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ABSTRACT
For any ε > 0, we give a simple, deterministic (4+ε )-approximation

algorithm for the Nash social welfare (NSW) problem under sub-

modular valuations. The previous best approximation factor was

380 via a randomized algorithm. We also consider the asymmet-

ric variant of the problem, where the objective is to maximize

the weighted geometric mean of agents’ valuations, and give an

(ω + 2 + ε )e-approximation if the ratio between the largest weight

and the average weight is at most ω.
We also show that the

1

2
-EFX envy-freeness property can be at-

tained simultaneously with a constant-factor approximation. More

precisely, we can find an allocation in polynomial timewhich is both

1

2
-EFX and a (8+ ε )-approximation to the symmetric NSW problem

under submodular valuations. The previous best approximation

factor under
1

2
-EFX was linear in the number of agents.
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1 INTRODUCTION
We consider the problem of allocating a setG ofm indivisible items

among a set A of n agents, where each agent i ∈ A has a valuation

function vi : 2
G → R≥0 and weight (entitlement) wi > 0 such

that

∑
i ∈Awi = 1. The Nash social welfare (NSW) problem asks for

an allocation S = (Si )i ∈A that maximizes the weighted geometric

mean of the agents’ valuations,

NSW(S) =
∏
i ∈A

(vi (Si ))
wi .

We refer to the special case when all agents have equal weight (i.e.,

wi = 1/n) as the symmetric NSW problem, and call the general

case the asymmetric NSW problem. Throughout, we let wmax B
maxi ∈Awi . For α > 1, an α -approximate solution to the NSW prob-

lem is an allocation S withNSW(S) ≥ OPT/α , whereOPT denotes

the optimum value of the NSW-maximization problem.

Allocating resources among agents in a fair and efficient manner

is a fundamental problem in computer science, economics, and

social choice theory; we refer the reader to the monographs [5,

10, 11, 41, 45, 46, 48] on the background. A common measure of

efficiency is utilitarian social welfare, i.e., the sum of the utilities∑
i ∈A vi (Si ) for an allocation (Si )i ∈A. In contrast, fairness is often

measured by max-min fairness, i.e., mini ∈A vi (Si ); maximizing this

objective is also known as the Santa Claus problem [4].

Symmetric NSW provides a balanced tradeoff between the of-

ten conflicting requirements of fairness and efficiency. It has been

introduced independently in a variety of contexts. It is a discrete

analogue of the Nash bargaining game [33, 42]; it corresponds

to the notion of competitive equilibrium with equal incomes in

economics [47]; and arises as a proportional fairness notion in

networking [34]. The more general asymmetric objective has also

been well-studied since the seventies [31, 32]. It has found many

applications in different areas, such as bargaining theory [15, 35],

water resource allocation [22, 30], and climate agreements [49].

A distinctive feature of the NSW problem is invariance under

scaling of the valuation functions vi by independent factors λi , i.e.,
each agent can express their preference in a “different currency”
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without changing the optimization problem (see [41] for additional

characteristics).

1

2
-EFX Allocations. Envy-freeness up to any item (EFX) is con-

sidered the most compelling fairness notion in the discrete setting

with equal entitlements [14], where an allocation S = (Si )i ∈A is

said to be EFX if

vi (Si ) ≥ vi (Sk − j ), ∀i,k ∈ A ,∀j ∈ Sk .

That is, no agent envies another agent’s bundle after the removal

of any single item from the envied agent’s bundle. It is not known

whether EFX allocations always exists or not, and it is regarded as

the “fair division’s biggest open question” [44]. This motivated the

study of its relaxation α-EFX for an α ∈ (0, 1), where an allocation

S is said to be α-EFX if

vi (Si ) ≥ α · vi (Sk − j ), ∀i,k ∈ A ,∀j ∈ Sk .

The best-known α , for which the existence is known, is
1

2
for sub-

modular valuations, albeit with the efficiency guarantee of O (n)-
approximation to the symmetric NSW problem [18, 43].

For NSW, without loss of generality we can assume that the

allocations S = (Si )i ∈A partition the set of items, i.e., ∪i ∈ASi = G.
We call such an allocation a complete allocation; an allocation S

with ∪i ∈ASi ⊊ G will be called a partial allocation.
In the context of envy-free allocations, it might be beneficial not

to allocate some items: the allocation with Si = ∅ for each agent is

in fact envy-free. The two challenges are to find a complete alloca-

tion that satisfies certain envy-freeness property, and to guarantee

efficiency, such as high NSW value at the same time.

Submodular and Subadditive Valuation Functions. A set function

v : 2
G → R is monotone if v (S ) ≤ v (T ) whenever S ⊆ T . A mono-

tone set function with v (∅) = 0 is also called a valuation function
or simply valuation. The function v : 2

G → R is submodular if

v (S ) +v (T ) ≥ v (S ∩T ) +v (S ∪T ) ∀S,T ⊆ G ,

and subadditive if

v (S ) +v (T ) ≥ v (S ∪T ) ∀S,T ⊆ G .

We assume the valuation functions are given by value oracles that

return v (S ) for any S ⊆ G in O (1) time.

Our Contributions. Our main theorem on NSW is the following.

Theorem 1.1. For any ε > 0, there is a deterministic polynomial-
time (nwmax + 2 + ε )e-approximation algorithm for the asymmetric
Nash social welfare problem with submodular valuations. For sym-
metric instances, the algorithm returns a (4 + ε )-approximation. The
number of arithmetic operations and value oracle calls is polynomial
in n,m, and 1/ε .

Algorithm 1 in Section 2.1 presents the algorithm asserted in the

theorem. Note thatnwmax is the ratio between themaximumweight

wmax and the average weight (1/n). In the symmetric case, when

all weights are wi = 1/n, this bound gives (3 + ε )e < 8.2. In this

case, we can improve the analysis to obtain a (4+ ε )-approximation

algorithm.

As our second main result, we show that a
1

2
-EFX allocation with

high NSW value exists and can also be efficiently found. We give

a general reduction for subadditive valuations. In the context of

1

2
-EFX allocations, NSW(S) will always refer to the NSW value of

allocation S in the symmetric case (wi = 1/n for all i ∈ A).

Theorem 1.2. There is a deterministic strongly polynomial-time
algorithm that given a symmetric NSW instance with subadditive
valuations and given a (complete or partial) allocation S of the items,
it returns a complete allocation T that is 1

2
-EFX and NSW(T ) ≥

NSW(S)/2.

The above algorithm is strongly polynomial in the value oracle

model: number of basic arithmetic operations and oracle calls is

polynomially bounded in n andm. Together with Theorem 1.1, we

obtain the following corollary.

Corollary 1.3. For any ε > 0, there is a deterministic polynomial
algorithm that returns a 1

2
-EFX complete allocation that is (8 + ε )-

approximation to the symmetric NSW problem under submodular
valuations. The number of arithmetic operations and value oracle
calls is polynomial in n,m, and 1/ε .

1.1 Related Work
Prior Work on Approximating NSW. Let us first consider additive

valuations, i.e., when vi (S ) =
∑
j ∈S vi j for nonnegative values vi j .

Maximizing symmetric NSW is NP-hard already in the case of two

agents with identical additive valuations, by a reduction from the

Subset-Sum problem. It is NP-hard to approximate within a factor

better than 1.069 for additive valuations [26], and better than 1.5819

for submodular valuations [29].

On the positive side, a number of remarkably different constant-

factor approximations are known for additive valuations. The first

such algorithm with the factor of 2 · e1/e ≈ 2.889 was given by

Cole and Gkatzelis [21] using a continuous relaxation based on a

particular market equilibrium concept. Later, [20] improved the

analysis of this algorithm to achieve the factor of 2. Anari, Oveis

Gharan, Saberi, and Singh [2] used a convex relaxation that relies

on properties of real stable polynomials. The current best factor

is e
1/e + ε ≃ 1.45 by Barman, Krishnamurthy, and Vaish [8]; the

algorithm uses a different market equilibrium based approach.

For the general class of subadditive valuations [6, 18, 29], O (n)-
approximations are known. This is the best one can hope for in the

value oracle model [6], for the same reasons that this is impossible

for the utilitarian social welfare problem [23]. Sublinear approxima-

tionO (n53/54) is possible for XOS valuations if we are given access

to both demand and XOS oracles [7]. Recall that all submodular

valuations are XOS, and all XOS valuations are subadditive.

Constant-factor approximations were also obtained beyond addi-

tive valuation functions: capped-additive [27], separable piecewise-

linear concave (SPLC) [3], and their common generalization, capped-

SPLC [16] valuations; the approximation factor for capped-SPLC

valuations matches the e
1/e + ε factor for additive valuations. All

these valuations are special classes of submodular. Subsequently, Li

and Vondrák [37] designed an algorithm that estimates the optimal

value within a factor of
e
3

(e−1)2
≃ 6.8 for a broad class of submodu-

lar valuations, such as coverage and summations of matroid rank

functions, by extending the techniques of [2] using real stable poly-

nomials. However, this algorithm only estimates the optimum value

but does not find a corresponding allocation in polynomial time.
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In [28], Garg, Husić, and Végh developed a constant-factor ap-

proximation for a broader subclass of submodular valuations called

Rado-valuations. These include weighted matroid rank functions

and many others that can be obtained using operations such as

induction by network and contractions. An important example

outside this class is the coverage valuation. They attained an ap-

proximation ratio 772 for the symmetric case and 772(wmax/wmin)
3

for the asymmetric case. Most recently, Li and Vondrák [38] ob-

tained a randomized 380-approximation for symmetric NSW under

submodular valuations by extending the the approach of [28].

We significantly improve and simplify the approach used in [28]

and [38]; we give a comparison to these works in Section 2.2.

Prior Work on EFX and Related Notions. The existence of EFX
allocations has not been settled despite significant efforts [14, 17,

43, 44]. This problem is open for more than two agents with general

monotone valuations (including submodular), and for more than

three agents with additive valuations. This necessitated the study of

its relaxations α-EFX for α ∈ (0, 1) and partial EFX allocations. For

the notion of α-EFX, the best-known α is 0.618 for additive [1] and

0.5 for general monotone valuations (including submodular) [43].

For the notion of partial EFX allocations, the existence is known

for general monotone valuations if we do not allocate at most

n − 2 items [9, 19, 40], albeit without any efficiency guarantees. For

additive valuations, although n − 2 is still the best bound known,

there exist partial EFX allocations with 2-approximation to the

NSW problem [13].

A well-studied weaker notion is envy-freeness up to one item

(EF1), where no agent envies another agent after the removal of

some item from the envied agent’s bundle. EF1 allocations are

known to exist for general monotone valuations and can also be

computed in polynomial-time [39]. However, an EF1 allocation

alone is not desirable because it might be highly inefficient in

terms of any welfare objective. For additive valuations, the alloca-

tions maximizing NSW are EF1 [14]. Although the NSW problem

is APX-hard [36], there exists a pseduopolynomial time algorithm

to find an allocation that is EF1 and 1.45-approximation to the

NSW problem under additive valuations [8]. For capped-SPLC val-

uations, [16] shows the existence of an allocation that is
1

2
-EF1 and

1.45-approximation to the NSW problem. The existence of an EF1

allocation with high NSW is open for submodular valuations.

Subsequent to our work, [24] improves Theorem 1.2 to show

the existence of an allocation T that is
1

2
-EFX and NSW(T ) ≥

2

3
NSW(S) for a given allocation S.

1.2 Notation
We will also use monotone set functions with v (∅) > 0; we refer to

these as endowed valuation functions. We use log(x ) for the natural
logarithm throughout. For set S ⊆ G and j ∈ G, we use S + j to
denote S ∪ {j} and S − j for S \ {j} and we write v (j ) for v ({j}). For
a vector p ∈ RG and S ⊆ G, we denote p (S ) =

∑
i ∈S pi .

By amatching fromA toG we mean a mapping τ : A→ G ∪ {⊥}
where τ (i ) , τ (j ) if τ (i ) , ⊥; ⊥ is a special symbol representing

unmatched agents.

2 OVERVIEW OF THE ALGORITHMS
2.1 Approximation Algorithm for Nash Social

Welfare
Algorithm 1 is our new proposed algorithm for the Nash social

welfare problem. We start with an overview of the algorithm. The

analysis is given in Section 3.

Algorithm 1: Approximating the submodular NSW problem

Input: Valuations (vi )i ∈A over G, weightsw ∈ RA>0 such that∑
i ∈Awi = 1, and ε > 0.

Output: Allocation S = (Si )i ∈A.
1 Find a matching τ : A→ G maximizing

∏
i ∈A vi (τ (i ))

wi
and

set H B τ ([n]), J B G \ H

2 R = (Ri )i ∈A BLocalSearch(J , (vi )i ∈A)

3 Find a matching σ : A→ H maximizing

∏n
i=1vi (Ri + σ (i ))

wi

4 return S = (Ri + σ (i ))i ∈A

Phase 1: Initial Matching. We find an optimal assignment of

one item to each agent, i.e., a matching τ : A → G maximizing∏
i ∈A vi (τ (i ))

wi
. This can be done using a max-weight matching

algorithm with weightswi logvi (j ) in the bipartite graph between

A and G with edge set {(i, j ) : vi (j ) > 0}. If no matching of size n
exists, then we can conclude that there is no allocation with pos-

itive NSW value, and return an arbitrary allocation. For the rest

of the paper, we assume there is a matching covering A, and let

H B τ ([n]) be the set of matched items.

Phase 2: Local Search. In the second phase, we let J B G \ H
denote the set of items not assigned in the first phase. We let Ā :=

{i ∈ A : vi (J ) > 0} denote the set of agents that have a positive

value on the items in J . For every i ∈ Ā, we select

ℓ(i ) ∈ argmax

j ∈J
vi (j )

as a favorite item of agent i in J . By submodularity,vi (ℓ(i )) > 0. For

each i ∈ Ā, we define the endowed valuation function v̄i : 2
J →

R>0 as

v̄i (S ) B vi (ℓ(i )) +vi (S ) ∀S ⊆ J .

Thus, v̄i (∅) = vi (ℓ(i )), and v̄i (j ) ≤ 2v̄i (∅) for any j ∈ J . Further,
we set the accuracy parameter

ε̄ B −1 +
m√
1 + ε .

(Instead of this exact value, we can set a lower value within a

constant factor range.)

Our local search starts with allocating all items to a single agent

in Ā. As long as moving one item to a different agent increases the

potential function ∏
i ∈Ā

(v̄i (Ri ))
wi

by at least a factor (1 + ε̄ ), we perform such an exchange. Phase 2

terminates when no more such exchanges are possible, and returns

the current allocation. For all agents i ∈ A \ Ā, we let Ri = ∅.
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Algorithm 2: LocalSearch(J , (vi )i ∈A)

1 Ā← {i ∈ A : vi (J ) > 0}

2 ℓ(i ) ← argmax{vi (ℓ) : ℓ ∈ J } for i ∈ Ā

3 Define v̄i (S ) B vi (ℓ(i )) +vi (S )

4 Rk ← J for some k ∈ Ā and Ri ← ∅ for i ∈ A − k

5 while ∃i,k ∈ Ā and j ∈ Ri such that(
v̄i (Ri−j )
v̄i (Ri )

)wi
·

(
v̄k (Rk+j )
v̄k (Rk )

)wk
> 1 + ε̄ do

6 Ri ← Ri − j and Rk ← Rk + j

7 return R := (Ri )i ∈A

Phase 3: Rematching. In the final phase, we match the items in

H to the agents optimally, considering allocation R = (Ri )i ∈A of J .
This can be done by again solving a maximum-weight matching

problem, now with weightswi j = wi logvi (Ri + j ).

2.2 Our Techniques and Comparison with
Previous Approaches

We now compare our algorithm to those in [28] and in [38]. At a

high level, all three algorithms proceed in three phases, with Phases

1 and 3 being the same as outlined above. However, they largely

differ in how the allocation R of J = G \ H is obtained in Phase 2.

Garg, Husić, and Végh [28] use a rational convex relaxation,

based on the concave extension of Rado valuations. After solving

the relaxation exactly, they use combinatorial arguments to sparsify

the support of the solution and construct an integral allocation.

Li and Vondrák [38] allow arbitrary submodular valuations. For

submodular functions, the concave extension is NP-hard to evalu-

ate. Instead, they work with the multilinear extension. This can be

evaluated with random sampling, but it is not convex. To solve the

relaxation (approximately), they use an iterated continuous greedy

algorithm. The allocation R is obtained by independent random-

ized rounding of this fractional solution. Whereas the algorithm is

simple, the analysis is somewhat involved. The main tool to ana-

lyze the rounding is the Efron–Stein concentration inequality; but

this only works well if every item in the support of the fractional

solution has bounded value. This is not true in general, and the

argument instead analyzes a two-stage randomized rounding that

gives a lower bound on the performance of the actual algorithm.

First, a set of ‘large’ fractional items is preserved, and a careful

combinatorial argument is needed to complete the allocation.

Our approach for the second part is radically different and much

simpler. We do not use any continuous relaxation, but R is ob-

tained by a simple local search with respect to the modified val-

uation functions. Because of using these modified valuations, we

can first guarantee a high NSW value of the infeasible allocation

(Ri + ℓ(i ))i ∈A of J in the analysis. Our analysis of the local search

is inspired by the conditional equilibrium notion introduced by Fu,

Kleinberg, and Lavi [25]. They show that any conditional equi-

librium 2-approximates the utilitarian social welfare and give an

auction algorithm for finding such an equilibrium under submodu-

lar valuations.

We note that local search applied directly to the NSW problem

cannot yield a constant factor approximation algorithm even if

we allow changing an arbitrary fixed number k of items. This can

be seen already when m = n, i.e., every allocation with positive

NSW value is a matching. Also, some other natural variants of

local search do not work, or the analysis is not clear; for example,

our analysis does not seem to work for local search applied to the

(seemingly more natural) choice of v̄i (S ) = vi (S +τ (i )). The idea of
defining ℓ(i ) and using the modified valuation functions is inspired

by rounding of the fractional solution from previous approaches;

the role of the ℓ(i ) items is similar to the large items in [38], but we

obtain much better guarantees using a more direct deterministic

approach.

The last part of the analysis concerns the rematching in Phase

3. Here, we convert the infeasible allocation (Ri + ℓ(i ))i ∈A to a

feasible allocation by an alternating path argument, combining the

initial matching τ and an (unknown) optimal matching д. While the

rematching phase was already present (and essentially identical)

in [28] and [38], it is implemented and analyzed differently here.

We show the existence of a matching ρ that together with R gives

good approximation of the optimum. The papers [28] and [38] find

such ρ by first showing that there is matching π that has high NSW

together withR and the items ℓ(i ). Then, they show in a convoluted

way that we can remove the items ℓ(i ) and find a matching ρ (as a

combination of π and the initial matching τ ) while only losing only
a constant in objective when compared to the solution consisting

of π ,R and the ℓ(i )’s.
We prove the existence of a good matching ρ by carefully ana-

lyzing the alternating cycles in the union of the optimal allocation

of H and the initial matching τ of Phase 1. Our proof is much sim-

pler than the previous analysis of [28] and [38], and facilitates the

improved approximation factor. (The exact numbers are difficult

to compare as the loss depends on the properties of solutions ob-

tained in Phase 2, and since in the current paper the analysis of

Phase 2 and Phase 3 is done in a more synchronous way.) We note

that the particular matching ρ mentioned here is not needed; the

algorithm finds the most profitable matching with respect to the R .

This provides a solution at least as good as the one in the analysis.

2.3 1/2-EFX Guarantee
The algorithm asserted in Theorem 1.2 is Algorithm 3 in Section 4.1.

Our first key tool is a subroutine that finds a partial allocation that

is
1

2
-EFX and preserves a large fraction of the NSW value.

Lemma 2.1. There exists a deterministic strongly polynomial algo-
rithm MakeFairOrEfficient(T ), that, for any partial allocation
T , returns another partial allocation R that satisfies one of the fol-
lowing properties

(i) NSW(R ) ≥ NSW(T ) and ∪i ∈ARi ⊊ ∪i ∈ATi , or
(ii) NSW(R ) ≥ 1

2
NSW(T ) and R is 1

2
-EFX.

This is shown by modifying the approach of Caragiannis, Gravin,

and Huang [13]. For additive valuations, their algorithm takes an

input allocation T and returns a partial allocation R that is EFX

and NSW(R ) ≥ 1

2
NSW(T ). We simplify and extend this approach

from additive to subadditive valuations, but prove only the weaker

1

2
-EFX property.

The key subroutine for them provides a similar alternative as in

Lemma 2.1. In outcome (ii), they have the stronger EFX guarantee,
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while in outcome (i), they show that the NSW value increases by a

certain factor. In outcome (i), it is not clear how an increase in the

NSW value could be shown for subadditive valuations. However,

arguing about the support decrease leads to a simpler argument.

In [13], only a partial EFX allocation is found. Theorem 1.2 shows

the existence of a complete allocation, albeit with the weaker
1

2
-

EFX property. To derive Theorem 1.2, we start by repeatedly calling

MakeFairOrEfficient until outcome (ii) is reached. Note that the

outcome (i) can only happen at mostm times because the number

of items in R reduces by at least one after each call.

The allocation at this point may be partial. We show that the

remaining items can be allocated using the classical envy-free cycle
procedure by Lipton,Markakis, Mossel, and Saberi [39]. Even though

this procedure is known for the weaker EF1 property [12], we show

that—after a suitable preprocessing step—it can produce an
1

2
-EFX

allocation while not decreasing the NSW value of the allocation.

3 ANALYSIS OF THE NSW ALGORITHM
In this section, we prove Theorem 1.1. In Section 3.1, we formulate

simple properties of approximate local optimal solution found in

Phase 2. This is followed by a technical bound comparing the ap-

proximate local optimal solution to the optimal solution. In this step,

we present two different analyses: in Section 3.2 for the asymmetric

case, and in Section 3.3 for the symmetric case. Section 3.4 gives a

lower bound on the weight of the final matching found in Phase 3

of the algorithm; this argument is the same for the asymmetric and

symmetric cases. This completes the proof of Theorem 1.1.

3.1 Local Optima
Throughout this section, we work with the item set J , set of agents
Ā, favourite items ℓ(i ), endowed valuations v̄i (S ) = vi (ℓ(i ))+vi (S ),
and ε̄ = −1 + m√

1 + ε .

Definition 3.1 (ε̄-local optimum). A complete allocation R =

(Ri )i ∈A is an ε̄-local optimum with respect to valuations v̄i , if for all
pairs of different agents i,k ∈ Ā and all j ∈ Ri it holds(

v̄i (Ri − j )

v̄i (Ri )

)wi

·

(
v̄k (Rk + j )

v̄k (Rk )

)wk

≤ (1 + ε̄ ) .

A 0-local optimum will be simply called local optimum.

Lemma 3.2. Consider an NSW instance with submodular valu-
ations, and let ε > 0. Then, LocalSearch(J ,v1, . . . ,vn) returns
an ε̄-local maximum with respect to the endowed valuations v̄i in
O

(
m
ε logm

)
exchange steps.

Proof. It is immediate that the algorithm terminates with an

ε̄-local maximum. Recalling that v̄i (j ) ≤ 2v̄i (∅) for any j ∈ J ,
submodularity implies vi (J ) < ( |J | + 1)v̄i (∅) ≤ mv̄i (∅) for every
i ∈ Ā. Hence, ∏

i ∈Ā

v̄i (J )
wi ≤ m

∏
i ∈Ā

v̄i (∅)
wi ,

and therefore the product

∏
i ∈Ā v̄i (Ri )

wi
may grow by at most a

factorm throughout all exchange steps. Every swap increases this

product by at least a factor (1+ ε̄ ). Thus, the total number of swaps

is bounded by log(1+ε̄ )m =m log
1+ε m = O

(
m
ε logm

)
. □

We need the following two properties of submodular valuations.

Proposition 3.3. Let v̄ : 2
J → R>0 be a submodular endowed

valuation. Let S ⊆ T ⊆ J and j ∈ J . Then,

v̄ (T + j )

v̄ (T )
≤

v̄ (S + j )

v̄ (S )
.

Proof. By the monotonicity, and submodularity of v we have

v̄ (T + j )

v̄ (T )
=
v̄ (T ) + v̄ (T + j ) − v̄ (T )

v̄ (T )
≤

v̄ (S ) + v̄ (T + j ) − v̄ (T )

v̄ (S )

≤
v̄ (S ) + v̄ (S + j ) − v̄ (S )

v̄ (S )

=
v̄ (S + j )

v̄ (S )
. □

Proposition 3.4. Let v̄ : 2
J → R>0 be a submodular endowed

valuation. For any j ∈ R,

v̄ (R − j ) ≥
∑
k ∈R

(v̄ (R) − v̄ (R − k )).

Proof. Let us denote R− j B {r1, . . . , rs }. By submodularity, we

have

v̄ (R − j ) = v̄ (∅) +
s∑

k=1

(v̄ ({r1, . . . , rk }) − v̄ ({r1, . . . , rk−1}))

≥ v̄ (∅) +
s∑

k=1

(v̄ (R) − v̄ (R − rk )) ≥
∑
k ∈R

(v̄ (R) − v̄ (R − rk ))

where in the last step, we used the fact that v̄ (∅) = v (ℓ(i )) ≥ v (j ) ≥
v̄ (R) − v̄ (R − j ) . □

We analyze our local search in slightly different ways in the

symmetric case (where w1 = . . . = wn = 1/n) and the general

asymmetric case. We consider the asymmetric case first.

3.2 Local Equilibrium Analysis for
Asymmetric NSW

Let ε̄ ≥ 0, and let R = (Ri )i ∈A be an ε̄-local optimum with respect

to the endowed valuations v̄i . Let j ∈ J and let i ∈ Ā be the agent

such that j ∈ Ri . We define the price of j as

pj B wi log
v̄i (Ri )

v̄i (Ri − j )
.

Lemma 3.5. For an ε̄-local optimum R = (Ri )i ∈Ā and prices pj
defined as above, for every item j ∈ Ri and every agent k ∈ Ā, we
have

v̄k (Rk + j )

v̄k (Rk )
≤ (1 + ε̄ )1/wk

e
pj /wk .

Moreover, if the valuation v̄k is submodular, then for all T ⊆ J , we
have

v̄k (Rk ∪T )

v̄k (Rk )
≤ (1 + ε̄ ) |T |/wk · e

∑
j∈T pj /wk .

Proof. By definition, e
pj /wi =

v̄i (Ri )
v̄i (Ri−j )

. If k = i the first state-

ment is trivial. Otherwise, for k , i , the first statement follows from

the ε̄-optimality of R; if false, we would swap item j to agent k .
For the second statement, assume w.l.o.g.T = {t1, t2, . . . , t |T | } ⊆

J . Since v̄k is submodular, by Proposition 3.3 we have
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v̄k (Rk ∪T )

v̄k (Rk )
=

|T |∏
a=1

v̄k (Rk ∪ {t1, . . . , ta })

v̄k (Rk ∪ {t1, . . . , ta−1})

≤

|T |∏
a=1

v̄k (Rk + ta )

v̄k (Rk )

≤ (1 + ε̄ ) |T |/wk
e

∑
j∈T pj /wk . □

The following lemma shows that the spending of agent i , p (Ri ),
is at most their weightwi .

Lemma 3.6 (Bounded spending). For an ε̄-local optimum R =
(Ri )i ∈Ā and prices pj defined as above, p (Ri ) ≤ wi for every agent
i ∈ Ā, and consequently, p (J ) ≤ 1.

Proof. From the definition of pj , we have

p (Ri ) = wi
∑
j ∈Ri

log

v̄i (Ri )

v̄i (Ri − j )
≤ wi

∑
j ∈Ri

v̄i (Ri ) − v̄i (Ri − j )

v̄i (Ri − j )
≤ wi

due to the elementary inequality logx ≤ x − 1, and by Proposi-

tion 3.4 we know that

∑
j ∈Ri (v̄i (Ri ) − v̄i (Ri − j )) ≤ v̄i (Ri − j

′) for
j ′ ∈ argminj ∈Ri v̄i (Ri − j ).

Adding up the prices over all the sets Ri , whose union is J , we
obtain p (J ) =

∑
i ∈Ā p (Ri ) ≤

∑
i ∈Āwi ≤ 1. □

We recall the First Welfare Theorem: any Walrasian equilibrium

allocation maximizes the utilitarian social welfare. For conditional

equilibrium, [25, Proposition 1] give an approximate version of

the first welfare theorem: the utilitarian social welfare in any con-

ditional equilibrium is at least half of the maximal welfare. Anal-

ogously, if we interpret local optimum as equilibrium, then the

following proposition states that such an equilibrium gives an e-

approximation of the optimal Nash social welfare with respect to

the endowed valuations. Recall that, by definition of Ā, v̄i (S ) = 0

for any i ∈ A \ Ā and any S ⊆ J .

Proposition 3.7. Let R = (Ri )i ∈A be a local optimum and S =
(Si )i ∈A be an optimal NSW allocation with respect to the endowed
submodular valuations v̄i . Then∏

i ∈Ā

v̄i (Ri )
wi ≥

1

e

·
∏
i ∈Ā

v̄i (Si )
wi .

Proof. By Lemma 3.6,

∑
i ∈Ā p (Si ) ≤ p (J ) ≤ 1. Then, by

Lemma 3.5,∏
i ∈Ā

v̄i (Si )
wi ≤

∏
i ∈Ā

v̄i (Ri ∪ Si )
wi ≤

∏
i ∈Ā

v̄i (Ri )
wi · ep (Si )

= e

∑
i∈Ā p (Si ) ·

∏
i ∈Ā

v̄i (Ri )
wi ≤ e ·

∏
i ∈Ā

v̄i (Ri )
wi . □

Proposition 3.7 is included solely for the intuition. We cannot

really use it as such, because it doesn’t deal with the allocation of

items inH . For this, we need the final rematching phase (Section 3.4).

We will need a bound in the following form. The parameters hi will
represent the number of items that agent i takes from the set H in

the optimum solution.

Lemma 3.8. Let ε̄ ≥ 0, and let R = (Ri )i ∈Ā be an ε̄-local optimum
with respect to the endowed valuations v̄i that are submodular. Let
(S1, S2, . . . , Sn ) denote any partition of the set J , and let hi ≥ 0 such
that

∑
i ∈A hi ≤ n. Then,∏

i ∈A\Ā

hwi
i

∏
i ∈Ā

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)wi

≤ (1+ε ) (2+nwmax)e.

Proof. By Lemma 3.5, for each i ∈ Ā we can bound

vi (Si )

max{vi (ℓ(i )),vi (Ri )}
≤

vi (Ri ∪ Si )
1

2
[vi (ℓ(i )) +vi (Ri )]

≤
2v̄i (Ri ∪ Si )

v̄i (Ri )

≤ 2(1 + ε̄ ) |Si |/wi
e
p (Si )/wi .

Thus, ∏
i ∈A\Ā

hwi
i

∏
i ∈Ā

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)wi

≤
∏

i ∈A\Ā

hwi
i

∏
i ∈Ā

(
2(1 + ε̄ ) |Si |/wi

e
p (Si )/wi + hi

)wi

≤
∏

i ∈A\Ā

hwi
i

∏
i ∈Ā

(
(2 + hi ) (1 + ε̄ )

|Si |/wi · ep (Si )/wi
)wi

≤ (1 + ε̄ )me
p (J )

∏
i ∈A

(2 + hi )
wi .

By the choice of ε̄ , (1 + ε̄ )m = 1 + ε . From Lemma 3.6, we get

p (J ) ≤ 1. The proof of the lemma is complete by showing that the

last product is at most (2 + nwmax). This follows by the AM-GM

inequality:∏
i ∈A

(2 + hi )
wi ≤

∑
i ∈A

wi (2 + hi ) ≤ 2 +wmax

∑
i ∈A

hi ≤ 2 + nwmax .

□

3.3 Local Equilibrium Analysis for Symmetric
NSW

Let ε̄ ≥ 0, and let R = (Ri )i ∈A be an ε̄-local optimum with respect

to the endowed valuations v̄i , in the symmetric case. Define ϵ̂ B
(1 + ε̄ )n − 1; we have 1 + ϵ̂ = (1 + ε̄ )n ≤ (1 + ε̄ )m = 1 + ϵ since

n ≤ m. In particular, 0 ≤ ε̄ ≤ ε̂ ≤ ε ≤ 1.

Let j ∈ J and let i ∈ Ā be the agent such that j ∈ Ri . We define

the price of j as

pj B
v̄i (Ri )

v̄i (Ri − j )
− 1 =

v̄i (Ri ) − v̄i (Ri − j )

v̄i (Ri − j )
.

The following lemma gives the basic properties of these prices that

we will need in the following.

Lemma 3.9. Given an ε̄-local optimumR = (Ri )i ∈A, and the prices
pj defined as above, we have

• For every item j ∈ J , pj ≤ 1.
• For every item j ∈ J \ Ri ,

v̄k (Rk + j )

v̄k (Rk )
≤ (1 + ε̂ ) (1 + pj ).
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• For every T ⊆ J ,

v̄i (Rk ∪T )

v̄k (Rk )
≤ 1 +

∑
j ∈T

(2ε̂ + pj ) .

Proof. By construction of v̄i , v̄i (Ri ) − v̄i (Ri − j ) ≤ v̄i (∅) ≤

v̄i (Ri − j ). Hence, pj =
v̄i (Ri )−v̄i (Ri−j )

v̄i (Ri−j )
≤ 1.

From the ε̄-optimality ofR , we get
v̄k (Rk+j )
v̄k (Rk )

≤ (1+ε̄ )n
v̄i (Ri )
v̄i (Ri−j )

=

(1 + ε̂ ) (1 + pj ), because otherwise we could swap item j to agent k .
For the third statement, by submodularity, we have

v̄k (Rk ∪T )

v̄k (Rk )
≤

v̄k (Rk ) +
∑
j ∈T (v̄k (Rk + j ) − v̄k (Rk ))

v̄k (Rk )

≤ 1 +
∑
j ∈T

((1 + ε̂ ) (1 + pj ) − 1) ≤ 1 +
∑
j ∈T

(2ε̂ + pj )

using the first and second statement. □

The following lemma shows that the spending of each agent i ,
p (Ri ) =

∑
j ∈Ri pj , is at most 1.

Lemma 3.10 (Bounded spending). Let R = (Ri )i ∈Ā be an ε̄-local
optimum with respect to the endowed valuations v̄i . Then, p (Ri ) ≤ 1

for every agent i ∈ Ā, and consequently, p (J ) ≤ |Ā|.

Proof. From the definition of the prices pj , and by Proposi-

tion 3.4, we have

p (Ri ) =
∑
j ∈Ri

v̄i (Ri ) − v̄i (Ri − j )

v̄i (Ri − j )

≤

∑
j ∈Ri (v̄i (Ri ) − v̄i (Ri − j ))

mink ∈Ri v̄i (Ri − k )
≤ 1 .

Since (R1, . . . ,Rn ) is a partition of J (every item is allocated through-

out our local search), we have

p (J ) =
∑
j ∈J

pj =
∑
i ∈Ā

∑
j ∈Ri

pj ≤ |Ā| . □

The next lemma bounds the value of any set relative to our local

optimum in terms of prices.

Proposition 3.11. Let R = (Ri )i ∈A be an ε̄-local optimum and
S ⊆ J any set of items. Then,

vi (S )

max{vi (Ri ),vi (ℓ(i )}
≤ 1 + 2

∑
j ∈S

(2ε̂ + pj ).

Proof. By Lemma 3.9,

vi (ℓ(i )) +vi (S )

vi (ℓ(i )) +vi (Ri )
=

v̄i (S )

v̄i (Ri )
≤

v̄i (Ri ∪ S )

v̄i (Ri )
≤ 1 +

∑
j ∈S

(2ε̂ + pj ).

Let λ =
vi (Ri )
vi (ℓ(i ))

. We can rewrite the inequality above as follows:

1 +
vi (S )
vi (ℓi )

1 + λ
≤ 1 +

∑
j ∈S

(2ε̂ + pj ).

From here,

vi (S )

vi (ℓi )
≤ (1 + λ) (1 +

∑
j ∈S

(2ε̂ + pj )) − 1 = λ + (1 + λ)
∑
j ∈S

(2ε̂ + pj ).

We use this inequality if 0 ≤ λ ≤ 1. If λ > 1, we divide by λ to

obtain:

vi (S )

vi (Ri )
≤ 1 + (1/λ + 1)

∑
j ∈S

(2ε̂ + pj ).

Either way, the worst case is λ = 1, which gives

vi (S )

max{vi (ℓ(i )),vi (Ri )}
≤ 1 + 2

∑
j ∈S

(2ε̂ + pj ) . □

Again, the bounds in this section do not deal with the allocation

of the items in H . This will be handled by the final rematching

phase (Section 3.4), where we will need a bound in the following

form.

Lemma 3.12. Let ε̄ ≥ 0, and letR = (Ri )i ∈A be an ε̄-local optimum
with respect to the endowed valuations v̄i . Let (S1, S2, . . . , Sn ) denote
any allocation of the set J , and let hi ≥ 0 be such that

∑
i ∈A hi ≤ n.

Then,∏
i ∈A\Ā

hi
∏
i ∈Ā

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)
≤ (1 + ε )n 4n .

Proof. By Proposition 3.11,

∏
i ∈Ā

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)
≤

∏
i ∈Ā

*.
,
1 + 2

∑
j ∈Si

(2ε̂ + pj ) + hi
+/
-
.

So by the AM-GM inequality we have∏
i ∈A\Ā

hi
∏
i ∈Ā

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)

≤
∏

i ∈A\Ā

hi
∏
i ∈Ā

*.
,
1 + 2

∑
j ∈Si

(2ε̂ + pj ) + hi
+/
-

≤
1

nn
*.
,

∑
i ∈A\Ā

hi +
∑
i ∈Ā

(
1 + 2

∑
j ∈Si

(2ε̂ + pj ) + hi
)+/
-

n

=

(∑
i ∈A hi
n

+

∑
i ∈Ā 1

n
+

∑
j ∈J 4ε̂

n
+

∑
j ∈J 2pj

n

)n
.

We upper-bound each of these two summands. First, using the

fact that

∑
i ∈A hi ≤ n. Second, using |Ā| ≤ n. Third, using |J | ≤ m.

Fourth, using ∑
i ∈Ā

p (Si ) ≤
∑
j ∈J

pj ≤ |Ā| ≤ n

from Lemma 3.10. We obtain,(∑
i ∈A hi
n

+

∑
i ∈Ā 1

n
+

∑
j ∈J 4ε̂

n
+

∑
j ∈J 2pj

n

)n
≤

(
1 + 1 +

4mε̂

n
+ 2

)n
= 4

n
(
1 +

mε̂

n

)n
.

Since m ≥ |H | = n, by Bernoulli’s inequality 4
n

(
1 + mε̂

n

)n
≤

4
n (1 + ε̂ )

mn
n = (1 + ε )n4n . □
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3.4 Rematching
Throughout, let OPT denote the optimum NSW value of the in-

stance. For sets R = (Ri )i ∈A, and a matching π : A→ H ∪ {⊥}, we
let

NSW(R,π ) B
∏
i ∈A

vi (Ri + π (i ))
wi .

In Phase 3, we select a matching ρ : A → H that maximizes

NSW(R, ρ), where R = (Ri )i ∈A denotes the ε̄-local optimum with

respect to the endowed valuations v̄i from Phase 2. The following

lemma completes the proof of Theorem 1.1.
1

Lemma 3.13. Let ε̄ ≥ 0, and letR = (Ri )i ∈A be an ε̄-local optimum
with respect to the endowed valuations v̄i that are submodular. Then,
there exists a matching ρ : A → H such that, for the symmetric
problem, it holds

NSW(R, ρ) ≥
OPT

4(1 + ε )
,

and, for the asymmetric problem, it holds

NSW(R, ρ) ≥
OPT

(2 + nwmax)e(1 + ε )
.

Proof. Consider an optimal solution (S1 ∪H1, . . . , Sn ∪Hn ) to
the NSW problem where Si is the set of items allocated to i from
J = G \ H , and Hi is the set of items allocated to i from H . For

i ∈ A \ Ā, we must have Hi , ∅, and we can assume Si = ∅. Let
hi B |Hi |. We define a matching д : A → H ∪ {⊥} as follows.
If hi > 0, let д(i ) ∈ argmaxj ∈Hi

vi (Si + j ) be one of the items in

Hi providing the largest marginal gain to agent i . Otherwise, let
д(i ) B ⊥. Submodularity implies

vi (Si ∪ Hi ) ≤ vi (Si ) + hivi (д(i )) ∀i ∈ A . (1)

Let us partition the set of agents A as

Aπ B
{
i ∈ A : vi (д(i )) ≥ max {vi (Ri ),vi (ℓ(i ))}

}
,

AR B
{
i ∈ A \Aπ : vi (Ri ) ≥ max

{
vi (д(i )),vi (ℓ(i ))

}}
,

Aℓ B
{
i ∈ A \ (Aπ ∪AR ) : vi (ℓ(i )) ≥ max

{
vi (Ri ),vi (д(i ))

}}
.

As an intermediate step in the construction of the claimed matching

ρ, we first define an allocation T = (Ti )i ∈A and matching π : A→
H ∪ {⊥} as follows.

• For i ∈ Aπ , let Ti B ∅ and π (i ) B д(i ).
• For i ∈ AR , let Ti B Ri and π (i ) B ⊥.
• For i ∈ Aℓ , let Ti B {ℓ(i )} and π (i ) B ⊥.

Note that A \ Ā ⊆ Aπ . Note that this allocation is not feasible:

ℓ(i ) = ℓ(i ′) is possible for different agents, and the same item may

even be contained in Ri for some i ∈ AR . We complete the proof in

two steps. First, we lower bound NSW(T ,π )/OPT. Then, we show
that π and the initial matching τ from Phase 1 can be recombined

into a matching ρ such that NSW(R, ρ) ≥ NSW(T ,π ).

Claim. For the symmetric problem

NSW(T ,π ) ≥
OPT

4(1 + ε )
.

For the asymmetric problem

NSW(T ,π ) ≥
OPT

(2 + nwmax) e(1 + ε )
.

1
One needs to select a smaller parameter ε to obtain the bounds in Theorem 1.1.

Proof. Our goal is to upper bound
OPT

NSW(T ,π ) , which is∏
i ∈Aπ

(
vi (Si ∪ Hi )

vi (π (i ))

)wi ∏
i ∈AR

(
vi (Si ∪ Hi )

vi (Ri )

)wi ∏
i ∈Aℓ

(
vi (Si ∪ Hi )

vi (ℓ(i ))

)wi

.

In order to do so, we first upper bound the loss of each agent

depending in which set they belong. If i ∈ A \ Ā then i ∈ Aπ , by (1)

and submodularity, we have

vi (Si ∪ Hi )

vi (π (i ))
≤

hivi (д(i ))

vi (π (i ))
= hi .

If i ∈ Aπ ∩ Ā, by (1), as well as using the definition of Aπ and

submodularity, we can bound

vi (Si ∪ Hi )

vi (π (i ))
≤

vi (Si ) + hivi (д(i ))

vi (π (i ))

=
vi (Si )

vi (π (i ))
+ hi

≤
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi .

Similarly, if i ∈ AR , we get

vi (Si ∪ Hi )

vi (Ri )
≤

vi (Si ) + hivi (д(i ))

vi (Ri )

≤
vi (Si )

vi (Ri )
+ hi

=
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi .

Finally, if i ∈ Aℓ , the bound is

vi (Si ∪ Hi )

vi (ℓ(i ))
≤

vi (Si ) + hivi (д(i ))

vi (ℓ(i ))

≤
vi (Si )

vi (ℓ(i ))
+ hi

=
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi .

Consequently,

OPT

NSW(T ,π )
≤

∏
i ∈A\Ā

hwi
i

∏
i ∈A

(
vi (Si )

max{vi (ℓ(i )),vi (Ri )}
+ hi

)wi

.

The proof of the claim is complete by Lemmas 3.12 and 3.8. □

It remains to construct a matching ρ : A→ H ∪ {⊥} such that

NSW(R, ρ) ≥ NSW(T ,π ). First, note that if Aℓ = ∅, then ρ = π is

a suitable choice. In case Aℓ , ∅, we construct alternating paths

from the initial matching τ from Phase I and ρ to eliminate the ℓ(i )
items from T . A critical property for the argument is as follows.

Claim 3.14. For every i ∈ Ā, vi (τ (i )) ≥ vi (ℓ(i )).

Proof. Consider the matching τ : A→ G defined as τ (i ) := ℓ(i ),
and τ (h) := τ (h) for h , i . τ is a matching since ℓ(i ) < H . By the

choice of τ ,
∏

h∈A vh (τ (h))
wh ≤

∏
h∈A vh (τ (h))

wh , implying the

claim. □

In order to construct the matching ρ, we define an auxiliary

directed graph D = (Aℓ ∪Aπ ∪ H ,E), where the arc set is defined
as

E = {(τ (i ), i ) : i ∈ Aℓ ∪Aπ } ∪ {(i,π (i )) : i ∈ Aπ } .
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j1 j2 j3

ℓ(i3)

j1 j2 j3

ℓ(i3)

Aπi1 ∈ Aπ i2 ∈ Aπ

j1 j2 j3

a)

b)

c)

AR

i3 ∈ Aℓ

i1 ∈ Âπ i2 ∈ Âπ

i3 ∈ Aℓ

i1 ∈ Âπ i2 ∈ Âπ i3 ∈ Aℓ AR

Aπ Aπ

Aπ Aπ Aπ

Aπ Aπ Aπ

Figure 1: White circles represent the agents, black squares the item set H , and grey squares the favorite items. Solid lines
represent matching τ , while dashed-dotted lines represent a subset of matching π . Figure a) shows matching τ , matching π for
the agents in Aπ , and the ℓ(i ) items for the agents in Aℓ . Figure b) shows graph D (and the ℓ(i )’s). Figure c) shows matching ρ.

See Figure 1 for an example. Note that π (i ) , ⊥ if i ∈ Aπ . Thus,

each node inAπ has exactly one outgoing and exactly one incoming

arc, each node in Aℓ has exactly one incoming arc and no outgoing

arcs, and each item node in H has at most one incoming and at

most one outgoing arc.

Let Âπ ⊆ Aπ be the set of nodes that can reachAℓ in the digraph

D. By construction, each i ∈ Aπ is either contained in a cycle inside

Aπ ∪ H , or on a directed path ending in Aℓ ∪ H ; these paths start

in H and may terminate in either H or Aℓ . We choose Âπ as the set

of nodes where the path terminates in Aℓ .

We define the matching ρ : A→ H ∪ {⊥} as

ρ (i ) :=




⊥ , if i ∈ AR ,

τ (i ) , if i ∈ Aℓ ∪ Âπ ,

π (i ) , if i ∈ Aπ \ Âπ .

Claim. ρ is a matching.

Proof. For a contradiction, assume j = π (i ′) = τ (i ) for i ′ ∈
Aπ \ Âπ and i ∈ Aℓ ∪ Âπ . Then, (i

′, j ), (j, i ) forms 2-hop directed

path from i ′ to i in D. Since i ∈ Âπ , there is a directed path P from

i to a node in Aℓ . Concatenating these two paths gives a directed

path from i ′ to a node in Aℓ . Thus, i
′ ∈ Âπ , a contradiction. □

It remains to show∏
i ∈Aℓ∪Âπ

vi (τ (i ))
wi ≥

∏
i ∈Aℓ

vi (ℓ(i ))
wi

∏
i ∈Aπ

vi (π (i ))
wi . (2)

The set of nodes in Aℓ ∪ Âπ are covered by maximal directed

paths in D terminating in Aℓ . First, consider a length one path

P = (j, i ) that comprises an item node j ∈ H and an agent node

i ∈ Aπ such that j = τ (i ), and j has no incoming arcs in D. Then,
vi (τ (i )) ≥ vi (ℓ(i )) by Claim 3.14.

Consider now a longer path P = (j1, i1, j2, i2, . . . , jk , ik ) for k >
1, where jt ∈ H are item nodes, it ∈ Âπ for t < k and ik ∈ Aℓ .

Thus, τ (it ) = jt for t ∈ [k] and π (it ) = jt+1 for t ∈ [k − 1]. We

claim that

k∏
t=1

vit (τ (it ))
wit ≥ vik (ℓ(ik ))

wik

k−1∏
t=1

vit (π (it ))
wit .

The proof follows the same lines as the proof of Claim 3.14. Indeed, if

this equality does not hold, then there would exist a better matching

τ : A → G defined as τ (ik ) := ℓ(ik ), and τ (it ) := jt+1 = π (it ) for
t = 1, 2, . . . ,k − 1, and τ (h) := τ (h) for h , i .
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Algorithm 3: Guaranteeing 1

2
-EFX for the symmetric NSW

problem

Input: Allocation S that is α-approximation to the NSW

problem (A,G, (vi )i ∈A ).
Output: Allocation T that is

1

2
-EFX and 2α-approximation to

the symmetric NSW problem.

1 T ← S

2 repeat
3 T ← MakeFairOrEfficient(T ) // Algorithm 4

4 until T is not 1

2
-EFX

5 U ← G \ ∪iTi // set of unallocated items

6 repeat
7 Let j ∈ U be such that vi (Ti ) < vi (j ) for some agent i

8 Ti ← {j}

9 U ← (U ∪Ti ) − j

10 until vi (Ti ) ≥ vi (j ),∀i ∈ A,∀j ∈ U

11 T ← EnvyFreeCycle(T ,U )

12 return T

The inequality (2) follows by multiplying these inequalities over

all maximal directed paths inD that terminate inAℓ . This completes

the proof. □

4 FINDING FAIR AND EFFICIENT
ALLOCATIONS

4.1 Completing the Partial Allocation
In this section, we derive Theorem 1.2 from Lemma 2.1. The proof

of Lemma 2.1, describing the subroutine MakeFairOrEfficient is

given in Section 4.2. The algorithm described in Theorem 1.2 is

Algorithm 3. It uses two subroutines: MakeFairOrEfficient, and
the envy-free cycle procedure EnvyFreeCycle from [39], described

below.

The input of Algorithm 3 is an allocation S that is

α-approximation to the symmetric NSW problem. It then repeat-

edly calls MakeFairOrEfficient(T ) (Algorithm 4) until the final

allocation is
1

2
-EFX and 2α-approximation to the symmetric NSW

problem. Recall that the output of this subroutine is either a par-

tial allocation T ′ that satisfies either NSW(T ′) ≥ NSW(T ) and
∪iT

′
i ⊊ ∪iTi , or NSW(T ′) ≥ 1

2
NSW(T ) and T ′ is 1

2
-EFX. Since

∪iT
′
i ⊊ ∪iTi in each call in the first case, the number of calls to

Algorithm 4 is at mostm.

At this point, we have an
1

2
-EFX partial allocationT withNSW(T ) ≥

1

2
NSW(S). The rest of Algorithm 3 allocates the remaining items

U = G \ ∪i ∈ATi so that NSW(T ) does not decrease, and the 1

2
-EFX

property is maintained.

First, we modify the allocation in the second repeat loop to

ensure that each agent’s value for their bundle is at least their value

for each remaining item in U . This is done by swapping an agent’s

bundle Ti with a singleton item j ∈ U whenever i values j more

than the entire bundle Ti .
Finally, we run the envy-cycle procedure EnvyFreeCycle(T ,U )

from [39] to allocate the remaining items in U , starting with the

allocation T . The envy-cycle procedure maintains the directed

(envy) graph D = (A,E), where (i, j ) ∈ E if i envies j’s bundle,
i.e., vi (Yi ) < vi (Yj ). If there is a cycle in G, then we can circulate

bundles along the cycle to improve each agent’s utility. Otherwise,

there must be a source agent inG , whom no agent envies. We then

assign an arbitrary item from U to a source agent. We update the

envy graph, and iterate until U is fully assigned.

We now verify the correctness and efficiency of this algorithm.

Lemma 4.1. The second repeat loop of Algorithm 3 is repeated
at most nm times. It maintains the 1

2
-EFX and NSW(T ) is non-

decreasing.

Proof. The bound on the number of swaps follows since every

agent i ∈ A may swap their bundle at mostm times. After the first

swap, they maintain a singleton bundle, and they can swap their

bundle for the same item j only once, since their valuation vi (Ti )
strictly increases in each swap.

It is immediate that NSW(T ) is non-decreasing. It is left to show
that the

1

2
-EFX property is maintained. Let i ∈ A be the agent

who swapped their bundle Ti for T
′
i = {j} in the current iteration.

Then, the value of i’s own bundle increased while the allocation of

everyone else remained the same. Hence, agent i cannot violate the
1

2
-EFX property. For the other agents k , i ,vk (Tk ) ≥

1

2
·vk (T

′
i −д)

for all д ∈ T ′i trivially holds, since T ′i is a singleton. □

The property (3) below is satisfied after the second repeat loop.

Hence, the next lemma completes the analysis of Algorithm 3.

Lemma 4.2. The subroutine EnvyFreeCycle(T ,U ) terminates
in O (n3m) time, and NSW(T ) is non-decreasing. Assume that T =
(Ti )i ∈A is 1

2
-EFX, and

vi (Ti ) ≥ vi (j ) ∀i ∈ A,∀j ∈ U . (3)

Then, EnvyFreeCycle(T ,U ) also maintains the 1

2
-EFX property.

Proof. The running time analysis is the same as in [39]. Finding

and removing a cycle in the envy-graph can be done in O (n2) time.

Further, whenever swapping around a cycle, at least one edge is

removed from the envy graph. New edges can only be added when

we allocate new items from U , with at most n edges every time.

Since |U | ≤ m, the total number of new edges added throughout is

nm. This yields the overall O (n3m) bound.
Again, it is immediate that NSW(T ) is non-decreasing in every

step. We need to show that the
1

2
-EFX property is maintained both

when swapping around cycles and when adding new items fromU .

When swapping around a cycle, this follows since the set of bundles

remains the same, and no agent’s value decreases.

Consider the case when a source agent say i , gets a new item j:
their new bundle becomes T ′i = Ti + j . Note that i is the only agent

whose value increases; all other bundles remain the same. We need

to show that for any k , i ,

vk (Tk ) ≥
1

2
vk (T

′
i − д) ∀д ∈ T

′
i .

We show that

vk (T
′
i − д) = vk (Ti + j − д) ≤ vk (Ti ) +vk (j ) ≤ 2vk (Tk ) .

Here, the first inequality follows by subadditivity and monotonicity.

The second inequality uses (3), and that vk (Tk ) ≥ vk (Ti ), since i
was a source node in the envy graph. □
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4.2 Finding a Fair or an Efficient Allocation
In this Section, we prove Lemma 2.1. The subroutine

MakeFairOrEfficient(T ) is shown in Algorithm 4, and gener-

alizes an algorithm by Caragiannis, Gravin, and Huang [13] from

additive to subadditive valuations. We begin with defining the no-

tions of
1

2
-EFX feasible bundles and graph.

Definition 4.3 ( 1
2
-EFX feasible bundles and graph). Given a partial

allocation T = (Ti )i ∈A, we say thatTk is a
1

2
-EFX feasible bundle for

agent i , if vi (Tk ) ≥
1

2
maxℓ∈A, j ∈Tℓ vi (Tℓ − j ). The

1

2
-EFX feasibility

graph of T is a bipartite graph K = (A ∪ T ,E) where the edge set
E is defined as:

E =
{
(i,Ti ) | Ti is

1

2

-EFX feasible for i
}
∪{

(i,Tk ) | vi (Tk ) > 2vi (Ti ) and vi (Tk ) ≥ max

ℓ∈A, j ∈Tℓ
vi (Tℓ − j )

}
.

(4)

The following claim can be easily verified using the definition.

Claim 4.4. The degree of every node i ∈ A is at least 1 in the graph
K = (A ∪ T ,E).

In this section, a matching will refer to a matching between

agents and bundles (and not between agents and items as in pre-

vious sections). Thus, a matching is a mapping ρ : A→ T ∪ {⊥}
such that ρ (i ) = ρ (k ) implies ρ (i ) = ρ (k ) = ⊥. A perfect matching
has ρ (i ) , ⊥ for every i ∈ A. Matchings may use pairs (i,Tk ) that
are not in E; we say that ρ is a matching in the bipartite graph

K = (A ∪ T ,E) if (i, ρ (i )) ∈ E whenever ρ (i ) , {⊥}. For two
matchings ρ and τ , an alternating path between ρ and τ is a path

P = (i1, Si1 , i2, . . . , Sik−1 , iℓ , Siℓ ) such that ρ (it ) = Sit , t = 1, . . . , ℓ,

τ (it+1) = Sit , t = 1, . . . , ℓ − 1. The following lemma is immediate

from the definition of the
1

2
-EFX feasibility graph.

Lemma 4.5. If the 1

2
-EFX feasibility graph K = (A ∪ T ,E) of

an allocation T contains a perfect matching ρ, then (i, ρ (i ))i ∈A is a
1

2
-EFX allocation.

We now give an overview of Algorithm 4. For an input partial

allocationT = (Ti )i ∈A, it returns a partial allocationR that satisfies

one of the alternatives in Lemma 2.1: either (i)NSW(R ) ≥ NSW(T )
and ∪iRi ⊊ ∪iTi , or (ii) NSW(R ) ≥ 1

2
NSW(T ) and R is

1

2
-EFX.

The algorithm gradually ‘trims down’ the bundles T . That is, we

maintain a partial allocation S = (Si )i ∈A with Si ⊆ Ti throughout.
Every main loop of the algorithm either terminates by constructing

an allocation R satisfying (ii), or removes an item from one of the

Sh sets. The other possible termination option is when the
1

2
-EFX

feasibility graph of S contains a perfect matching ρ. In this case,

we return R = (ρ (i ))i ∈A. This is a
1

2
-EFX allocation by Lemma 4.5;

Lemma 4.8 shows it also satisfies NSW(R ) ≥ 1

2
NSW(T ) and is

thus a suitable output of type (ii).

At the beginning of each main loop, we define two matchings.

The first is the perfect matching τ that simply defines τ (i ) = Si
for all i ∈ A. The second is a matching ρ in K . This is required to

satisfy three properties: First, it matches all trimmed down bun-

dles, i.e., all bundles Si with Si ⊊ Ti . Second, |{i : ρ (i ) = Si }| is
maximized subject to the first requirement. Third, subject to these

Algorithm 4: MakeFairOrEfficient(T )

Input: Partial allocation T .

Output: Partial allocation R such that either

NSW(R ) ≥ NSW(T ) and ∪iRi ⊊ ∪iTi , or
NSW(R ) ≥ 1

2
NSW(T ) and R is

1

2
-EFX.

1 S ← T

2 repeat
3 K = (A ∪ S,E) ← 1

2
-EFX feasibility graph of S

// Definition 4.3

4 L ← {Si , i ∈ A | Si ⊊ Ti } // set of trimmed down

bundles

5 Define matching τ with τ (i ) = Si for all i ∈ A

// candidate matching

6 ρ ← matching in K where // Lemma 4.6

(a) all bundles in L are matched,

(b) |{i : ρ (i ) = Si }| is maximized subject to (a), and
(c ) ρ is maximum subject to (a) and (b)

7 if ∃i1 ∈ A not matched in ρ then
8 (Sh ,дh ) ← argmaxk ∈A,д∈Sk vi1 (Sk − д)

9 if vh (Sh − дh ) ≥ 1

2
· vh (Th ) then

10 Sh ← Sh − дh

11 else
12 P = (i1, Si1 , i2, . . . , Siℓ−1 , iℓ , Siℓ ) ← alternating

path between τ and ρ starting at i1 and ending at

either Siℓ = Sh or an unmatched Siℓ , Sh
// Lemma 4.7

13 Construct R:

14 Ri1 ← Sh − дh
15 for f ← 2 to ℓ do Rif ← Sif −1
16 for i ∈ A \ ({i1, . . . , iℓ } ∪ {h}) do Ri ← Ti
17 if P ends at an unmatched bundle Siℓ , Sh then
18 Rh ← Th \ (Sh − дh )

19 return R

20 until ρ is a perfect matching in K
21 return R = (ρ (i ))i ∈A

requirements, ρ is chosen as a maximal matching. (The existence

of such a matching is guaranteed by Lemma 4.6 below).

If ρ is not perfect, then we consider an unmatched agent i1, and
find the bundle that maximizes i1’s utility after removal of one item.

Let (Sh ,дh ) ∈ argmaxk ∈A,д∈Sk vi1 (Sk − д). If agent h’s value of

Sh − дh is at least
1

2
times their value for the original bundle Th ,

then we remove дh from Sh and the main loop finishes. Otherwise,

we construct an alternating path between ρ and τ , denoted as

P = (i1, Si1 , i2, Si2 , . . . , Siℓ−1 , iℓ , Siℓ ), starting with i1 and ending

with either Siℓ = Sh or an unmatched bundle Siℓ , Sh . Lemma 4.7

shows that such a P exists. Using P , we construct an allocation R

in line 13. Lemma 4.8 shows that this is a suitable output of type (i).

Analysis. The number of iterations of the repeat loop is at most

m, because the algorithm remove one item from some bundle in

each iteration, in which it does not terminate. Since we can find

the maximum matching in line 6 and alternating path in line 12 in
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strongly polynomial-time, Algorithm 4 runs in strongly polynomial-

time.

The next lemma guarantees that the matching ρ is well-defined.

The proof follows similarly as in [13].

Lemma 4.6. In each iteration of the repeat loop in Algorithm 4, a
matching exists in K where all bundles of L are matched.

Proof. Let E (t ) denote the edge set of the
1

2
-EFX feasibility

graph and L (t )
the set of trimmed down bundles, and ρ (t ) the

maximum matching in the t-th iteration.

We show by induction that there exists a matching ρ (t ) such

that all bundles in L (t )
are matched. At the beginning of the first

iteration, L (1)
is empty, so the claim is clearly true. Suppose the

claim is true until the beginning of (t + 1)-st iteration. Let S denote

the trimmed down bundles in the t-th iteration, and let i1 be the
unmatched agent, and (Sh ,дh ) the bundle and item selected in

line 8.

By the requirement that |{i : ρ (i ) = Si }| is maximized subject to

all trimmed down bundles being matched, we have (i1, Si1 ) < E
(t )
.

By the choice of h, we have (i, Sh ) ∈ E
(t )

in the t-th iteration.

Note that L (t+1) = L (t ) ∪ {h}. Consider the 1

2
-EFX feasibility

graph in the (t+1)-st iteration. Since all bundles different from S ′h :=

Sh − дh remained unchanged, for every edge (i, Sk ) ∈ E (t ) with

k , h it follows that (i, Sk ) ∈ E
(t+1)

. According to Definition 4.3,

(i1, S
′
h ) ∈ E

(t+1)
. Let us define ρ ′ as

ρ ′(i ) :=




S ′h if i = i1 ,

ρ (t ) (i ) if i , i1 and ρ (t ) (i ) , Sh ,

⊥ otherwise .

By the above, this gives a matching in E (t+1) , and it matches all

bundles in L (t+1) = L (t ) ∪ {h}. □

Lemma 4.7. The alternating path P , as described in line 12 of
Algorithm 4, exists.

Proof. Since i1 is an unmatched agent and the requirement that

|{i : ρ (i ) = Si }| is maximized subject to all trimmed down bundles

being matched in the maximum matching ρ in line 6, we must have

(i1, Si1 ) < E. If ρ (i2) = Si1 for an agent i2 ∈ A, then we continue

with Si2 , otherwise we stop. Continuing this way, we eventually

reach either Siℓ = Sh or an unmatched bundle Siℓ , Sh . □

Lemma 4.8. If Algorithm 4 returns an allocation R in line 21, then
NSW(R ) ≥ 1

2
NSW(T ) and R is 1

2
-EFX. If it returns R in line 19,

then NSW(R ) ≥ NSW(T ) and ∪iRi ⊊ ∪iTi .

Proof. Let us start with the case when a perfect matching R =

(ρ (i ))i ∈A is returned in line 21. The
1

2
-EFX property follows by

Lemma 4.5. Let us show NSW(R ) ≥ 1

2
NSW(T ).

Throughout the algorithm, vi (Si ) ≥
1

2
vi (Ti ) is maintained ac-

cording to the condition on bundle trimming. By Claim 4.4, either

Ri = Si , or vi (Ri ) > 2vi (Si ). Therefore, we have

∀i : vi (Ri ) ≥ vi (Si ) ≥
1

2

vi (Ti ) . (5)

Consequently,

NSW(R ) =
∏
i ∈A

(vi (Ri ))
1/n ≥

1

2

·
∏
i ∈A

(vi (Ti ))
1/n ≥ 1

2
NSW(T ) .

Consider now the case when the algorithm terminated with R

in line 19. We need to show NSW(R ) ≥ NSW(T ) and ∪iRi ⊊ ∪iTi .
Two cases here depend on whether Siℓ = Sh or Siℓ (, Sh ) is an
unmatched bundle. For the first case, we have

vif (Rif ) = vif (Sif −1 ) > 2vif (Sif ) ≥ vif (Tif ), ∀f ∈ {2, . . . , ℓ} ,

vi1 (Ri1 ) = vi1 (Sh − дh ) > 2vi1 (Si1 ) ≥ vi1 (Ti1 )

This implies

NSW(R ) =
∏
i ∈A

(
vi (Ri )

)
1/n
>

∏
i ∈A

(
vi (Ti )

)
1/n
= NSW(T ) .

Since we do not assign дh to any agent in R , we must have ∪iRi ⊊
∪iTi .

For the second case, since Siℓ is an unmatched bundle in ρ by

the choice of the path P , we have Siℓ < L by the requirements on

ρ. That is, Siℓ = Tiℓ . By Claim 4.4, we have

viℓ (Riℓ ) = viℓ (Siℓ−1 ) > 2viℓ (Siℓ ) = 2viℓ (Tiℓ ) ,

vif (Rif ) = vif (Sif −1 ) > 2vif (Sif ) ≥ vif (Tif ), ∀f ∈ {2, . . . , ℓ − 1} ,

vi1 (Ri1 ) = vi1 (Sh − дh ) > 2vi1 (Si1 ) ≥ vi1 (Ti1 )

vh (Rh ) = vh (Xh \ (Sh − дh )) >
1

2
vh (Th ) .

(6)

The last inequality follows from subadditivity using vh (Th ) ≤
vh (Sh − дh ) +vh (Th \ (Sh − дh )). Using (6), we get

NSW(R ) =
∏
i ∈A

(
vi (Ri )

)
1/n
>

∏
i ∈A

(
vi (Ti )

)
1/n
= NSW(T ) .

Finally, since we do not assign items in Til to any agent in R, we

must have ∪iRi ⊊ ∪iTi . Note that if Til = ∅, then NSW(T ) = 0

and Ri = ∅,∀i is a suitable output of type (ii). □

5 CONCLUSION
Wehave shown a (4+ε )-approximation algorithm for the symmetric

NSW problem with submodular valuations, which is the largest nat-

ural class of valuations that allows a constant-factor approximation

(using value queries) even for utilitarian social welfare. Moreover,

our algorithm gives an e(2 + nwmax + ε )-approximation algorithm

for the asymmetric NSW problem under submodular valuations.

However, there are still several directions and open problems to

explore. An obvious one is to improve the approximation ratio for

the symmetric case. The current hardness of approximation stands

at
e

e−1
≃ 1.58 for submodular valuations, which is the same as the

optimal factor for maximizing utilitarian social welfare. It would

be interesting to prove a separation between the two optimization

objectives for submodular valuations.

Another open problem is the asymmetric NSW problem. The

goal is to get a constant-factor approximation independent of the

weightswi . For the asymmetric problem, getting a universal con-

stant factor is open even in the basic case of additive valuations.

The simplest case not covered by our algorithm is when one agent

has weight 1/2 and all other agents have weight 1/2n.
There are several open questions on the existence of EFX and its

relaxations for submodular valuations. We mention two: First, does
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there exist a (complete) α-EFX allocations for α > 1/2? Here, we

do not make any efficiency requirements. Second, does there exist

an EF1 allocation with high NSW value? Note that [14] shows that

for additive valuations, the optimal NSW allocation is EF1.
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