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Abstract
We show that, for any fixed weight, there is a natural system of Hodge sheaves, whose
Higgs field has no poles, arising from a flat projective family of varieties parametrized by a
regular complex base scheme, extending the analogous classical result for smooth projective
families due to Griffiths. As an application, based on positivity of direct image sheaves, we
establish a criterion for base spaces of rationalGorenstein families to be of general type.A key
component of our arguments is centered around the construction of derived categorical objects
generalizing relative logarithmic forms for smooth maps and their functorial properties.
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1 Introduction andmain results

In a series of seminal works [10, 11], and [12], Griffiths established that a degeneration of
polarized Hodge structures (of fixed weight) in a smooth projective family f : X → B
induces

(i) a flat bundle (V,∇) on B, equipped with a
(ii) system of Hodge bundles (E , θ), and a
(iii) natural analytic data defined by a harmonic metric.

Following this discovery, these fundamental results were later successfully developed
further in two major new directions. Through nonabelian Hodge theory, Simpson [42] and
Mochizuki [32] established topological characterizations of (i), (ii), and (iii), regardless of a
geometric origin (a smooth projective family). In a different direction by replacing (i) and the
Hodge filtration by filtered holonomicD-modules, Hodge modules were introduced by Saito
[39] as a generalization of variations of Hodge structures (VHS for short) for non-smooth
families. None of these two general theories will be used in this paper.

For smooth projective families we know that the direct summands of E are represented
by the cohomology of sheaves of relative Kähler forms; an algebro-geometric datum. From a
geometric point of view the existence of (ii) for non-smooth families and one that is similarly
of algebro-geometric origin is of special interest,1 cf. 1.2.

Our first goal in this paper is to establish that in fact any flat family of projective varieties
gives rise to systems of Hodge sheaves (with no poles), as soon as the base of the family is
smooth.Moreover, wewill see that, similar to the smooth case, they arise from cohomology of
objects—in the derived category—that play the role of relative Kähler forms for non-smooth
families, cf. Sect. 4.

Theorem 1.1 Let f : X → B be a flat projective morphism of reduced complex
schemes with connected fibers, where B is a smooth complex variety. Further let w ∈ N,
0 ≤ w ≤ dim(X/B). Then, there exists a functorial system of reflexive Hodge sheaves
(E = ⊕w

i=0 E i , θ), θ : E i → �1
B ⊗ E i+1, of weight w on B. If in addition X has only

rational singularities and w = dim(X/B), then E 0 � ( f∗ωX/B)∗∗.

Remark 1.1.1 See Definition 4.3 and the subsequent paragraph for the definition of a system
of reflexive Hodges sheaves and Sect. 1.1 and Theorem 1.3 for the functoriality of such a
system.

1 See for example [[13], II,VII], [43, 44], and more recently [50] and [46].
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Our next goal is to compare these Hodge sheaves to the logarithmic system (E 0, θ0) under-
lying theDeligne canonical extension [[5], I.5.4] V0 of integral variation of Hodge structures
of weight w for a smooth model. Here we are following the standard parabolic notation
for extensions of V. That is, for a tuple β = (βi )i of real numbers βi , j : B\D f̃ → B

is the inclusion map and D f̃ = ∑
Di

f̃
is the discriminant locus of f̃ (which is assumed

to be normal crossing) is defined as follows. The sequence of holomorphic bundles Vβ is
the decreasing filtration of j∗V, defined by the lattice with respect to which res(∇)|Di

f̃
has

eigenvalues in [βi , βi+1). Throughout this paper [βi , βi+1) is fixed to be equal for all i . More
precisely, given a suitable resolution π : X̃ → X and the resulting family f̃ : X̃ → B, we
show that there is a nonnegative integer a f̃ , that encodes how singular the family f is and

measures the difference between E and E 0, where E 0 is the Deligne extension of the integral
VHS associated to the smooth locus of f̃ .

Theorem 1.2 In the setting of Theorem 1.1, let π : X̃ → X be a good resolution with respect
to f , and denote the resulting morphism by f̃ : X̃ → B. Further let D f̃ denote the divisorial

part of the discriminant locus of f̃ , and assume that it is an snc divisor on B. (This can be
achieved by base changing to an embedded resolution over B.)

Then, there exists an integer

0 ≤ a f̃ ≤ dim(X) (1.2.1)

for which we have an inclusion of systems of equal weights

(E , θ) ⊆ (
E 0, θ0

)
(a f̃ ·D f̃ ) �C∞ V−a f̃ , (1.2.2)

This isomorphism is in the category of smooth bundles.

Here, a good resolution with respect to f means a desingularization π for which f̃ ∗D f̃
has simple normal crossing (snc) support. For a more detailed and precise definition see
Definition 2.3. In Theorem 1.2 and in the rest of this article (E 0, θ0)(a f̃ ·D f̃ ) denotes the
naturally induced system of Hodge sheaves defined by

(E 0 ⊗ OX (a f̃ ·D f̃ ), θ
0 ⊗ id).

The integer a f̃ will be called the discrepancy of f with respect to π : X̃ → X . Note that
a f̃ can be interpreted as a measure of degeneration in the family; the smaller this integer, the
milder the singularity of the degeneration. In particular when f is smooth, we have a f̃ = 0.

1.1 Functoriality

An important feature of the construction of (E , θ) in Theorem 1.1 is its functoriality. More
precisely, one can consider a category Fam(n, d) of morphisms f : X → B as in Theorem
1.1, where dim(X) = n and dim(B) = d , and a category Hodge(d, w) of systems of Hodge
sheaves of weight w (see 4.3 for the precise definitions). The system (E , θ) in Theorem 1.1
then gives rise to a functor between these two categories.

Theorem 1.3 Let n, d, w ∈ N. There exists a functor χw : Fam(n, d) → Hodge(d, w)

defined by χw( f : X → B) = (B, E , θ), where (E , θ) is the system in Theorem 1.1.
Furthermore, for ( f : X → B) ∈ Ob(Fam(n, d)) and any open subset V ⊆ B, we have

χw( f : X → B)|V = χw( fV : XV → V ),

where XV := f −1(V ) and fV := f |XV .
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1.2 Singular families of varieties with base schemes of general type

Viehweg conjectured that for a projective morphism f : X → B of smooth projective
varieties X and Bwith connectedfibers andD denoting the (divisorial part of) the discriminant
locus of f , if f has maximal variation, and its smooth fibers are canonically polarized, then
(B, D) is of log general type, i.e., ωB(D) is big.

This conjecture generated considerable interest and for several years. It was finally
resolved, and in fact generalized, through the culmination ofwork of several authors including
[15–17, 21–23, 27, 35, 36, 38, 45, 48, 49] and [3].

In higher dimensions, theminimal model program taught us that when positivity of canon-
ical sheaves are involved, it is desirable to try to extend results to mildly singular cases. So,
it is natural to ask whether Viehweg’s conjecture extends to families of minimal models. The
simple answer is that the desired positivity fails already, if one allows Gorenstein terminal
singularities, arguably the mildest possible. In particular, the conjecture fails for Lefschetz
pencils, cf. 1.4.1.

This could be interpreted as a sign that there is no reasonable generalization of Viehweg’s
conjecture to singular families.However, hereweoffer a potentialway to remedy the situation.
Before we state that generalization, first recall that the initial step in the proof of essentially
any result connected to Viehweg’s conjecture has been a related result (which itself was a
culmination of work of Fujita, Kawamata, Kollár, and Viehweg), which states that if a family
of varieties of general type has maximal variation, then the line bundle det f∗ωm

X/B is big,
i.e., has maximal Kodaira dimension. Reformulating Viehweg’s conjecture in terms of the
bigness of this line bundle has the advantage that it allows one to remove the condition that
the fibers would be canonically polarized or even of general type. So, by including this initial
step of the proof in the conjecture itself one may rephrase Viehweg’s conjecture in terms of
det f∗ωm

X/B being big, instead of requiring maximal variation and that the fibers be of general
type. This formulation allows one to quantify (to some extent) the starting assumption for
singular families and ask that not only det f∗ωm

X/B be big, but that it should be big compared
to something else.

As an application of Theorem 1.2, we show that for Gorenstein families it is possi-
ble to obtain a result similar to Viehweg’s conjecture along the lines outlined above. This
requires that we take into account how singular the family is. More precisely, we show that
if det f∗ωm

X/B is positive enough to balance the discrepancy of the family (discussed above),
then the base of the family is indeed necessarily of (log) general type.

Theorem 1.4 Let X and B be projective varieties and f : X → B a flat family of geometri-
cally integral varieties with only Gorenstein Du Bois singularities, such that B is smooth and
the generic fiber of f has rational singularities. Further let D, D′ ⊂ B be effective divisors
such that D + D′ = D f̃ and let rm := rank( f∗ωm

X/B). If (det f∗ωm
X/B)(−mrm dim(X) · D)

is big, then (B, D′) is of log-general type.

Remark 1.5 Observe that this theorem includes Viehweg’s conjecture: Assuming that the
n-dimensional variety X is smooth and taking D = 0. This also shows that this statement
is stronger than Viehweg’s conjecture even in the original situation. Viehweg’s conjecture
predicted that maximal variation of the family implies that the base is of log general type with
respect to the boundary divisor chosen to be the codimension one part of the discrepancy
locus. Theorem 1.4 says that this can be improved: any divisor D that’s part of the discrepancy
locus and has the property that (det f∗ωm

X/B)(−mrmn · D) is big may be subtracted from the
boundary divisor. In other words, if the pushforward of a pluricanonical sheaf is “bigger”
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than any part of the discrepancy locus, then one obtains that the base is of log general type
with a smaller boundary divisor. In the extreme case that (det f∗ωm

X/B)(−mrmn · D f ) is big,
this means that the base itself has to be of general type.

This strengthening of Viehweg’s conjecture is new even in the case when X is smooth, but
in Theorem 1.4 we actually allow a singular X . This result could also be used in a reverse way
to give a lower bound on discrepancy divisors of some families, or the discrepancy divisor of
any of their resolutins. For instance, one obtains a bound for the notorious Lefschetz pencils.

Notice further, that in Theorem 1.4 there is no assumption on the Kodaira dimension of
the fibers, which is another way this result is much more general than Viehweg’s original
conjecture.

On the other end of the spectrum, Theorem 1.4 implies that for every flat rational Goren-
stein family we have the following implication:

κ
(
(det f∗ωm

X/B)(−mrm dim X · D f̃ )
) = dim(B) 
⇒ κ(B) = dim B.

Finally note, that if f : X → B is a KSB-stable family, with X Gorenstein and B smooth,
such that the general fiber of f has rational singularities, then f satisfies the assumption on
the singularities in Theorem 1.4 by [18] and hence Theorem 1.4 applies to such families.

1.3 Hyperfiltered logarithmic forms in the derived category

Inspired by the works of Katz-Oda [19] our construction of (E , θ) in Theorem 1.1 fundamen-
tally depends on the existence of a filtration, or more precisely the Koszul filtration, that is
naturally available for Kähler forms of smooth families. In the absence of such objects with
analogous properties for singular families, we pass on to the derived category Db(X), where
an appropriate hyperfiltration F (in the derived sense, see Definition 2.2) was constructed in
[24] and applied to the complex of Deligne-Du Bois forms, which are objects in the bounded
derived category of coherent sheaves of X . These objects have similar cohomological prop-
erties to the sheaves �

p
X in the smooth case (see Definition 3.1). For more details regarding

the complexes of Deligne-Du Bois forms see Sect. 3, [4, 9], [[28], 3.1], [[29], §4], and [[37],
7.3.1].

For smooth projective families, through the Hodge-to-de Rham spectral sequence degen-
eration, one uses holomorphicity and transversality properties of ∇ to extract an underlying
system of Hodge bundles. When f is singular, in the absence of such tools, including a
filtered relative de Rham complex satisfying good degeneration properties, analogous results
cannot be similarly established by the same methods.

To circumvent this difficulty we construct the complex of logarithmic Du Bois p-forms
�

p
X (log	) ∈ Ob Db(X), which can be endowedwith the structure of a Koszul-type hyperfil-

tration F f using the construction in [24]. Moreover, we show that for a morphism of snc pairs
f : (X ,	) → (B, D) (see Definition 2.1) (�

p
X (log	), F

�

f ) is filtered quasi-isomorphic to

(�
p
X (log	), F

�

K ), where F
�

K is the usual Koszul filtration. See Theorem 3.3 for details.
In Sect. 3, we show that this hyperfiltration is functorial, and using this functoriality

we establish a natural filtered pullback map from �
p
X to �

p
X̃
(log	), twisted with a well-

understood line bundle that encodes the singularity of the family f in terms of a f̃ (the

discrepancy of f with respect to π : X̃ → X ). On the other hand, (E 0, θ0) is determined
by (�

p
X̃
(log	), F

�

K ) by [43] and [19]. Now, the fact that, for each 0 ≤ p ≤ dim X/B, the

two filtered objects �
p
X and �

p
X̃
(log	) are functorially related then leads to the formation
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of (E , θ) compatible with (E 0, θ0) (in the sense of (1.2.2)), endowing the former with the
structure of a system of Hodge sheaves.

1.4 Singularities of Higgs fields underlyingVHSs of geometric origin

The Gauss-Manin connection ∇ arising from a smooth projective family extends to V0 with
only logarithmic poles due to its integrability, as shownbyManin [31] andDeligne [[5], I.5.4].
However, in general such flat connections do not have trivial local monodromy at infinity
and thus their singularities are often not removable. On the other hand, for a polarized VHS
over a punctured polydisk with unipotent monodromy, the Hodge filtration extends to a
holomorphic filtration of V0 by Schmid’s Nilpotent Orbit Theorem [40] and the results of
Cattani–Kaplan–Schmid [2]. It follows that the poles of (E 0, θ0), as a Higgs bundle, are at
worst logarithmic. In fact, at least over a smooth quasi-projective variety, and for a suitable
choice of extension, the same is true for all tame harmonic bundles [[33], 22.1]. As a direct
consequence of Theorems 1.1 and 1.3 we can show that there is always an extension of the
Higgs bundle (E , θ) underlying (V,∇) with zero residues.2 In other words, θ has removable
singularities. We make this point more precise in the following remark.

Remark 1.6 In the setting of Theorem 1.1, further assume that X is smooth. Let D f denote
the divisorial part of the discriminant locus of f and assume that D f and f ∗D f have simple
normal crossing support. Then, for any fixed weight, the system (E , θ) in Theorem 1.1 is an
extension of the Hodge bundle of the same weight underlying the VHS of the smooth locus
of f , that is (E , θ)|B\D f

∼= (E , θ).

In the context of Remark 1.6, we call (E , θ) a derived extension. We note that the inclusion
(E , θ)(−a f̃ ·D f ) ⊆ (E 0, θ0) guarantees that there is always a subextension of (E 0, θ0) with
vanishing residues.

Remark 1.6 can be interpreted as providing an analytic criterion for detecting when a VHS
is not of geometric origin (and similarly for a complex VHS in the sense of [[41], p. 868]).

Corollary 1.7 Let B be a smooth complex variety, D ⊆ B a simple normal crossing divisor,
and (V,∇, E = ⊕

Ei , θ) an abstract real VHS on B\D. If the given VHS is of geometric
origin, then the singularity of θ is removable, i.e., there exists a reflexive Hodge sheaf (E ′, θ ′)
on B, with θ ′ : E ′ → �1

B ⊗ E ′, such that (E ′, θ ′)|B\D ∼= (E , θ).

1.4.1 Order of poles for Lefschetz pencils

We emphasize that Deligne extensions (or their underlying Hodge bundle) have loga-
rithmic poles even in the case of very mild degenerations such as Lefschetz pencils of
non-hyperelliptic curves (a particular instance of a stable family of curves). To see this,
one may use the following observation. Note that f∗ωX/P1 is the first graded piece of the

Hodge sheaves underlying the Deligne extension (E 0 = E 0
1 ⊕ E 0

2 , θ0) of R1 f ◦∗ CX , where
f ◦ denotes the smooth locus of f . By the weak positivity of f∗ωX/P1 (see for example [47])
we know that every rank-one direct summand L j in the splitting f∗ωX/P1 ∼= ⊕

L j is nef.
Over the smooth locus of f , the Higgs field θ0 is locally equal to the derivative of the period
map, so by the local Torelli theorem θ0 �= 0. Therefore, we have θ0(L j ) �= 0, for some j .

2 In some sense this gives an optimal algebro-geometric realization of the fact that θ is nilpotent.
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Now if θ0 had no poles, by applying θ0 to L j and using the weak negativity3 of the kernel
of θ0, cf. [13, 41] or [51], we would get an induced injection

L j −→ �1
P1 ⊗ E 0

2 .

It follows, again from the weak negativity of E 0
2 , that after taking determinants there is an

injection

L t
j ⊗ (detE 0

2 )−1 −→ (�1
P1)

⊗t ,

where t = rank(E 0
2 ) and (detE 0

2 )−1 is nef. But this is absurd, showing that indeed θ0 must
have poles.

2 Preliminary definitions and notation

2.1 Families of pairs

The study of pairs or log varieties have led to many advances in birational geometry and
moduli theory. For the questions investigated here a simple version of pairs will suffice,
namely we will restrict to the case when the boundary divisor is reduced.

Definition 2.1 A reduced pair (X ,	) consists of a normal scheme X and an effective reduced
divisor 	 ⊂ X .

An snc pair is a reduced pair (X ,	) such that X is smooth and 	 is an snc divisor.
A morphism of (reduced) pairs f : (X ,	) → (B, D) is a morphism f : X → B of

normal schemes such that supp	 ⊇ f −1(supp D).
Assuming that D is Q-Cartier, we will use the notation f −1D : = ( f ∗D)red to denote

the reduced preimage of D. Using this notation the above criterion can be replaced by
	 ≥ f −1D.

A morphism of snc pairs is a morphism of reduced pairs f : (X ,	) → (B, D) such that
both (X ,	) and (B, D) are snc pairs.

Consider a morphism of reduced pairs f : (X ,	) → (B, D) and a decomposition
	 = 	v + 	h into vertical and horizontal parts, i.e., such that codimB f (	v) ≥ 1 and that
f |	0 dominates B, for any irreducible component 	0 ⊆ 	h . Using this decomposition, we
call amorphism of snc pairs f : (X ,	) → (B, D) an sncmorphism, if f is flat,	v = f −1D
and f |X\	v is smooth.

The composition of two (snc) morphisms of pairs is also a (snc) morphism of pairs.
Further note that the term “morphism of pairs” does not have a standard usage and it may

be used to refer to a somewhat different situation by other authors. We added the extra word
“reduced” to remind the reader of this potential difference. We are still not claiming that this
definition is standard. We believe that an established standard usage of this phrase does not
exist at this time.

Definition 2.2 Let f : (X ,	) → (B, D) be an snc morphism. Then, after removing a
codimension 2 subset of B, there exists a short exact sequence of locally free sheaves,

0 f ∗�1
B(log D) �1

X (log	) �1
X/B(log	) 0.

3 A weakly negative sheaf is one whose dual is weakly positive (see [[47], 2.3]).
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For each 0 ≤ q ≤ dim(X/B) this induces a descending filtration, called the Koszul filtration
and denoted by F

�

K�
q
X (log	) such that the associated graded quotients of the filtration

satisfy that

Gr jF �

K
�

q
X (log	) := F j

K�
q
X (log	)

/

F j+1
K �

q
X (log	) � f ∗� j

B(log B) ⊗ �
q− j
X/B(log	).

(3)

The reader is referred to [9] for the definition of simplicial and cubic schemes. In this
paper a hyperresolution will mean a cubic scheme, all of whose entries are smooth schemes
of finite type over C.

Definition 2.3 Let (X ,	) be a reduced pair. A good resolution (or log resolution) of (X ,	),
is a proper birational morphism of pairs g : (Y , 
) → (X ,	) such that X is quasi-projective,
the exceptional set E := Ex(g) of g is a divisor, 
 = g−1∗ 	 + E and (Y , 
) is an snc pair.

Let (X ,	) be a reduced pair and f : X → B a morphism. A good resolution of (X ,	)

with respect to f is a good resolution g : (Y , 
) → (X ,	) such that in addition to the above,

 + g−1∗ D is also an snc divisor where D is the divisorial part of the discriminant locus of
f ◦ g. This can be constructed the following way: let g0 : (Y0, 
0) → (X ,	) be a (good)
resolution of (X ,	) and let D0 ⊆ B denote the divisorial part of the discriminant locus of
f0 : = f ◦ g0, i.e., the smallest effective reduced divisor D0 ⊆ B such that g0|Y0\ f −1

0 D0
:

Y0\ f −1
0 D0 → B\D0 is smooth in codimension 1. Now let g1 : (Y , 
 + g−1

1 f −1
0 D0) →

(Y0, 
0 + f −1
0 D0) be a good resolution such that g1 is an isomorphism over Y0\ f −1

0 D0 and
let g = g0 ◦ g1 : (Y , 
) → (X ,	).

Note that if	 = ∅, thenwewill often drop
 from the notation and just say that g : Y → X
is a good resolution (with respect to f ).

A good hyperresolution of (X ,	), denoted by ε � : (X �,	 �) → (X ,	) consists of a
hyperresolution ε � : X � → X such that for each i ∈ N, dim Xi ≤ dim X − i and for
	 �:= X �\(X � ×X (X\	)), either 	i is an snc divisor on Xi , or 	i = Xi .

2.2 Hyperfiltrations and spectral sequences

Let A and B be abelian categories and D(A) and D(B) their derived categories respectively.
Let � : A → B be a left exact additive functor and assume that R� : D(A) → D(B), the
right derived functor of � exists.

Definition 2.4 ([24], 1.2.1) Let K ∈ Ob(Db(A)) be a bounded complex. A bounded hyper-
filtration F

�

K of K consists of a set of objects F
j K ∈ Ob(Db(A)) for j = l, . . . , k + 1, for

some l, k ∈ Z and morphisms

ϕ j ∈ HomDb(A)(F
j+1K , F

j K ) for j = l, . . . , k,

where F
l K � K and F

k+1K � 0. F
j K will be denoted by F

j when no confusion is likely.
For convenience let F

i K = K for i < l and F
i K = 0 for i > k.

The p-th associated graded complex of a hyperfiltration F
�

K is

Gr p
F
�

K := M(ϕp),

the mapping cone of the morphism ϕp .
Let F

�

A be a hyperfiltration of the object A and � : D(A) → D(B) a functor. Then,
there is a natural hyperfiltration of �(A) given by

F
j (�(A)) := �(F j A)
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for each j ∈ Z. We will always consider the object �(A) with this natural hyperfiltration,
unless otherwise specified.

Next let F
�

A and F
�

B be hyperfiltrations of the objects A and B of D(A) respectively.
Then, a (hyper)filtered morphism,4 between A and B is a collection of compatible morphisms
F
jα : F

j A → F
j B, i.e. for each j ∈ Z, the diagrams

F
j+1A

F
j+1α

F
j+1B

F
j A

F
jα

F
j B

are commutative in D(A). Notice that in this case these morphisms induce a morphism
α j : Gr j

F
�

A → Gr j
F
�

B , for each j ∈ Z.
A filtered morphism α : A → B is a filtered quasi-isomorphism if the induced morphism

α j : Gr j
F
�

A
�−→ Gr j

F
�

B is an isomorphism for each j ∈ Z. It is easy to see, and left to
the reader, that a filtered quasi-isomorphism (of bounded complexes) is necessarily a quasi-
isomorphism.

Example 2.5 Let A ∈ C(A) be a complex of objects of the abelian category A and let
A =: F0 ⊇ F1 ⊇ · · · ⊇ Fr = 0 be a filtration of A. Considering the induced morphisms
F j+1 → F j in Db(A) defines a hyperfiltration of the object A.

3 Relative Du Bois complexes of p-forms

Our aim in this section is to construct, for all flat morphisms to regular base schemes, an
analogue of relative logarithmic p-forms for morphisms of snc pairs. To do so, following the
construction in [24] (reviewed in Section 6), we will work in the derived category Db(X). We
use the notation�

p
X/B(log	/D) to denote this object for a morphism of pairs f : (X ,	) →

(B, D). The “D" is included in the notation to emphasize the fact that the construction depends
on D as well.

With hyperfiltrations playing a role here, similar to that of filtrations in an abelian category,
our first goal is to use these objects to construct a functorial filtration of�p

X (log	) (Theorem
3.3). Our next goal is to establish a connection between �

p
X and �

p
X (log	), as hyperfiltered

objects (Theorem 3.7). This is where the notion of discrepancy (as was mentioned in the
introduction) naturally appears. Our final goal in this section is to extend these relations to
distinguished triangles arising from such hyperfiltrations (Corollary 3.11). The latter is of
particular interest in the context of VHSs, as we will see in Sect. 4.
We will use the terminology, notation and conventions developed in Sect. 2.

Definition 3.1 Let (X ,	) be a reduced pair (Definition 2.1) and ε � : (X �,	 �) → (X ,	) a
good hyperresolution (Definition 2.3). The logarithmic Deligne-Du Bois complex (or loga-
rithmic DB complex for short) of (X ,	) is defined as �

�

X (log	) : = R (ε �)∗ �
�

X �
(log	 �).

This is an object in the bounded filtered derived category of coherent sheaves on X , and the
corresponding filtration (induced by the filtration bête on each component of X �) is denoted
by F

�

DB := F
�

DB�
�

X (log	). Both the object and this filtration is independent from the good
hyperresolution used in the definition. The associated graded objects of this filtration give

4 Strictly speaking these morphisms should be called hyperfiltered but for simplicity wewill call them filtered.
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rise to the complexes of logarithmic DB p-forms: �
p
X (log	) : =

(
Gr pF �

DB
�

�

X (log	)
)

[p].
The reader is referred to [[9], IV.2.1] for details on this definition and basic properties of
these complexes.

We will construct relative versions of these complexes, but first we need a notation.

Definition 3.2 Let f : (X ,	) → (B, D) be a morphism of snc pairs, �X := f ∗�1
B(log D),

�X := �1
X (log	), and θX : �X → �X the natural morphism induced by f . Using the nota-

tion of Section 6 (cf. [24]), set F
�

f �
q
X/B(log	) := F

�
∧p

�X and define �
p
X/B(log	/D) :=

Q
p
θX
, where Qp

θX
is the object constructed in Theorem 6.9 (cf. [[24], 2.7]).

Next, let f : (X ,	) → (B, D) be a morphism of pairs and assume that (B, D) is an
snc pair. I.e., do not assume that (X ,	) is snc. Let ε � : (X �,	 �) → (X ,	) be a good
hyperresolution. Then, as in Definition 3.1, the logarithmic Deligne-Du Bois complex of
(X ,	) is defined as �

�

X (log	) := R (ε �)∗ �
�

X �
(log	 �). Using this representative define a

filtration as follows: Let n = dim X , d = dim B, and for each 0 ≤ p, q ≤ dim(X/B) =
n − d , and 0 ≤ j ≤ dim B, let

F
j
f �

q
X (log	) := R(ε �)∗F

j�
q
X �

(log	 �), (3.2.1)

and

�
p
X/B(log	/D) := R(ε �)∗�p

X �/B(log	 �/D). (3.2.2)

The object �
p
X/B(log	/D) ∈ Db(X) will be called the pth-relative logarithmic Deligne-

Du Bois complex of f : (X ,	) → (B, D) or simply the complex of relative logarithmic DB
p-forms of f .

Next, wewill prove that these objects arewell-defined and satisfy a list of useful properties.

Theorem 3.3 Let f : (X ,	) → (B, D) be a morphism of pairs and assume that (B, D) is
an snc pair. Let n = dim X and d = dim B. Then, for each 0 ≤ p, q ≤ dim(X/B) = n − d,
the objects �

p
X/B(log	/D) ∈ Ob Db(X) and a

the hyperfiltration F
�

f �
q
X (log	) satisfy the following properties.

(i) The object �p
X/B(log	/D) ∈ Ob Db(X) is independent from the good hyperresolution

used in its definition. In other words, any two objects defined as in Definition 3.2 using
possibly different good hyperresolutions are isomorphic in Db(X).

(ii) F
0
f �

q
X (log	) = �

q
X (log	), and F

d+1
f �

q
X (log	) = 0.

(iii) Let φ : (X̃ , 	̃) → (X ,	) be a log resolution. Then

�n−d
X/B(log	/D) � Rφ∗ωX̃/B(	̃ − ( f φ)∗D).

(iv) For each 0 ≤ j ≤ d,

Gr j
f �

q
X (log	) := Gr j

F
�

f
�

q
X (log	) � f ∗� j

B(log D) ⊗ �
q− j
X/B(log	/D).

(v) The hyperfiltration F
�

f �
q
X (log	) is functorial in the following sense. Let g : (Y , 
) →

(X ,	) be a morphism of pairs such that dim Y = dim X = n. Then, for each 0 ≤ q ≤
n − d, there exists a natural filtered morphism in Db(X)

F
�

f �
q
X (log	) −→ Rg∗F

�

f g�
q
Y (log
).
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(vi) The formation of �p
X/B(log	/D) is functorial in the following sense. Let g : (Y , 
) →

(X ,	) be a morphism of pairs such that dim Y = dim X = n.
Then, for each 0 ≤ p ≤ n − d, there exists a natural morphism in Db(X),

�
p
X/B(log	/D) −→ Rg∗�p

Y/B(log
/D).

(vii) If f : (X ,	) → (B, D) is an snc morphism, then there is a natural filtered quasi-
isomorphism

F
�

f �
p
X (log	)

�−→ F
�

K�
p
X (log	),

where F
�

K is the Koszul filtration (Definition 2.2).

Remark 3.4 When 	 and D are empty, we will suppress the “log” term from the notation. In
particular, we will use the notation

�
p
X := �

p
X (log∅)

F
�

X/B�
p
X := F

�

f �
q
X (log∅), and

�
p
X/B := �

p
X/B(log∅/∅).

Notation 3.5 To avoid cumbersome notation, as in Theorem 3.3(iv), we will use Gr pf to

denote Gr p
F
�

f
, where F

�

f is the hyperfiltration F
�

f �
q(log	) in Theorem 3.3.

Proof of Theorem 3.3 First, assume in addition that (X ,	) is also an snc pair. Then the state-
ments (ii) and (iv) follow from Theorem 6.9, and (v) follows from [[24], 4.1]. For (iii), first
observe that both sides are independent of the choice of φ. This follows from [[4], 6.3] for the
left hand side and from [[25], 2.10] (cf. [[20], 10.34]) for the right hand side. In particular,
in the snc case we may use φ = id, and in that case (iii) follows from Definition 6.8.

Next, let (X ,	) be arbitrary and let ε � : (X �,	 �) → (X ,	) be a good hyperresolution.
Using Definition 3.2, (ii), (iii), (iv), and (v) follow from the snc case above: (ii) follows
directly, (iii) follows from the snc case, the definition of a good hyperresolution, Definition
2.3, and (3.2.2). Item (v) follows by the functoriality of the snc case. For (iv), further note
that as (B, D) is an snc pair, f ∗�q− j

B (log D) is locally free, so one can use the projection
formula.

Statement (vi) follows by a descending induction on p. The induction can be started by
(ii) and the inductive step follows from (iv) and (v). Indeed, choose a good hyperresolution
μ � : (Y �, 
 �) → (Y , 
), which is compatible with the chosen good hyperresolution of
(X ,	), i.e., there is a commutative diagram

(Y �, 
 �)

μ �

g �

(X �,	 �)

ε �

(Y , 
) g (X ,	).

Then, the following diagram is commutative by (v):

F
j+1
f �

p
X (log	) F

j
f �

p
X (log	) Gr j

f �
p
X (log	)

+1

Rg∗F
j+1
f g �

p
Y (log
) Rg∗F

j
f g�

p
Y (log
) Rg∗Gr j

f g�
p
Y (log
)

+1
,

(3.5.1)
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and hence induces a compatible natural morphism Gr j
f �

p
X (log	) → Rg∗Gr j

f g�
p
Y (log
).

The alreadyproven (iv) implies that�p
X/B(log	/D) � Gr0f �

p
X (log	) and�

p
Y/B(log
/D) �

Gr0f �
p
Y (log
). This finishes the proof of (vi), and then (vii) follows from the construction

of Qp
θX

carried out in this case (cf. Section 6, especially Definition 6.8, and [[24], §2]). The

main point is that the cokernel of the morphism f ∗�1
B(log D) → �1

X (log	) is locally free
and hence its exterior powers satisfy the required properties, cf. Proposition 6.10. In fact, the
construction outlined in Section 6 was modeled after this case.

Finally, to prove (i), observe that we have just proved that the other properties stated in the
theorem hold for the corresponding object defined by any good hyperresolution of (X ,	).
For any two good hyperresolution there exists a third that maps to and is compatible with
both of the others, so it is enough to prove (i) for two such good hyperresolutions. Then the
proofs of (v) and (vi) show that there is a natural filtered morphism between the two objects
defined by the two good hyperresolutions. It follows from (iii) that the induced morphism
is an isomorphism for p = n − d and then descending induction using the commutative
diagram (3.5.1) shows that (i) holds for all p. This finishes the proof of all the claims in the
theorem. ��
Next wewill compare these objects obtained with respect to different bases replacing (B, D).
We will be using the standard ωB/B′ := ωB ⊗ τ ∗ω−1

B′ notation.

Theorem 3.6 Using the notation from Theorem 3.3, in addition let τ : (B, D) → (B ′, D′)
be another morphism of pairs, such that (B ′, D′) is also an snc pair and τ is a dominant
generically finite morphism. Let f ′ = τ ◦ f and 
 := D − τ ∗D′.

Then for each 0 ≤ p, q ≤ dim(X/B) = n − d, and 0 ≤ j ≤ d = dim B = dim B ′,

(i) there exists a natural morphism

μp : �
p
X/B′(log	/D′) −→ �

p
X/B(log	/D) ⊗ (

f ∗ωB/B′(
)
)n−d−p+1

.

(ii) there exists a natural morphism

ν j,q : F
j
f ′�

q
X (log	) −→ F

j
f �

q
X (log	) ⊗ (

f ∗ωB/B′(
)
)n−d−q+ j

, and

(iii) the natural morphisms in (i) and (ii) are compatible in the following sense. For each q
and j there exists a commutative diagram of distinguished triangles,

F
j+1
f ′ �

q
X (log	)

ν j+1,q

F
j
f ′�

q
X (log	)

ν j,q⊗ς

�
q− j
X/B (log	/D′)

⊗ f ∗�
j
B′ (log D′)

μq− j⊗∧ j�

+1

F
j+1
f �

q
X (log	) ⊗ L j ,q F

j
f �

q
X (log	) ⊗ L j ,q

�
q− j
X/B (log	/D)

⊗L j,q ⊗ f ∗�
j
B (log D)

+1
,

where L j,q = (
f ∗ωB/B′(
)

)n−d−q+ j+1
and

ς = � ⊗ id(det�′
X )−1 : OX → f ∗ωB/B′(
).

(iv) there exists a natural filtered morphism

νq : F
�

f ′�
q
X (log	) −→ F

�

f �
q
X (log	) ⊗ (

f ∗ωB/B′(
)
)n−q

.
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Proof Wewill use the notation of Section 6. In particular, let�X ,�′
X and�X be locally free

sheaves on X of rank k, k′ and n respectively, and let � : �′
X → �X and θX : �X → �X

be two morphisms. Further let θ ′
X := θX ◦ � : �′

X → �X .
Then � induces a natural map between the filtration diagrams corresponding to the mor-

phisms θ ′
X , θX (the maps go from the ones associated to θ ′

X to those associated to θX induced
by the morphisms ∧r� : ∧r

�′
X → ∧r

�X for various r ).
In particular, let�X := f ∗�1

B(log D) and�′
X := ( f ′)∗�1

B′(log D′). Then for the objects
F
p
i defined in 6.6 one obtains a natural morphism

μ◦
p : Fn−d−p

n−d−p(θ
′
X ) −→ F

n−d−p
n−d−p(θX ), (3.6.1)

for each 0 ≤ p ≤ n − d = dim(X/B). Using the definition,

Q
p
θX

:= F
n−d−p
n−d−p(θX ) ⊗ (det�X )−(n−d−p+1) , (3.6.2)

Q
p
θ ′
X

:= F
n−d−p
n−d−p(θ

′
X ) ⊗ (

det�′
X

)−(n−d−p+1)
, (3.6.3)

(cf. Definition 6.8), and the fact that in this case we have

det�X � f ∗�d
B(log D) and det�′

X � ( f ′)∗�d
B′(log D′)

we find that there exist natural morphisms

μp := μ◦
p ⊗ id(

f ∗ωB/B′ (
)
)−(n−d−p+1) : �

p
X/B′(log	/D′) � Q

p
θ ′
X

−→ Q
p
θX

⊗ (
f ∗ωB/B′(
)

)n−d−p+1 � �
p
X/B(log	/D) ⊗ (

f ∗ωB/B′(
)
)n−d−p+1

.

This proves (i). The same argument, used for

ν◦
j,q : Fn−q

n−d−q+ j (θ
′
X ) −→ F

n−q
n−d−q+ j (θX )

instead of the morphism in (3.6.1) and using the definition

F
j
f �

q
X (log	) := F

n−q
n−d−q+ j (θX ) ⊗ (det�X )−(n−d−q+ j) , (3.6.4)

(cf. Definition 6.8), gives

ν j,q = ν◦
j,q ⊗ id(

f ∗ωB/B′ (
)
)−(n−d−q+ j) : F

j
f ′�

q
X (log	)

−→ F
j
f �

q
X (log	) ⊗ (

f ∗ωB/B′(
)
)n−d−q+ j

,

which proves (ii). In fact, following this argument one is led to consider distinguished triangles
of the form

F
n−q
n−d−q+ j+1(θ

′
X )

ν◦
j+1,q

F
n−q
n−d−q+ j (θ

′
X ) ⊗ det�′

X

ν◦
j,q⊗det�

F
n−d−q+ j
n−d−q+ j (θ

′
X ) ⊗ ∧ j

�′
X

μ◦
q− j⊗∧ j�

+1

F
n−q
n−d−q+ j+1(θX ) F

n−q
n−d−q+ j (θX ) ⊗ det�X F

n−d−q+ j
n−d−q+ j (θX ) ⊗ ∧ j

�X
+1

,
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where the vertical arrows are induced by themorphism� : �′
X → �X as indicated. Tensoring

this diagram with
(
det�′

X

)−(n−d−q+ j+1) gives

F
j+1
f ′ �

q
X (log	)

ν j+1,q

F
j
f ′�

q
X (log	)

ν j,q⊗ς

�
q− j
X/B(log	/D′)

⊗ f ∗� j
B′ (log D′)

μq− j⊗∧ j�

+1

F
j+1
f �

q
X (log	) ⊗ L j,q F

j
f �

q
X (log	) ⊗ L j,q

�
q− j
X/B(log	/D)

⊗L j,q ⊗ f ∗� j
B(log D)

+1
,

whereL j,q = (
f ∗ωB/B′(
)

)n−d−q+ j+1 and ς = ∧d� ⊗ id(det�′
X )−1 : OX → f ∗ωB/B′(
).

This proves (iii).
Finally, in order to prove (iv), first recall that F j+1

f �
q
X (log	) = 0 and F

j+1
f ′ �

q
X (log	) =

0 by Theorem 3.3(ii), so we may assume that j < dim B = d . With that restriction, consider
the morphism

ςd− j−1 : L j,q = (
f ∗ωB/B′(
)

)n−d−q+ j+1 → (
f ∗ωB/B′(
)

)n−q =: Lq . (3.6.5)

This morphism allows us to add one more row to the above commutative diagram:

F
j+1
f ′ �

q
X (log	)

ν j+1,q

F
j
f ′�

q
X (log	)

ν j,q⊗ς

�
q− j
X/B (log	/D′)

⊗ f ∗�
j
B′ (log D′)

μq− j⊗∧ j�

+1

F
j+1
f �

q
X (log	) ⊗ L j,q

id⊗ςd− j−1

F
j
f �

q
X (log	) ⊗ L j ,q

id⊗ςd− j−1

�
q− j
X/B (log	/D)

⊗L j,q ⊗ f ∗�
j
B (log D)

id⊗ςd− j−1

+1
,

F
j+1
f �

q
X (log	) ⊗ Lq F

j
f �

q
X (log	) ⊗ Lq

�
q− j
X/B (log	/D)

⊗Lq ⊗ f ∗�
j
B (log D)

+1
.

Now, erasing the middle row gives us commutative diagrams, for each j , with the same line
bundle multiplier in the last row. In other words this shows that there exists a natural filtered
morphism

νq : F
�

f ′�
q
X (log	) −→ F

�

f �
q
X (log	) ⊗ Lq ,

as claimed in (iv) (cf. (3.6.5)). ��
Theorem 3.7 Using the notation from Theorems 3.3 and 3.6, we have that for each 0 ≤ p ≤
dim(X/B) there exists an integer 0 ≤ ap ≤ dim X − p,

(i) a natural filtered morphism

F
�

X/B�
p
X −→ F

�

f �
p
X (log	) ⊗ OX (ap · f ∗D), and

(ii) a natural morphism

�
p
X/B −→ �

p
X/B(log	/D) ⊗ OX (ap · f ∗D).
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In addition, let g : (Y , 
) → (X ,	) be another morphism of pairs such that dim Y =
dim X = n. Then there exist

(iii) a natural filtered morphism

F
�

X/B�
p
X −→ Rg∗F

�

f g�
p
Y (log
) ⊗ OX (ap · f ∗D), and

(iv) a natural morphism

κp : �
p
X/B −→ Rg∗�p

Y/B(log
/D) ⊗ OX (ap · f ∗D).

Proof Let D′ : = ∅ and consider the morphism of pairs τ : (B, D) → (B, D′). Observe
that ωB/B′ � OB and 
 = D, hence (i) follows from Theorem 3.6(iv). Then (ii) follows
from (i) and Theorem 3.3(iv). The required natural filtered morphisms in (iii) is simply the
composition of the natural filtered morphisms in (i) and Theorem 3.3(v) (more precisely,
the latter is twisted with the line bundle OX (ap · f ∗D)). Finally, (iv) follows from (ii) and
Theorem 3.3(vi). ��
Definition 3.8 Let D ⊂ B be a reduced, effective divisor. The smallest non-negative integer
a ∈ N for which a morphism as in Theorem 3.7(ii) for each 0 ≤ p ≤ dim(X/B) with
the choice of ap = a ≤ dim X exists will be called the discrepancy of D with respect to
f : X → B and will be denoted by a f (D).

3.1 Koszul triangles

Let f : (X ,	) → (B, D) be a morphism of pairs and assume that (B, D) is an snc pair. Let
n = dim X and d = dim B and 0 ≤ p ≤ dim(X/B) = n − d .

Let G
0,2
f denote the mapping cone of the morphism F

2
f �

p
X (log	) → F

0
f �

p
X (log	) and

consider the commutative diagram of distinguished triangles,

F
2
f �

p
X (log	) F

2
f �

p
X (log	) 0

χ

+1

F
1
f �

p
X (log	) F

0
f �

p
X (log	) Gr0f �

p
X (log	)

+1

Gr1f �
p
X (log	)

+1

Gr0,2f

+1

Gr0f �
p
X (log	)

+1

+1

.

(3.9.1)

Then the dotted arrows exist by [[34], Theorem 1.8] (cf. [[26], Theorem B.1]) and they
maybe identified with the induced morphisms on the mapping cones. Therefore we obtain
the distinguished triangle

Gr1f �
p
X (log	) Gr0,2f Gr0f �

p
X (log	)

+1
(3.9.2)

in which each term is defined as the mapping cone of the vertical morphisms in (3.9.1) and
the morphisms are the ones coming from the mapping cone construction. We will refer to
this distinguished triangle in (3.9.2) as the pth-Koszul triangle of f : (X ,	) → (B, D) and
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denote it by Koszpf (log	). As before, in case 	 = ∅ and D = ∅, then we will denote this

by KoszpX/B . Replacing Gr if �
p
X (log	) for i = 0, 1 by isomorphic objects as in Theorem

3.3(iv) we obtain an alternative expression for Koszpf (log	):

f ∗�1
B(log D) ⊗ �

p−1
X/B(log	/D) Gr0,2f �

p
X/B(log	/D)

+1
.

(3.9.3)

Remark 3.10 The nine lemma in triangulated categories is somewhat trickier than in abelian
categories. It is not true that any morphism of triangles induce a distinguished triangle on
their mapping cones. What [[34], Theorem 1.8] and [[26], Theorem B.1] state is that there
exists a χ (see upper right side of (3.9.3)) such that the third row (of mapping cones) forms
a distinguished triangle. In addition, it follows from [[26], Theorem B.1] that in the case of
(3.9.1) the χ is in fact uniquely determined. This is, of course, not surprising given that the
initial object of χ is 0, but one should remember that we are working in the derived category,
so caution is warranted.

Wewould also like to emphasize that we are notmerely stating that a distinguished triangle
exists with the given objects as in (3.9.2) and (3.9.3), but that the morphisms of the triangle
are exactly the ones one would hope for, namely the morphisms induced by the mapping
cone construction. In particular, this means that the Koszul triangles will inherit any natural
property carried by the filtrations used in their definition.

Corollary 3.11 Using the above notation, let g : (Y , 
) → (X ,	) be another morphism of
pairs such that dim Y = dim X = n. Then the morphisms κp obtained in Theorem 3.7(iv)
are compatible with Koszul triangles, that is, there exist natural compatible morphisms of
the terms of the following Koszul triangles:

κp : KoszpX/B −→ Rg∗Koszpf g(log
)(a f (D) · f ∗D)

(With a slight abuse of notation we will denote these morphisms of Koszul triangles by the
same symbol).

Proof Theorem 3.7 implies that there exist natural morphisms between the terms of the
diagram (3.9.1) for f : (X ,∅) → (B,∅) and for f g : (Y , 
) → (B, D). It follows from
Theorem 3.7(i) that these morphisms commute with the first two rows and all the columns.

Then it follows that they also commute with the third row as well, which is exactly the
desired statement.

The naturality of κp follows from the naturality of the morphisms in Theorem 3.7 and the
fact that the morphisms in KoszpX/B are given by the mapping cone construction, as explained
in Remark 3.10. ��
Remark 3.12 One can slightly generalize Corollary 3.11 by considering

κp : Koszpf (log	′) −→ Rg∗Koszpf g(log
)
(
a f (D − D′) · f ∗(D − D′)

)
,

where 0 ≤ D′ ≤ D and 	′ = f −1D′ ≤ 	. The proof is the same as the one for Corollary
3.11.

Notation-Remark 3.13 For an snc morphism, f : (X ,	) → (B, D), we use the notation
Koszpf (log	) to denote the triangle defined by the standard Koszul filtration F

�

K . Note that
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for such morphisms, using Theorem 3.3(vii), there is a natural isomorphism of triangles
Koszpf (log	) −→ Koszpf (log	), defined explicitly by

f ∗�1
B(log D) ⊗ �

p−1
X/B(log	/D)

�qis

Gr0,2f �
p
X/B(log	/D)

+1

�qis

f ∗�1
B(log D) ⊗ �

p−1
X/B(log	) Gr0,2F

�

K
�

p
X/B(log	)

+1
,

where the vertical quasi-isomorphims are the ones defined by Theorem 3.3(vii) (see also
Remark 3.10).

4 Systems of Hodge sheaves and derived extensions

Our aim is now to use the complexes of relative logarithmicDB forms fromSect. 3 to construct
systems of Hodge sheaves for arbitrary flat families. Since the proofs of Theorem 1.1 and
Theorem 1.2 are interdependent, they will be presented together. First we need to introduce
the notion of discrepancy for flat families that appears in the setting of Theorem 1.2.

Notation 4.1 Given a flat projective morphism g : X → B of regular schemes, we denote
the reduced divisorial part of the discriminant locus disc(g) of g by Dg .

Notation 4.2 Given a flat, projective family of schemes f : X → B with regular base B,
let π : X̃ → X be a log resolution of the pair and f̃ : X̃ → B the induced family. That
is, assume that 	 f̃ := f̃ −1(D f̃ ) is a divisor with normal crossings. By Theorem 3.7(ii) and

Theorem 3.3(vi) (or Corollary 3.11), over the flat locus of f̃ , there is a morphism

κp : �
p
X/B −→ Rπ∗�p

X̃/B
(log	 f̃ /D f̃ )(ap · f ∗D f̃ ). (3.9.4)

Following Definition 3.8, we use the notation a f̃ ,p to denote the smallest integer for which
the morphism (3.9.4), with the choice of ap = a f̃ ,p , exists.

Furthermore, we use a f̃ to denote the discrepancy a f (D f̃ ) of D f̃ with respect to f
cf. Definition 3.8.

In the course of the proof of Theorems 1.1 and 1.2 it is helpful to differentiate between
the various properties of systems of Hodge sheaves. To do so we introduce the following
terminology.

Definition 4.3 Let W be an OB -module on a regular scheme B, w ∈ N. Then a W -valued
system of weight w is a pair (E , τ ) where E is an OB-module and τ : E → W ⊗ E is sheaf
homomorphism, such that there exists an OB -module splitting E = ⊕w

i=0 Ei with respect to
which τ is Griffiths-transversal, that is, for every i = 0, . . . , w,

τ : Ei → W ⊗ Ei+1.

Using this terminology an �1
B -valued system with an integrable and OB -linear map τ is a

system of Hodge sheaves (of weight w). When E is reflexive, we call (E = ⊕
Ei , θ) a system

of reflexive Hodge sheaves.
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4.1 Proof of Theorem 1.1 and Theorem 1.2

Let π : X̃ → X be a good resolution with the induced map f̃ : X̃ → B. As introduced in
Notation 4.2, a f̃ denotes the discrepancy of the family with respect to f . Set m := n − d ,
where n = dim X and d = dim B. After removing a subscheme from B of codimB ≥ 2,
defined by the complement of the flat locus of f̃ , for every 0 ≤ i ≤ m, consider the map of
distinguished triangles

κm−i : Koszm−i
X/B −→ Rπ∗Koszm−i

f̃
(log	 f̃ )

(
a f̃ · f ∗D f̃

)
(4.3.1)

established in Corollary 3.11. By applying R f∗ to (4.3.1) we find

R f∗κm−i : R f∗Koszm−i
X/B −→ R f̃∗

(
Koszm−i

f̃
(log	 f̃ )

)
(a f̃ ·D f̃ ).

From the resulting cohomology sequence and the filtered quasi-isomorphism

(�m−i
X̃

(log	 f̃ ), F
�

f ) �qis (�m−i
X̃

(log	 f̃ ), F
�

K )

in Theorem 3.3(vii), and Notation-Remark 3.13 we find connecting homomorphisms τi and
θ0i ⊗ id with the commutative diagram

Ri f∗Gr0
F
�

X/B

τi Ri+1 f∗Gr1
F
�

X/B

Ri f̃∗Gr0
f̃

(a f̃ ·D f̃ )

�

Ri+1 f̃∗Gr1
f̃

(a f̃ ·D f̃ )

�

Ri f̃∗ Gr0F �

K
(a f̃ ·D f̃ )

θ0i ⊗id
Ri+1 f̃∗ Gr1F �

K
(a f̃ ·D f̃ ).

(4.3.2)

Here, by θ0i : Ri f̃∗ Gr0F �

K
→ Ri+1 f̃∗ Gr1F �

K
we denote the connecting map arising from the

cohomology sequence associated to R f̃∗ Koszm−i
f̃

(log	).

Next, we define the two systems (F = ⊕
Fi , τ = ⊕

τi ) and (E 0 = ⊕
E 0
i , θ0 = ⊕

θ0i )

by

Fi := Ri f∗�m−i
X/B and E 0

i := Ri f̃∗�m−i
X̃/B

(log	 f̃ ). (4.3.3)

By construction, the two systems (F , τ ) and (E 0, θ0) are �1
B -valued and �1

B(log D f̃ )-
valued, respectively. Set

(E a f̃ , θ
a f̃ ) := (E 0, θ0)(a f̃ ·D f̃ ).

It follows from (4.3.2) that there are sheaf morphisms ψi : Fi → E
a f̃
i fitting in the commu-

tative diagram,

Fi
τi

ψi

�1
B ⊗ Fi+1

ψi+1

E
a f̃
i

θ
a f̃
i

�1
B(log D f̃ ) ⊗ E

a f̃
i+1.
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Define the system map

ψ =
⊕

ψi : (F , τ ) −→ (E a f̃ , θ
a f̃ ), (4.3.4)

and let (G = ⊕
Gi , θG ) denote its image.

By extending the result of Katz-Oda [19] to the case of logarithmic relative de Rham
complex and using [[43], 2.18] (cf. [[13], p.131]) one finds that (E 0, θ0) is the logarithmic
system of Hodge bundles underlying the Deligne canonical extension of the flat bundle
(Rm f∗CX̃\	 f̃

⊗OB\D f̃
,∇), with∇ denoting the Gauss-Manin connection. In particular θa f̃

is OB -linear and integrable. Consequently, so is θG , that is (G , θG ) is a system of Hodge
sheaves. Furthermore, with (E a f̃ , θ

a f̃ ) being locally free, the morphism ψ : F → E a f̃

factors through G → G ∗∗. We now define

(E , θ) := (G , θG )∗∗. (4.3.5)

The last part of Theorem 1.1 follows from the construction of (E , θ) and Theorem 3.3(iii).
More precisely, we have that F0 � R0 f∗�m

X/B � f∗ωX/B . Furthermore, using the isomor-
phism π∗ωX̃ � ωX , we find that

ψ0 : F0|B\D f̃
−→ E

a f̃
0 |B\D f̃

is an isomorphism. AsF0 is torsion free, this implies that ψ0 is injective. Therefore,F0 can
be identified with its image under ψ0, which we have denoted by G0. In particular we have
G ∗∗
0 � F ∗∗

0 � ( f∗ωX/B)∗∗. This completes the proof of Theorems 1.1 and 1.2. ��

4.2 Explanation for Remark 1.6

Let fU : U → V be the smooth locus of f : X → B and i : U → X and j : V → B the
natural inclusion maps.

Claim 4.4 E l |V � Rl f∗�m−l
U/V .

Proof of Claim 4.4. This directly follows from flat base change and properties of complexes
of relative DB forms. More precisely, we have

E l |V � j∗Rl f∗�m−l
X/B , by the definitions of E l in (4.3.3) and ψ in (4.3.4)

� Rl f∗(i∗�m−l
X/B), using flat base change

� Rl f∗�m−l
U/V , according to the construction

� Rl f∗�m−l
U/V , by the quasi-isomorphism in Theorem 3.3(vii).

��
Now, by construction we have i∗KoszpX/B � KoszpU/V . Moreover, by Notation-Remark

3.13, we have a natural isomorphism of triangles KoszpU/V → KoszpU/V , inducing the iso-
morphism

j∗R f∗KoszpX/B −→ R f∗ KoszpU/V . (4.4.1)

Thanks to [19] we know that the Higgs field underlying ∇ (the Gauss-Manin connection) is
definedby the connectinghomomorphismsof the long exact cohomology sequence associated
to the right-hand-side of (4.4.1).On the other hand, by the construction of (E , θ), base change,
and Claim 4.4, the left-hand-side of (4.4.1) similarly determines θ |V in (E , θ)|V . Therefore,
we find that (E , θ) defines an extension of the Hodge bundle underlying ∇. ��
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4.3 Functorial properties

The proof of Remark 1.6 already exhibits some of the functorial properties of the construction
of (E , θ) in Theorem 1.1. This can be further formalized in the following way.

Let Fam(n, d) be the category of projective surjective morphisms f : X → B with
connected fibers between an n-dimensional reduced scheme X and a smooth quasi-projective
scheme B of dimension d . A morphism ( f ′ : X ′ → B ′) → ( f : X → B) in Fam(n, d) is
defined by a commutative diagram

X ′ γ ′

f ′

X

f

B ′ γ
B.

Further let Hodge(d, w) denote the category of triples (B, E , θ), where (E , θ) is a sys-
tem of reflexive Hodge sheaves of weight w on the smooth quasi-projective scheme B of
dimension d . A morphism 
 : (B ′, E , θ ′) → (B, E , θ) in this category consists of a mor-
phism γ : B ′ → B, such that the induced morphism E → Rγ∗E ′, fits into the commutative
diagram

E

θ

Rγ∗E ′

Rγ∗θ

�1
B ⊗ E Rγ∗(�1

B ⊗ E ′).

4.3.1 Proof of Claim 1.3

This directly follows from the construction of Koszul triangles in 3.9 and the system (E , θ)

in 4.1. More precisely, consider a log-resolution π : X̃ → X as in Notation 4.2. Similarly,
let π ′ : X̃ ′ → X ′ be a log-resolution factoring through the projection X̃ ×X X ′ → X ′.
By f̃ ′ : X̃ ′ → B ′ we denote the induced family. By construction, we have a commutative
diagram of distinguished triangles

KoszpX/B

κp

Rγ ′∗(Kosz
p
X ′/B′)(a f · f ∗D f̃ )

Rγ ′∗κp

Rπ∗KoszpX̃/B
(log	 f̃ ′) Rγ ′∗

(
Rπ ′∗Kosz

p
X̃ ′/B′(log	 f̃ ′)(a f ′ · f ′∗D f̃ ′)

)
.

The theorem now follows by applying R f∗ to this diagram.

5 Positivity of direct image sheaves and the discrepancy of the family

We will continue using the notation introduced in Notation 4.2. First we show a somewhat
weaker version of Theorem 1.4.

Proposition 5.1 Let X and B be two projective varieties of dimension n and d, respectively,
f : X → B a flat family of geometrically integral varieties with only Gorenstein Du Bois
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singularities, such that B is smooth and the generic fiber of f has rational singularities.
Further let D ⊂ B be an effective divisor satisfying D ≤ D f̃ , D

′ := D f̃ − D, and let
r := rank( f∗ωX/B). Then, one of the following holds.

(i) Either c1(det( f∗ωX/B)(−rnD − D′)) · Hd−1 ≤ 0, for some ample divisor H ⊂ B, or
(ii) there exists a pseudo-effective line bundle B on B for which there is an injection

(
(det f∗ωX/B)(−rnD − D′)

)t ⊗ B ↪−→ (�1
B(log D′))⊗N ,

for some t, N ∈ N.

Remark 5.2 The above result remains valid if we replace nr by the discrepancy of D f̃ with
respect to f r . We opted to avoid a cumbersome notation, and instead use the upperbound rn,
cf. Theorem 1.2.

Remark 5.3 One may also replace f∗ωX/B in Proposition 5.1 by any of its subsheaves (and
of course replace r with the corresponding rank). This is of interest for example in the setting
of Fujita’s Second Main Theorem (see [1] and references therein).

Before proving Proposition 5.1, we recall the following well-known fact regarding the
functoriality of canonical extensions.

Fact 5.4 Let f : X → B be a projectivemorphismof smooth quasi-projective varieties X and
B. Assume that D f and 	 := f −1D f are simple normal crossing divisors. Let γ : C → B
be amorphism of smooth quasi-projective varieties. Let XC be a strong resolution of X×B C,
with fC : XC → C being the naturally induced family. Assume that the support of D fC and
	 fC are simple normal crossing divisors. Let (E 0

C = ⊕
E 0
C,i , θ

0
C ) be the associated system

of Hodge sheaves underlying Deligne extension of the local system R j f∗CXC\	 fC
of any

given weight j . Then, as systems of Hodge sheaves, we have an inclusion

γ ∗(E 0, θ0) ⊆ (E 0
C , θ0C ),

which is an isomorphism over the flat locus of γ |C\D fC
.

Proof of Proposition 5.1. Let L := (det f∗ωX/B)(−rnD − D′) and assume that for some
ample divisor H ⊂ B we have

c1(L ) · Hd−1 > 0. (5.4.1)

Let Xr denote the r th fiber product X ×B · · · ×B X (r times) with the resulting morphism
f r : Xr → B. Now, as f is Gorenstein and flat we have

r⊗
f∗ωX/B � f r∗ ωXr /B .

Note, that Xr has rational singularities by [[52], Theorem E] (cf. [7]).
Letn′ := n−d . By slightlymodifyingFi in (4.3.3)we setFi := Ri f r∗ (�rn′−i

Xr /B(log	′/D′)),
where 	′ := f −1D′. Since Xr has only rational singularities, by Theorem 3.3(iii) we have

f r∗ ωXr /B
(
	′ − ( f r )∗D′) ↪→ F0.

From the natural inclusion det f∗ωX/B ⊆ f r∗ ωXr /B it follows that there is an injection

L −→ F0(−rnD). (5.4.2)
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To simplify our notation, we will replace f by f r in the sequel. Similar to (4.3.1) we have
a morphism of triangles (Remark 3.12)

κrn′−i : Koszrn′−i
f (log	′) −→ Rπ∗Koszrn

′−i
f̃

(log	 f̃ ) ⊗ f ∗(rnD),

inducing a morphism of systems

ψ =
⊕

ψi : (F , τ )(−rnD) −→ (E 0, θ0),

whose weight is equal to the relative dimension. Denote the image ofψ by (G = ⊕
Gi , θ) ⊆

(E 0, θ0), θ : Gi → �1
B(log D′)⊗Gi+1. By construction ψ0 is injective and thusL ↪−→ G0.

��
Claim 5.5 θ(L ) �= 0.

Proof of Claim 5.5 Aiming for a contradiction, assume that θ(L ) = 0. Let L denote the
saturation of the image of the injection (5.4.2). Set C ⊆ B to be the smooth, complete
intersection curve defined by Hd−1 with the natural inclusion map γ : C → B. For a
suitable choice of C we can ensure that C is in the locus of B over which E 0/L is locally
free. Let (EC , θC ) be the logarithmic Hodge system defined in Fact 5.4. According to Fact
5.4 we have an injection

γ ∗(E 0 =
⊕

E 0
i , θ0) ↪−→ (E 0

C =
⊕

E 0
C,i , θ

0
C ). (5.5.1)

In particular we have an injection

γ ∗L ↪−→ E 0
C,0.

From our initial assumption it follows that θC,0(γ
∗L ) = 0. On the other hand, since

ker(θ0C |E 0
C,i

) is weakly negative by [51], this implies that deg(γ ∗L |C ) ≤ 0 and thus contra-

dicting our initial assumption (5.4.1). This finishes the proof of the claim. ��
Now, by applying θ to L we can find an integer k ≥ 1 such that

(id⊗θ) ◦ · · · ◦ (id⊗θ)
︸ ︷︷ ︸

k − 1 times

⊗θ : L ↪−→ (�1
B(log D′))⊗k ⊗ Nk,

where Nk := ker(θ |G k ). As Nk ⊆ ker(θ0|E 0
k
) and since ker(θ0|E 0

k
) is weakly negative

[51], we find that there is an injection L t ⊗ B ↪−→ (�1
B(log D′))⊗N , for some t ∈ N and

pseudo-effective B := (detNk)
−1.

5.1 The general case

By using a cyclic covering construction (see also [45, 50] and [46]), combined with the
constructions in Sect. 4, we generalize Proposition 5.1 to the pluricanonical case.

Theorem 5.6 Using the notation and assumptions of Proposition 5.1, for every m ∈ N, let
rm = rank( f∗ωm

X/B) and set tm := mrmn. Then, for any a ∈ N, either

(i) c1((det f∗ωm
X/B)a(−atmD − D′)) · Hd−1 ≤ 0, or

(ii) there exists a pseudo-effective line bundle B on B for which there exists an injection
(
(det f∗ωm

X/B)a(−atmD − D′)
)t ⊗ B ↪−→ (�1

B(log D′))⊗N ,
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for some t, N ∈ N.

Proof Using the notation of the proof of Proposition 5.1, consider the natural injection
(
det f∗ωm

X/B

)ma
↪−→ f mrma∗ ωm

Xmrma/B ,

which, with Am := (det f∗ωm
X/B)a , implies that for the line bundle M defined by

M := ωXmrma/B ⊗ ( f mrma)∗(Am)−1

we have H0(Xmrma,Mm) �= 0. Following Notation 4.2, π : X̃ → X denotes a good
resolution of X and further let X̃ (mrma) denote a strong resolution of (X̃)mrma . The com-
position of this latter resolution with πmrma induces a projective birational morphism
μ : X̃ (mrma) → Xmrma .

Note that the assumptions on the singularities of the fibers of f remain true for the fibers
of f mrma , so

for ease of notation, let us replace f mrma by f and, similarly, replace X̃ (mrma) by X̃ .
Next, define n′ := n − d , t ′m := mrmn′ and modify the system (F , τ ), defined in (4.3.3),

by setting

F ′
i := Ri f∗(�

at ′m−i
X/B (log	′/D′) ⊗ M−1),

where 	′ := f −1(D′). We get a morphism of triangles

κat ′m−i : Koszat ′m−i
f (log	′) ⊗ M−1

−→ Rμ∗
(
Kosz

at ′m−i

f̃
(log	 f̃ ) ⊗ μ∗M−1)(atm f ∗D),

(5.6.1)

cf. Remark 3.12. Now, let σ : Z → X̃ be a resolution of singularities of the cyclic covering
associated to a global section of μ∗Mm (cf. [[30], 4.1.6]) and let g : Z → B be the induced
map. After removing a subscheme of B of codimB ≥ 2 we may assume that g : (Z ,	g) →
(B, Dg) is snc.

Claim 5.7 In the setting above, there is a natural morphism of triangles

Kosz
at ′m−i

f̃
(log	 f̃ ) ⊗ μ∗M−1 −→ Rσ∗Kosz

at ′m−i
g (log	g). (5.7.1)

Proof of Claim 5.7. By using Remark 3.12 with 	g , 	 f̃ , Dg and D f̃ playing the role of 
,
	 = 	′, D and D′, and the fact that a f̃ (Dg − D f̃ ) = 0, we get a morphism of triangles

Kosz
at ′m−i

f̃
(log	 f̃ ) −→ Rσ∗Kosz

at ′m−i
g (log	g). (5.7.2)

Since the associated morphisms are snc, the two Koszul triangles in (5.7.2) are isomorphic

to the two complexes (short exaxt sequences) of locally free sheaves Kosz
at ′m−i

f̃
(log	 f̃ ),

Kosz
at ′m−i
g (log	g), with the morphism (5.7.2) naturally arising from

σ ∗ Koszat
′
m−i

f̃
(log	 f̃ ) −→ Kosz

at ′m−i
g (log	g). (5.7.3)

On theother hand, by the constructionofσ wehaveh0(σ ∗μ∗M ) �= 0, i.e.σ ∗μ∗M−1 ↪→ OZ .
Combining this with (5.7.3) we find

σ ∗(Koszat
′
m−i

f̃
(log	 f̃ ) ⊗ μ∗M−1) −→ Kosz

at ′m−i
g (log	g).
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Applying Rσ∗, the projection formula gives

Kosz
at ′m−i

f̃
(log	 f̃ ) ⊗ μ∗M−1 −→ Rσ∗ Kosz

at ′m−i
g (log	g),

as required. ��
Combining (5.7.1) and (5.6.1) leads to the morphism of triangles:

Kosz
at ′m−i
f (log	′) ⊗ M−1 −→ Rη∗

(
Kosz

at ′m−i
g (log	g)

) ⊗ (atm f ∗D),

where η := μ ◦ σ . Similarly to (4.3.4) it follows that there exists a morphism of systems of
equal weight (equal to the relative dimension of f ):

ψM =
⊕

ψM
i : (F ′, τ ′)(−atmD) −→ (E 0, θ0),

where (E 0, θ0) is the system underlying the Deligne extension for Rat ′m g∗CZ\	g . On the
other hand, since X has rational singularities, by Theorem 3.3(iii) and construction we have
Am(−D′) ↪→ F ′

0. Consequently we find

Am(−D′)(−atmD) ↪→ F ′
0(−atmD)

ψM
0

↪−−→ G0 ⊆ E0,

where (G = ⊕
Gi , θ) is the image of (F ′, τ ′)(−atmD) underψM . The rest of the argument

follows as in the m = 1 case (Proposition 5.1). ��

The following corollary now directly follows from Theorem 5.6 and [[3], 7.11].

Corollary 5.8 (= Theorem 1.4) Using the notation and assumptions of Theorem 5.6, further
assume that (det f∗ωm

X/B)(−tm D) is big. Then, the pair (B, D f̃ − D) is of log-general type.

Proof Since (det f∗ωm
X/B)(−tm D) is big, for any sufficiently large a ∈ N, the line bundle

(det f∗ωm
X/B)a(−atmD)(−D′) is also big. Therefore, for a pseudo-effective line bundle β

and t, N ∈ N, there is an injection as in Theorem 5.6 (ii). The rest now follows from [[3],
7.11]. ��
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6. Appendix: Summary of wedge products and filtration diagrams

We recall some definitions and constructions from [24] for the reader’s convenience.

123

http://creativecommons.org/licenses/by/4.0/


Hodge sheaves underlying... Page 25 of 34 75

6.A.Wedge products

Let�X and�X be locally free sheaves on X of rank k and n respectively, and let θX : �X →
�X be a morphism.

Definition 6.1 Let η be a section of
p∧

�X over an open set and ξ1, . . . , ξk sections of �X

over the same set. Then η ⊗ (ξ1 ∧ · · · ∧ ξk) is a section of
p∧

�X ⊗ det�X . For any σ ∈ Sk
let

ξσ,q = θX (ξσ(1)) ∧ · · · ∧ θX (ξσ(q)),

and

ξσ,q = ξσ(q+1) ∧ · · · ∧ ξσ(k).

Further let

Sk,q = {σ ∈ Sk |σ(1) < · · · < σ(q) and σ(q + 1) < · · · < σ(k)},
and

Iσ = {σ(1), . . . , σ (q)}.
It is easy to see that every σ ∈ Sk,q is determined by Iσ . Now define

�θ
q(η ⊗ (ξ1 ∧ · · · ∧ ξk)) ∈

p+q∧
�X ⊗

k−q∧
�X

by the formula

�θ
q(η ⊗ (ξ1 ∧ · · · ∧ ξk)) =

∑

σ∈Sk,q
(−1)sgn σ (ξσ,q ∧ η) ⊗ ξσ,q ,

and extend it linearly.

To see that

�θ
q :

p∧
�X ⊗ det�X →

p+q∧
�X ⊗

k−q∧
�X

is a well-defined morphism of sheaves, it is enough to verify the multi-linear and alternating
properties. This is left to the reader.

Lemma 6.2 Let id denote id�X : �X → �X . Then

p∧
�X ⊗ det�X ⊗ det�X

�θ
q+r

�θ
q

p+q∧
�X ⊗ det�X ⊗

k−q∧
�X

�θ
r

p+q+r∧
�X ⊗

k−q−r∧
�X ⊗ det�X

�id
q

p+q+r∧
�X ⊗

k−r∧
�X ⊗

k−q∧
�X

is a commutative diagram, i.e., �θ
r ◦ �θ

q = �id
q ◦ �θ

q+r .
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Proof Use the same notation as in Definition 6.1. Then

�θ
r ◦ �θ

q(η ⊗ (ξ1 ∧ · · · ∧ ξk) ⊗ (ξ1 ∧ · · · ∧ ξk))

=
∑

τ∈Sk,r

∑

σ∈Sk,q
(−1)sgn τ+sgn σ (ξτ,r ∧ ξσ,q ∧ η) ⊗ ξσ,q ⊗ ξτ,r .

Let σ ∈ Sk,q , τ ∈ Sk,r . If

Iτ ∩ Iσ = {τ(1), . . . , τ (r)} ∩ {σ(1), . . . , σ (q)} �= ∅,

then ξτ,r ∧ ξσ,q = 0. Otherwise let μ = μ(σ, τ) ∈ Sk,q+r be defined by Iμ = Iτ ∪ Iσ and
let ν = ν(σ, τ ) = σ ∈ Sk,q .

�id
q ◦ �θ

q+r (η ⊗ (ξ1 ∧ · · · ∧ ξk) ⊗ (ξ1 ∧ · · · ∧ ξk))

=
∑

ν∈Sk,q

∑

μ∈Sk,q+r

(−1)sgnμ+sgn ν(ξμ,q+r ∧ η) ⊗ ξν,q ⊗ (ξν,q ∧ ξμ,q+r )

and for ν ∈ Sk,q , μ ∈ Sk,q+r , ξν,q ∧ ξμ,q+r �= 0 let σ = σ(μ, ν) = ν and τ = τ(μ, ν) ∈
Sk,r be defined by Iτ = Iμ\Iν .

This gives a one-to-one correspondence between the pairs (σ, τ ) and the pairs (μ, ν).
Further observe that

(−1)sgn τ (ξτ,r ∧ ξσ,q
︸ ︷︷ ︸

±ξμ,q+r

) ⊗ ξτ,r = (−1)sgnμξμ,q+r ⊗ (ξν,q ∧ ξμ,q+r

︸ ︷︷ ︸
±ξτ,r

),

so

(−1)sgn τ+sgn σ (ξτ,r ∧ ξσ,q ∧ η) ⊗ ξσ,q ⊗ ξτ,r

= (−1)sgnμ+sgn ν(ξμ,q+r ∧ η) ⊗ ξν,q ⊗ (ξν,q ∧ ξμ,q+r ).

��

6.B. Filtration diagrams

Let X be a scheme. As usual, C(X) will denote the category of complexes of OX -modules
and for u ∈ Mor(C(X)), M(u) ∈ Ob(C(X))will denote the mapping cone of u. K (X) is the
category of homotopy equivalence classes of objects of C(X). A diagram in C(X) will be
called a preditinguished triangle if its image in K (X) is a distinguished triangle. D(X) will
denote the derived category of complexes of OX -modules. The superscripts +,−, b carry
the usual meaning (bounded below, bounded above and bounded). Regarding these notions
the basic reference will be [14]. Sk denotes the symmetric group of degree k.

Let �X and �X be locally free sheaves on X of rank k and n respectively, and let θX :
�X → �X be a morphism.

Let p, i ∈ N. We are going to define an object, Fp
i = F

p
i (θX ) ∈ Ob(C(X)) and a (p, i)-

filtration diagram of θX diagram, F
p
i = F

p
i (θX ) . This will be done recursively, starting

with i = 0 and then increasing i .

Definition 6.3 The (p, 0)-filtration diagram of θX is

F
p
0 = F

p
0 =

n−p∧
�X .
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A 0-filtration morphism for some p, q , consists of locally free sheaves E ,F and a morphism

between
n−p∧

�X ⊗ E and
n−q∧

�X ⊗ F .

For instance,

�θ
p :

n−p∧
�X . ⊗ det�X −→

n∧
�X ⊗

k−p∧
�X

is a 0-filtration morphism. Let

F
p
1 = M(�θ

p)[−1].

Definition 6.4 The (p, 1)-filtration diagram of θX consists of the predistinguished triangle,

F
p
1

n−p∧
�X ⊗ det�X

n∧
�X ⊗

k−p∧
�X

+1

It is denoted by F
p
1 . A 1-filtration morphism for some p, r , consists of locally free sheaves

E ,F and morphisms between the corresponding terms of F
p
1 ⊗ E and Fr1 ⊗F such that

the resulting diagram is commutative:

F
p
1 ⊗ E Fr1 ⊗ F

n−p∧
�X ⊗ det�X ⊗ E

�θ
p

n−r∧
�X ⊗ det�X ⊗ F

�θ
r

n∧
�X ⊗

k−p∧
�X ⊗ E

+1

n∧
�X ⊗

k−r∧
�X ⊗ F

+1

.
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Consider the following commutative diagram (cf. Lemma 6.2).

F
p
1 ⊗ det�X F

p−q
1 ⊗

k−q∧
�X

n−p∧
�X ⊗ det�X ⊗ det�X

�θ
p

�θ
q

n−p+q∧
�X ⊗ det�X ⊗

k−q∧
�X

�θ
p−q

n∧
�X ⊗

k−p∧
�X ⊗ det�X

�.
q id .

+1

n∧
�X ⊗

k−p+q∧
�X ⊗

k−q∧
�X

+1

(6.4.1)

There exists a morphism,

α : Fp
1 ⊗ det�X → F

p−q
1 ⊗

k−q∧
�X ,

that makes the above diagram commutative.
The diagram (6.4.1), combined with α gives a 1-filtration morphism

F
p
1 ⊗ det�X −→ F

p−q
1 ⊗

k−q∧
�X ,

with r = p − q, E = det�X ,F =
k−q∧

�X .
Let

F
p
2 = M

(

F
p
1 ⊗ det�X → F1

1 ⊗
k−p+1∧

�X

)

[−1].

Then there exists a distinguished triangle,

F
p
2 F

p
1 ⊗ det�X F1

1 ⊗
k−p+1∧

�X
+1

Definition 6.5 The (p, 2)-filtration diagram of θX consists of the diagram,

F
p
2 −→ F

p
1 ⊗ det�X −→ F1

1 ⊗
k−p+1∧

�X .

It is denoted by F
p
2 . A 2-filtration morphism for some p, r , consists of locally free sheaves

E ,F and morphisms between the corresponding terms of F
p
2 ⊗ E and Fr2 ⊗F such that

the resulting diagram is commutative.
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More explicitly, the (p, 2)-filtration diagram of θX is:

F
p
2 F

p
1 ⊗ det�X F1

1 ⊗
k−p+1∧

�X

n−p∧
�X ⊗ det�X ⊗ det�X

�θ
p

�θ
p−1

n−1∧
�X ⊗ det�X ⊗

k−p+1∧
�X

�θ
1

n∧
�X ⊗

k−p∧
�X ⊗ det�X

�id
p−1

+1

n∧
�X ⊗

k−1∧
�X ⊗

k−p+1∧
�X

+1

Similarly, a 2-filtration morphism is:

F
p
2

0,0
⊗ E F

p
2

0,1
⊗ E F

p
2

0,2
⊗ E

Fr2
0,0⊗ F Fr2

0,1⊗ F Fr2
0,2⊗ F

F
p
2

1,1
⊗ E F

p
2

1,2
⊗ E

Fr2
1,1⊗ F Fr2

1,2⊗ F

F
p
2

2,1
⊗ E F

p
2

2,2
⊗ E

Fr2
2,1⊗ F Fr2

2,2⊗ F ,
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where the (p, 2)-filtration diagram,

F
p
2 F

p
1 ⊗ det�X F1

1 ⊗
k−p+1∧

�X

n−p∧
�X ⊗ det�X ⊗ det�X

n−1∧
�X ⊗ det�X ⊗

k−p+1∧
�X

n∧
�X ⊗

k−p∧
�X ⊗ det�X

+1

n∧
�X ⊗

k−1∧
�X ⊗

k−p+1∧
�X

+1

is represented by the simplified diagram,

F
p
2

0,0
F
p
2

0,1
F
p
2

0,2

F
p
2

1,1
F
p
2

1,2

F
p
2

2,1
F
p
2

2,2
.

To define the (p, i)-filtration diagram of θX and the i-filtration morphisms we will iterate
this construction.

Inductive Hypotheses 6.6 For a given i the following hold for each p, q, r ∈ N.

(i) The (p, i)-filtration diagram of θX is defined and denoted by F
p
i .

(ii) An i-filtration morphism, by definition, consists of locally free sheaves E ,F and a mor-

phism between the corresponding terms of F
p
i ⊗E and Fri ⊗F such that the resulting

diagram is commutative.

(iii) F
p
i has a unique object, Fp

i , with only one adjacent arrow pointing out.

(iv) F
p
i = 0 for p < i .

(v) There exists an i-filtration morphism,

�θ,i
q : F

p
i ⊗ det�X −→ F

p−q
i ⊗

k−q∧
�X .

123



Hodge sheaves underlying... Page 31 of 34 75

(vi) The diagram,

F
p
i ⊗ det�X ⊗ det�X

�θ,i
q+r

�θ,i
q

F
p−q
i ⊗ det�X ⊗

k−q∧
�X

�θ,i
r

F
p−q−r
i ⊗

k−q−r∧
�X ⊗ det�X

�id
q

F
p−q−r
i ⊗

k−r∧
�X ⊗

k−q∧
�X

is commutative.

Lemma 6.7 If (6.6) holds for i = 0, . . . , j , then F
p
j+1 can be defined so that (6.6) holds for

i = j + 1.

Proof For the proof the reader is referred to [[24], 2.5]. ��
Now we are ready to define Qp

θX
∈ Ob(D(X)).

Definition 6.8 Let p ∈ Z. For p > n − k letQp
θX

= 0, and for −k ≤ p ≤ n − k letQp
θX

be
the class of

F
n−k−p
n−k−p ⊗ (det�X )−(n−k−p+1)

in Ob(D(X)). It follows that

Qn−k
θX

= det�X ⊗ (det�X )−1

and that there is a distinguished triangle:

Qn−k−1
θX

⊗ det�X

n−1∧
�X Qn−k

θX
⊗

k−1∧
�X

+1
.

Furthermore, for j ≥ p − n + k let F
j
p∧

�X be the class of

F
n−p
n−k−p+ j ⊗ (det�X )−(n−k−p+ j)

in Ob(D(X)). The predistinguished triangle,

F
n−p
n−k−p+ j+1 F

n−p
n−k−p+ j ⊗ det�X F

n−k−p+ j
n−k−p+ j ⊗

j∧
�X

+1

obtained during the definition of these filtration diagrams (cf. [[24], (2.5.7)]) gives the dis-
tinguished triangle,

F
j+1

p∧
�X F

j
p∧

�X Q
p− j
θX

⊗
j∧

�X
+1

.

Observe that F
k+1

p∧
�X = 0 by (iv) and F

p−n+k
p∧

�X =
p∧

�X by definition. Further-
more, if p − n + k < 0, then

F
0

p∧
�X � F

−1
p∧

�X � · · · � F
p−n+k

p∧
�X =

p∧
�X ,
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because
j∧

�X = 0 for j < 0. If p − n + k ≥ 0, define F
j
p∧

�X =
p∧

�X for j =
0, . . . , p − n + k.

The following theorem summarizes the above observations.

Theorem 6.9 ([24], 2.7) Let �X and �X be locally free sheaves on X of rank k and n
respectively, and let θX : �X → �X be a morphism. Then there exists an object Qr

θX
∈

Ob(D(X)) for each r ∈ Z, r ≥ −k with the following property. For each p ∈ N there exists

a hyperfiltration F
j
p∧

�X of
p∧

�X with j = 0, . . . , k + 1, such that

F
0

p∧
�X �

p∧
�X ,

F
k+1

p∧
�X � 0

and

Gr j
p∧

�X � Q
p− j
θX

⊗
j∧

�X .

Furthermore, for r > n − k,

Qr
θX

� 0.

Proposition 6.10 ([24], 2.9) Assume that θX is injective. Then if �X , the cokernel of θX , is
locally free, thenQp

θX
is isomorphic to the p-th exterior power of �X . The filtration is given

by

p∧
�X = F0 ⊃ F1 ⊃ · · · ⊃ F p ⊃ F p+1 = 0,

with quotients

F j/F j+1 �
p− j∧

�X ⊗
j∧

�X ,

for each j .

Proof By definition one has that

Qn−k
θX

� det�X ⊗ (det�X )−1 � det�X .

Then the statement follows using descending induction, the filtration associated to the short
exact sequence of locally free sheaves and the distinguished triangle,

F
j+1

p∧
�X F

j
p∧

�X Q
p− j
θX

⊗
j∧

�X
+1

.

��
Example 6.11 Let k = 1, i.e., assume that �X is a line bundle. Then the hyperfiltration in
Theorem 6.9 is simply a distinguished triangle

Q
p−1
θX

⊗ �X

p∧
�X Q

p
θX

+1
.
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