5615’?)(152 =0.
82

The second equation contains 7 linear equations with 10 variables. Using [8,
Lemma 5.3], we solve T;jm by free variables T111, 1222, T333:

1

o=

and then solve b; =
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It remains to solve T}, from Jang’s equation

iy DiuDiuy D;D;u
(919 — D) g — — e
+ [Du| 1+ [Du

By the Codazzi equation, Oy, ki; — Oikm; = —V_Vojmi + O(d=372%), it follows
that

) =0

Wi
VT [Dup Y @
where
1/1

— — al
— Woimj — Wojmi + ;O(Riljm + Rimjl))-
The leading order of Jang’s equation thus reduces to 3 linear equations

a; Q5
> (6 = =5")Sijm = 0.
ap

We have

a; Q5
0="> (8- ~57) 0T + Gjm s + i T))
. 0
17‘7
T aiaj

LW+ )~ 20,

wa,
=2 GinTit = (Wl + Wy, !) — 2R,
7

where G, = (4+ %)&m - 2“;‘%’". We solve for the inverse matrix of G,

_ 1 3 amay
(G 1) 1= (24_7)5[_’_2
" ar hes o) [P Emtg
to get

1 2a;a I
s L e

ag ag

1 4 y
+ T . a;nR”aza]
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After obtaining the leading order of u, we treat Jang’s equation as a
quasilinear partial differential equation Q(x, Dv)v =0 in By and v =0 on
0By. By (5.4), we can choose a constant C’ that depends only on C' such that
+C'd~3~* (|z|* — 1) is a sub/super solution to this equation. This provides
the CY-estimate and the boundary gradient estimate. By [16, Theorem 15.1]
and [16, Theorem 13.7], we get the gradient estimate and Holder estimate
for the gradient. The C%# a priori estimate for v and the solvability of u
then follows from the Schauder estimate and [16, Theorem 11.4]. O

Proof of Theorem 5.1, (1). We first examine the limit for an initial data set
with matter fields. We will show below that all terms except u — J(é4) are
of the order O(d=*72%). As a result,

1 -
EX) = o /(u — J(£4))dQ + O(d™*72).
The assertion follows from dQ = agdz+O(d~2"%) and é4 = a—lo(—l, ai,az,as)
+0(d=179), 0
For a vacuum initial data set, Theorem 4.1 becomes
1 D;D ’
iJju 0
(5.6) E(Z,X,Tp) = / kij — ———2——| +2|YV 3| dQ
16 2 g
. VIt D,
1 ~
67+ | [ho(s) = () = (Ho(s) — H(s))?]

1
(5.8) + 8/ [|H|\/1 F|V7[2(cosh & — cosh ) + AT(0 — 9)} s
Y5
5.3. Evaluation of (5.6)

Lemma 5.5.

1 /
167T B

2
+2[Y[2 | d©
g

_ DiDju

7 /14 |Dul?

1 1 1 1 y
= — > T} — s—TmaiR'™ — (ag— — ) Rij(p)RY
500 2 97ay aR™(p) + %0 (ao ao> i(p)RY (p)
1 il j a0 \z, = imj
Bdag ;jl a;a; R" (p) Ry (p) + =0 Woimj(p)Wo ™ (p)

1 T 7 imj T —5—2«
— gamWO 7 (p)Woios (p) + O(d—°72%).
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& — .. m —3—a :
T SiimX™ + O(d ) in the
proof of Lemma 54 Since €4 = Haiif"”%)—&—O(d*l*o‘), we have Y =
sz,p aOS’LPmX 8X +O(d - a) and

1 D;D;u
w6 L s = DIy v,

Proof. Recall that we write k;; —

167 1+ |Du2?
ag a;a; a,a
= 60 Z [(5@' - j)SzpmSqu(épq %)
i,§,m.,p,q % %
a;a; . apa, e
+2(5ij - Z;)Zylsipmsqu] +O(d b QQ)
Gy A
a a;a;aya _
Y T D Sl TWE PRt
[ijm L
2
a 5
o | Z 50T (T [0
©,7,m m %

where Jang’s equation is used in the last equality. We compute, by (5.5),

2
3 (Z sm> = o T+ 2R,
m 7 0 m

1 2 Im pn
= 52 (2521’ + 10T, R™ + 4aja, ™R )
and
15 )
Z ijm — ZT + Z WOij +W0]mz)
i,5,m ©,J,m

2
+ 2 Z (Qam ij 2aZR 0ij — ajRim — a;i Rjm — alRé»(Sim — alRﬁij>
’]’

-2 Z WOzm] + WO]mz)(Riljm + Rimjl)

a]al7m

By the first Bianchi identity, 2 Zz im Woim; ng,m D jm Woim;Woimj and
hence ), g m (Woimj + Wojmz) =3>, im W(]zm] Direct computation shows
that the third term in the bracket is equal to - (6 >, a2, R — 6a;a; R”RJ ).

m m= g
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Finally, by (5.2), the last term in the bracket is equal to

Ay — -
—12 Z ?TZWOiijOin .

17]7m

5.4. Evaluation of (5.7)

Lemma 5.6.

= [ [ihols) = () ~ (Fos) — H(s))?*] @
= 601%1%”' (PR (p) + O(d=>7*).

Proof. By Lemma 5.8 below, we have

3\/1+]ai@5:i]2 o 4
ho(s) — h(s) = s*——Ry;, I+ 0(d>7?).

T,
ap avb
We compute

|ho(s) — h(s)|z — (Ho(s) — H(s))”
= (detz ()" (|ho(s) = h(s)[3 — (trzho(s) — trsh(s))?)

5” ij i~ —5—2a
= CT% (RinJ — 2Rinl{L‘Jl’l) —|—O(d 52 )

Finally, we note that the volume form dQ = agsdS?ds + O(d=2~*) and
hence

/ [[Ro(s) — h(s)|* = (Ho(s) — H(s))?] d©2

1 1 3 . . .
ag Jo Js2
4 .
[ — L RY d—5_2a )
15CLURZ]R + O( )

O

The rest of this subsection is devoted to computing the difference of second
fundamental forms of ¥, in Q and in R3, Lemma 5.8. We first solve the iso-
metric embedding of 3, into R? and then compute the second fundamental
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form. Recall the solution of Jang’s equation is u = a; X* + %aokinin +
%BiijinXm — G Rn X" + O(d=*). The induced metric on the graph of
Jang’s equation is then given by

1
Gij = 5@']’ + a;a; — §RikﬂXle + ao(aik]’m + ajk:im)Xm

—_

1
fajath- + O(d_?’_a).

+ *(CLZ’Bﬂm + ajBilm)Xle — 6

éaiaZRU —

[\

In polar coordinates (s, u®), we have § = gssds? + 2Gqsdsdu® + Gapdu®du®
where

Gss = 1 + (a;3")?

rad (25“0‘%@]5:’“ +8° Bjim @ 77" — 3“sz]-£~3> +0(d?7).
Jas = 80iTaa; T + sa;i, <Saokjmxjx + ,S Bjimd! &7 — 6azRZjaZ~j)

i sigm 4 L2 izl 1 =i —3-a
+ sa;x7 | sagkimT, 2" + 55 Bz, 2™ — galRli;pa +0(d ).
2

_ ~ S e i s
Gab = 8°Fap + (aiaj - 3Rikaa?kxl> i@ + s°ao(aikjm + ajkin)TLEE"
1=

1
+ 534(aiBﬂm + ajBZlm)x xbx

+O0(d™379).

1 .y
~m 2(,. l . AV
- (aiqy Ry + aja R;) T,

Let o(s) be the induced metric on ¥s. We consider the isometric embed-
ding of (Xs,0(s)a) into the hyperplane X = a;X? in R* with the form
X0 = q;5(2" +9') and X¢ = s(z* +p°) where y’ = O(d~17%) and satisfies
the linearized isometric embedding equations
o . i 32 k1
(65 + aia;)(Ze] + Tny) = ——le]lfn Hili :L'b
2
s
+ sag(aikjm + a;kim)i™ 3 xi + ?(aiBﬂm + ajBilm)xlwmx’ x{?

1 —3—a
- g(aiRé» + a;RYa 7, ;Eb +0(d=37%).

It’s not hard to see that y’ = yOi 4 yi with
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and
2

o 5 o

(5.9) (83 + aia;) (Tay; + Thya) = =5 Ry @ 22,3,

Equation (5.9) is a linearized isometric embedding equation on an ellipsoid.
Let ¥ = (8;; + a;aj)y’. One readily verifies that
2

7= —% (R;l;zj + Rjk:zj:f’fi«i)

solves (5.9).

The family of isometric embedding of ¥, forms a foliation F': (0, 1] x
S? 5 {X% = a; X"} C RY. From F.(0s) = (& + v’ + s ) (aip%s + %) and
Fi(0a) = s(Z% + 98)(ai5% + %), we could write the flat metric, denoted
by g, in (s,u®) coordinates. Straightforward computation shows that

Jss = Jss + —282R,‘ji‘i§:j + O(dig*a)
Gbs = Gbs — S"RijF 3 + O(d™37).
Remark 5.7. It shouldn’t be surprising that § — g does not depend on y(©);

namely, g remains flat after the graphical perturbation of u. Indeed, if g;; =
9ij + uijuj, then the curvature tensors are related by

1 k 2
— WRUPIVPUV U+X2.7 1

D k k
Rij 1= Rz’j l

where X is quadratic in the Hessian of u.
We are ready to compute the second fundamental forms.

Lemma 5.8.

7 7 sVIT ;v | =i ~j —3—a
h Y Ry(p)iEE + 0(d ).

ab — hab =-S5
ap

Proof. We denote the leading order of 7 by 7 = a;#*. The second fundamen-
tal form of ¥, can be computed from the formula

%asgab - Vagbs

V Jss — Uabgasgbs
Here o is the induced metric of ¥,. We note that o, = $2(Gap + TaTp) +
O(d=17).

h =
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We compute

2
=~ _ _ab- = ag —2—a
gss — 0 JasGbs = 1+ ’@77_|2 + O(d )
L Gt — Vg B g O(d2 )
- - == siﬂda .
9 sJab adbs 1+ |V’7_'|2 ab

Hence, the difference of second fundamental forms is given by

3 . 1 T O.cdv o (5 _ O.Cd* =
h—bh— 785gab _ vagbs . (gss gcsgds) 3(985 gcsgds)
2 2ay

= 3 ;a(gbs - gbs) = _ —4-2
(1 |VFER): 208 B L IVE)2 + 0(d @
(14 |V7]7)2 + o \/1+|VT2+0( )
\/1+\V~7"|2 1.

= T (2(953 — Jss + UCdgcsgds - UCdgcsgds) S0 qh

+ va(gbs - gas)) + O(d_3_a)'

We compute

. - VT = e s
Va(gbs - gbs) = Va(gbs - gbs) - mvavfﬂ—(gcs - gcs) + O(d 3 2a)
i VF ==
— SSRijQ‘,‘ZijO'ab — SsRZ]IZSUi — WVQVZ)T('QCS — gcs)

+0(d=37%).

On the other hand,

1/, _ _ ..
5 (gss —gss + Uab(gasgbs - gaszs))

e 1 3 B N . B . o
= _S2Rij$zxj + §UCd (gcs (gds - gds) + Gds (gcs - gcs)) + O(d 3 a)

. \%3
— _2p. iz e —3—a
= —s5"R;;x"7’ + T ST T(Ges — ges) + O(d ).
Putting these together, the assertion follows. O

5.5. Evaluation of (5.8)

In this subsection, we evaluate the integral resulted from the difference
between the gauge induced by Jang’s equation and the canonical gauge.
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Recall the solution of optimal isometric embedding equation is 7 = a;&* +
%kiji"lﬂ + %&k_:jma}la}? ™ - %Rmi“" and t‘he ‘solution of Jang’s equation is
u=0a; X"+ ;L& + Saoki; X' XI 4 §Bijm X' XIX™ — % R;;, X™. We will need
the following lemma.

Lemma 5.9. For 7 = ;7' + v, v = O(d™17%), we have
A A 2 i1 ik~ —3—a
AT = AT+ Av — gaiRijx] + gaiRkla: ¥z 4+ O0(d )
Lemma 5.10.

81/ [|H|\/1 VT 2(cosh & — cosh 8) + Ar(8 — 0)] s
T

1
54a0

(Z T2 + 2Tma; R™ (p) + a;a; R" (p) R (p)> +0(d™>7),

Proof. For the canonical gauge, we have

_ —AT
V14 |Vr|?
1

. . 1 ...
= [20@1‘2 + 3@0]{1'3' (.fl.fj — gdm)

Vit Ve

+ aodikjm (2@’5;35;”1 — @ 6T 5:’”5”)>

(H,e4) = |H|sinh 0 =

a;

T3

) 1 o
RLF™ — SamRija?Z:E]im} +0(d379).

For the gauge {e},€}} induced by Jang’s equation, we have [27, Theo-
rem 4.1] €}, = sinh ¢e3 + cosh pey with

inh ¢ —us
S1n =
V14| V72
_ 1 | o 1 .
= 7(&2‘@@ + éTzi'Z + aokijfzfj + iBijmi‘Zi‘]i‘m — EaiRzlii‘n)

VI IVAP

+0(d™37%)
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and hence

(H,¢}) = cosh ¢(H, eq) + sinh ¢(H, e3)

a i - - i
- m (=Kii + ki@ & — Omkiy@™ + Opkiya™ '3
+ _ a; 7' + lT:zi + agk; 27 + 1B-- FEigm — 1a-RZ‘ "
/71 T |V’7"2 7 6 % 1] 92 ym 6 14lpy

1 . _a
. (2 — gRij:EZSUJ) + O(d 3 a).
By the constraint equations, we get

! 2 (Tn@™ + a; RE) + O(d™>7).

V1t V23

Next, using two elementary computations

|H|(sinh @ — sinh §') =

inh 8’ + sinh 6
ho — hf = St inh ' — sinh
cosh @ — cosh 8 cosh 0 + cosh e(sm 0" — sinh 0)

and (up to error of order O(d—6—3a))

0" — 6 = sinh(#' — 0) = sinh &’ cosh § — sinh 6 cosh ¢’
= cosh f(sinh @' — sinh #) — sinh §(cosh 6’ — cosh 6),

we get up to a negligible error,

|H|\/1+ |V7|%(cosh 8" — cosh ) + AT (6" — 6)
= (x/l + |VT]2|H| — sinh9A7'> (cosh§ — cosh )

+ A7 cosh §(sinh 6 — sinh )

: o
= ((\/ 1+ |V7]2|H| - sinh@Av-) sinh 07+ sinh 0 + AT cosh0)

cosh 6 + cosh 6/
- (sinh @ — sinh )

inh 6 + sinh ¢’
— V1 21H]| ( cosh? g — sinh 6 cosh
+ |VT|?] |(COS 9cosh0+cosh9’ sinh 0 cosh 0
- (sinh @’ — sinh )

= ! V/1+ |V7|2|H|(sinh @ — sinh 6)?

cosh 6 4 cosh 6’
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Consequently,

1
8/ [|H|\/1 TV 2(cosh# — cosh 8) + Ar (8 — 0)] s
T

1 1
= o_ 2 : / oo 2 2
87 ) 2cosh® 14 |V7|?|H|(sinh 6" — sinh )°dS

114 o
= — 71 . R FJ 2 —5—2«
8W4a09/(me +a;RiE7)" dS? + O(d57%)

1 . .
= i (Z T2 + 2Ta; R™ + aiajRZle> +0(dP7).

O
Proof of Theorem 5.1, (2). Putting Lemma 5.5, 5.6, 5.10 together, we get

1

E(X, X, Ty) = %Rij(p)Rj(p) + mRij(p)R](p)
G0 v imiy L g s
+ 180W01mj (p)Wo (p) 45amW0 (p)WOZOJ (p)

Recall [8, page 4]

ag (= I7 imj T I mn
Q(eo, €0, €0, Tp) = EOWOimj (P)Wo "™ (p) + aoWomon () Wy "o ™ (p)
— 20, Wy, ™ (p) Woo; (p)-

By the Gauss equation, Woi; = R;j + O(d"?72%), we complete the proof.
U

6. Small sphere limit

The careful readers would surely find the similarity between our main result
and the small sphere limit [8, Theorem 1.1, 1.2]. In this section, we adapt the
previous computations to the small sphere setting. Although the family of
small spheres is different from that considered in [8], the limit of quasi-local
mass turns out to be the same.

Let p be a point in the spacetime. We recall the setup in [8]. Let
€o, €1, €2, €3 be an orthonormal basis at p, (e, es) = 143. Using eg, we nor-
malize each null vector L at p by (L, ep) = —1. We consider the null geodesics
with initial velocity being the normalized L. ¥, is defined as the level sets of
the affine parameter r. In short, Chen-Wang-Yau considered small spheres
approaching p along the light cone.
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Theorem 6.1. [8, Theorem 1.1, 1.2]

1) For the isometric embeddings X, of ¥, into R3, the quasi-local energy
satisfies

4
(6.1) E(S,, X, Tp) = 13- %T(eo, Ty) + O(r*)

as r goes to 0.

2) Suppose the stress-energy tensor Tog vanish in a neighborhood of p.
Then, for the pair (X.(Ty),To) solving the leading order term of the
optimal embedding equation of X, we have

(6.2)

W2
Q(eo, €0, €0, T0) + 2 Womon ()

1
B2, X.(Tp), Tp) = r° - —

6
90 +O(r°)

2&0

as r goes to 0.

In the right-hand side of both formula, we identify Ty = (ag, —a1, —az, —as)
with the timelike vector ageg — 2?21 aze; at p.

To get the same limit using the method of previous sections, we approach
p along a spacelike hypersurface. Let X% X1, X2, X3 be a normal coordinate
near p. The metric has the expansion

_ 12
9aB = Nap — gRa'yﬁ(iX’yX(s +

Let M be the slice {X°=0}. We consider small spheres ¥, = {X" =0,
(X124 (X?)2+ (X%)? =7} and balls B, ={X°=0,(X")?2+(X?)+
(X3)2 <7r?}, 0 <7 <e. The timelike unit normal vector and second fun-
damental form of M are given by

9 R T T ,
= t3 Roﬂk X B EROjOkX]X ax0 T OUXT)
and
1
k:i] §(<Dana +<Dan 8))
1 _ _
5(909” 6 (ROijq + Rojiq) X4 O(|X %)

-3 * (Roigy + Rogys) X7+ O(XP).
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We compute on ¥,

trgk = O(r?),
trEk 4 7’2 - ~G o~ ~ 4
ag = —k(0q,v)+ 04 TH] +0(r*) = —ERjOiq:raxjxq +O(r%),

divag = O(r?).

We are ready to use Theorem 4.1 to recover the small sphere limits,
Theorem 6.1. Consider the nonvacuum case first. By definition, we have
u = 8nT (eq, ep) and J; = 87T (eg, e;). Moreover, integrating over B, provides
a factor of r3. Therefore we recover (6.1).

For the non-vacuum case, we again solve the optimal embedding equation
and Jang’s equation first and then evaluate the three integrals on either B,
or Y.

Lemma 6.2. The following pair Ty = (a9, —a1, —ag, —as) and

X0 = L Ry (p)E"E"F + O(r)
0

3 73

X = rgt — %Ri(p):ﬁn - ERmn(p)@mi‘”ffi +0(r")

solves the leading order of the optimal embedding equation on ¥,.. In partic-
ular, the above solution gives a time function T = —X - Ty with

T =ra;x" — %aiR;(p)fc" +O(r).
Lemma 6.3. Let u be the solution of the Dirichlet problem of Jang’s equa-
tion on B, with boundary value 7. Then
uw=qaq;X"+ EEXZ + EBiijlXij — galR;LXn,
where
1
Bijm = —§(5iij + 6jmTi + OmiT}).
The constants 7T; can be solved from Jang’s equation. As before, their

contribution to each integral would cancel and we do not bother to solve
them explicitly here.



Quasi-local mass on unit spheres at spatial infinity 773

Lemma 6.4.

2
1 / D;Dju 2| 56
i — —————| +2|Y|Z| dQ
16 g 2 !
T /B, L+ [Dul? |
1 1 1 1
_ 5l 2 Im . _ vJ
s ST~ e TnaR™ )+ g (00— ) RGBT
= G R )R () + 2 Wi (0) Wy ™ ()
By T WPITP) T g Woimg ) o AP
1 i
W™ ) oy 4)] + 0+

Proof. We have

th)ju 1

kij — —— i = =
71+ |Duz 3

1
((@ij - Gy + s T))
ap
_ _ a
— Woimj — Wojmi + ;é (Ritjm + Rimjl)>Xm +0(r?)

Since we are integrating on a ball with radius r instead of 1, we get an
additional factor 7° from

5
L[ xmxngy = o gmn
167 Jp, 60
O
Lemma 6.5.
1 ~ r? .
— [|h0(s) — h(s)|2 — (Ho(s) — H(s))ﬂ dQ = —R;;(p)R" (p) + O(r6).

167 60&0

Proof. The argument is almost identical as in the proof of Lemma 5.6. We
get an additional factor 7° in the last step:

r 5
/ stds = T—.
0 5
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Lemma 6.6.

8i / [\H\\/l + |V7|%(cosh @' — cosh 6) + AT (6 — 9)} dx
T >,

T 2 pim - pil J 6
54ag (; Tm + 2T a; R (p) + azajR (p)Rl (p)> + O(T )

Proof. A similar computation as in the proof of Lemma 5.10 leads to

r_ 2 (Tn#™ + a; RiF) + O(r?).

V1+ V23

Recall the main term in the integrand is |H|(sinh @ — sinh §')%2. We get a
factor r3 because |H| = 2+ O(r~2) and another factor r? from the area
form of X,. O

|H|(sinh @ — sinh §') =

Putting the above three lemma together with Theorem 4.1, we recover
(6.2).
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