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Quenched disorder may prevent the formation of the widely sought quantum spin-liquid states (QSLs) or
mask their signatures by inducing a spin-glass state, which is why considerable experimental efforts are directed
at purifying materials that may host QSLs. However, in geometrically frustrated (GF) magnets, the largest class
of materials in which QSLs are sought, the glass-transition temperature Tg grows with decreasing the density of
vacancy defects, accompanied by a simultaneous growth of the magnetic susceptibility. In this Letter, we develop
a phenomenological theory of glass transitions and magnetic susceptibility in three-dimensional geometrically
frustrated magnetic materials. We consider a model of a GF magnet in which the glass transition occurs in the
absence of vacancies, e.g., due to other types of quenched disorder. We show that disorder that creates weak
local perturbations, e.g., weak random strain, leads to the growth of the transition temperature Tg. By contrast,
vacancies reduce Tg for small vacancy concentrations. Another consequence of the presence of vacancies is the
creation of quasispins, effective magnetic moments localized near the vacancies, that contribute to the magnetic
susceptibility of the system together with the bulk spins. We show that increasing the vacancy density leads to
an increase of the total magnetic susceptibility.
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Quenched disorder (impurities, irregularities, vacancies,
etc.) is one of the main obstacles to observing widely sought
quantum spin-liquid (QSL) states [1]. Quenched disorder may
not only hide the QSL signatures, such as the temperature de-
pendence of the heat capacity, but, in three-dimensional (3D)
systems [2–7], also induce the spin-glass state that may be
incompatible with a QSL. At present, the effect of quenched
disorder on QSLs and magnetic materials expected to support
QSL states is far from being understood.

A common expectation, confirmed by the existing the-
ories of spin glasses [8–13], is that purifying a material
makes random spin freezing less favorable and thus low-
ers the glass-transition temperature, which, in turn, should
make QSL signatures more vivid. Available experimental
data, however, for spin-glass transitions in geometrically
frustrated (GF) magnets [14], the largest class of materi-
als in which QSLs are sought, reveals several surprising
trends [13], summarized in Fig. 1, that contradict common
intuition.

The most common type of quenched disorder in GF ma-
terials is vacancies, i.e., randomly located nonmagnetic atoms
that replace magnetic atoms of the GF medium. With decreas-
ing the concentration of vacancies in GF materials, which
contribute to quenched disorder but of which they may not
be the only source, the glass-transition temperature increases,
reaching a finite value T ∗, the “hidden energy scale,” in the
limit of a vacancy-free material [13]. While vacancies in many
GF materials are the only known source of disorder, such a
spin freezing may present a challenge for the observation of
QSLs.

The origin of the hidden energy scale still remains to be
explored. In most frustrated materials, it has the same or-

der of magnitude, T ∗ ∼ 10 K, significantly exceeded by the
exchange couplings between the spins. In some materials,
exemplified by Y2Mo2O7 [15], the hidden energy scale may
be presumed to come from sources of disorder other than
vacancies, such as random strain fields due to the dynamic
Jahn-Teller effect. In other materials, however, there are no
other significant known sources of disorder distinct from va-
cancies. The origin and the value of the hidden energy scale,
thus, require a careful further investigation.

Another remarkable universal trend that GF systems ex-
hibit and that persists regardless of the source of disorder is the
growth of the magnetic susceptibility χ (Tg) with decreasing

the critical temperature Tg,
dχ (Tg)
dTg

< 0 [see Fig. 1(a)], when
changing the concentration of vacancies. This trend holds for
all GF magnets, for whom experimental data on spin glasses
are available [13,16–24], and is in contrast with the opposite
trend, dχ (Tg)

dTg
> 0, in conventional spin glasses [Fig. 1(b)].

The growth of the susceptibility with vacancy concen-
tration is consistent with the empirical picture of “orphan”
spins or quasispins [25–28]: The shielding of a vacancy by
the spins creates a degree of freedom that acts as a mag-
netic moment (a “quasispin”). As a result, adding vacancies
to a GF material leads to the growth of the susceptibility
χ (T ) [Fig. 1(a)], similarly to the growth of susceptibil-
ity observed in a nonmagnetic medium (conventional spin
glass) when adding magnetic impurities [Fig. 1(b)]. Empir-
ically, the contribution of the quasispin degrees of freedom
may be separated from that of the bulk spins, i.e., spins
sufficiently far from the vacancies, which behave as an in-
dependent subsystem (e.g., have a different Weiss constant
[25,26]).
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FIG. 1. Schematic of the behavior [13] of the susceptibility χ (T )
and glass-transition temperature Tg in (a) geometrically frustrated
magnets and (b) conventional spin glasses for various densities of
defects.

Quasispins alone cannot account for the observed [13] de-
crease of the glass-transition temperature with increasing the
concentration of vacancies; in a system of randomly located
magnetic moments, the glass-transition temperature grows
with the density of the moments [8–13]. If one assumes that
the bulk spins in the GF medium undergo freezing at the
transition, instead of the vacancy-induced quasispins, then
diluting such bulk spins by vacancies may be qualitatively
consistent with lowering the glass-transition temperature.
However, diluting the bulk spins by vacancies also decreases
their contribution to the magnetic susceptibility. It is natural
to assume, therefore, that describing the behavior of both the
susceptibility χ (T ) and the glass-transition temperature Tg
should involve both the quasispin degrees of freedom and the
degrees of freedom of the bulk spins.

In this Letter, we develop a phenomenological theory of
the effect of vacancy defects on the properties of frustrated
magnetic materials. We provide a scenario that explains si-
multaneously the observed, previously unexplained trends:
the growth of the glass-transition temperature with decreasing
vacancy concentration, the growth of the magnetic suscep-
tibility with vacancy concentration, and the dχ (Tg)/dTg < 0
trend observed in GF magnets. It also predicts the growth of
the glass-transition temperature with increasing the strength
of disorder that creates weak local perturbations in the system,
such as weak random strain.

Qualitative picture. We assume that the material undergoes
a spin-glass phase transition in the absence of vacancies. Such
a transition may be driven by quenched disorder other than
randomly located vacancies, such as random strain fields in
Y2Mo2O7 [15], or conceivably occur even in the absence of
disorder [29], similarly to the conventional liquid-glass tran-
sition [30]. The exact mechanism of the glass transition in a
vacancy-free system is not important for our consideration.
We assume that averaging of observables over the positions of
vacancies and realizations of other forms of disorder can be
carried out independently.

The temperature Tg of the glass transition is assumed to
be significantly exceeded by the absolute value of the Weiss
constant |θW |, which is on the order of the energies of iso-
lated spin-flip excitations in the GF medium [for instance,
for isotropic exchange interactions with the coupling J , the
mean-field approximation gives θW = − 1

3ZJs(s + 1), where
Z is the coordination number and s is the value of the spin]. As

a result, isolated spin-flip excitations are strongly suppressed
near the glass transition.

We show that at temperatures Tg � T � |θW |, vacancies
create, by breaking some of the bonds in the GF medium,
degenerate states of the system with different magnetizations,
which is equivalent to the existence of magnetic degrees of
freedom (quasispins) associated with the vacancies. In a broad
temperature interval, the magnetic susceptibility may be ex-
pected to obey the formula

χ (T ) = A(n − nimp)

T + |θW | + Bnimp

T
, (1)

which interpolates between the Curie-Weiss contribution of
the bulk spins at T � |θW | and the contribution of the vacan-
cies at T � |θW |; nimp is the concentration of the vacancies.

At the same time, the dilution of the bulk-spin medium
by vacancies reduces correlations between the bulk spins and
lowers the glass-transition temperature, as we show below.
The glass transition is thus driven by the degrees of freedom
of the bulk spins and not by the quasispins associated with the
vacancies.

Glass-transition temperature and vacancies. The transition
can be detected via the glass order parameter Qαβ

r = 〈ŝαr · ŝβr 〉,
the correlator of spins in different replica subspaces [8,10] α

and β, where 〈· · · 〉 is averaging over the states of the spin and
nonvacancy disorder, if present, for particular locations of the
vacancies. The order parameter Qαβ

r is finite at temperatures
below the glass-transition temperature, T < Tg, and vanishes
above the transition, at T > Tg.

The decrease of the transition temperature Tg when adding
vacancies can be understood intuitively as a result of the
decrease of the average coupling between the bulk spins of
the GF medium that undergo the glass freezing. To describe
this effect quantitatively, we assume that in the absence of
vacancies the glass transition can be described by a mean-field
replicated free energy

F (Q) = 1
2Q

αβ
r (K−1)rr′Qαβ

r′ + O(Q3), (2)

in which the lowest eigenvalue of the matrix (K−1)rr′ vanishes
when approaching the transition,

K−1
k=0 = a(Tg − T ), (3)

where Kk is the Fourier transform of the correlator Krr′ ;
summation over repeated indices is implied and a > 0. The
free energy (2) describes the action of a vacancy-free system,
averaged over the realizations of the other types of disorder, if
present. Therefore, the matrix Krr′ is translationally invariant.

For simplicity, we consider a system in which Qαβ
r does

not have time dynamics, corresponding, e.g., to models with
effectively classical spins. However, the argument developed
here applies as well in the presence of quantum dynamics of
spins, i.e., for a system described by the action (2) with the
fields Q that depend on the Matsubara time τ in addition to
the coordinates.

We note that for a particular pair of replicas α �= β, the
corresponding quadratic form in Eq. (2) is negative above
the transition, at T > Tg. However, the number n(n − 1)/2
of such pairs is also negative in the replica limit n → 0 [for
example, for a replica-symmetric order parameter Qαβ

r = q,
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the free energy is given by F̃ = limn→0
F (q)
n ∝ a(T − Tg)],

resulting in a positive action for T > Tg.
Because the free energy (2) is quadratic in small Qαβ

r , the
fluctuations of the order parameter Qαβ

r may be considered
Gaussian above the transition (T > Tg). This allows one to
describe the effects of vacancy defects and other small per-
turbations on the glass transition diagrammatically, with the
matrix Krr′ playing the role of the Green’s function.

To consider the effect of a single vacancy or other defect
added to the system, we add the term λ(Qαβ

ρ )2 to the action
(2) at site ρ. For λ → −∞, such a term leads to the vanishing
of the field Qαβ

ρ and mimics a vacancy at site ρ. For small
λ > 0, a combination of such terms can mimic, for example,
the effect of weak fluctuations of the exchange coupling av-
eraged over that coupling [12,13]. The presence of one defect
modifies the correlator Krr′ = 〈Qαβ

r Qαβ

r′ 〉/T of the fields Qαβ

(see Supplemental Material [31]):

Krr′ → Krr′ − Krρ
λ

1 + λKρρ

Kρr′ . (4)

We note that the quantity Kρρ = ∫
dk

(2π )d Kk is negative above
the transition (T > Tg), nonsingular in T − Tg for quadrati-
cally dispersive modes [K−1

k ∝ a(Tg − T ) − bk2] in 3D, and
independent of the choice of the site ρ. For λ → −∞, corre-
sponding to a vacancy defect, the correlator (4) in the presence
of the vacancy vanishes for r = ρ or r′ = ρ because Qαβ

ρ = 0
at the location of the vacancy.

In the limit of dilute defects, the disorder-averaged corre-
lator K̃ of the fields Qαβ

ρ is given by

K̃−1
k = K−1

k + λnimp

1 + λKρρ

, (5)

where nimp is the defect density and we have used that the con-
tributions of dilute defects to the “self-energy” 	k = K−1

k −
K̃−1
k are additive. The effect of the impurities is, therefore,

equivalent to the shift of temperature

Tg → Tg + nimpλ

a(1 + λKρρ )
. (6)

For λ → −∞, corresponding to vacancy defects, the glass-
transition temperature is lowered by nimp/(a|Kρρ|), in accor-
dance with experimentally observed trends [13]. By contrast,
quenched disorder that creates weak local perturbations (0 <

λ < |Kρρ|−1) increases Tg.
Magnetic susceptibility of vacancies. In what immediately

follows, we demonstrate microscopically the emergence of
the quasispin degrees of freedom in a frustrated medium.
We assume first that sources of quenched disorder distinct
from vacancies are absent. If a disorder-free glass transition
is possible, we also assume that the temperature of the sys-
tem exceeds the transition temperature Tg. We consider a GF
material whose ground states have zero magnetization. At a
finite temperature, the fluctuations of the magnetization in the
absence of vacancies lead to a finite magnetic Curie-Weiss
susceptibility given by the first term in Eq. (1).

The presence of vacancies removes some of the bonds in
the GF lattice and allows, in general, for degenerate ground
states with nonzero magnetizations. Degenerate states with

FIG. 2. Spin configurations near a vacancy on a pyrochlore lat-
tice. States (a) and (b) are obtained by removing a spin (shown in
red) pointing, respectively, down and up from a ground state of a
vacancy-free system. State (c) is obtained by removing a site from an
excited state obtained from a ground state of a vacancy-free system
by flipping all spins in a semi-infinite chain that starts at the removed
site. The three states have the same energy.

different magnetizations give large Curie-type contributions
χ (T ) ∝ nimp/T to the magnetic susceptibility equivalent to
that of free spins at low temperatures Tg < T � |θW |.

To illustrate the emergence of such quasispin degrees of
freedom, we consider Ising spins sr = ±1 on a pyrochlore
lattice, a frustrated lattice consisting of tetrahedra touching at
the corners. In the absence of vacancies, the Hamiltonian of
this model is given by (see, e.g., Refs. [32–34])

H = J
∑

(rr′ )

srsr′ = J

2

∑

i

S2
i + const, (7)

where the summation in the first sum is carried out over all
nearest-neighbor pairs of spins rr′; J > 0 is the antiferro-
magnetic coupling constant; the last expression represents the
sum over all the tetrahedra i that constitute the pyrochlore
lattice and Si = ∑

r∈ i
sr is the sum of the spins of the ith

tetrahedron.
In the absence of vacancies, the ground states correspond

to the vanishing spins of all tetrahedra, Si = 0, with two spins
pointing up and two spins pointing down in each tetrahedron
[32–34] (“two-in, two-out” rule). Such states have a degener-
acy that scales exponentially with the system size and can be
parametrized by a Coulomb field (“Coulomb phase” [32–34]).

A vacancy at location ρ can be modeled by adding
the Hamiltonian Hρ = −J

∑
(ρr) sρsr to the Hamiltonian (7),

which results in the effective cancellation of the exchange
couplings next to the vacant site. The Hamiltonian of the
system with such a vacancy at location ρ is given, up to an
additive constant, by

H̃ = J

2
(S1 − sρ )2 + J

2
(S2 − sρ )2 + J

2

∑

i �=1,2

S2
i , (8)

where S1 and S2 are the total spins (including sρ) of the two
tetrahedra that share site ρ.

Because |S1,2 − sρ| � 1, the minimum energy of the sys-
tem with a vacancy is given by J . There are three types of such
ground states, shown in Fig. 2: (a) S1 − sρ = S2 − sρ = 1, with
two spins in the vacancy-sharing tetrahedra pointing up and
one spin pointing down, (b) S1 − sρ = S2 − sρ = −1, with
two spins in the vacancy-sharing tetrahedra pointing down and
one spin pointing up, and (c) S1 − sρ = ±1, S2 − sρ = ∓1
(with Si = 0 for i �= 1, 2).
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States (a) and (b) are obtained by removing a spin pointing,
respectively, down and up from a ground state of a vacancy-
free system. Because the latter has zero total magnetization
(spin), states (a) and (b) have total spins of +1 and −1, re-
spectively, and a degeneracy of z/2, where z is the degeneracy
of ground states in a vacancy-free system. The magnetization
comes from tetrahedra 1 and 2 and is thus concentrated near
the vacancy.

State (c) has zero magnetization and is obtained by re-
moving a spin from an excited state of the vacancy-free
system in which one tetrahedron has a magnetization of
2 and the other tetrahedra have zero magnetization. In the
representation of the Coulomb phase, such an excited state
corresponds to a monopole excitation at the center of the
respective tetrahedron. Each such excited state is obtained
from a ground state of the vacancy-free system by flipping
the direction of the Coulomb field along a semi-infinite chain
(“Dirac string”) [32–34]. The degeneracy of states (c) is,
therefore, on the order of or smaller than the degeneracy of
states (a) and (b).

The existence of same-energy states with different fi-
nite magnetizations localized near the vacancy leads to a
finite variance 〈S2〉 ∼ 1 of the total spin and, according to
the fluctuation-dissipation theorem, a finite magnetic sus-

ceptibility χ1(T ) = g2μ2
B〈S2〉
T associated with one vacancy. For

sufficiently dilute vacancies, their contributions are additive,
and the magnetic susceptibility exhibits the χ (T ) ∝ nimp/T
behavior.

An alternative approach to deriving quasispin variables
has been applied in Ref. [27]. In this approach, a GF sys-
tem is described by Gaussian magnetic fluctuations with
phenomenologically introduced parameters. By integrating
out those fluctuations on the SrCr9xGa12−9xO19 lattice with
a vacancy, it has been found in Ref. [27] that a vacancy
is equivalent to a classical fractional spin in terms of its
response to an external field. A fractional (quasi)spin as-
sociated with a vacancy in a triangular lattice has also
been demonstrated numerically in Ref. [28] in the large-S
approximation.

We expect that similar quasispin degrees of freedom asso-
ciated with vacancies emerge generically for all GF lattices
that have zero average magnetization in ground states. The
removal of a site in such lattices may be expected to lead
to nonzero magnetizations of the ground states of the lattice
with a vacancy. In the presence of symmetry with respect to
flipping or rotating all spins, the effect of a vacancy is then
equivalent to the presence of a free magnetic moment in the
system. We leave, however, a microscopic investigation of
such quasispins and their values for other specific frustrated
lattices for future studies.

Introducing vacancies to the system increases the quasispin
contribution to the magnetic susceptibility. At the same time,
it reduces the density of the bulk spins, thus suppressing their
contribution. As can be seen from Eq. (1), however, the total
magnetic susceptibility grows with increasing the density of
vacancies, dχ (T )/dnimp > 0, in the dilute limit at low tem-
peratures T � |θW | (assuming the constants A and B are of
the same order of magnitude).

Interplay of quasispins with other sources of quenched
disorder. For the model we consider in this Letter, the glass
transition is driven by sources of disorder other than vacan-
cies. Nonvacancy quenched disorder may, in principle, be
varied in experiment by substituting nonmagnetic atoms in a
GF compound by non-magnetic impurity atoms. Nonvacancy
quenched disorder lifts the degeneracy between the ground
states we have discussed. If such a lifting is sufficiently weak,
its effect on the quasispins is equivalent to that of a random
magnetic field.

The behavior of the quasispin contribution to the suscep-
tibility will be unaltered at temperatures |θW | � T � 
E
significantly exceeding the characteristic energy gap 
E be-
tween the states of a quasispin. The contribution of the
vacancies to the susceptibility, however, significantly changes
at low temperatures T � 
E (possibly below the glass tran-
sition). Due to random orientation of the effective magnetic
field acting on the quasispins, the susceptibility of the va-
cancies is on the order of the transverse susceptibility of
a two-level system with the splitting 
E , which gives the
estimate for the contribution of the vacancies to the mag-

netic susceptibility χvac ∼ g2μ2
B


E nimp (per magnetic atom in the
material).

The quasispins also contribute to the heat capacity of the
system. Their contribution is similar to that of an an ensemble
of two-level systems and can be estimated as [35] Cvac ∼
T


E nimp (assuming the nonvanishing density of the effective
field acting on the quasispins at small values of the field).
Experimental observation of such a contribution to the heat
capacity requires systematically accounting for the large con-
tribution of bulk spins [36–39], as well as the heat capacity of
the phonons.

Conclusion. We have developed a phenomenological the-
ory of the glass transition and magnetic susceptibility in a
geometrically frustrated (GF) magnet in the presence of va-
cancies, the most common type of defects in GF magnetic
materials. In our model, the glass transition exists in the ab-
sence of vacancies, driven, e.g., by other sources of quenched
disorder. Vacancies lead to the formation of quasispin degrees
of freedom near the location of the vacancies, as well as to
reducing the density of the spins. The interplay of these effects
results in the increase of the total magnetic susceptibility of
the system.

Increasing a small concentration of vacancies leads to a
decrease in the glass-transition temperature, in contrast with
quenched disorder that creates weak local perturbations (e.g.,
weak random strain). The described dependencies of the
susceptibility and the transition temperature on the vacancy
concentration is consistent with the experimentally observed
trends in all GF magnetic materials [13]. The model proposed
here and other predictions can be tested in experiment by
varying nonvacancy quenched disorder, e.g., by substituting
nonmagnetic atoms in GF magnets by nonmagnetic impurity
atoms.
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