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In this note, we compute the limit of the Wang-Yau quasi-local
mass on unit spheres at spatial infinity of an asymptotically flat
initial data set. Similar to the small sphere limit of the Wang-
Yau quasi-local mass, we prove that the leading order term of the
quasi-local mass recovers the stress-energy tensor. For a vacuum
spacetime, the quasi-local mass decays faster and the leading order
term is related to the Bel-Robinson tensor. Several new techniques
of evaluating quasilocal mass are developed in this note.
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1. Introduction

In general relativity, a spacetime is a 4-manifold N with a Lorentzian metric
gαβ satisfying the Einstein equation

Rαβ − R

2
gαβ = 8πTαβ ,

where Rαβ and R are the Ricci curvature and the scalar curvature of the met-
ric gαβ , respectively. On the right hand side of the Einstein equation, Tαβ is
the stress-energy tensor of the matter field, a divergence free and symmetric
2-tensor. For most matter fields, Tαβ satisfies the dominant energy condi-
tion. For a vacuum spacetime where Tαβ = 0 (which implies Rαβ = 0), one
way of measuring the gravitational energy is to consider the Bel-Robinson
tensor [1]

(1.1) Qµναβ = W ρ σ
µ αWρνσβ +W

ρ σ
µ βWρνσα − 1

2
gµνW

ρστ
α Wβρστ ,

where Wαβγδ is the Weyl curvature tensor of the spacetime N . For a vacuum
spacetime, the Bel-Robinson tensor is a divergence free and totally symmet-
ric 4-tensor which also satisfies a certain positivity condition [11, Lemma
7.1.1].

We recall that given a spacelike 2-surface Σ in a spacetime N , the Wang-
Yau quasi-local energy E(Σ,X , T0) (see (2.1)) is defined in [27, 28] with
respect to each pair (X , T0) of an isometric embedding X of Σ into the
Minkowski space R

3,1 and a constant future timelike unit vector T0 ∈ R
3,1.

If the spacetime satisfies the dominant energy condition and the pair (X , T0)
is admissible (see [28, Definition 5.1]), it is proved that E(Σ,X , T0) ≥ 0. The
Wang-Yau quasi-local mass is defined to be the infimum of the quasi-local
energy among all admissible pairs (X , T0). The Euler-Lagrange equation for
the critical points of the quasi-local energy is derived in [28]. The Euler-
Lagrange equation, coupled with the isometric embedding equation, is re-
ferred to as the optimal embedding equation, see (2.2). A solution to the
equation is referred to as an optimal embedding.

When studying different notions of quasi-local energy, it is natural to
evaluate the large sphere and the small sphere limits of the quasi-local energy
and compare with the known measures of the gravitational energy in these
situations. One expects the following [12, 23]:
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1) For a family of surfaces approaching the spatial/null infinity of an
isolated system (the large sphere limit), the limit of the quasi-local energy
recovers the total energy-momentum of the isolated system.

2) For a family of surfaces approaching a point p (the small sphere
limit), the limit of the quasi-local energy recovers the stress-energy tensor
for spacetimes with matter fields and the Bel-Robinson tensor for vacuum
spacetimes.

There are many works on evaluating the large sphere and the small
sphere limits of different notions of quasi-local energy. See for example [3–
6, 14, 15, 18–20, 22, 29–31]. The list here is by no means exhaustive. For
a more comprehensive review of different notions of quasi-local energy and
their limiting behaviors, see [25] and the references therein.

In a series of papers [5, 6, 29], the above expectations for the Wang-
Yau quasi-local energy were verified. One of the key observations in [29]
(see [29, Theorem 2.1]) is that for a family of surfaces Σr and isometric
embeddings Xr, the limit of E(Σr,Xr, T0) is a linear function of T0 under
the compatibility condition

(1.2) lim
r→r0

|H0|
|H| = 1,

where H and H0 are the mean curvature vectors of Σr in N and the im-
age of the isometric embedding Xr in R

3,1, respectively. The compatibility
condition (1.2) holds naturally in the large sphere limit (r0 = ∞) at both
spatial and null infinity and the small sphere limit (r0 = 0) around a point.
In particular, [29, Theorem 2.1] is used throughout the sequence of papers
[5, 6, 29].

In addition to the large sphere limit and the small sphere limit, there is
another interesting situation where the compatibility condition holds nat-
urally, namely, the limit of the quasi-local mass on unit spheres at infinity
of an asymptotically flat spacetime. In a series of papers [9, 10], we eval-
uated the limit at null infinity to capture the information of gravitational
radiation. In particular, this is carried out in [10] for the Vaidya spacetime.
In this note, we evaluate the limit for unit spheres at spatial infinity of an
asymptotically flat spacetime, namely, at infinity of an asymptotically flat
initial data set.

Theorem 1.1. Let (M, g, k) be an asymptotically flat initial data set as
in (2.1). Let γ be a geodesic on M which is parametrized by arc-length and
extends to infinity. Let p = γ(d) be a point on γ and Σ be the unit geodesic
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sphere in M that is centered at p = γ(d). The quasi-local mass E(Σ,X , T0)
for T0 = (a0,−a1,−a2,−a3) has the following asymptotic behavior as d → ∞
for each of the following isometric embeddings X of Σ.

1) For the isometric embedding X : Σ → R
3, we have

E(Σ,X , T0) =
1

6

(
a0µ(p)− aiJ

i(p)
)
+O(d−3−2α),

where µ and J i are defined in (2.5) and (2.6).

2) Suppose the initial data set (M, g, k) satisfies the vacuum constraint
equation (2.7). Let N be the future development of (M, g, k) with Weyl
curvature W̄ . Let e0, e1, e2, e3 be an orthonormal basis at p with e0 the
unit timelike normal of M in N . For (X , T0) solving the leading order
of the optimal embedding equation (2.2), we have

E(Σ,X , T0) =
1

90

(
Q(e0, e0, e0, T0) +

1

2a0
W̄0i0jW̄

i j
0 0

)
+O(d−4−3α).

Here W̄0i0j = W̄ (e0, ei, e0, ej)(p), Q is the Bel-Robinson tensor of N at p,
and T0 is identified with the timelike vector a0e0 +

∑3
i=1 aiei at p.

Our investigation begins with the Brown-York mass. We compute the
derivative of the Brown-York mass and use it to rewrite the Brown-York
mass as a bulk integral. The integrand consists of the scalar curvature and
quadratic terms of the difference of the physical and the reference data,
see Lemma 3.1. We use Lemma 3.1 to evaluate the limit in Theorem 3.3.
The scalar curvature corresponds to the stress-energy tensor whereas the
quadratic terms, which decay faster than the scalar curvature, correspond
to the Bel-Robinson tensor.

In the remaining part of this article, we consider the Wang-Yau quasi-
local mass for initial data sets which are not necessarily time-symmetric.
We start by solving the optimal embedding equation. The structure of the
equation is similar to that of [6] for the small sphere limit and of [10] for unit
spheres at null infinity of the Vaidya spacetime. After obtaining the optimal
embedding, we use it as the Dirichlet boundary value to solve Jang’s equation
in the bulk. Using the Schoen-Yau identity from [24] and the canonical gauge
for the quasi-local mass from [27], we obtain Theorem 4.1 which generalizes
Theorem 3.3 for the Wang-Yau quasi-local mass. While the formula is more
complicated, it still consists of the integral of the stress-energy tensor and
some quadratic terms. In Section 5, we compute the terms appearing in
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Theorem 4.1 explicitly and evaluate the limit. Theorem 1.1 is obtained after
assembling these results. We observe that the answer is very similar to the
small sphere limit obtained in [6]. In Section 6, we demonstrate how the new
approach of this article can be applied to recover the result of [6] for the
small sphere limit.

2. Review of the Wang-Yau quasi-local mass and

asymptotical flatness

Let Σ be a closed spacelike 2-surface in a spacetime N with spacelike mean
curvature vector H. Denote the induced metric and connection one-form of
Σ by σ and

αH(·) =
〈
∇N

(·)

J

|H| ,
H

|H|

〉

where J is the reflection of H through the incoming light cone in the normal
bundle. Given an isometric embedding X : Σ → R

3,1 and future timelike
unit Killing field T0 in R

3,1, we consider the projected embedding X̂ into
the orthogonal complement of T0, and denote the induced metric and the
mean curvature of the image surface Σ̂ by σ̂ and Ĥ.

The quasi-local energy with respect to (X , T0) is

(2.1) E(Σ,X , T0) =
1

8π

∫

Σ̂
ĤdΣ̂

− 1

8π

∫

Σ

(√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

)
dΣ,

where ∇ and ∆ are the gradient and Laplace operator of σ, τ = −⟨X , T0⟩ is
considered as a function on the 2-surface, and

θ = sinh−1

(
−∆τ

|H|
√

1 + |∇τ |2

)
.

Moreover, we say that τ solves the optimal embedding equation if

(2.2) divσ

(
ρ∇τ −∇

[
sinh−1

(
ρ∆τ

|H0||H|

)]
− αH0

+ αH

)
= 0,

where

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√

|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

.

Next we recall the definition of an asymptotically flat initial data set.
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Definition 2.1. (M3, g, k) is an asymptotically flat initial data set if, out-
side a compact set, M3 is diffeomorphic to R

3 \ {|x| ≤ r0} for some r0 > 0
and under the diffeomorphism, we have

(2.3)
gij − δij = O(|x|−α), ∂gij = O(|x|−1−α),

∂2gij = O(|x|−2−α), ∂3gij = O(|x|−3−α),

and

(2.4) kij = O(|x|−1−α), ∂kij = O(|x|−2−α), ∂2kij = O(|x|−3−α)

for some α > 1
2 . Here ∂ denotes the partial differentiation on R

3. Further-
more, we shall assume that for the constraint equation, we have

1

2

(
R(g) + (trk)2 − |k|2

)
= µ, µ = O(|x|−3−α), ∂µ = O(|x|−4−α)(2.5)

Di(kij − (trk)gij) = Jj , J = O(|x|−3−α), ∂J = O(|x|−4−α)(2.6)

Recall that an initial data set satisfies the dominant energy condition if

µ ≥ |J |.

On the other hand, an initial data set satisfies the vacuum constraint equa-
tion if

(2.7) µ = 0 and J = 0.

In this case, there is a unique spacetime N with initial data (M3, g, k) which
solves the vacuum Einstein equation.

Let γ be a geodesic on M which is parametrized by arc-length and
extends to infinity. We consider p = γ(d) for d → ∞. Consider the normal
coordinate (X1, X2, X3) centered at p and let Σ(s) be the sphere of radius
s in the normal coordinate. The goal is to evaluate the quasi-local mass of
the surface Σ = Σ(1). In particular, we are interested in the leading order
term in d.

The set-up of our calculation can be described as the following. On a unit
ball B of R3, there is a family of Riemannian metrics gij(d) and symmetric
2-tensors kij(d) parametrized by d. The metrics gij(d) (the symmetric 2-
tensors kij(d), respectively) are the pull back of the metrics (the symmetric
2-tensors, respectively) on the unit geodesic ball centered at γ(d), d0 ≤ d <

∞, a geodesic on M that extends to spatial infinity. We assume that
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1) the standard Cartesian coordinate system (X1, X2, X3) is a geodesic
coordinates system for each gij(d) such that the origin of the coordi-
nates system corresponds to γ(d);

2) with respect to (X1, X2, X3), the asymptotic flat conditions (2.3) and
(2.4) are satisfied with |x| replaced by d;

3) the constraint equations (2.5) and (2.6) are satisfied with |x| replaced
by d.

Namely,

(2.8)
gij(d)− δij = O(d−α), ∂gij(d) = O(d−1−α),

∂2gij(d) = O(d−2−α), ∂3gij(d) = O(d−3−α),

and

(2.9) kij(d) = O(d−1−α), ∂kij(d) = O(d−2−α), ∂2kij(d) = O(d−3−α)

for some α > 1
2 , where ∂ now denotes the partial differentiation with respect

to X1, X2, X3. Moreover,

1

2

(
R(g) + (trk)2 − |k|2

)
= µ, µ = O(d−3−α), ∂µ = O(d−4−α)(2.10)

Di(kij − (trk)gij) = Jj , J = O(d−3−α), ∂J = O(d−4−α).(2.11)

In particular, let Rij(d) denote the Ricci curvature of gij(d), by the
Taylor expansion at a point in B with respect to the geodesic coordinate
system (X1, X2, X3), we have

gij(d)(X
1, X2, X3) = δij −

1

3
Rikjl(d)(0, 0, 0)X

kX l +O(d−3−α),(2.12)

Rij(d)(X
1, X2, X3) = Rij(d)(0, 0, 0) +O(d−3−α),(2.13)

kij(d)(X
1, X2, X3) = kij(d)(0, 0, 0) + ∂mkij(d)(0, 0, 0)X

m(2.14)

+O(d−3−α).

These expansions will be abbreviated as

gij = δij −
1

3
Rikjl(p)X

kX l +O(d−3−α),(2.15)

Rij = Rij(p) +O(d−3−α),(2.16)

kij = kij(p) + ∂mkij(p)X
m +O(d−3−α).(2.17)
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We will also use the spherical coordinate system (s, u1, u2) on B such that
the coordinate transformation (s, u1, u2) 7→ (X1, X2, X3) is given by Xi =
sx̃i(u1, u2), i = 1, 2, 3, where x̃i, i = 1, 2, 3 are the three standard coordinate
functions on the standard unit sphere in R

3.

Notation: Einstein summation notation will be used throughout the paper,
where i, j, · · · sum from 1 to 3. Since we are working in normal coordinates,
we can freely raise or lower indices for tensors at p = γ(d).

3. The Brown-York mass

In this section, we consider a time-symmetric initial data set and compute
the limit of the Brown-York quasi-local mass. The starting point is the
following lemma for the Brown-York quasi-local mass: Given a surface Σ in
a 3-manifold (M, g), let R be the scalar curvature of g. Let Ω be the region
in M bounded by Σ. Suppose Ω is foliated by surfaces Σ(s) with positive
Gauss curvature where 0 < s ≤ 1, Σ(1) = Σ, and Σ(s) shrinks to a point as
s tends to 0. Let σ(s) be the induced metric on Σ(s). The positivity of the
Gauss curvature of σ(s) guarantees an isometric embedding into R

3. Denote
the mean curvature of Σ(s) in M by H(s) and the mean curvature of the
isometric embedding of Σ(s) into R

3 by H0(s). Let h(s) and h0(s) be the
second fundamental form of Σ(s) in M and R

3, respectively.

Lemma 3.1. The Brown-York quasi-local mass, mBY (Σ), of Σ is

mBY (Σ) =
1

16π

∫

Ω

(
|h0(s)− h(s)|2 − (H0(s)−H(s))2 +R

)

where R is the scalar curvature of g.

Proof. Assume that Σ(s) are given by F (x, s) : Σ× (0, 1] → M with
DF(x,s)(

∂
∂s
) = f(x, s)ν(x, s) where ν(x, s) is the unit normal of Σ(s). We

first show that the derivative of the Brown York quasi-local mass is given
by

d

ds
E(Σ(s)) =

∫

Σ(s)

f

2

(
|h0 − h|2 − (H0 −H)2 +R

)
.(3.1)

The above formula is known, see [21, Theorem 3.1] for example. For com-
pleteness, we include the proof here. We have

d

ds
σ(s) = 2fh.
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By Proposition 6.1 of [28],

(3.2)
d

ds

∫

Σ(s)
H0(s) =

∫

Σ(s)
f(H0H − h · h0).

On the other hand, from the second variation formula, we have

(3.3)
d

ds

∫

Σ(s)
H(s) =

∫

Σ(s)
f(H2 −Ric(ν, ν)− |h|2).

The Gauss equations of Σ(s) in R
3 and M imply:

K =
1

2
(H2

0 − |h0|2),

K =
R

2
−Ric(ν, ν) +

1

2
(H2 − |h|2).

Taking the difference of the two Gauss equations, we obtain

(3.4) Ric(ν, ν) =
R

2
+

1

2
(H2 − |h|2 −H2

0 + |h0|2).

The claim follows from subtracting (3.3) from (3.2) and using (3.4) to replace
the Ricci curvature term in the result. The lemma follows from integrating
(3.1) along the foliation. □

In our setup, Σ(s) is the sphere of radius s in the normal coordinates
centered at p = γ(d) ∈ M . The induced metric and second fundamental form
of Σ(s) are given by

σab = s2(σ̃ab −
1

3
Rikjl(p)x̃

i
ax̃

j
bx̃

kx̃l) +O(d−3−α)

h(s)ab = sσ̃ab +O(d−2−α)

where Rikjl is the Riemann curvature tensor of the metric g on M and x̃ia
is a shorthand for ∂ax̃

i.
We first compute the difference of the mean curvature and second fun-

damental form of Σ(s) in M and R
3.

Lemma 3.2. Consider the surface Σ(s). We have

(3.5) H0(s)−H(s) = −sRij(p)x̃
ix̃j +O(d−3−α)

and

(3.6) h0(s)− h(s) = s3Rij(p)x̃
i
ax̃

j
b +O(d−3−α).
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Proof. We will use repeatedly an implication of (2.5) that R = O(d−3−α).
Let ĥ and ĥ0 denote the traceless second fundamental forms. By the Gauss
equations,

2K = R− 2Ric(ν, ν) +
1

2
H2 − 1

2
|ĥ|2

=
1

2
H2

0 − 1

2
|ĥ0|2.

Since the unit normal of Σ(s) is ν = x̃i ∂
∂Xi +O(d−3−α) and Ric(ν, ν) =

Rij x̃
ix̃j +O(d−3−α), we get H0(s)−H(s) = −sRij x̃

ix̃j +O(d−3−α).
Taking the difference of the Codazzi equations for Σ(s) in M and R

3

implies

∇̃a(ĥab(s)− ĥ0ab(s)) = −1

2
∂b(H0(s)−H(s))−Ric(ν, ∂b) +O(d−4−2α)

= ∂b(sRij x̃
ix̃j) +O(d−3−α).

One readily checks that

ĥab(s)− ĥ0ab(s) = s3Rij x̃
i
ax̃

j
b +

s3

2
Rij x̃

ix̃j σ̃ab

satisfies the above equation. Indeed, we find the unique solution as there is
no divergence-free, traceless symmetric 2-tensor on S2. □

We obtain the following result for the limit of the Brown-York mass:

Theorem 3.3. On Σ = Σ(1), we have

mBY (Σ) =
1

6
µ(p) +O(d−4−α).

For an initial data set satisfying the vacuum constraint equation, we have

mBY (Σ) =
1

60
Q(e0, e0, e0, e0) +O(d−5−2α)

where Q is the Bel-Robinson tensor (1.1) at p of the solution to the vacuum
Einstein equation with the time-symmetric initial data (M, g).
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Proof. On Ω, R = R(p) +O(d−4−α) by (2.5). Applying Lemma 3.1, together
with

|h(s)− h0(s)| =O(d−2−α)

H0(s)−H(s) =O(d−2−α),
(3.7)

we obtain the first formula.
For a vacuum initial data set, we compute

|h0(s)− h(s)|2 − (H0(s)−H(s))2

= s2RijRlm(δilδjm − δilx̃j x̃m − δjmx̃ix̃l) +O(d−5−2α).

Since R = 0, we have

mBY (Σ) =
1

16π
RijR

ij · 4π
3

∫ 1

0
s4ds+O(d−5−2α) =

1

60
RijR

ij +O(d−5−2α).

Finally, if N is the solution to the Einstein equation with time-symmetric
initial data (M, g), its Weyl curvature satisfies

W̄0i0j = Rij ,

W̄0ijk = 0.

This finishes the proof of the theorem. □

4. Optimal embedding equation and the Jang equation

In this section, we describe our strategy to handle the second fundamental
form kij . We study the optimal embedding equation on Σ and the Jang
equation on Ω. In particular, we first solve the optimal embedding equation
on the boundary. Then we solve the Jang equation on the bulk Ω using the
solution of the optimal embedding equation as the boundary value

Consider the product manifold Ω× R with the product metric dt2 +
gijdX

idXj . The data kij , µ, J are extended parallelly along the R factor.
Jang’s equation for u ∈ C2(Ω) reads

(
gij − DiuDju

1 + |Du|2
)(

kij −
DiDju√
1 + |Du|2

)
= 0.(4.1)

Denote the graph of u in Ω× R by Ω̃ and Σ̃ = ∂Ω̃. Let ẽ4 be the down-

ward normal of Ω̃ and Yi =

(
k − D2u√

1+|Du|2

)(
∂

∂Xi , ẽ4
)
.
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Let g̃ be the induced metric of Ω̃. Let H0 be the mean curvature of the
isometric embedding of Σ̃ into R

3. We recall

E(Σ,X , T0)

=
1

8π

(∫
H0dΣ̃−

∫ [√
1 + |∇τ |2 cosh |H|+∆τθ − αH(∇τ)

]
dΣ

)

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
. By [28, Theorem 4.1],

E(Σ,X , T0) =
1

8π

(∫ [
H0 − H̃ + ⟨Y, ẽ3⟩

]
dΣ̃

+

∫ [
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ

)
,

where θ′ is defined by

coshϕe3 − sinhϕe4 = cosh θ′eH3 − sinh θ′eH4

with sinhϕ = − u3√
1+|∇τ |2

. By the Schoen-Yau identity [24, (2.29)]

2(µ− J(ẽ4)) = R̃−
∣∣∣∣∣kij −

DiDju√
1 + |Du|2

∣∣∣∣∣

2

g̃

− 2|Y |2g̃ + 2D̃iYi.

Together with Lemma 3.1, we obtain

Theorem 4.1.

E(Σ, X, T0) =
1

8π

∫
(µ− J(ẽ4)) dΩ̃

+
1

16π

∫ 

∣∣∣∣∣kij −

DiDju√
1 + |Du|2

∣∣∣∣∣

2

g̃

+ 2|Y |2g̃


 dΩ̃

+
1

16π

∫ [
|h0(s)− h(s)|2 − (H0(s)−H(s))2

]
dΩ̃

+
1

8π

∫ [
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ
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5. Limit of the Wang-Yau mass

In this section, we study the optimal embedding equation and the Jang
equation with respect to the observer

T0 = (a0,−a1,−a2,−a3).

Before restating our main result, Theorem 1.1, recall that in the vacuum
case we view the initial data set (M, g, k) as a spacelike hypersurface in
its future development N and denote the Weyl curvature of N by W̄ . Let
e0, e1, e2, e3 be an orthonormal basis at p with e0 the unit timelike normal
of M in N and identify T0 with the timelike vector a0e0 +

∑3
i=1 aiei at p.

Theorem 5.1. The quasi-local mass E(Σ,X , T0) for T0 = (a0,−a1,−a2,

−a3) has the following asymptotic behavior as d → ∞ for each of the follow-
ing isometric embeddings X of Σ.

1) For the isometric embedding X : Σ → R
3, we have

E(Σ,X , T0) =
1

6

(
a0µ(p)− aiJ

i(p)
)
+O(d−3−2α),

where µ and J i are defined in (2.5) and (2.6).

2) Suppose the initial data set (M, g, k) satisfies the vacuum constraint
equation (2.7). For (X , T0) solving the leading order of the optimal
embedding equation (2.2), we have

E(Σ,X , T0) =
1

90

(
Q(e0, e0, e0, T0) +

1

2a0
W̄0i0jW̄

i j
0 0

)
+O(d−4−3α).

Here W̄0i0j = W̄ (e0, ei, e0, ej)(p) and Q is the Bel-Robinson tensor of N at p.

Remark 5.2. We mostly work at the initial data level and the error term
has order O(d−5−2α). Only when the result is expressed in terms of the space-
time curvature using the Gauss equation of N , W̄0i0j = Rij +O(d−2−2α),
does the error become O(d−4−3α).

The outline of this section is as follows. We solve the optimal embedding
equation and the Dirichlet problem of Jang’s equation in the first two sub-
sections and then evaluate each integral in Theorem 4.1 in the subsequent
three subsections. Finally, we put everything together to prove Theorem 5.1.
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5.1. Optimal embedding

Let us begin with the optimal embedding equation.

Lemma 5.3. The following pair T0 = (a0,−a1,−a2,−a3) and

X 0 =
1

2
kij(p)x̃

ix̃j +
1

6
∂ikjm(p)x̃ix̃j x̃m +

aiRmn(p)x̃
mx̃nx̃i

6a0

X i =x̃i − 1

6
Rin(p)x̃

n − 1

6
Rmn(p)x̃

mx̃nx̃i

solves the first two order of the optimal embedding equation. In particular,
the above solution gives a time function τ = −⟨X , T0⟩ with

τ = aix̃
i + a0

[
1

2
kij(p)x̃

ix̃j +
1

6
∂ikjm(p)x̃ix̃j x̃m

]
− 1

6
aiR

i
n(p)x̃

n(5.1)

Proof. With T0 = (a0,−a1,−a2,−a3), the optimal embedding equation reads

1

2
∆(∆ + 2)X 0 = divαH +

ai

a0

[
div((H0 − |H|)∇x̃i) +

1

2
∆((H0 − |H|)x̃i)

]

+O(d−3−α).

See [7, Section 7]. We first compute

(αH)a = −k(∂a, ν) + ∂a

(
trΣk

H

)
+O(d−3−3α)

= −2kij x̃
i
ax̃

j − 2∂mkij x̃
i
ax̃

j x̃m +
1

2
∂mkiix̃

m
a

− 1

2
∂mkij x̃

ix̃j x̃ma +O(d−3−α).

Using the Codazzi equation, ∂ikim = ∂mkii +O(d−3−2α), we obtain

divαH = −2kij
(
δij − 3x̃ix̃j

)

+ 10∂mkij

(
x̃ix̃j x̃m − 1

5
δij x̃m − 1

5
δimx̃j − 1

5
δjmx̃i

)
+O(d−3−α)

Note that δij − 3x̃ix̃j and x̃ix̃j x̃m − 1
5δ

ij x̃m − 1
5δ

imx̃j − 1
5δ

jmx̃i are −6 and
−12 eigenfunctions respectively.
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On the other hand, by Lemma 3.2 and |H| =
√

H2 − (trΣk)2, we have

H0 − |H| = −Rij x̃
ix̃j +O(d−2−2α)

and

div((H0 − |H|)∇x̃i) +
1

2
∆((H0 − |H|)x̃i)

= 10Rmnx̃
mx̃nx̃i − 4Rinx̃

n +O(d−2−2α)

It follows that the given X 0 satisfies the equation up to error of the order
O(d−2−2α).

For the X i, we use the well-known formula of Riemann curvature tensor
in 3-dimension

Rikjl = gijRkl − gilRkj + gklRij − gkjRil −
R

2
(gijgkl − gilgkj)(5.2)

and (2.5) to show that the induced metric is

σab = σ̃ab −
1

3
Rklx̃

k
ax̃

l
b −

1

3
Rij x̃

ix̃j σ̃ab +O(d−2−2α).

The lemma follows from the linearized isometric embedding equation into
R
3. □

5.2. Jang’s equation

We work in local coordinates and Ω is identified with B1 ⊂ R
3. We discuss

the solution of Dirichlet problem of Jang’s equation





(
gij − DiuDju

1+|Du|2

)(
kij − DiDju√

1+|Du|2

)
= 0 in B1

u = τ on ∂B1

(5.3)

Let bij = gij − δij +
1
3Rikjl(p)X

kX l and cij = kij − kij(p)− ∂mkij(p)X
m. By

Definition 2.1 and (2.12), we have

∥bij∥C1(B1), ∥cij∥C1(B1) ≤ Cd−3−α.(5.4)

Lemma 5.4. Let u be the solution of the Dirichlet problem of Jang’s equa-
tion on Ω with boundary value τ given in (5.1). Then u = aiX

i + 1
6TiX

i +
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1
2a0kijX

iXj + 1
6BijmXiXjXm − 1

6aiRinX
n + v, where

Tm = − 1

4 + 1
a2

0

· 2

a0
aiajW̄

i j
0 m (p) +

1

4 + 1
a2

0

· 2alRl
m(p)

+
1

(4 + 1
a2

0

)(2 + 3
a2

0

)
· 4am

a0
aiajR

ij(p)

Bijm =
a0

3
(∂ikjm(p) + ∂jkim(p) + ∂mkij(p))−

1

3
(δijTm + δjmTi + δmiTj),

and ∥v∥C2,β ≤ C ′d−3−α for some constant C ′ and 0 < β < 1 depending only
on C in (5.4).

Proof. We write

u = aiX
i + biX

i +
1

2
a0kijX

iXj +
1

6
BijmXiXjXm − 1

6
aiRinX

n + v

for constants bi, Bijm to be determined from the leading order of Jang’s
equation.

Define a symmetric 3-tensor

Tijm =
a0

3
(∂ikjm + ∂jkmi + ∂mkij)−Bijm.

We need to show that τ − u is perpendicular to all −2 and −12 eigen-
functions on ∂B1 = S2 which, by the expression (5.1) of τ , is equivalent
to

∫

S2

(
1

6
Tijmx̃ix̃j x̃m − bix̃

i

)
x̃ldS2 = 0,

∫

S2

Tijmx̃ix̃j x̃m(x̃lx̃px̃q − 1

5
x̃lδpq − 1

5
x̃pδql − 1

5
x̃qδlp)dS2 = 0.

The second equation contains 7 linear equations with 10 variables. Using [8,
Lemma 5.3], we solve Tijm by free variables T111, T222, T333:

Tijm =
1

3
(δijTm + δjmTi + δmiTj), Tm := Tmmm.

and then solve bi =
1
6Ti.
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It remains to solve Tm from Jang’s equation

(gij − DiuDju

1 + |Du|2 )(kij −
DiDju√
1 + |Du|2

) = 0.

By the Codazzi equation, ∂mkij − ∂ikmj = −W̄0jmi +O(d−3−2α), it follows
that

kij −
uij√

1 + |Du|2
= SijmXm +O(d−3−α)

where

Sijm =
1

3

(
1

a0
(δijTm + δjmTi − δmiTj)(5.5)

− W̄0imj − W̄0jmi +
al

a0
(Riljm +Rimjl)

)
.

The leading order of Jang’s equation thus reduces to 3 linear equations

∑

i,j

(δij −
aiaj

a20
)Sijm = 0.

We have

0 =
∑

i,j

(δij −
aiaj

a20
)(δijTm + δjmTi + δmiTj)

+
aiaj

a0
(W̄ i j

0 m + W̄
j i

0 m )− 2alR
l
m

=
∑

i

GimTi +
aiaj

a0
(W̄ i j

0 m + W̄
j i

0 m )− 2alR
l
m,

where Gim = (4 + 1
a2

0

)δim − 2aiam

a2

0

. We solve for the inverse matrix of Gim

(G−1)ml =
1

(4 + 1
a2

0

)(2 + 3
a2

0

)

[
(2 +

3

a20
)δml + 2

amal

a20

]

to get

Tm = − 1

4 + 1
a2

0

· 2aiaj
a0

W̄
i j

0 m +
1

4 + 1
a2

0

· 2alRl
m

+
1

(4 + 1
a2

0

)(2 + 3
a2

0

)
· 4am

a20
Rijaiaj .
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After obtaining the leading order of u, we treat Jang’s equation as a
quasilinear partial differential equation Q(x,Dv)v = 0 in B1 and v = 0 on
∂B1. By (5.4), we can choose a constant C ′ that depends only on C such that
±C ′d−3−α

(
|x|2 − 1

)
is a sub/super solution to this equation. This provides

the C0-estimate and the boundary gradient estimate. By [16, Theorem 15.1]
and [16, Theorem 13.7], we get the gradient estimate and Hölder estimate
for the gradient. The C2,β a priori estimate for v and the solvability of u
then follows from the Schauder estimate and [16, Theorem 11.4]. □

Proof of Theorem 5.1, (1). We first examine the limit for an initial data set
with matter fields. We will show below that all terms except µ− J(ẽ4) are
of the order O(d−4−2α). As a result,

E(Σ) =
1

8π

∫
(µ− J(ẽ4))dΩ̃ +O(d−4−2α).

The assertion follows from dΩ̃ = a0dx+O(d−2−α) and ẽ4 =
1
a0

(−1, a1, a2, a3)

+O(d−1−α). □

For a vacuum initial data set, Theorem 4.1 becomes

E(Σ, X, T0) =
1

16π

∫ 

∣∣∣∣∣kij −

DiDju√
1 + |Du|2

∣∣∣∣∣

2

g̃

+ 2|Y |2g̃


 dΩ̃(5.6)

+
1

16π

∫ [
|h0(s)− h(s)|2 − (H0(s)−H(s))2

]
dΩ̃(5.7)

+
1

8π

∫ [
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ(5.8)

5.3. Evaluation of (5.6)

Lemma 5.5.

1

16π

∫

B1



∣∣∣∣∣kij −

DiDju√
1 + |Du|2

∣∣∣∣∣

2

ḡ

+ 2|Y |2ḡ


 dΩ̃

= − 1

54a0

∑

m

T 2
m − 1

27a0
TmalR

lm(p) +
1

90

(
a0 −

1

a0

)
Rij(p)R

ij(p)

− 1

54a0

∑

i,j,l

aiajR
il(p)Rj

l (p) +
a0

180
W̄0imj(p)W̄

imj
0 (p)

− 1

45
amW̄

imj
0 (p)W̄0i0j(p) +O(d−5−2α).
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Proof. Recall that we write kij − DiDju√
1+|Du|2

= SijmXm +O(d−3−α) in the

proof of Lemma 5.4. Since ẽ4 =
(−1,a1,a2,a3)

a0

+O(d−1−α), we have Y =∑
i,m,p

ap

a0

SipmXm ∂
∂Xi +O(d−3−α) and

1

16π

∫

B1

|kij −
DiDju√
1 + |Du|2

|2ḡ + 2|Y |2ḡdVḡ

=
a0

60

∑

i,j,m,p,q

[
(δij −

aiaj

a20
)SipmSjqm(δpq −

apaq

a20
)

+ 2(δij −
aiaj

a20
)
apaq

a20
SipmSjqm

]
+O(d−5−2α)

=
a0

60


∑

i,j,m

S2
ijm −

∑

i,j,m,p,q

aiajapaq

a40
SipmSjqm


+O(d−5−2α)

=
a0

60


∑

i,j,m

S2
ijm −

∑

m

(∑

i

Siim

)2

+O(d−5−2α),

where Jang’s equation is used in the last equality. We compute, by (5.5),

∑

m

(∑

i

Siim

)2

=
1

9a20

∑

m

(5Tm + 2alR
l
m)2

=
1

9a20

(
25
∑

m

T 2
m + 10alTmRlm + 4alanR

lmRn
m

)

and

∑

i,j,m

S2
ijm =

1

9

[
15

a20

∑

m

T 2
m +

∑

i,j,m

(W̄0imj + W̄0jmi)
2

+
1

a20

∑

i,j,m

(
2amRij + 2alR

l
mδij − ajRim − aiRjm − alR

l
jδim − alR

l
iRjm

)2

− 2
∑

i,j,l,m

al

a0
(W̄0imj + W̄0jmi)(Riljm +Rimjl)

]

By the first Bianchi identity, 2
∑

i,j,m W̄0imjW̄0jmi =
∑

i,j,m W̄0imjW̄0imj and

hence
∑

i,j,m(W̄0imj + W̄0jmi)
2 = 3

∑
i,j,m W̄ 2

0imj . Direct computation shows

that the third term in the bracket is equal to 1
a2

0

(6
∑

m a2mR2
ij − 6aiajR

ilR
j
l ).
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Finally, by (5.2), the last term in the bracket is equal to

−12
∑

i,j,m

am

a0
W̄0imjW̄0i0j .

□

5.4. Evaluation of (5.7)

Lemma 5.6.

1

16π

∫ [
|h0(s)− h(s)|2 − (H0(s)−H(s))2

]
dΩ̃

=
1

60a0
Rij(p)R

ij(p) +O(d−5−2α).

Proof. By Lemma 5.8 below, we have

h0(s)− h(s) = s3

√
1 + |ai∇̃x̃i|2

a0
Rij x̃

i
ax̃

j
b +O(d−3−α).

We compute

|h0(s)− h(s)|2σ − (H0(s)−H(s))2

= (detσ̃(σ))
−1
(
|h0(s)− h(s)|2σ̃ − (trσ̃h0(s)− trσ̃h(s))

2
)

=
s2

a20

(
RijR

ij − 2RijR
i
l x̃

j x̃l
)
+O(d−5−2α).

Finally, we note that the volume form dΩ̃ = a0s
2dS2ds+O(d−2−α) and

hence
∫ [

|h0(s)− h(s)|2 − (H0(s)−H(s))2
]
dΩ̃

=
1

a0

∫ 1

0

∫

S2

(
RijR

ij − 2RijR
i
l x̃

ix̃j
)
dS2s4ds+O(d−5−2α)

=
4

15a0
RijR

ij +O(d−5−2α).

□

The rest of this subsection is devoted to computing the difference of second
fundamental forms of Σs in Ω̃ and in R

3, Lemma 5.8. We first solve the iso-
metric embedding of Σs into R

3 and then compute the second fundamental
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form. Recall the solution of Jang’s equation is u = aiX
i + 1

2a0kijX
iXj +

1
6BijmXiXjXm − ai

6 RinX
n +O(d−4). The induced metric on the graph of

Jang’s equation is then given by

ḡij = δij + aiaj −
1

3
RikjlX

kX l + a0(aikjm + ajkim)Xm

+
1

2
(aiBjlm + ajBilm)X lXm − 1

6
aialRlj −

1

6
ajalRli +O(d−3−α).

In polar coordinates (s, ua), we have ḡ = ḡssds
2 + 2ḡasdsdu

a + ḡabdu
adub

where

ḡss = 1 + (aix̃
i)2

+ aix̃
i

(
2sa0kjmx̃j x̃m + s2Bjlmx̃j x̃lx̃m − 1

3
alRlj x̃

j

)
+O(d−3−α).

ḡas = saix̃
i
aaj x̃

j + saix̃
i
a

(
sa0kjmx̃j x̃m +

1

2
s2Bjlmx̃j x̃lx̃m − 1

6
alRlj x̃

j

)

+ saj x̃
j

(
sa0kimx̃iax̃

m +
1

2
s2Bilmx̃iax̃

lx̃m − 1

6
alRlix̃

i
a

)
+O(d−3−α).

ḡab = s2σ̃ab + s2
(
aiaj −

s2

3
Rikjlx̃

kx̃l
)
x̃iax̃

j
b + s3a0(aikjm + ajkim)x̃iax̃

j
bx̃

m

+
1

2
s4(aiBjlm + ajBilm)x̃iax̃

j
bx̃

lx̃m − 1

6
s2(aialR

l
j + ajalR

l
i)x̃

i
ax̃

j
b

+O(d−3−α).

Let σ(s) be the induced metric on Σs. We consider the isometric embed-
ding of (Σs, σ(s)ab) into the hyperplane X0 = aiX

i in R
4 with the form

X0 = ais(x̃
i + yi) and Xi = s(x̃i + yi) where yi = O(d−1−α) and satisfies

the linearized isometric embedding equations

(δij + aiaj)(x̃
i
ay

j
b + x̃

j
by

i
a) = −s2

3
Rikjlx̃

kx̃lx̃iax̃
j
b

+ sa0(aikjm + ajkim)x̃mx̃iax̃
j
b +

s2

2
(aiBjlm + ajBilm)x̃lx̃mx̃iax̃

j
b

− 1

6
(aiR

l
j + ajR

l
i)alx̃

i
ax̃

j
b +O(d−3−α).

It’s not hard to see that yi = y(0)i + yi with

y(0)i = ai

(
s

2a0
klmx̃lx̃m +

s2

6a20
Bjlmx̃j x̃lx̃m − 1

6a20
amRm

n x̃n
)
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and

(δij + aiaj)(x̃
i
ay

j
b + x̃

j
by

i
a) = −s2

3
Rikjlx̃

kx̃lx̃iax̃
j
b.(5.9)

Equation (5.9) is a linearized isometric embedding equation on an ellipsoid.
Let ŷi = (δij + aiaj)y

j . One readily verifies that

ŷi = −s2

6

(
Ri

j x̃
j +Rjkx̃

j x̃kx̃i
)

solves (5.9).
The family of isometric embedding of Σs forms a foliation F : (0, 1]×

S2 → {X0 = aiX
i} ⊂ R

4. From F∗(∂s) = (x̃i + yi + s∂y
i

∂s
)(ai

∂
∂X0 + ∂

∂Xi ) and
F∗(∂a) = s(x̃ia + yia)(ai

∂
∂X0 + ∂

∂Xi ), we could write the flat metric, denoted
by ğ, in (s, ua) coordinates. Straightforward computation shows that

ğss = ḡss +−2s2Rij x̃
ix̃j +O(d−3−α)

ğbs = ḡbs − s3Rij x̃
i
bx̃

j +O(d−3−α).

Remark 5.7. It shouldn’t be surprising that ğ − ḡ does not depend on y(0);
namely, ḡ remains flat after the graphical perturbation of u. Indeed, if ḡij =
gij + uiuj, then the curvature tensors are related by

R̄ k
ij l = R k

ij l −
1

1 + |∇u|2R
p

ij l∇pu∇ku+X k
ij l,

where X is quadratic in the Hessian of u.

We are ready to compute the second fundamental forms.

Lemma 5.8.

h̄ab − h̆ab = −s3

√
1 + |ai∇̃x̃i|2

a0
Rij(p)x̃

i
ax̃

j
b +O(d−3−α).

Proof. We denote the leading order of τ by τ̄ = aix̃
i. The second fundamen-

tal form of Σs can be computed from the formula

h̄ =
1
2∂sḡab −∇aḡbs√
ḡss − σabḡasḡbs

.

Here σ is the induced metric of Σs. We note that σab = s2(σ̃ab + τ̄aτ̄b) +
O(d−1−α).
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We compute

ḡss − σabḡasḡbs =
a20

1 + |∇̃τ̄ |2
+O(d−2−α)

1

2
∂sḡab −∇aḡbs = s

a20

1 + |∇̃τ̄ |2
σ̃ab +O(d−2−α).

Hence, the difference of second fundamental forms is given by

h̄− h̆ =

(
1

2
∂sḡab −∇aḡbs

)
·
(
ğss − σcdğcsğds

)
−
(
ḡss − σcdḡcsḡds

)

2a30

· (1 + |∇̃τ̄ |2) 3

2 +
∇a(ğbs − ḡbs)

a0

√
1 + |∇̃τ̄ |2 +O(d−4−2α)

=

√
1 + |∇̃τ̄ |2

a0

(
1

2
(ğss − ḡss + σcdḡcsḡds − σcdğcsğds) · sσ̃ab

+∇a(ğbs − ḡas)

)
+O(d−3−α).

We compute

∇a(ğbs − ḡbs) = ∇̃a(ğbs − ḡbs)−
∇̃cτ̄

1 + |∇̃τ̄ |2
∇̃a∇̃bτ̄(ğcs − ḡcs) +O(d−3−2α)

= s3Rij x̃
ix̃j σ̃ab − s3Rij x̃

i
ax̃

j
b −

∇̃cτ̄

1 + |∇̃τ̄ |2
∇̃a∇̃bτ̄(ğcs − ḡcs)

+O(d−3−α).

On the other hand,

1

2

(
ğss − ḡss + σab(ḡasḡbs − ğasğbs)

)

= −s2Rij x̃
ix̃j +

1

2
σcd (ḡcs (ḡds − ğds) + ğds (ḡcs − ğcs)) +O(d−3−α)

= −s2Rij x̃
ix̃j +

∇̃τ̄

1 + |∇̃τ̄ |2
· s−1τ̄(ḡcs − ğcs) +O(d−3−α).

Putting these together, the assertion follows. □

5.5. Evaluation of (5.8)

In this subsection, we evaluate the integral resulted from the difference
between the gauge induced by Jang’s equation and the canonical gauge.
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Recall the solution of optimal isometric embedding equation is τ = aix̃
i +

a0

2 kij x̃
ix̃j + a0

6 ∂ikjmx̃ix̃j x̃m − ai

6 Rinx̃
n and the solution of Jang’s equation is

u = aiX
i + 1

6Tix̃
i + 1

2a0kijX
iXj + 1

6BijmXiXjXm − ai

6 RinX
n. We will need

the following lemma.

Lemma 5.9. For τ = aix̃
i + v, v = O(d−1−α), we have

∆τ = ∆̃τ + ∆̃v − 2

3
aiRij x̃

j +
1

3
aiRklx̃

ix̃kx̃l +O(d−3−α)

Lemma 5.10.

1

8π

∫ [
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ

=
1

54a0

(∑

m

T 2
m + 2TmaiR

im(p) + aiajR
il(p)Rj

l (p)

)
+O(d−5−2α).

Proof. For the canonical gauge, we have

⟨H, ē4⟩ = |H| sinh θ =
−∆τ√
1 + |∇τ |2

=
1√

1 + |∇τ |2

[
2aix̃

i + 3a0kij(x̃
ix̃j − 1

3
δij)

+ a0∂ikjm

(
2x̃ix̃j x̃m − 1

3
(x̃iδjm + x̃jδmi + x̃mδij)

)

+
ai

3
Ri

nx̃
n − 1

3
amRij x̃

ix̃j x̃m
]
+O(d−3−α).

For the gauge {e′3, e′4} induced by Jang’s equation, we have [27, Theo-
rem 4.1] e′4 = sinhϕe3 + coshϕe4 with

sinhϕ =
−u3√

1 + |∇τ |2

=
−1√

1 + |∇τ |2
(aix̃

i +
1

6
Tix̃

i + a0kij x̃
ix̃j +

1

2
Bijmx̃ix̃j x̃m − 1

6
aiR

i
nx̃

n)

+O(d−3−α)
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and hence

⟨H, e′4⟩ = coshϕ⟨H, e4⟩+ sinhϕ⟨H, e3⟩
=

a0√
1 + |∇τ |2

(
−kii + kij x̃

ix̃j − ∂mkiix̃
m + ∂mkij x̃

mx̃ix̃j
)

+
1√

1 + |∇τ |2

(
aix̃

i +
1

6
Tix̃

i + a0kij x̃
ix̃j +

1

2
Bijmx̃ix̃j x̃m − 1

6
aiR

i
nx̃

n

)

· (2− 1

3
Rij x̃

ix̃j) +O(d−3−α).

By the constraint equations, we get

|H|(sinh θ − sinh θ′) =
1√

1 + |∇τ |2
2

3

(
Tmx̃m + aiR

i
j x̃

j
)
+O(d−3−α).

Next, using two elementary computations

cosh θ′ − cosh θ =
sinh θ′ + sinh θ

cosh θ′ + cosh θ
(sinh θ′ − sinh θ)

and (up to error of order O(d−6−3α))

θ′ − θ = sinh(θ′ − θ) = sinh θ′ cosh θ − sinh θ cosh θ′

= cosh θ(sinh θ′ − sinh θ)− sinh θ(cosh θ′ − cosh θ),

we get up to a negligible error,

|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)

=
(√

1 + |∇τ |2|H| − sinh θ∆τ
)
(cosh θ′ − cosh θ)

+ ∆τ cosh θ(sinh θ′ − sinh θ)

=

((√
1 + |∇τ |2|H| − sinh θ∆τ

) sinh θ + sinh θ′

cosh θ + cosh θ′
+∆τ cosh θ

)

· (sinh θ′ − sinh θ)

=
√

1 + |∇τ |2|H|
(
cosh2 θ

sinh θ + sinh θ′

cosh θ + cosh θ′
− sinh θ cosh θ

)

· (sinh θ′ − sinh θ)

=
1

cosh θ + cosh θ′

√
1 + |∇τ |2|H|(sinh θ′ − sinh θ)2
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Consequently,

1

8π

∫ [
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ

=
1

8π

∫
1

2 cosh θ

√
1 + |∇τ |2|H|(sinh θ′ − sinh θ)2dS2

=
1

8π

1

4a0

4

9

∫ (
Tmx̃m + aiR

i
j x̃

j
)2

dS2 +O(d−5−2α)

=
1

54a0

(∑

m

T 2
m + 2TmaiR

im + aiajR
ilR

j
l

)
+O(d−5−2α).

□

Proof of Theorem 5.1, (2). Putting Lemma 5.5, 5.6, 5.10 together, we get

E(Σ, X, T0) =
a0

90
Rij(p)R

ij(p) +
1

180a0
Rij(p)R

ij(p)

+
a0

180
W̄0imj(p)W̄

imj
0 (p)− 1

45
amW̄

imj
0 (p)W̄0i0j(p).

Recall [8, page 4]

Q(e0, e0, e0, T0) =
a0

2
W̄0imj(p)W̄

imj
0 (p) + a0W̄0m0n(p)W̄

m n
0 0 (p)

− 2amW̄
imj

0 (p)W̄0i0j(p).

By the Gauss equation, W̄0i0j = Rij +O(d−2−2α), we complete the proof.
□

6. Small sphere limit

The careful readers would surely find the similarity between our main result
and the small sphere limit [8, Theorem 1.1, 1.2]. In this section, we adapt the
previous computations to the small sphere setting. Although the family of
small spheres is different from that considered in [8], the limit of quasi-local
mass turns out to be the same.

Let p be a point in the spacetime. We recall the setup in [8]. Let
e0, e1, e2, e3 be an orthonormal basis at p, ⟨eα, eβ⟩ = ηαβ . Using e0, we nor-
malize each null vector L at p by ⟨L, e0⟩ = −1. We consider the null geodesics
with initial velocity being the normalized L. Σr is defined as the level sets of
the affine parameter r. In short, Chen-Wang-Yau considered small spheres
approaching p along the light cone.
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Theorem 6.1. [8, Theorem 1.1, 1.2]

1) For the isometric embeddings Xr of Σr into R
3, the quasi-local energy

satisfies

E(Σr,Xr, T0) = r3 · 4π
3
T (e0, T0) +O(r4)(6.1)

as r goes to 0.

2) Suppose the stress-energy tensor Tαβ vanish in a neighborhood of p.
Then, for the pair (Xr(T0), T0) solving the leading order term of the
optimal embedding equation of Σr, we have

E(Σr,Xr(T0), T0) = r5 · 1

90

[
Q(e0, e0, e0, T0) +

∑
m,n W̄

2
0m0n(p)

2a0

]
+O(r6)

(6.2)

as r goes to 0.

In the right-hand side of both formula, we identify T0 = (a0,−a1,−a2,−a3)
with the timelike vector a0e0 −

∑3
i=1 aiei at p.

To get the same limit using the method of previous sections, we approach
p along a spacelike hypersurface. Let X0, X1, X2, X3 be a normal coordinate
near p. The metric has the expansion

ḡαβ = ηαβ − 1

3
R̄αγβδX

γXδ + · · · .

Let M be the slice {X0 = 0}. We consider small spheres Σr = {X0 = 0,
(X1)2 + (X2)2 + (X3)2 = r2} and balls Br = {X0 = 0, (X1)2 + (X2)2 +
(X3)2 ≤ r2}, 0 < r < ϵ. The timelike unit normal vector and second fun-
damental form of M are given by

n⃗ =
∂

∂X0
+

1

3
R̄0jikX

jXk ∂

∂Xi
− 1

6
R̄0j0kX

jXk ∂

∂X0
+O(|X|3)

and

kij =
1

2

(
⟨D∂i

n⃗, ∂j + ⟨D∂j
n⃗, ∂i⟩

)

=
1

2
∂0gij +

1

6

(
R̄0ijq + R̄0jiq

)
Xq +O(|X|3)

= −1

3

(
R̄0iqj + R̄0jqi

)
Xq +O(|X|2).
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We compute on Σr

trΣk = O(r2),

αH = −k(∂a, ν) + ∂a

(
trΣk

|H|

)
+O(r4) = −r2

6
R̄j0iqx̃

i
ax̃

j x̃q +O(r4),

divαH = O(r2).

We are ready to use Theorem 4.1 to recover the small sphere limits,
Theorem 6.1. Consider the nonvacuum case first. By definition, we have
µ = 8πT (e0, e0) and Ji = 8πT (e0, ei). Moreover, integrating overBr provides
a factor of r3. Therefore we recover (6.1).

For the non-vacuum case, we again solve the optimal embedding equation
and Jang’s equation first and then evaluate the three integrals on either Br

or Σr.

Lemma 6.2. The following pair T0 = (a0,−a1,−a2,−a3) and

X 0 =
ai

6a0
r3Rmn(p)x̃

mx̃nx̃i +O(r4)

X i = rx̃i − r3

6
Ri

n(p)x̃
n − r3

6
Rmn(p)x̃

mx̃nx̃i +O(r4)

solves the leading order of the optimal embedding equation on Σr. In partic-
ular, the above solution gives a time function τ = −X · T0 with

τ = raix̃
i − r3

6
aiR

i
n(p)x̃

n +O(r4).

Lemma 6.3. Let u be the solution of the Dirichlet problem of Jang’s equa-
tion on Br with boundary value τ . Then

u = aiX
i +

r2

6
TiX

i +
r2

6
BijmXiXjXm − r2

6
aiR

i
nX

n,

where

Bijm = −1

3
(δijTm + δjmTi + δmiTj).

The constants Ti can be solved from Jang’s equation. As before, their
contribution to each integral would cancel and we do not bother to solve
them explicitly here.
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Lemma 6.4.

1

16π

∫

Br



∣∣∣∣∣kij −

DiDju√
1 + |Du|2

∣∣∣∣∣

2

ḡ

+ 2|Y |2ḡ


 dΩ̃

= r5
[
− 1

54a0

∑

m

T 2
m − 1

27a0
TmalR

lm(p) +
1

90

(
a0 −

1

a0

)
Rij(p)R

ij(p)

− 1

54a0
aiajR

il(p)Rj
l (p) +

a0

180
W̄0imj(p)W̄

imj
0 (p)

− 1

45
amW̄

imj
0 (p)W̄0i0j(p)

]
+O(r6).

Proof. We have

kij −
DiDju√
1 + |Du|2

=
1

3

(
1

a0
(δijTm + δjmTi + δmiTj)

− W̄0imj − W̄0jmi +
al

a0
(Riljm +Rimjl)

)
Xm +O(r2)

Since we are integrating on a ball with radius r instead of 1, we get an
additional factor r5 from

1

16π

∫

Br

XmXndx =
r5

60
δmn.

□

Lemma 6.5.

1

16π

∫ [
|h0(s)− h(s)|2 − (H0(s)−H(s))2

]
dΩ̃ =

r5

60a0
Rij(p)R

ij(p) +O(r6).

Proof. The argument is almost identical as in the proof of Lemma 5.6. We
get an additional factor r5 in the last step:

∫ r

0
s4ds =

r5

5
.

□
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Lemma 6.6.

1

8π

∫

Σr

[
|H|
√

1 + |∇τ |2(cosh θ′ − cosh θ) + ∆τ(θ′ − θ)
]
dΣ

=
r5

54a0

(∑

m

T 2
m + 2TmaiR

im(p) + aiajR
il(p)Rj

l (p)

)
+O(r6).

Proof. A similar computation as in the proof of Lemma 5.10 leads to

|H|(sinh θ − sinh θ′) =
r√

1 + |∇τ |2
2

3

(
Tmx̃m + aiR

i
j x̃

j
)
+O(r2).

Recall the main term in the integrand is |H|(sinh θ − sinh θ′)2. We get a
factor r3 because |H| = 2

r
+O(r−2) and another factor r2 from the area

form of Σr. □

Putting the above three lemma together with Theorem 4.1, we recover
(6.2).
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