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ABSTRACT In Proceedings of the 55th Annual ACM Symposium on Theory of Computing

For any ¢ > 0, we give a simple, deterministic (4 + ¢)-approximation
algorithm for the Nash social welfare (NSW) problem under sub-
modular valuations. The previous best approximation factor was
380 via a randomized algorithm. We also consider the asymmet-
ric variant of the problem, where the objective is to maximize
the weighted geometric mean of agents’ valuations, and give an
(w + 2 + ¢)e-approximation if the ratio between the largest weight
and the average weight is at most w.

We also show that the %-EFX envy-freeness property can be at-
tained simultaneously with a constant-factor approximation. More
precisely, we can find an allocation in polynomial time which is both
%—EFX and a (8 + €)-approximation to the symmetric NSW problem
under submodular valuations. The previous best approximation
factor under %—EFX was linear in the number of agents.
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1 INTRODUCTION

We consider the problem of allocating a set G of m indivisible items
among a set A of n agents, where each agent i € A has a valuation
function v; : 2° — Rsg and weight (entitlement) w; > 0 such
that };c4 wi = 1. The Nash social welfare (NSW) problem asks for
an allocation S = (S;);ea that maximizes the weighted geometric
mean of the agents’ valuations,

NsW(S) = [ J(ws(si ™.
i€A
We refer to the special case when all agents have equal weight (i.e.,
w; = 1/n) as the symmetric NSW problem, and call the general
case the asymmetric NSW problem. Throughout, we let wyax =
max;ecq w;. For a > 1, an a-approximate solution to the NSW prob-
lem is an allocation S with NSW(S) > OPT/a, where OPT denotes
the optimum value of the NSW-maximization problem.

Allocating resources among agents in a fair and efficient manner
is a fundamental problem in computer science, economics, and
social choice theory; we refer the reader to the monographs [5,
10, 11, 41, 45, 46, 48] on the background. A common measure of
efficiency is utilitarian social welfare, i.e., the sum of the utilities
>iea vi(Si) for an allocation (S;);c 4. In contrast, fairness is often
measured by max-min fairness, i.e., min;e 4 v;(S;); maximizing this
objective is also known as the Santa Claus problem [4].

Symmetric NSW provides a balanced tradeoff between the of-
ten conflicting requirements of fairness and efficiency. It has been
introduced independently in a variety of contexts. It is a discrete
analogue of the Nash bargaining game [33, 42]; it corresponds
to the notion of competitive equilibrium with equal incomes in
economics [47]; and arises as a proportional fairness notion in
networking [34]. The more general asymmetric objective has also
been well-studied since the seventies [31, 32]. It has found many
applications in different areas, such as bargaining theory [15, 35],
water resource allocation [22, 30], and climate agreements [49].

A distinctive feature of the NSW problem is invariance under
scaling of the valuation functions v; by independent factors 4;, i.e.,
each agent can express their preference in a “different currency”
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without changing the optimization problem (see [41] for additional
characteristics).

%-EFX Allocations. Envy-freeness up to any item (EFX) is con-
sidered the most compelling fairness notion in the discrete setting
with equal entitlements [14], where an allocation S = (S;)jea is
said to be EFX if

0;i(Si) = vi(Sg —Jj), Vi,k e A,Vje S, .

That is, no agent envies another agent’s bundle after the removal
of any single item from the envied agent’s bundle. It is not known
whether EFX allocations always exists or not, and it is regarded as
the “fair division’s biggest open question” [44]. This motivated the
study of its relaxation a-EFX for an a € (0, 1), where an allocation
S is said to be a-EFX if

vi(Si) > a-vi(Sp —j), Vi,ke A VjeS,.

The best-known «, for which the existence is known, is % for sub-
modular valuations, albeit with the efficiency guarantee of O(n)-
approximation to the symmetric NSW problem [18, 43].

For NSW, without loss of generality we can assume that the
allocations S = (S;);jeq partition the set of items, i.e., UjeaS; = G.
We call such an allocation a complete allocation; an allocation S
with U;eaS; ¢ G will be called a partial allocation.

In the context of envy-free allocations, it might be beneficial not
to allocate some items: the allocation with S; = @ for each agent is
in fact envy-free. The two challenges are to find a complete alloca-
tion that satisfies certain envy-freeness property, and to guarantee
efficiency, such as high NSW value at the same time.

Submodular and Subadditive Valuation Functions. A set function
v: 29 — R is monotone if v(S) < v(T) whenever S C T. A mono-
tone set function with v(0) = 0 is also called a valuation function
or simply valuation. The function v : 26 — R is submodular if

v(S)+ou(T) >v(SNT)+v(SUT) VS, TCG,
and subadditive if
v(S)+ov(T) >v(SUT) VS, TCG.

We assume the valuation functions are given by value oracles that
return v(S) for any S € G in O(1) time.

Our Contributions. Our main theorem on NSW is the following.

THEOREM 1.1. For any e > 0, there is a deterministic polynomial-
time (N"Wmax + 2 + €)e-approximation algorithm for the asymmetric
Nash social welfare problem with submodular valuations. For sym-
metric instances, the algorithm returns a (4 + €)-approximation. The
number of arithmetic operations and value oracle calls is polynomial
inn, m, and 1/¢.

Algorithm 1 in Section 2.1 presents the algorithm asserted in the
theorem. Note that nwpay is the ratio between the maximum weight
Wmax and the average weight (1/n). In the symmetric case, when
all weights are w; = 1/n, this bound gives (3 + ¢)e < 8.2. In this
case, we can improve the analysis to obtain a (4 + ¢)-approximation
algorithm.

As our second main result, we show that a %-EFX allocation with
high NSW value exists and can also be efficiently found. We give
a general reduction for subadditive valuations. In the context of
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%—EFX allocations, NSW(S) will always refer to the NSW value of
allocation § in the symmetric case (w; = 1/n for all i € A).

THEOREM 1.2. There is a deterministic strongly polynomial-time
algorithm that given a symmetric NSW instance with subadditive
valuations and given a (complete or partial) allocation S of the items,
it returns a complete allocation T~ that is %-EFX and NSW(7") >
NSW(S)/2.

The above algorithm is strongly polynomial in the value oracle
model: number of basic arithmetic operations and oracle calls is
polynomially bounded in n and m. Together with Theorem 1.1, we
obtain the following corollary.

CoOROLLARY 1.3. Foranye > 0, there is a deterministic polynomial
algorithm that returns a %-EFX complete allocation that is (8 + €)-
approximation to the symmetric NSW problem under submodular
valuations. The number of arithmetic operations and value oracle
calls is polynomial in n, m, and 1/e.

1.1 Related Work

Prior Work on Approximating NSW. Let us first consider additive
valuations, i.e., when v;(S) = ¥ jes vij for nonnegative values v;;.
Maximizing symmetric NSW is NP-hard already in the case of two
agents with identical additive valuations, by a reduction from the
Subset-Sum problem. It is NP-hard to approximate within a factor
better than 1.069 for additive valuations [26], and better than 1.5819
for submodular valuations [29].

On the positive side, a number of remarkably different constant-
factor approximations are known for additive valuations. The first
such algorithm with the factor of 2 - e!/€¢ ~ 2.889 was given by
Cole and Gkatzelis [21] using a continuous relaxation based on a
particular market equilibrium concept. Later, [20] improved the
analysis of this algorithm to achieve the factor of 2. Anari, Oveis
Gharan, Saberi, and Singh [2] used a convex relaxation that relies
on properties of real stable polynomials. The current best factor
isel/® +¢~1.45 by Barman, Krishnamurthy, and Vaish [8]; the
algorithm uses a different market equilibrium based approach.

For the general class of subadditive valuations [6, 18, 29], O(n)-
approximations are known. This is the best one can hope for in the
value oracle model [6], for the same reasons that this is impossible
for the utilitarian social welfare problem [23]. Sublinear approxima-
tion O(n%3/54) is possible for XOS valuations if we are given access
to both demand and XOS oracles [7]. Recall that all submodular
valuations are XOS, and all XOS valuations are subadditive.

Constant-factor approximations were also obtained beyond addi-
tive valuation functions: capped-additive [27], separable piecewise-
linear concave (SPLC) [3], and their common generalization, capped-
SPLC [16] valuations; the approximation factor for capped-SPLC
valuations matches the e!/ + ¢ factor for additive valuations. All
these valuations are special classes of submodular. Subsequently, Li
and Vondrak [37] designed an algorithm that estimates the optimal

e3

(e-1)
lar valuations, such as coverage and summations of matroid rank
functions, by extending the techniques of [2] using real stable poly-
nomials. However, this algorithm only estimates the optimum value

but does not find a corresponding allocation in polynomial time.

value within a factor of ~ 6.8 for a broad class of submodu-
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In [28], Garg, Husi¢, and Végh developed a constant-factor ap-
proximation for a broader subclass of submodular valuations called
Rado-valuations. These include weighted matroid rank functions
and many others that can be obtained using operations such as
induction by network and contractions. An important example
outside this class is the coverage valuation. They attained an ap-
proximation ratio 772 for the symmetric case and 772(wmax/ Winin)®
for the asymmetric case. Most recently, Li and Vondrak [38] ob-
tained a randomized 380-approximation for symmetric NSW under
submodular valuations by extending the the approach of [28].

We significantly improve and simplify the approach used in [28]
and [38]; we give a comparison to these works in Section 2.2.

Prior Work on EFX and Related Notions. The existence of EFX
allocations has not been settled despite significant efforts [14, 17,
43, 44]. This problem is open for more than two agents with general
monotone valuations (including submodular), and for more than
three agents with additive valuations. This necessitated the study of
its relaxations a-EFX for a € (0, 1) and partial EFX allocations. For
the notion of a-EFX, the best-known « is 0.618 for additive [1] and
0.5 for general monotone valuations (including submodular) [43].

For the notion of partial EFX allocations, the existence is known
for general monotone valuations if we do not allocate at most
n — 2 items [9, 19, 40], albeit without any efficiency guarantees. For
additive valuations, although n — 2 is still the best bound known,
there exist partial EFX allocations with 2-approximation to the
NSW problem [13].

A well-studied weaker notion is envy-freeness up to one item
(EF1), where no agent envies another agent after the removal of
some item from the envied agent’s bundle. EF1 allocations are
known to exist for general monotone valuations and can also be
computed in polynomial-time [39]. However, an EF1 allocation
alone is not desirable because it might be highly inefficient in
terms of any welfare objective. For additive valuations, the alloca-
tions maximizing NSW are EF1 [14]. Although the NSW problem
is APX-hard [36], there exists a pseduopolynomial time algorithm
to find an allocation that is EF1 and 1.45-approximation to the
NSW problem under additive valuations [8]. For capped-SPLC val-
uations, [16] shows the existence of an allocation that is %-EFI and
1.45-approximation to the NSW problem. The existence of an EF1
allocation with high NSW is open for submodular valuations.

Subsequent to our work, [24] improves Theorem 1.2 to show
the existence of an allocation 7~ that is %—EFX and NSW(7") >
% NSW(S) for a given allocation S.

1.2 Notation

We will also use monotone set functions with v(0) > 0; we refer to
these as endowed valuation functions. We use log(x) for the natural
logarithm throughout. For set S € Gand j € G, we use S + j to
denote S U {j} and S — j for S\ {j} and we write v(j) for v({j}). For
avector p € RS and § C G, we denote p(S) = Y;es pi-

By a matching from A to G we mean a mapping 7 : A - GU {1}
where 7(i) # 7(j) if 7(i) # L; L is a special symbol representing
unmatched agents.
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2 OVERVIEW OF THE ALGORITHMS

2.1 Approximation Algorithm for Nash Social
Welfare
Algorithm 1 is our new proposed algorithm for the Nash social

welfare problem. We start with an overview of the algorithm. The
analysis is given in Section 3.

Algorithm 1: Approximating the submodular NSW problem

Input: Valuations (v;)jea over G, weights w € R‘;‘O such that
Siecawi =1,and e > 0.

Output: Allocation S = (S;)jea-

Find a matching 7 : A — G maximizing [];c4 vi(z(i))" and
set H := 7([n]),] =G\ H

R = (Ri)iea =LocalSearch(J, (vi)iea)

Find a matching o : A — H maximizing [17, vi(R; + o (i)™

return S = (R; + 0(i))ica

1

Phase 1: Initial Matching. We find an optimal assignment of
one item to each agent, i.e., a matching 7 : A —» G maximizing
[Tica ©i(z(i))™i. This can be done using a max-weight matching
algorithm with weights w; log v; (j) in the bipartite graph between
A and G with edge set {(i, ) : v;(j) > 0}. If no matching of size n
exists, then we can conclude that there is no allocation with pos-
itive NSW value, and return an arbitrary allocation. For the rest
of the paper, we assume there is a matching covering A, and let
H := 7([n]) be the set of matched items.

Phase 2: Local Search. In the second phase, we let J := G\ H
denote the set of items not assigned in the first phase. We let A :=
{i € A: v;(J) > 0} denote the set of agents that have a positive
value on the items in J. For every i € A, we select

£(i) € argmax v; (j)
JjeJ
as a favorite item of agent i in J. By submodularity, v; (£(i)) > 0. For

each i € A, we define the endowed valuation function 3; : 2/ —
R>0 as

2;(S) = v; (£()) +vi(S) V¥SC]J.
Thus, 9;(0) = v;(€(i)), and 9;(j) < 29;(0) for any j € J. Further,
we set the accuracy parameter

g=-1+ V1+e.

(Instead of this exact value, we can set a lower value within a
constant factor range.)

Our local search starts with allocating all items to a single agent
in A. As long as moving one item to a different agent increases the

potential function
[ J@i®™
icA
by at least a factor (1 + £), we perform such an exchange. Phase 2

terminates when no more such exchanges are possible, and returns
the current allocation. For all agents i € A\ A, we let R; = 0.
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Algorithm 2: LocalSearch(J, (vi)iea)
A—{ieA:v;i(J) >0}
£(i) « argmax{v;(€) : € € Jifori€ A
Define 0;(S) = v; (€(i)) + vi(S)
Ry « Jforsomek € AandR; « Oforic A—k
while i,k € A and j € R; such that

oi(Ri=i) \" (o Reti) "¢ .
(%Gel) (%) > 1+ a0
L R; <« R;—jand Ry, « Ry +j

1

2

3

4

return R := (Rj)ieca

Phase 3: Rematching. In the final phase, we match the items in
H to the agents optimally, considering allocation R = (R;);jea of J.
This can be done by again solving a maximum-weight matching
problem, now with weights w;; = w; log v; (R; + j).

2.2 Our Techniques and Comparison with
Previous Approaches

We now compare our algorithm to those in [28] and in [38]. At a
high level, all three algorithms proceed in three phases, with Phases
1 and 3 being the same as outlined above. However, they largely
differ in how the allocation R of J = G \ H is obtained in Phase 2.

Garg, Husi¢, and Végh [28] use a rational convex relaxation,
based on the concave extension of Rado valuations. After solving
the relaxation exactly, they use combinatorial arguments to sparsify
the support of the solution and construct an integral allocation.

Li and Vondrak [38] allow arbitrary submodular valuations. For
submodular functions, the concave extension is NP-hard to evalu-
ate. Instead, they work with the multilinear extension. This can be
evaluated with random sampling, but it is not convex. To solve the
relaxation (approximately), they use an iterated continuous greedy
algorithm. The allocation R is obtained by independent random-
ized rounding of this fractional solution. Whereas the algorithm is
simple, the analysis is somewhat involved. The main tool to ana-
lyze the rounding is the Efron-Stein concentration inequality; but
this only works well if every item in the support of the fractional
solution has bounded value. This is not true in general, and the
argument instead analyzes a two-stage randomized rounding that
gives a lower bound on the performance of the actual algorithm.
First, a set of ‘large’ fractional items is preserved, and a careful
combinatorial argument is needed to complete the allocation.

Our approach for the second part is radically different and much
simpler. We do not use any continuous relaxation, but R is ob-
tained by a simple local search with respect to the modified val-
uation functions. Because of using these modified valuations, we
can first guarantee a high NSW value of the infeasible allocation
(R;i + €(i))ieq of J in the analysis. Our analysis of the local search
is inspired by the conditional equilibrium notion introduced by Fu,
Kleinberg, and Lavi [25]. They show that any conditional equi-
librium 2-approximates the utilitarian social welfare and give an
auction algorithm for finding such an equilibrium under submodu-
lar valuations.

We note that local search applied directly to the NSW problem
cannot yield a constant factor approximation algorithm even if
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we allow changing an arbitrary fixed number k of items. This can
be seen already when m = n, i.e., every allocation with positive
NSW value is a matching. Also, some other natural variants of
local search do not work, or the analysis is not clear; for example,
our analysis does not seem to work for local search applied to the
(seemingly more natural) choice of 7;(S) = v; (S + 7(i)). The idea of
defining £(i) and using the modified valuation functions is inspired
by rounding of the fractional solution from previous approaches;
the role of the £(i) items is similar to the large items in [38], but we
obtain much better guarantees using a more direct deterministic
approach.

The last part of the analysis concerns the rematching in Phase
3. Here, we convert the infeasible allocation (R; + €(i))jea to a
feasible allocation by an alternating path argument, combining the
initial matching 7 and an (unknown) optimal matching g. While the
rematching phase was already present (and essentially identical)
in [28] and [38], it is implemented and analyzed differently here.
We show the existence of a matching p that together with R gives
good approximation of the optimum. The papers [28] and [38] find
such p by first showing that there is matching s that has high NSW
together with R and the items £(i). Then, they show in a convoluted
way that we can remove the items £(i) and find a matching p (as a
combination of 7 and the initial matching 7) while only losing only
a constant in objective when compared to the solution consisting
of 7, R and the £(i)’s.

We prove the existence of a good matching p by carefully ana-
lyzing the alternating cycles in the union of the optimal allocation
of H and the initial matching 7 of Phase 1. Our proof is much sim-
pler than the previous analysis of [28] and [38], and facilitates the
improved approximation factor. (The exact numbers are difficult
to compare as the loss depends on the properties of solutions ob-
tained in Phase 2, and since in the current paper the analysis of
Phase 2 and Phase 3 is done in a more synchronous way.) We note
that the particular matching p mentioned here is not needed; the
algorithm finds the most profitable matching with respect to the R.
This provides a solution at least as good as the one in the analysis.

2.3 1/2-EFX Guarantee

The algorithm asserted in Theorem 1.2 is Algorithm 3 in Section 4.1.
Our first key tool is a subroutine that finds a partial allocation that
is %—EFX and preserves a large fraction of the NSW value.

LEMMA 2.1. There exists a deterministic strongly polynomial algo-
rithm MakeFairOrEfficient(7), that, for any partial allocation
T, returns another partial allocation R that satisfies one of the fol-
lowing properties

(i) NSW(R) > NSW(T") and U;caR; C U;eaT;, or
(ii) NSW(R) > § NSW(7") and R is }-EFX.

This is shown by modifying the approach of Caragiannis, Gravin,
and Huang [13]. For additive valuations, their algorithm takes an
input allocation 7~ and returns a partial allocation R that is EFX
and NSW(R) > % NSW (7). We simplify and extend this approach
from additive to subadditive valuations, but prove only the weaker
%-EFX property.

The key subroutine for them provides a similar alternative as in
Lemma 2.1. In outcome (ii), they have the stronger EFX guarantee,
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while in outcome (i), they show that the NSW value increases by a
certain factor. In outcome (i), it is not clear how an increase in the
NSW value could be shown for subadditive valuations. However,
arguing about the support decrease leads to a simpler argument.

In [13], only a partial EFX allocation is found. Theorem 1.2 shows
the existence of a complete allocation, albeit with the weaker %—
EFX property. To derive Theorem 1.2, we start by repeatedly calling
MakeFairOrEfficient until outcome (ii) is reached. Note that the
outcome (i) can only happen at most m times because the number
of items in R reduces by at least one after each call.

The allocation at this point may be partial. We show that the
remaining items can be allocated using the classical envy-free cycle
procedure by Lipton, Markakis, Mossel, and Saberi [39]. Even though
this procedure is known for the weaker EF1 property [12], we show
that—after a suitable preprocessing step—it can produce an %-EFX
allocation while not decreasing the NSW value of the allocation.

3 ANALYSIS OF THE NSW ALGORITHM

In this section, we prove Theorem 1.1. In Section 3.1, we formulate
simple properties of approximate local optimal solution found in
Phase 2. This is followed by a technical bound comparing the ap-
proximate local optimal solution to the optimal solution. In this step,
we present two different analyses: in Section 3.2 for the asymmetric
case, and in Section 3.3 for the symmetric case. Section 3.4 gives a
lower bound on the weight of the final matching found in Phase 3
of the algorithm; this argument is the same for the asymmetric and
symmetric cases. This completes the proof of Theorem 1.1.

3.1 Local Optima

Throughout this section, we work with the item set J, set of agents
A, favourite items £(i), endowed valuations o; (S) = v; (£(i)) +v; (S),

andeé=-1+ ¥1+e.

Definition 3.1 (£-local optimum). A complete allocation R =
(Ri)iea is an &-local optimum with respect to valuations 0, if for all
pairs of different agents i, k € A and all j € R; it holds
(axRi—ﬁ)W{(auRk+»
i(Ri) Ok (Rie)

A 0-local optimum will be simply called local optimum.

)Wk <(1+9).

LEMMA 3.2. Consider an NSW instance with submodular valu-
ations, and let ¢ > 0. Then, LocalSearch(J,v1,...,v,) returns
an &-local maximum with respect to the endowed valuations o; in
@) (% log m) exchange steps.

Proor. It is immediate that the algorithm terminates with an
é-local maximum. Recalling that 9;(j) < 29;(0) for any j € ],
submodularity implies v; (J) < (|| + 1)3;(0) < md;(0) for every

i € A. Hence,

[Ja:0y <m] Ja@™,

icA icA
and therefore the product [];. 5 9i(R;)"* may grow by at most a
factor m throughout all exchange steps. Every swap increases this
product by at least a factor (1 + £). Thus, the total number of swaps
is bounded by logy, ;) m = mlog; , m = O(%logm). |

We need the following two properties of submodular valuations.
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PROPOSITION 3.3. Let : 2/ — Rsq be a submodular endowed
valuation. Let S C T C J andj € ]J. Then,
oT+)) _ 9(S+))
o(T) o(S)

Proor. By the monotonicity, and submodularity of v we have

o(T+j) _ o(T) +0(T +j) — o(T)
o(T) o(T)

< 9(S) + o(T + j) — o(T)
- 0(S)
< o(S) +0(S + j) — 0(S)
o(S)
(S +j)
o(s) -

O

PROPOSITION 3.4. Letd : 20 — Rso be a submodular endowed
valuation. For any j € R,

o(R - j) > Z (5(R) — 9(R - k)).

keR

PRrOOF. Letus denote R—j = {ry,...,rs}. By submodularity, we
have
S

5(0) + Y (@(irs, ..

k=1

> 5(0) + ) (9(R) - (R - ry
k=1

'vrk}) _Z_)({rla- . -vrk—l}))

)= ) (B(R) ~ (R - rp)
keR
where in the last step, we used the fact that 5(0) = v(€(i)) > v(j) =
9(R) —9(R—)). O
We analyze our local search in slightly different ways in the
symmetric case (where wq . = wp = 1/n) and the general
asymmetric case. We consider the asymmetric case first.

3.2 Local Equilibrium Analysis for
Asymmetric NSW

Let £ > 0, and let R = (R;);ec4 be an &-local optimum with respect
to the endowed valuations 9;. Let j € J and let i € A be the agent
such that j € R;. We define the price of j as
0i(Ri)
i = wjlog ————.
bi 08 DR —J)

LEMMA 3.5. For an &-local optimum R = (R;);c 4 and prices pj
defined as above, for every item j € R; and every agentk € A, we
have )

vk_(Rk +J) < (1+ &)/ WkePi/ Wi
Ok (Ri)
Moreover, if the valuation Oy is submodular, then for allT C ], we
have

w < (1 + §)|T|/Wk . ereTPJ'/Wk .
Ok (R)
Proor. By definition, efi/¥i = % If k = i the first state-

ment is trivial. Otherwise, for k # i, the first statement follows from
the &-optimality of R; if false, we would swap item j to agent k.

For the second statement, assume w.lo.g. T = {t1,t2,...,t7|} €
J. Since ¥y is submodular, by Proposition 3.3 we have
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T

ﬁk(Rk uT) _ ﬁ ﬁk(Rk U{ts,...,ta})
Oc(Re) ot OcRee Ut .. tam1))
|T| _
Ok (R + ta)
ol ey

a=1
< (1+€—)|T|/Wk eZjeT Pil Wk o
The following lemma shows that the spending of agent i, p(R;),
is at most their weight w;.

LEMMA 3.6 (BOUNDED SPENDING). For an é-local optimum R =
(Ri);e4 and prices p; defined as above, p(R;) < w; for every agent
i € A, and consequently, p(J) < 1.

Proor. From the definition of p;, we have

(R ) w; 0i(Ri) = 0i(Ri —J)
: ];;‘i 0i(Ri - Jj)

< wi

p(R)—wlZlo

AR -7

due to the elementary inequality logx < x — 1, and by Proposi-
tion 3.4 we know that 3} ;eg, (9i(R;i) — 9i(Ri —j)) < 9i(R; — ) for
j' € argmin iR, i (Ri —J)-

Adding up the prices over all the sets R;, whose union is J, we
ObtainP(]):ZieAP(Ri) SZieAwi <1. O

We recall the First Welfare Theorem: any Walrasian equilibrium
allocation maximizes the utilitarian social welfare. For conditional
equilibrium, [25, Proposition 1] give an approximate version of
the first welfare theorem: the utilitarian social welfare in any con-
ditional equilibrium is at least half of the maximal welfare. Anal-
ogously, if we interpret local optimum as equilibrium, then the
following proposition states that such an equilibrium gives an e-
approximation of the optimal Nash social welfare with respect to
the endowed valuations. Recall that, by definition of A, 3;(S) = 0
forany i€ A\ Aandany S C J.

PrROPOSITION 3.7. Let R = (R;i)jeca be a local optimum and S =
(Si)ica be an optimal NSW allocation with respect to the endowed
submodular valuations 0;. Then

nﬂi(Ri)wi > % . 1_[ i (i)™ .

icA icA

Proor. By Lemma 3.6, ); 1 p(Si) < p(J) < 1. Then, by
Lemma 3.5,

nﬁi(si)wi < l_lﬁ,-(R,- uS;)vi < l—[f)i(Ri)W" . eP(S1)
icA ieA icA
= eZiEAP(Si) . nﬁi(Ri)Wi <e- néi(Ri)Wl

icA icA

Proposition 3.7 is included solely for the intuition. We cannot
really use it as such, because it doesn’t deal with the allocation of
items in H. For this, we need the final rematching phase (Section 3.4).
We will need a bound in the following form. The parameters h; will
represent the number of items that agent i takes from the set H in
the optimum solution.

1303

Jugal Garg, Edin Husi¢, Wenzheng Li, Laszl6 A. Végh, and Jan Vondrak

LEMMA 3.8. Let > 0, and let R = (R;);c 5 be an &-local optimum
with respect to the endowed valuations ©; that are submodular. Let

(S1,S2, - ..,Sn) denote any partition of the set ], and let h; > 0 such
that Yjca hi < n. Then,
S Wi
[T A" ]_[ vi (Si) thi| < (1+€)(2+nwmax)e.
» max({v; (£(i)), vi(Ri)}
icA\A i€A

Proor. By Lemma 3.5, for each i € A we can bound

vi(S;) v;(R; U S;)
max{v; (€()),vi(Ri)} ~ 1[v;(£(i)) + vi(Ry)]
< zvl(Rl U S;)
0i(Ri)
< 2(1 + &) ISil/wigp(Si)/wi.
Thus,
. S:) wi
By ]_[( oil +hi )
ieavd e \maxtvi(C(D). vi(Ri)}
< h} n ( (1+ &) ISillwiep(Si)/wi h~)w'
A\A icA
< ]_[ Y]] (@ + hiy(1+ @) Sil/e . ep(Sa /)™
icA\A icA
<a+amelD [ J@+h)™.
i€A

By the choice of &, (1 + &)™ = 1 + ¢. From Lemma 3.6, we get
p(J) < 1. The proof of the lemma is complete by showing that the
last product is at most (2 + nwmax). This follows by the AM-GM
inequality:

H(Z +h)Vi < Z wi(2+ hi) < 2+ Wnax Z hi <2+ nwpay -
icA icA icA
o
3.3 Local Equilibrium Analysis for Symmetric
NSw

Let £ > 0, and let R = (R;);c4 be an &-local optimum with respect
to the endowed valuations 9;, in the symmetric case. Define é =
(1+&"-1;wehave 1+ é = (1+8&" < (1+&™ =1+ e since
n < m.In particular, 0 < £ < é <e < 1.

Let j € J and let i € A be the agent such that j € R;. We define
the price of j as

0i(Ri) - 0i(Ri -
0i(Ri - J) )
The following lemma gives the basic properties of these prices that
we will need in the following.

_ 0i(Ri)

J)
0i(Ri — '

pj =

LEMMA 3.9. Given an é-local optimum R =
pj defined as above, we have

(Ri)iea, and the prices

e Foreveryitemj € J,pj <1
e Foreveryitemj € J\R;,

Ok (Rg +))

e (Ry) < (1+8A+pj).
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e ForeveryT C ],

i (R U T) < o
—5k(Rk) <1 +j;(25 +pj) .
ProoF. By construction of 9;, 9;(R;) — 9;(R; — j) < 0;(0) <
9;(R; — j). Hence, p; = % <1
From the &-optimality of R, we get % < (1+€’)"% =

(1+8)(1 + pj), because otherwise we could swap item j to agent k.
For the third statement, by submodularity, we have

ok (R UT) _ Ok (Ri) + Xjer (O (R + ) — Op(Ry))
o(Re) Ok (Rie)
ST+ ((A+8A+p) —1) <1+ Y (26 +py)

jeT jeT

using the first and second statement. O

The following lemma shows that the spending of each agent i,
p(Ri) = X jer, pj» is at most 1.

LEMMA 3.10 (BOUNDED SPENDING). Let R = (R;);c 4 be an &-local
optimum with respect to the endowed valuations 0;. Then, p(R;) < 1
for every agent i € A, and consequently, p(J) < |A|.

Proor. From the definition of the prices p;, and by Proposi-
tion 3.4, we have

0i(Ri) — 0i(Ri — J)
Ri = - _ 5~
pRi) j;;i 0i(Ri — J)
- Yjer; (0i(Ri) = 0i(R; = j))
T mingeg, Oi(Ri —k)

Since (R1, ..., Rp) isapartition of J (every item is allocated through-
out our local search), we have

pUY =D pi= D, D i <AL

jeJ icAJER;

The next lemma bounds the value of any set relative to our local
optimum in terms of prices.

PROPOSITION 3.11. LetR =
S C J any set of items. Then,

vi(S)
o <1 +22(2£+pj

max{v; (R;), v; (

(Ri)iea be an é-local optimum and

jes
Proor. By Lemma 3.9,
vi(t(D) +0i(S) _ 0i(S) _ vi(RiVS) .
= < <1+ 28+ pi).
@) oK) " R < amy <2
LetA = v’((;g ))) . We can rewrite the inequality above as follows:
‘U,(S)
v - ull) < 1+Z(25+p
A J
jes
From here,
vi (5)

(1+).)(I+Z(2€+pj )—1_/1+(1+/1)Z 26+ pj).
Jes Jj€eS

vi(li) ~
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We use this inequality if 0 < A < 1. If A > 1, we divide by A to
obtain:

<1+ (1/A+1 2¢ +

SRy S 1T WARD Y@ py).
jes

Either way, the worst case is A = 1, which gives

v;(S)
max{v; (€£(i)), vi(R;)}

< 1+22(25+pj
Jj€eS

Again, the bounds in this section do not deal with the allocation
of the items in H. This will be handled by the final rematching
phase (Section 3.4), where we will need a bound in the following
form.

LEMMA 3.12. Leté > 0, and letR = (R;)jea be an&-local optimum
with respect to the endowed valuations 0;. Let (S1, Sz, . .., Sn) denote
any allocation of the set J, and let h; > 0 be such that ;e 4 hi < n.
Then,

v;(S;)
(€(i)), vi (R;

10T (o

3 +h,~) <(1+e)™4m.
i€cA\A i€A

v;(S;)

(€(1)), vi(Ri

Proor. By Proposition 3.11,

g(maX{vi vi(R;)} +hi) : H

i€eA
So by the AM-GM inequality we have

114 )

i )

[T w]]
icA\A €A
(Z hi+Z(1+ZZ(2§+pj)+hi
icA\A icA JESi
Zieahi | Xieal | Zj€]4é+
n n n

v;(S;)
(£()),

142 3 (26 +p)) +h
JE€Si

).

1+2 Z(2§+pj)+hi
JES;

_ ( Zje]ZPj)"

n
We upper-bound each of these two summands. First, using the
fact that ;<4 h; < n. Second, using |A| < n. Third, using |J| < m.

Fourth, using
ZP(Si) < ij <|Al<n
icA Jjel

from Lemma 3.10. We obtain,

(ZieAhi . Yieal N

n n
4mé " n £\"
<141+ —+2| =4"|1+—
n n

Since m > |H| = n, by Bernoulli’s inequality 4" (1 +
4n (1+ 8% = (1+¢)m4an,

2ljej 2pj
n

ey 4€
jeJ +
n

)n
me

mé
n

~—

IA
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3.4 Rematching

Throughout, let OPT denote the optimum NSW value of the in-
stance. For sets R = (R;);jca, and a matching 7 : A - HU {1}, we
let
NSW(R, 7) := ]_[ 0i(R; + (i)™
i€A

In Phase 3, we select a matching p : A — H that maximizes
NSW(R, p), where R = (R;);ca denotes the &-local optimum with
respect to the endowed valuations @; from Phase 2. The following
lemma completes the proof of Theorem 1.1.1

LEMMA 3.13. Leté > 0, and let R = (R;)jcA be an é-local optimum
with respect to the endowed valuations 0; that are submodular. Then,
there exists a matching p : A — H such that, for the symmetric
problem, it holds

OPT
4(1+e)’
and, for the asymmetric problem, it holds

OPT
T 2+ nwmax)e(1+¢)

NSW(R, p) >

NSW(R, p) >

Proor. Consider an optimal solution (S; U Hy,...,Sp U Hy) to
the NSW problem where S; is the set of items allocated to i from
J = G\ H, and H; is the set of items allocated to i from H. For
i € A\ A we must have H; # 0, and we can assume S; = 0. Let
h; = |H;|. We define a matching g : A — H U {1} as follows.
If h; > 0,let g(i) € argmax;ep, v;(S; + j) be one of the items in
H; providing the largest marginal gain to agent i. Otherwise, let
g(i) := L. Submodularity implies

v;i(S; U Hj) < vi(Si) + hivi(g(i)) VieA. (1
Let us partition the set of agents A as

Ay = {i € A:vi(g9(i)) = max{v;(R;),v;i(€(i))}} ,

AR = {i € A\ Ay : vi(R;) = max {v;(g(i)), vi (€(i))}} ,

Ag = {i € A\ (Ax UAR) : vi(€(i)) > max {v; (R;), vi(g(D)}} -
As an intermediate step in the construction of the claimed matching
p, we first define an allocation 7~ = (T;);e4 and matching 7 : A —
H U {L} as follows.

e Forie Ay, let T; := 0 and n(i) = g(i).

e Fori e Ag,letT; := R; and n(i) == L.

e Forie Ay, let T; := {£(i)} and 7 (i) := L.
Note that A\ A C A,. Note that this allocation is not feasible:
£(i) = €(i’) is possible for different agents, and the same item may
even be contained in R; for some i € AR. We complete the proof in
two steps. First, we lower bound NSW (7", )/ OPT. Then, we show
that 7 and the initial matching 7 from Phase 1 can be recombined
into a matching p such that NSW(R, p) > NSW(7, ).

CramMm. For the symmetric problem

OPT
NSW(T ,7m) > ————.
7.7z 059
For the asymmetric problem
OPT

NSW(T, ) >

(2 + nwmax) e(1 + &)

10ne needs to select a smaller parameter ¢ to obtain the bounds in Theorem 1.1.
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ProoF. Our goal is to upper bound m which is
I (Ui(SiUHi))Wi I ( )W’ I (’Ui(SiUHi))Wi
vi (7 (7)) vi (£(i)) '

i€A, i€AR i€Ar

In order to do so, we first upper bound the loss of each agent
depending in which set they belong. If i € A\ Athen i € A, by (1)
and submodularity, we have

vi(Si UH;i) _ hivi(g(i))
vi(7(i)) vi(n(i))

Ifi € Ay N A, by (1), as well as using the definition of A, and
submodularity, we can bound

v;(S; U H;)
v;(R;)

=h;.

0;(S; U Hj) < v;i (Si) + hivi(g(i))
v; (7 (i) v; (7 (i)
_ vilSi) ,
= uty M
v;(S;)
= maxo€@), o ®)]
Similarly, if i € Ag, we get
vi(Si VH:) _ vi(Si) + hivi(9(D))
vi(R;) v;i(R;)
cuils)
o)
_ i (Si) _
= max{or (0, orR)y
Finally, if i € Ap, the bound is
vi(Si VHi) _ vi(Si) + hivi(g(i))
vi(€(i) 0;i (€(7))
< vl(s)
B vz(f(l))
_ 0i(Si) )
= maxtorC), mi®)) T
Consequently,
RV i (Si) ) i
NSW( 7' NSW(T,7) ~ 1_[ l_l (max {vi (€(i)), vi (R;)} +hl) ’

icA\A  i€A

The proof of the claim is complete by Lemmas 3.12 and 3.8. O

It remains to construct a matching p : A — H U {1} such that
NSW(R, p) = NSW(T, x). First, note that if Ay = 0, then p = 7 is
a suitable choice. In case Ay # 0, we construct alternating paths
from the initial matching = from Phase I and p to eliminate the £(i)
items from 7. A critical property for the argument is as follows.

CrLamM 3.14. Foreveryi € A, vi(t(i)) = v;(€(i)).

Proor. Consider the matching 7 : A — G defined as 7 (i) := £(i),
and 7(h) := v(h) for h # i. T is a matching since £(i) ¢ H. By the
choice of 7, [Tpea VR (T(R))Yh < T1hea vp(r(h))™", implying the
claim. m]

In order to construct the matching p, we define an auxiliary
directed graph D = (A¢ U A; U H, E), where the arc set is defined
as

(G, (i) : 1€ Ag).

={(r(i),i): i€ Ay UAL}U
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Figure 1: White circles represent the agents, black squares the item set H, and grey squares the favorite items. Solid lines
represent matching 7, while dashed-dotted lines represent a subset of matching . Figure a) shows matching 7, matching = for
the agents in A, and the £(i) items for the agents in A,. Figure b) shows graph D (and the £(i)’s). Figure c) shows matching p.

See Figure 1 for an example. Note that 7 (i) # L if i € A;. Thus,
each node in A has exactly one outgoing and exactly one incoming
arc, each node in Ay has exactly one incoming arc and no outgoing
arcs, and each item node in H has at most one incoming and at
most one outgoing arc.

Let A; C Ay be the set of nodes that can reach A, in the digraph
D. By construction, each i € Ay is either contained in a cycle inside
Ay UH, or on a directed path ending in Ay U H; these paths start
in H and may terminate in either H or A,. We choose A as the set
of nodes where the path terminates in A,.

We define the matching p: A— HU{l} as

1, ifi € Ag,
t(i), fieAsUA,,
z(i), ificAr\Ay.

p(i) =

CLAIM. p is a matching.

Proor. For a contradiction, assume j = 7(i’) = 7(i) for i’ €
Az \Ayandie€ Ay UAy,. Then, (i, ), (j, i) forms 2-hop directed
path from i’ to i in D. Since i € Ay, there is a directed path P from
i to a node in Ay. Concatenating these two paths gives a directed
path from i’ to a node in Ay. Thus, i’ € A, a contradiction. O
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It remains to show

[T vy = []oin™ [] vz @

icAsUA, icAr i€A,

The set of nodes in Ay U A, are covered by maximal directed
paths in D terminating in A,. First, consider a length one path
P = (j, i) that comprises an item node j € H and an agent node
i € Ay such that j = 7(i), and j has no incoming arcs in D. Then,
v;(7(i)) = v;(£(i)) by Claim 3.14.

Consider now a longer path P = (j1, i1, jo, i2, - - - , ji, i) for k >
1, where j; € H are item nodes, i; € Ay fort < k and ip € Ag.
Thus, (i) = j; for t € [k] and 7 (iy) = jr41 fort € [k — 1]. We
claim that

k k-1
[ Jon i) = vi (i)™ | og, (xGi)) ™ .
t=1 t=1

The proof follows the same lines as the proof of Claim 3.14. Indeed, if
this equality does not hold, then there would exist a better matching
T: A — G defined as 7(i) := €(ix), and 7(iz) := js+1 = 7 (iy) for
t=12,....,k—1,and 7(h) := 7(h) for h # i.
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Algorithm 3: Guaranteeing %—EFX for the symmetric NSW
problem

Input: Allocation S that is a-approximation to the NSW
problem (A, G, (vi)iea)-

Output: Allocation 7 that is %—EFX and 2a-approximation to

the symmetric NSW problem.
T <S8
repeat
‘ T « MakeFairOrEfficient(7")
until 7 is not %—EFX

)

// Algorithm 4

[

'S

5 U G\U;T; // set of unallocated items
6 repeat

7 Let j € U be such that v;(T;) < v;(j) for some agent i

8 T; < {j}

U—UUT;)-j
until v;(T;) > v;(j),Yi€e A,VjeU
T « EnvyFreeCycle(7,U)
return 7

10

11

12

The inequality (2) follows by multiplying these inequalities over
all maximal directed paths in D that terminate in A,. This completes
the proof. O

4 FINDING FAIR AND EFFICIENT
ALLOCATIONS

4.1 Completing the Partial Allocation

In this section, we derive Theorem 1.2 from Lemma 2.1. The proof
of Lemma 2.1, describing the subroutine MakeFairOrEfficient is
given in Section 4.2. The algorithm described in Theorem 1.2 is
Algorithm 3. It uses two subroutines: MakeFairOrEfficient, and
the envy-free cycle procedure EnvyFreeCycle from [39], described
below.

The input of Algorithm 3 is an allocation S that is
a-approximation to the symmetric NSW problem. It then repeat-
edly calls MakeFairOrEfficient(7") (Algorithm 4) until the final
allocation is %—EFX and 2a-approximation to the symmetric NSW
problem. Recall that the output of this subroutine is either a par-
tial allocation 7’ that satisfies either NSW(7’) > NSW(7") and
UiT] € UiTi, or NSW(7’) > $ NSW(7") and 7 is 4-EFX. Since
U;T/ ¢ U;T; in each call in the first case, the number of calls to
Algorithm 4 is at most m.

At this point, we have an %—EFX partial allocation 7~ with NSW(77) >

% NSW(S). The rest of Algorithm 3 allocates the remaining items
U = G\ U;eaT; so that NSW(77) does not decrease, and the %—EFX
property is maintained.

First, we modify the allocation in the second repeat loop to
ensure that each agent’s value for their bundle is at least their value
for each remaining item in U. This is done by swapping an agent’s
bundle T; with a singleton item j € U whenever i values j more
than the entire bundle T;.

Finally, we run the envy-cycle procedure EnvyFreeCycle(7,U)
from [39] to allocate the remaining items in U, starting with the
allocation 7. The envy-cycle procedure maintains the directed
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(envy) graph D = (A,E), where (i,j) € E if i envies j’s bundle,
ie., v;i(Y;) < v;(Yj). If there is a cycle in G, then we can circulate
bundles along the cycle to improve each agent’s utility. Otherwise,
there must be a source agent in G, whom no agent envies. We then
assign an arbitrary item from U to a source agent. We update the
envy graph, and iterate until U is fully assigned.

We now verify the correctness and efficiency of this algorithm.

LEMMA 4.1. The second repeat loop of Algorithm 3 is repeated
at most nm times. It maintains the %—EFX and NSW(7T") is non-
decreasing.

Proor. The bound on the number of swaps follows since every
agent i € A may swap their bundle at most m times. After the first
swap, they maintain a singleton bundle, and they can swap their
bundle for the same item j only once, since their valuation v;(T;)
strictly increases in each swap.

It is immediate that NSW(7") is non-decreasing. It is left to show
that the %-EFX property is maintained. Let i € A be the agent
who swapped their bundle T; for Ti’ {j} in the current iteration.
Then, the value of i’s own bundle increased while the allocation of
everyone else remained the same. Hence, agent i cannot violate the
1-EFX property. For the other agents k # i, vg (Ty) > 3 - vk (T -9)
for all g € T/ trivially holds, since T/ is a singleton. o

The property (3) below is satisfied after the second repeat loop.
Hence, the next lemma completes the analysis of Algorithm 3.

LEMMA 4.2. The subroutine EnvyFreeCycle(7,U) terminates
in O(n3m) time, and NSW(7") is non-decreasing. Assume that T~ =
(Ti)iea is 3-EFX, and

vi(T;) > vi(j) VieAVjeU. 3)

Then, EnvyFreeCycle(7,U) also maintains the %—EFXproperty.

ProOF. The running time analysis is the same as in [39]. Finding
and removing a cycle in the envy-graph can be done in O(n?) time.
Further, whenever swapping around a cycle, at least one edge is
removed from the envy graph. New edges can only be added when
we allocate new items from U, with at most n edges every time.
Since |U| < m, the total number of new edges added throughout is
nm. This yields the overall O(n*m) bound.

Again, it is immediate that NSW(7") is non-decreasing in every
step. We need to show that the %—EFX property is maintained both
when swapping around cycles and when adding new items from U.
When swapping around a cycle, this follows since the set of bundles
remains the same, and no agent’s value decreases.

Consider the case when a source agent say i, gets a new item j:
their new bundle becomes T/ = T; + j. Note that i is the only agent
whose value increases; all other bundles remain the same. We need
to show that for any k # i,

Op(T) = 3or(T{ —g) Vg eTy.
We show that
(T} = 9) = vp(Ti +j = 9) < vp(Ty) + v () < 204 (Ty) -
Here, the first inequality follows by subadditivity and monotonicity.

The second inequality uses (3), and that v (Ty) > v (T;), since i
was a source node in the envy graph. O
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4.2 Finding a Fair or an Efficient Allocation

In this Section, we prove Lemma 2.1. The subroutine
MakeFairOrEfficient(7") is shown in Algorithm 4, and gener-
alizes an algorithm by Caragiannis, Gravin, and Huang [13] from
additive to subadditive valuations. We begin with defining the no-
tions of %—EFXfeasible bundles and graph.

Definition 4.3 (%—EFX feasible bundles and graph). Given a partial
allocation 7~ = (T;);jea, we say that Ty isa %—EFXfeasible bundle for
agent i, if v; (Ty) > % maxgea, jet, Vi(Te = j). The %—EFXfeasibility
graph of 7~ is a bipartite graph K = (AU 7, E) where the edge set
E is defined as:

1
E= {(i, T;) | Tj is E-EFX feasible for i} u

max vi(Ty —j
rengeT, i(Te = J)
4)

{(i,Tk) | vi(Tk) > 20;(Ti) and v;(Ty) >
v
The following claim can be easily verified using the definition.

CrAIM 4.4. The degree of every node i € A is at least 1 in the graph
K =(AUT,E).

In this section, a matching will refer to a matching between
agents and bundles (and not between agents and items as in pre-
vious sections). Thus, a matching is a mapping p : A = 7" U {1}
such that p(i) = p(k) implies p(i) = p(k) = L. A perfect matching
has p(i) # L for every i € A. Matchings may use pairs (i, T} ) that
are not in E; we say that p is a matching in the bipartite graph
K = (AU T,E) if (i, p(i)) € E whenever p(i) # {L}. For two
matchings p and 7, an alternating path between p and t is a path
P = (il,S,’l, i, ... ’Sik—l’ i[,Si[) such that p(i;) = Si,’ t=1,...,¢,
7(ig+1) = Si,, t = 1,...,¢ — 1. The following lemma is immediate
from the definition of the %—EFX feasibility graph.

LEMMA 4.5. If the %-EFXfeasibility graph K = (AU T ,E) of
an allocation T~ contains a perfect matching p, then (i, p(i))ica is a
%-EFX allocation.

We now give an overview of Algorithm 4. For an input partial
allocation 7 = (T;);ca, it returns a partial allocation R that satisfies
one of the alternatives in Lemma 2.1: either (i) NSW(R) > NSW(7")
and U;R; € U;T;, or (i) NSW(R) > 3 NSW(7) and R is 3-EFX.

The algorithm gradually ‘trims down’ the bundles 7 . That is, we
maintain a partial allocation S = (S;);ea with S; C T; throughout.
Every main loop of the algorithm either terminates by constructing
an allocation R satisfying (ii), or removes an item from one of the
Sy, sets. The other possible termination option is when the %-EFX
feasibility graph of S contains a perfect matching p. In this case,
we return R = (p(i))jea. Thisis a %—EFX allocation by Lemma 4.5;
Lemma 4.8 shows it also satisfies NSW(R) > % NSW(7") and is
thus a suitable output of type (ii).

At the beginning of each main loop, we define two matchings.
The first is the perfect matching 7 that simply defines z(i) = S;
for all i € A. The second is a matching p in K. This is required to
satisfy three properties: First, it matches all trimmed down bun-
dles, i.e., all bundles S; with S; C T;. Second, |{i : p(i) = S;}| is
maximized subject to the first requirement. Third, subject to these
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Algorithm 4: MakeFairOrEfficient(7)

Input: Partial allocation 7.

Output: Partial allocation R such that either
NSW(R) > NSW(7") and U;R; € U;Tj, or
NSW(R) > 3 NSW(7") and R is 3-EFX.

ST

repeat

K =(AUS,E) « %—EFX feasibility graph of S

// Definition 4.3

L —{S;,ieA|S; CT;}

bundles

Define matching 7 with 7(i) = S; foralli € A

// candidate matching
p « matching in K where
(a) all bundles in £ are matched,
(b) I{i: p(i) = S;}| is maximized subject to (a), and
(c) p is maximum subject to (a) and (b)

// set of trimmed down

// Lemma 4.6

if Ji; € A not matched in p then
(Sh-9gn) < argmaxgea ges, Vi (Sk = 9)
if vy (Sp —gp) = % - vy, (Ty,) then

10 L Sn < Sp—9gn
1 else
12 P = (i1, 84,2, . . ., Si;_» i¢, Si,) < alternating

path between 7 and p starting at i; and ending at
either S;, = Sy or an unmatched S;, # Sy,

// Lemma 4.7
13 Construct R:
14 Ri1 — Sh —9h

15 forf<—2t0€doR,-f <—Sif_1
foriec A\ ({i1,...,ip} U{h})doR; « T;

if P ends at an unmatched bundle S;, # Sy, then
| Ry < Ty \ (Sp—9n)

return R

16
17

18

19

20 until p is a perfect matching in K

21 return R = (p(i))iea

requirements, p is chosen as a maximal matching. (The existence
of such a matching is guaranteed by Lemma 4.6 below).

If p is not perfect, then we consider an unmatched agent i, and
find the bundle that maximizes i;’s utility after removal of one item.
Let (S, gp) € arg maXgeA, ges, v, (Sk — g). If agent h’s value of
Sy — gy, is at least % times their value for the original bundle Ty,
then we remove g, from Sy, and the main loop finishes. Otherwise,
we construct an alternating path between p and 7, denoted as
P = (i1,Si,, 12, Siys - - - Sip_y» ig, Sip ), starting with iy and ending
with either S;, = Sy, or an unmatched bundle S;, # Sj,. Lemma 4.7
shows that such a P exists. Using P, we construct an allocation R
in line 13. Lemma 4.8 shows that this is a suitable output of type (i).

Analysis. The number of iterations of the repeat loop is at most
m, because the algorithm remove one item from some bundle in
each iteration, in which it does not terminate. Since we can find
the maximum matching in line 6 and alternating path in line 12 in
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strongly polynomial-time, Algorithm 4 runs in strongly polynomial-
time.

The next lemma guarantees that the matching p is well-defined.
The proof follows similarly as in [13].

LEMMA 4.6. In each iteration of the repeat loop in Algorithm 4, a
matching exists in K where all bundles of L are matched.

Proor. Let E() denote the edge set of the %—EFX feasibility
graph and £ the set of trimmed down bundles, and p(*) the
maximum matching in the ¢-th iteration.

We show by induction that there exists a matching p(*) such
that all bundles in £(*) are matched. At the beginning of the first
iteration, £() is empty, so the claim is clearly true. Suppose the
claim is true until the beginning of (¢ + 1)-st iteration. Let S denote
the trimmed down bundles in the ¢-th iteration, and let i; be the
unmatched agent, and (Sy,gy) the bundle and item selected in
line 8.

By the requirement that |{i : p(i) = S;}| is maximized subject to
all trimmed down bundles being matched, we have (i1, S;,) ¢ E(®),
By the choice of h, we have (i, Sp) € E(®) in the ¢-th iteration.

Note that L+ = £y {h}. Consider the 1-EFX feasibility

2
graph in the (t+1)-st iteration. Since all bundles different from S }’l :

Sj, — gp, remained unchanged, for every edge (i, Sx) € E) with
k # h it follows that (i, S) € E(+D), According to Definition 4.3,
(i1,5;) € EU+D Let us define p’ as

sy ifi=ip,
p'(i) == {pW() ifi#ipand pM) (i) #5,,
L otherwise .

By the above, this gives a matching in E(¢*1), and it matches all
bundles in £E+D = £ U {h). O

LEMMA 4.7. The alternating path P, as described in line 12 of
Algorithm 4, exists.

PRrOOF. Since i1 is an unmatched agent and the requirement that
[{i : p(i) = S;}| is maximized subject to all trimmed down bundles
being matched in the maximum matching p in line 6, we must have
(i1,Si,) ¢ E. If p(ip) = S;, for an agent iy € A, then we continue
with S;,, otherwise we stop. Continuing this way, we eventually
reach either S;, = S or an unmatched bundle S;, # Sj,. ]

LEmma 4.8. If Algorithm 4 returns an allocation R in line 21, then
NSW(R) > %NSW(T) and R is %-EFX. If it returns R in line 19,
then NSW(R) > NSW(7") and U;R; € U;T;.

PROOF. Let us start with the case when a perfect matching R =
(p(i))ica is returned in line 21. The §-EFX property follows by
Lemma 4.5. Let us show NSW(R) > % NSW(T).

Throughout the algorithm, v;(S;) > %vi(Ti) is maintained ac-
cording to the condition on bundle trimming. By Claim 4.4, either
R; = S;, or v;(R;) > 2v;(S;). Therefore, we have

Vi oi(Ry) 2 0i(81) 2 oi(Ty). 5)
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Consequently,
1
NSW(R) = [ [ @iR)Y™ = - [ ] T/ = §NSW(T).
i€A i€A

Consider now the case when the algorithm terminated with R
in line 19. We need to show NSW(R) > NSW(7") and U;R; € U;T;.
Two cases here depend on whether S;, = S, or S;,(# Sp) is an
unmatched bundle. For the first case, we have

Uif(Rif) = Uif(sifil) > ZUif(Sif) > Uif(Tif), Vfel2,....0},
iy (Riy) =03y (Sp — gn) > 203 (Siy) 2 v, (Tiy)
This implies
1/
NSW(R) = [ [ (viR)) " >

i€A

[ (0a(1) " = NSW(T) .
i€A
Since we do not assign gy, to any agent in R, we must have U;R; C
U;T;.

For the second case, since S;, is an unmatched bundle in p by
the choice of the path P, we have S;, ¢ L by the requirements on
p. That is, S;, = T;,. By Claim 4.4, we have

(47 (Ri[) = Vi, (Sifq) > zvi[ (Sif) = zvi[ (Ti[) 5

i (Rip) = vip(Sip,) > 20ip(Sip) 2 vip (Tip), Vf €{2,....0 =1},
i, (Riy) = 03y (Sp = gn) > 203 (Syy) = 03, (Tyy)
vp(Rp) = v (X \ (Sp = gn) > 30n(Th) -
(6)

The last inequality follows from subadditivity using vy (Tj,) <
On(Sh = gn) + vp(Th \ (Sp = gn))- Using (6), we get

NsW(R) = [ | (vi(R)"™ > [ ] (vi ()" = Nsw(T).
i€A i€A
Finally, since we do not assign items in Tj, to any agent in R, we
must have U;R; ¢ U;T;. Note that if T;, = 0, then NSW(7") = 0
and R; = 0, Vi is a suitable output of type (ii). O

5 CONCLUSION

We have shown a (4+¢)-approximation algorithm for the symmetric
NSW problem with submodular valuations, which is the largest nat-
ural class of valuations that allows a constant-factor approximation
(using value queries) even for utilitarian social welfare. Moreover,
our algorithm gives an e(2 + nwmax + €)-approximation algorithm
for the asymmetric NSW problem under submodular valuations.
However, there are still several directions and open problems to
explore. An obvious one is to improve the approximation ratio for
the symmetric case. The current hardness of approximation stands
at eTel ~ 1.58 for submodular valuations, which is the same as the
optimal factor for maximizing utilitarian social welfare. It would
be interesting to prove a separation between the two optimization
objectives for submodular valuations.

Another open problem is the asymmetric NSW problem. The
goal is to get a constant-factor approximation independent of the
weights w;. For the asymmetric problem, getting a universal con-
stant factor is open even in the basic case of additive valuations.
The simplest case not covered by our algorithm is when one agent
has weight 1/2 and all other agents have weight 1/2n.

There are several open questions on the existence of EFX and its
relaxations for submodular valuations. We mention two: First, does
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there exist a (complete) a-EFX allocations for @ > 1/2? Here, we
do not make any efficiency requirements. Second, does there exist
an EF1 allocation with high NSW value? Note that [14] shows that
for additive valuations, the optimal NSW allocation is EF1.

ACKNOWLEDGMENTS

We are grateful to Tomasz Ponitka for providing an improved ver-
sion of Lemma 3.12 and pointing out a couple of minor issues in
Section 4 of the earlier version which has been corrected in this
paper. The previous version had factor 6 instead of 4.

REFERENCES

(1]

(2]

(3]

[10

[11]

[12

[13]

[14]

(15

[16]

(7

(18]

[19

[20

Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hol-
lender, and Alexandros A Voudouris. 2021. Maximum Nash welfare and other
stories about EFX. Theoretical Computer Science 863 (2021), 69-85.

Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. 2017. Nash
Social Welfare, Matrix Permanent, and Stable Polynomials. In Proceedings of the
8th Innovations in Theoretical Computer Science Conference (ITCS).

Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. 2018. Nash
social welfare for indivisible items under separable, piecewise-linear concave
utilities. In Proceedings of the 29th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2274-2290.

Nikhil Bansal and Maxim Sviridenko. 2006. The Santa Claus problem. In Proceed-
ings of the 38th ACM Symposium on Theory of Computing (STOC). 31-40.

Julius B Barbanel. 2005. The geometry of efficient fair division. Cambridge
University Press.

Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram.
2020. Tight Approximation Algorithms for p-Mean Welfare Under Subadditive
Valuations. In 28th Annual European Symposium on Algorithms (ESA), Vol. 173.
11:1-11:17.

Siddharth Barman, Anand Krishna, Pooja Kulkarni, and Shivika Narang. 2021.
Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations.
arXiv preprint arXiv:2110.00767 (2021).

Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Find-
ing fair and efficient allocations. In Proceedings of the 2018 ACM Conference on
Economics and Computation (EC). 557-574.

Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. 2022. Almost full
EFX exists for four agents. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 4826-4833.

Steven J Brams and Alan D Taylor. 1996. Fair Division: From cake-cutting to
dispute resolution. Cambridge University Press.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérome Lang, and Ariel D. Procaccia
(Eds.). 2016. Handbook of Computational Social Choice. Cambridge University
Press.

Eric Budish. 2011. The combinatorial assignment problem: Approximate com-
petitive equilibrium from equal incomes. J. Political Economy 119, 6 (2011),
1061-1103.

Toannis Caragiannis, Nick Gravin, and Xin Huang. 2019. Envy-Freeness Up to
Any Item with High Nash Welfare: The Virtue of Donating Items. In Proceedings
of the 2019 ACM Conference on Economics and Computation (EC). ACM, 527-545.
Toannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg
Shah, and Junxing Wang. 2019. The unreasonable fairness of maximum Nash
welfare. ACM Transactions on Economics and Computation (TEAC) 7, 3 (2019),
1-32.

Suchan Chae and Hervé Moulin. 2010. Bargaining among groups: an axiomatic
viewpoint. International Journal of Game Theory 39, 1-2 (2010), 71-88.

Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin
Hoefer, and Kurt Mehlhorn. 2022. Fair Division of Indivisible Goods for a Class
of Concave Valuations. 7. Artif. Intell. Res. 74 (2022), 111-142.

Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. 2020. EFX Exists for
Three Agents. In Proceedings of the 21st Conf. Econom. Comput. (EC). ACM, 1-19.
Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. 2021. Fair and Efficient
Allocations under Subadditive Valuations. In Proceedings of the AAAI Conference
on Artificial Intelligence. 5269-5276.

Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini
Sgouritsa. 2021. A Little Charity Guarantees Almost Envy-Freeness. SIAM
9. Comput. 50, 4 (2021), 1336-1358.

Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V
Vazirani, and Sadra Yazdanbod. 2017. Convex Program Duality, Fisher Markets,

1310

[21

[22]

[23

[24

[25]

[27

[28

[29

&
=)

'@
22

STOC ’23, June 20-23, 2023, Orlando, FL, USA

and Nash Social Welfare. In Proceedings of the 2017 ACM Conference on Economics
and Computation (EC). 459-460.
Richard Cole and Vasilis Gkatzelis. 2018. Approximating the Nash social welfare

with indivisible items. SIAM . Comput. 47, 3 (2018), 1211-1236.
Dagmawi Mulugeta Degefu, Weijun He, Liang Yuan, and Jian Hua Zhao. 2016.

Water allocation in transboundary river basins under water scarcity: a cooperative
bargaining approach. Water resources management 30, 12 (2016), 4451-4466.
Shahar Dobzinski, Noam Nisan, and Michael Schapira. 2010. Approximation
Algorithms for Combinatorial Auctions with Complement-Free Bidders. Math.
Oper. Res. 35, 1 (2010), 1-13. https://doi.org/10.1287/moor.1090.0436

Michal Feldman, Simon Mauras, and Tomasz Ponitka. 2023. On Optimal Tradeoffs
between EFX and Nash Welfare. CoRR abs/2302.09633 (2023).

Hu Fu, Robert Kleinberg, and Ron Lavi. 2012. Conditional equilibrium outcomes
via ascending price processes with applications to combinatorial auctions with
item bidding. In Proceedings of the 13th ACM Conference on Electronic Commerce
(EC). 586.

Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2017. Satiation in Fisher Markets
and Approximation of Nash Social Welfare. arXiv preprint arXiv:1707.04428
(2017).

Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. Approximating the Nash
social welfare with budget-additive valuations. In Proceedings of the 29th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2326-2340.

Jugal Garg, Edin Husi¢, and Laszlé A Végh. 2021. Approximating Nash social
welfare under Rado valuations. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 1412-1425.

Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. 2020. Approximating Nash Social
Welfare under Submodular Valuations through (Un)Matchings. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA). 2673-2687.

Houba H, Van der Laan G, and Zeng Y. 2014. Asymmetric Nash solutions in the
river sharing problem. Strategic Behavior and the Environment 4 (2014), 321-360.
Issue 4.

John C Harsanyi and Reinhard Selten. 1972. A generalized Nash solution for
two-person bargaining games with incomplete information. Management science
18, 5-part-2 (1972), 80-106.

Ehud Kalai. 1977. Nonsymmetric Nash solutions and replications of 2-person
bargaining. International Journal of Game Theory 6, 3 (1977), 129-133.

Mamoru Kaneko and Kenjiro Nakamura. 1979. The Nash social welfare function.
Econometrica: Journal of the Econometric Society (1979), 423-435.

Frank Kelly. 1997. Charging and rate control for elastic traffic. European transac-
tions on Telecommunications 8, 1 (1997), 33-37.

Annick Laruelle and Federico Valenciano. 2007. Bargaining in committees as an
extension of Nash’s bargaining theory. Journal of Economic Theory 132, 1 (2007),
291-305.

Euiwoong Lee. 2017. APX-hardness of maximizing Nash social welfare with
indivisible items. Inform. Process. Lett. 122 (2017), 17-20.

Wenzheng Li and Jan Vondrak. 2021. Estimating the Nash Social Welfare for
coverage and other submodular valuations. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 1119-1130.

Wenzheng Li and Jan Vondréak. 2022. A constant-factor approximation algorithm
for Nash social welfare with submodular valuations. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS). 25-36.

Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.
On approximately fair allocations of indivisible goods. In Proceedings of the 5th
Conf. Econom. Comput. (EC). ACM, 125-131.

Ryoga Mahara. 2021. Extension of Additive Valuations to General Valuations on
the Existence of EFX. In ESA, Vol. 204. 66:1-66:15.

Hervé Moulin. 2004. Fair division and collective welfare. MIT press.

John F Nash. 1950. The bargaining problem. Econometrica: Journal of the econo-
metric society (1950), 155-162.

Benjamin Plaut and Tim Roughgarden. 2020. Almost envy-freeness with general
valuations. SIAM Journal on Discrete Mathematics 34, 2 (2020), 1039-1068.
Ariel D. Procaccia. 2020. An answer to fair division’s most enigmatic question:
technical perspective. Commun. ACM 63, 4 (2020), 118.

Jack Robertson and William Webb. 1998. Cake-cutting algorithms: Be fair if you
can. CRC Press.

Jorg Rothe et al. 2015. Economics and computation. Vol. 4. Springer.

Hal R Varian. 1974. Equity, envy, and efficiency. Journal of Economic Theory 9, 1
(1974), 63-91.

H Peyton Young. 1995. Equity: in theory and practice. Princeton University Press.
S Yu, EC van Ierland, H-P Weikard, and X Zhu. 2017. Nash bargaining solutions
for international climate agreements under different sets of bargaining weights.
International Environmental Agreements: Politics, Law and Economics 17, 5 (2017),
709-729.

Received 2022-11-07; accepted 2023-02-06


https://doi.org/10.1287/moor.1090.0436

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Notation

	2 Overview of the algorithms
	2.1 Approximation Algorithm for Nash Social Welfare
	2.2 Our Techniques and Comparison with Previous Approaches
	2.3 1/2-EFX Guarantee

	3 Analysis of the NSW algorithm
	3.1 Local Optima
	3.2 Local Equilibrium Analysis for Asymmetric NSW
	3.3 Local Equilibrium Analysis for Symmetric NSW
	3.4 Rematching

	4 Finding fair and efficient allocations
	4.1 Completing the Partial Allocation
	4.2 Finding a Fair or an Efficient Allocation

	5 Conclusion
	Acknowledgments
	References

