
Mathematische Zeitschrift          (2023) 303:87 
https://doi.org/10.1007/s00209-023-03205-w Mathematische Zeitschrift

Theminimal model program for b-log canonical divisors and
applications

Daniel Chan1 · Kenneth Chan2 · Louis de Thanhoffer de Völcsey3 · Colin Ingalls4 ·
Kelly Jabbusch5 · Sándor J. Kovács2 · Rajesh Kulkarni6 · Boris Lerner1 ·
Basil Nanayakkara7 · Shinnosuke Okawa8 ·Michel Van den Bergh9

Received: 15 January 2021 / Accepted: 29 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We discuss the minimal model program for b-log varieties, which is a pair of a variety and a
b-divisor, as a natural generalization of theminimal model program for ordinary log varieties.
We show that the main theorems of the log MMP work in the setting of the b-log MMP. If
we assume that the log MMP terminates, then so does the b-log MMP. Furthermore, the
b-log MMP includes both the log MMP and the equivariant MMP as special cases. There
are various interesting b-log varieties arising from different objects, including the Brauer
pairs, or “non-commutative algebraic varieties which are finite over their centres.” The case
of toric Brauer pairs is discussed in further detail.
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1 Introduction

Let k be an algebraically closed field of characteristic zero. Let K be a field, finitely generated
over k. A b-divisor D associates aQ-divisor DX to every normal model X of K , compatibly
with pushforward. We assume throughout that the coefficients of our b-divisors are rational
numbers in the interval [0, 1) unless otherwise stated (e.g. Theorem 3.7). The main result of
this paper is that replacing the canonical divisor KX with KX + DX everywhere, provides
a generalization of the minimal model program, namely the b-log MMP. The b-log MMP
includes the G-equivariant MMP and the log MMP as special cases, by using appropriate
b-divisors, as explained in Examples 3.6 and 3.5.

There are several natural sources of b-divisors. The canonical divisor KX for a variety X
gives an example of a b-divisor as in Example 2.5. A divisor on a model X can be extended
to all models as the proper transform b-divisor as in Definition 2.9. If we have a cohomology
class defined on the generic point of a variety X , there are obstructions to extending it to
codimension one points of X . These obstructions are typically measured by ramification.
One such example is the ramification that occurs when we extend a Galois extension of k(X)

to a ramified cover as in Example 2.10. A similar situation occurs when we extend a central
simple algebra over k(X) to amaximal order as in Example 2.11. Both of these examples give
us a natural ramification b-divisor that also serves as the difference between the canonical
divisors of X and its pull back in terms of the Riemann–Hurwitz Theorem, or its analogue
for maximal orders.

In [8], Chan and Ingalls studied the MMP for maximal orders over surfaces, and were led
to developing the b-log MMP for surfaces. This paper generalizes these results to arbitrary
dimensions. We show that the main theorems of the logMMPwork in the setting of the b-log
MMP. The contractions and flips of the b-log MMP are simply log MMP contractions and
flips for the log variety (X ,DX ) and so many of the results for the b-log MMP are direct
consequences of those for the log MMP. The existence result to run the b-log MMP is the
following theorem.

Theorem 1.1 (= Theorem 3.7) Let π : (X ,D) → U be a b-lc pair over U. If KX + DX

is not nef, then there exists a (KX + DX )-negative extremal contraction. If it is a flipping
contraction, then the flip exists.

The termination of the b-log MMP is addressed by the following result.

Theorem 1.2 (= Theorem 3.8) Let (X ,D) be a b-canonical pair with �D� = 0. Suppose
either the dimension of X is at most 3, or DX is big and KX +DX is pseudo-effective. Then
the pair (X ,D) admits a minimal model and the log-canonical divisor of the minimal model
is semi-ample.

Remark 1.3 [=Remark 3.9] Let (X ,D) be a b-canonical pair with �D� = 0. If we assume
that the log MMP terminates for (X ,DX ) then the pair admits a minimal model. If the pair
admits a canonical model then it is unique by the proof of [28, Theorem 3.52]. The result
[28, Theorem 3.52] is stated for pairs, but the proof for b-divisors is the same

Uniqueness of the minimal model up to flops is given by this combination of Proposi-
tion 3.11 and Theorem 3.15

Theorem 1.4 Let (X ,D) and (X ′,D) be b-terminal minimal models over U of the same
b-terminal pair. Then any birational map ϕ : X ��� X ′ over U is an isomorphism in codi-
mension 1. Also, the birational map ϕ can be decomposed into a sequence of flops.
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This theorem generalizes [8, Proposition 3.17] to arbitrary dimension.
The b-log MMP differs from the log MMP in terms of what types of singularities are

permitted. By using the b-divisor in the definition of discrepancy we obtain the following
formula for a birational proper morphism f : Y → X

KY + DY = f ∗ (KX + DX )+
∑

E

b′(E; X ,D)E,

where the sum is over f -exceptional divisors. Thus we obtain a modification b′ of the usual
discrepancy. Let dE be the coefficient of E in the b-divisor D and let rE = 1/(1 − dE ).

We also introduce another modification of the discrepancy b(E; X ,D) = rEb′(E; X ,D)

which is more natural from several points of view as seen in Corollary 2.23, Corollary 2.24,
Remark 2.26 and Example 3.6; in particular, the coefficient rE coincides with the ramification
index in the equivariant setting, as we observe in Example 2.10. Using this definition of
discrepancywe obtain notions of b-terminal, b-canonical, b-log terminal and b-log canonical.

Running the MMP usually starts with resolving singularities. In our case, there is no
appropriate notion of smoothness, so wemust begin by resolving singularities to a b-terminal
model. We show that any b-log variety admits a b-terminal resolution of singularities in The-
orem 2.30 and Corollary 4.14.

Theorem 1.5 (= Theorem 2.30) Let (X ,D) be a b-log variety with �D� = 0 such that X
is a quasi-projective variety over k. Then there exists a projective birational morphism
f : Y → X such that the b-log variety (Y ,D) is b-terminal and Y is Q-factorial.

In fact, we provide two proofs of this result. The first one is shorter and relies on [7], and the
second proof is longer but ismore constructive and uses toroidal geometry and hence produces
a model Y which is toroidal and Q-factorial. These results generalize [8, Corollary 3.6].

Oncewe have an appropriate partial resolution,we can start running the logMMPusing the
existence result Theorem 3.7. The negativity lemma allows us to conclude that contractions
and flips preserve the type of singularities.

Corollary 1.6 (= Corollary 3.4) The notion of b-terminality (resp. b-canonicity, b-log termi-
nality, b-klt, b-log canonicity) is preserved under b-MMP.

Theorem 3.7 and the above Corollary 3.4 generalize [8, Theorem 3.10]. This establishes
the main results of the b-log MMP. Next, we discuss the history and motivation of our
application of b-log MMP to noncommutative algebraic geometry.

It was noted by Artin that given a maximal order� over a variety X , a tensor power of the
dualizing sheaf ω⊗n� of � could be realized as the pull back of a divisor n(KX +�) on X in
codimension one. This suggested that one can use aQ-divisor on X for what would naturally
be considered the canonical divisor of �. This idea was used by Chan and Kulkarni in [9] to
classify del Pezzo orders. In [8], Chan and Ingalls applied this idea and the logminimalmodel
program for surfaces to birationally classify orders over surfaces. This is also treated in [2].
Since then, there remained the issue of extending the results to higher dimension. In [31],
Nanayakkara, showed that Brauer pairs (X , α) with α ∈ Br X of order 2, have b-terminal
resolutions in all dimensions, allowing one to start the minimal model program for Brauer
pairs by applying log MMP contractions and flips for the pair (X ,�). However it was not
clear if the steps of the MMP would preserve the notion of Brauer terminal, or if terminal
resolutions existed in other cases. In 2014, a meeting was held at the American Institute of
Mathematics, in order to solve this problem. This paper is a joint work of all the participants
at that meeting.
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In Sect. 4, we begin by discussing b-discrepancies for divisors over snc pairs. Then we
consider the case of toric b-log varieties and their b-discrepancy in some detail. We give
a constructive proof of the existence of b-terminal resolutions in the toric case in Proposi-
tion 4.8. We complete this section by using the toric results combined with toroidal geometry
to provide another proof of the existence of b-terminal resolutions in Corollary 4.14.

In Sect. 5, we return to our original motivation for b-divisors coming from ramification of
Brauer classes. We restrict to the case of toric Brauer classes. Given a non-degenerate toric
Brauer class α with toric variety X , we show that the b-log variety (X ,Dα) is b-terminal,
etc. if and only if X is terminal, etc. in Proposition 5.1. We characterize the singularities of
the b-log variety (A3,Dα) for a toric Brauer class α.

We give an application of the b-log MMP.

Corollary 1.7 Let K be a field, finitely generated over k of characteristic 0. Let� be a central
simple K algebra with Brauer class α ∈ Br K and ramification b-divisorDα . Suppose either
that the b-divisorK+Dα is big or it is pseudo-effective andD is big. Then the group of outer
k-automorphisms of � is finite.

Proof Recall that the group of outer k-automorphisms of � is defined by

1→ �∗/K ∗ → Autk � → Outk � → 1.

On the other hand, take X ∈ K/M/k such that (X ,Dα,X ) is b-terminal. The Skolem–Noether
theorem shows that we have an injective map Outk � → Bir(X ,Dα), where Bir(X ,Dα) is
the group of birational automorphisms of a model σ : X ��� X such that σ ∗Dα = Dα (the
assumption implies that σ is an isomorphism in codimension one).

Now suppose that K + Dα is big. By Theorem 3.8 and Remark 3.9 there is a unique
canonical model Y of X , which is birational to X , such that (Y ,�Y ), where�Y is the bound-
ary divisor induced from Dα,X , is a stable pair. Moreover, the uniqueness of the canonical
model implies the isomorphism Bir(X ,Dα) 	 Aut(Y ,�Y ). By Iitaka’s Theorem [22, The-
orem 11.12] (see also [15, Theorem 1.2] and [29, Proposition 6.5]) we have the finiteness of
this group.

Finally, consider the case thatK+Dα is only pseudo-effective butDα is supposed to be big.
Take a small enough ε such that (X , (1+ ε)Dα) is still terminal. Note that the log canonical
divisor of the new pair is big. Now we can use that Bir(X ,Dα,X ) = Bir(X , (1 + ε)Dα,X ),
where the finiteness of the latter is shown by the same argument as above.

We also note that the ideas in this paper are used in [17], where two related results are
established.

Theorem 1.8 [17, Theorem 1.3] Let K be a finitely generated field with a b-divisorD. If X , Y
are models of K with (X ,D) and (Y ,D) have b-canonical singularities and �(KX + DX )

and �(KY + DY ) are both Cartier then
⊕

n≥0
H0(X , n�(KX + DX )) =

⊕

n≥0
H0(Y , n�(KY + DY ))

are naturally isomorphic rings.

This leads to a birationally invariant notion of Kodaira dimension for b-divisors. In
addition, for a finite group G, they show the existence of G-equivariant b-terminal partial
resolutions of b-log pairs [17, Theorem 4.15] using Theorem 2.30 of this paper.
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We conclude the introduction with a brief discussion on how one could apply the b-MMP
to the study of maximal orders, which was established in dimension two in [8]. Let K be
a field, finitely generated over k. Let � be a central simple K -algebra with Brauer class α.
Let � be a maximal order � with ramification data (X ,Dα,X ) as in Example 2.11. We may
run the minimal model program for � in the following way. We first resolve singularities
of (X ,Dα) to a b-terminal model by using Theorem 2.30 obtaining a birational morphism
f : Y → X . We choose a maximal order �Y containing f ∗�. Next, we run the b-log MMP.
For a birational contraction or a flip g : Y ��� Y ′, we take reflexive hull �Y ′ = (g∗�Y )∨∨
which will be a maximal order by [4, Theorem 1.5]. If the logMMP terminates in a birational
model (not aMori fibre space) then so does the b-logMMPandwewill obtain amaximal order
�Z on a b-terminal minimal model (Z ,Dα). The pair (Z ,Dα,Z ) is canonically determined
by� up to log flops. Note further that in dimension two by [8, Theorem 1.2], the order�Z is
unique up toMorita equivalence. This result relies heavily on the possible algebraic structure
of the order in dimension two and we do not have a similar result for higher dimensions. So
we ask the following question.

Question 1.9 To what extent is the maximal order on a minimal model uniquely determined?

Question 1.10 HowdoMori fibre spaces for theb-logvariety (X ,Dα) interactwith amaximal
order� on X? For instance, is there a semi-orthogonal decomposition of the derived category
of the category of �-modules?

We work over an algebraically closed field k throughout the paper. The characteristic
of k will be assumed to be 0 unless otherwise stated. For a scheme X , the set of points of
codimension c will be denoted by X (c). A variety is an integral scheme which is separated
and of finite type over k.

Remark 1.11 WeworkwithQ-divisors in this paper, but almost all results naturally generalize
to R-divisors. Our motivation came from the study of b-log varieties coming from Brauer
pairs (Example 2.11), which always have Q-coefficients.

One theme of this work is that the standard theorems for b-log pairs hold true as soon
as they are established for the corresponding classes of log pairs. For example, many such
results have been established for 3-folds in characteristics≥ 7 after the first draft of this paper
appeared on the arXiv. The corresponding results for 3-fold b-log pairs in characteristics≥ 7
follow from them, by the arguments in this paper.

2 b-divisors and b-discrepancy

2.1 Recap on b-divisors

The notion of b-divisors appear in birational geometry, especially in the definition of the
moduli part of generalized pairs (see, say, [6] for details). The motivating example of b-
divisors for us, however, are those arising from Brauer pairs as we will see in Example 2.11
below.

We recall the notion of b-divisors after [10, Section 2.3.2] (‘b’ stands for ‘birational’). We
will change notation slightly, by not fixing a particular model. For standard terminologies
related to singularities in the Minimal Model Program, readers may refer to [28, Section 2.3]
or [27].
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Let K be a field, finitely generated over our base field k and let η = Spec K . Amodel of K
is an irreducible variety X over k with a fixed map η → X over k, mapping η isomorphically
to the generic point of X .

The category of schemes over k and under η will be denoted by K/Sch/k. We take
K/M/k to be the full subcategory of objects X which are normal and proper models of K ,
where the maps are given by birational morphisms that commute with the fixed map from η.
An object of K/M/k will be called a (proper) model of K .

Definition 2.1 Let E be a prime divisor in some normal model of K . The divisor E gives us
a discrete valuation ν on K such that trdeg κ(ν) = trdeg(K ) − 1. Recall that a place is an
equivalence class of valuations with equal valuation rings. We will call such valuations and
places geometric. Let R be the discrete valuation ring of ν. Let X be a normal proper model
of K . We have maps Spec R ← η → X . Since X is proper, we obtain a unique extension
Spec R → X . The closure of the image of the closed point ξ ∈ Spec R in X will be denoted
by CX E = {ξ} and called the centre of E on X . There exists a normal model Y of K with a
birational morphism f : Y → X , where the centre of the valuation ν is an irreducible divisor
E . Since Y is normal, we have OY ,E = R and the closed subset f (E) ⊂ X is CX E . A
divisor E in some model is exceptional over a model X ifCX E has codimension greater than
1 in X .

The group of Weil divisors on a normal variety X will be denoted by Div X . One can
define the pushforward of a Weil divisor under a proper morphism of normal varieties ([16,
Section 1.4]), thus we obtain a functor

Div : K/M/k → Ab; X �→ Div X , ( f : Y → X) �→ ( f∗ : Div Y → Div X) (2.1)

to the category of abelian groups Ab. By restricting to effective divisors, we also obtain the
functor Div≥0 in the obvious way.

Definition 2.2 (=[10, Definition 2.3.8]) An element D of the limit object

Div(K ) := lim←−
X∈K/M/k

Div(X) ∈ Ab (2.2)

will be called a(n integral) b-divisor on K . Similarly, an element of the subset

Div≥0(K ) := lim←−
X∈K/M/k

Div≥0(X) (2.3)

will be called an effective (integral) b-divisor on K .
A b-divisor on X may equivalently be described as a formal integral sum

D =
∑

�

d��, (2.4)

where � runs through all the geometric places of K , such that for each normal model X there
are only finitely many� whose centre on X is divisorial and d� �= 0. A b-divisorD associates
a divisor to every normal model X of K , which is called the trace of D on X defined by the
natural projection map trX : Div(K )→ Div(X).Write X (1) for the set of irreducible divisors
in X , or equivalently the set of codimension one points. We write

DX = trX D =
∑

�∈X (1)

d�� (2.5)
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(see [10, Notation and Conventions 2.3.10]). Note that this is a finite sum for any particular
model, and given a birational morphism f : Y → X we have f∗DY = DX . The b-divisor
D is effective if and only if all the coefficients d� are non-negative. Note that we can also
interpret a b-Divisor D as function d which associates a number dν to every geometric place
ν of the field K such that for any model X , the support of d restricted to the divisors of X is
finite. Wewill refer to the value of this function dν, or dE , on a geometric place ν, or a divisor
E, as the coefficient of D along E . In addition, if a b-divisor D is defined for all models Y
over a fixed model X , then it extends naturally to all models. Indeed, given any model Z , we
can find a common model Y with birational morphism Y → X and f : Y → Z and so the
trace on Z is given by

DZ = f∗(DY ). (2.6)

We will freely extend the coefficients of b-divisors to Q. All the notions defined so far
are naturally extended to b-Q-divisors. We will work primarily with b-divisors with rational
coefficients so we will refer to them simply as b-divisors and we will write DivK for the set
of b-divisors with rational coefficients. Our goal is to develop the minimal model program for
b-log varieties (X ,D) where X is a normal proper variety and D is a b-divisor in Div(k(X))

with coefficients in [0, 1)∩Q. In our setting, all coefficients of the b-divisorD are contained
in the interval [0, 1)∩Q. We also write as �D� = 0 to indicate that the coefficients are in the
interval [0, 1).

First we will consider some motivating examples of b-divisors that occur naturally. Recall
that a divisor D isQ-Cartier if there is a non-zero natural number a such that aD is a Cartier
divisor.

Example 2.3 (=[11, Example 1.7.2]) Given a Q-Cartier divisor D on X , its Cartier closure
D is the b-divisor whose trace on a model Y over X given by f : Y → X is DY = f ∗D. We
extend D to all models by pushforward as described above (2.6).

Example 2.4 Take a non-zero rational function ϕ ∈ K×. We associate a b-divisor div(ϕ) in
Div(K ) whose trace on the model X is defined by

div(ϕ)X := divX (ϕ). (2.7)

This will be called the principal b-divisor associated to ϕ. The equality

divX (ϕ) = div(ϕ), (2.8)

where the left hand side is the Cartier closure of the Cartier divisor divX (ϕ), is easily seen.

Among others, canonical b-divisors play quite an important role in this paper.

Example 2.5 Fixing a rational differential ω ∈ ∧trdeg K
�K/k defines a canonical b-divisor

K = divX (ω) on X . On each model X , the trace will be defined as divX (ω) associated to
the rational global section ω of the canonical sheaf OX (KX ).

Remark 2.6 In the example above and the lemma below, a canonical divisor on X means a
specific choice of a Weil divisor on X (not its linear equivalence class in the Weil divisor
class group).

Remark 2.7 Given a canonical b-divisorK ∈ Div(K ), for any model X , we will write KX =
KX .
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Lemma 2.8 A canonical b-divisor is uniquely determined by its trace on any fixed model.

Proof Let X be a fixedmodel, and fix the trace KX of a canonical b-divisor. Let f : Y → X be
a model over X , and KY , K ′Y be two canonical divisors on Y such that f∗KY = KX = f∗K ′Y .
Then KY − K ′Y = divY (ϕ) for some ϕ ∈ k(Y ) = k(X) and the support of KY − KY ′
is contained in the exceptional locus of f . Since divY (ϕ) = f ∗ divX (ϕ) and divX (ϕ) =
f∗ divY (ϕ) = 0 by the assumption, we see divY (ϕ) = 0.

Definition 2.9 Consider a Weil divisor D on X . The proper transform b-divisor D̂ is the
b-divisor whose trace on a model f : Y → X is defined by D̂Y =

(
f −1

)
∗ D, and naturally

extended to all models via push-forward. Note that the coefficient of D̂ on any exceptional
divisor over X is zero. In fact, proper transform b-divisors are characterized by the support
of the formal sum D =∑

d�� over all geometric places � being finite.

Example 2.10 LetG be a finite group. Recall that an element [L] ∈ H1 (K ,G) is represented
by an isomorphism class of a Galois extension L/K with a homomorphism Gal(L/K )→ G
which we can assume to be injective. Let X be a model of K and let π : X̃ → X be the
normalization of X in the field L , so that the field homomorphism π∗ : k(X)→ k(X̃)

∼−→ L
is canonically identified with the extension L/K .

Since π : X̃ → X is again a Galois extension with Galois group a subgroup of G, the
Riemann–Hurwitz Theorem tells us that there exists an effective Q-divisor DX on X such
that

KX̃ = π∗X (KX + DX ) (2.9)

as Q-divisors on X̃ . One can easily verify that the divisors DX give rise to a b-divisor with
�D� = 0 and D ∈ Div≥0 (K ), which will be called the ramification b-divisor.

Let P ⊂ X be a prime divisor and let P̃ ⊂ X̃ be π−1X (P) equipped with the reduced
structure. Let m ≥ 1 be the integer defined by π∗X P = mP̃; i.e., the ramification index of
πX along P . Then the coefficient dP in DX of a prime divisor P ⊂ X is equal to m−1

m . In
this case we obtain

rP = 1

1− dP
= m (2.10)

so that rP has a natural geometric meaning.
On the other hand, let n = trdeg K and fixω ∈ �n

K/k and considerω⊗1 ∈ �n
K/k⊗K L 	

�n
L/k. We associate canonical b-divisors K = div (ω) and K̃ = div (ω ⊗ 1) in Div(K ) and

Div(L) respectively. Then we have the equality of b-divisors π∗ (K + D) = K̃. As we will
see later in Example 3.6, the MMP for b-log varieties applied to the pair (X ,D) is equivalent
to the G-equivariant MMP for X̃ .

Example 2.11 This example is the original motivation for the authors to establish theMinimal
Model Theory for b-log varieties. Let K be a field, finitely generated over k and let α ∈
H2 (K ,Gm) = Br K be a Brauer class. A Brauer pair, (X , α) is a pair of a normal proper
model X of K and an α ∈ Br K . Then we can define the effective divisor

Dα,X =
∑

D∈X (1)

(
1− 1

rD

)
D, (2.11)
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where rD ∈ Z≥1 is the ramification index of the Brauer class α ∈ k(X) along the prime
divisor D, which is defined via the Artin–Mumford map [3]. Given α ∈ Br(K ) we have

H2(k(X),Gm)
ram→

⊕

D∈X (1)

H1(k(D),Q/Z)

and we define rD above to be the order of ramD(α). The divisors Dα,X give a b-divisor. We
note that the divisor KX + Dα,X can be viewed as the canonical divisor of a maximal order
in a central simple K algebra representing α, as noted in [8], or can be interpreted as the
canonical divisor of the associated root stack [1, Appendix B].

We also note that, in Example 2.10, if we have a cyclic Galois cover, we can treat it
analogously to a Brauer class, if we use the map

H1(k(X), μ)
ram→

⊕

D∈X (1)

H0(k(D),Q/Z) (2.12)

to define the coefficients of the ramification b-divisor.

Example 2.12 The above example can be generalized to the setting of Rost modules. This
includes algebraic K -theory, Chow cohomology, motivic cohomology, and more. In [32],
the notion of Rost (cycle) modules is defined. Given a Rost module M and a normal scheme
X , we obtain maps ∂D : M(k(X)) → M(k(D)) for all irreducible divisors D in X . Given an
element α ∈ M(k(X)) only finitely many ∂D(α) are non-zero as in [32, Definition 2.1]. So
given such an α, if the ∂D(α) has finite order rD for all D, (for example if α has finite order),
we can define a ramification b-divisor by

Dα,X =
∑

D∈X (1)

(
1− 1

rD

)
D. (2.13)

This also includes the case of abelian Galois covers from Example 2.10.

We will freely use the following remark.

Remark 2.13 Let P be a property of (Weil) divisors (or their classes) such that if f : X → Y
is a projective birational morphism of normal varieties, then a (Weil) divisor (class) D on
X satisfies the property P if and only if f∗D does. We say that a b-divisor D satisfies the
property P if the trace DX of D on some model X ∈ K/M/k satisfies P , which is equivalent
to that the same holds on all models X . For example, bigness and pseudo-effectivity can be
taken as the property P .

2.2 b-discrepancy

In this section we introduce the discrepancy for b-divisors. First we will recall some facts
about the usual notion of discrepancy before we introduce our modification for b-divisors.
Recall the following definition.

Definition 2.14 Let (X , D) be aQ-Gorenstein log variety and let f : Y → X be a birational
morphism. The discrepancy of divisors E in Y that are exceptional over X for the log variety
(X , D) are defined by the equation

KY + f −1∗ D = f ∗(KX + D)+
∑

E

a(E; X , D)E
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where the sum is taken over f -exceptional divisors E , and f −1∗ D denotes the proper transform
of D. The discrepancy only depends on the divisor and not the choice of model Y , as reflected
in the notation.

Definition 2.15 A b-log variety is a pair (X ,D) of a normal variety X and an effective b-Q-
divisor D on X . If KX + DX is Q-Cartier we say that the pair (X ,D) is Q-Gorenstein. The
b-divisor K + D will be called the log canonical b-divisor of the pair (X ,D).

In the rest of this paper, unless otherwise stated, we assume that all b-divisors have
coefficients are in [0, 1) ∩Q. We will also tacitly assume all pairs are Q-Gorenstein, unless
otherwise stated.

Definition 2.16 Let (X ,D) be a b-log variety with �D� = 0. For each divisor E over X , let
dE ∈ [0, 1)∩Q be the coefficient of D along E . The ramification index rE ∈ [1,∞)∩Q of
D along E is defined by the equivalent equations:

rE = 1

1− dE
dE = 1− 1

rE
. (2.14)

Definition 2.17 Let (X ,D) be a Q-Gorenstein b-log variety and E an exceptional divisor
over X . Take a model f : Y → X such that the centre CY E ⊂ Y is a divisor. Then there
exists a b′(E; X ,D) ∈ Q such that the following equality of Q-divisors

(K + D)Y = f ∗ (K + D)X + b′(E; X ,D)E (2.15)

holds on an open neighbourhood of the generic point of E ⊂ Y . The rational number
b′(E; X ,D) will be called the b′-discrepancy of the b-log variety (X ,D) with respect to the
divisor E over X .

Example 2.18 Consider a usual log variety (X , D) and the proper transform b-divisor D̂.
Then it follows from the definition that for any exceptional divisor E over X ,

a(E; X , D) = b′(E; X , D̂) = b(E; X , D̂). (2.16)

In this sense, for exceptional divisors, the usual discrepancy can be regarded as the b-
discrepancy of a proper transform b-divisor.

Moreover, when D = 0, the equality (2.16) is valid for any divisor over X ; recall that a
geometric valuation of k(X) which admits a centre on X is called exceptional if and only if
its centre on X is not divisorial.

Remark 2.19 For a divisor E over X we have the equality

b′(E; X ,D) = a(E; X ,DX )+ dE , (2.17)

where a(E; X ,DX ) is the usual discrepancy of the log variety (X ,DX ) with respect to the
divisor E .

In particular, if D is effective, we always have the inequality

b′(E; X ,D) ≥ a(E; X ,DX ). (2.18)

Equality holds precisely if D is not supported on E .

It is more natural to consider a slight modification of b′-discrepancy. This modifica-
tion is motivated by Corollary 2.23, Corollary 2.24, Remark 2.26 and Example 3.6. The
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b-discrepancy of the b-log variety (X ,D) with respect to the divisor E over X is defined by
either of the equivalent equations

b(E; X ,D) = b′(E; X ,D) · rE (2.19)

b(E; X ,D)+ 1 = rE (a(E; X ,D)+ 1). (2.20)

Note that one can interpret the second equation above as saying that the b-log discrepancy
is a positive multiple of the usual log discrepancy.

We say that the b-log variety (X ,D) is snc if the associated pair (X ,DX ) is snc. The
following lemma will be frequently used in this paper.

Lemma 2.20 For any b-log variety (X ,D), consider any log resolution f : Y → X of the
log variety (X ,DX ). Then (Y ,DY ) is snc.

Proof Let f : Y → X be a log resolution of the pair (X ,DX ). Then, by definition, Exc ( f )∪
( f −1)∗DX is an snc divisor. Since SuppDY is a subset, it is snc as well.

Definition 2.21 Let (X ,D) be a Q-Gorenstein b-log variety. The minimal b-discrepancy of
the pair (X ,D) is defined by

b-discrep(X ,D) := inf {b(E; X ,D) | E is an exceptional divisor over X} . (2.21)

Note that the infimum is among all divisors over X which are exceptional.
We say

(X ,D) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b − terminal

b − canonical

b − log terminal (b − lt)

b − log canonical (b − lc)

if b-discrep (X ,D)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0

≥ 0

> −1
≥ −1.

(2.22)

We also make corresponding definitions using b′(E; X ,D) in place of b(E; X ,D) and
so will refer to b-log varieties (X ,D) as being b′-terminal, b′-canonical, b′-log terminal, or
b′-log canonical.

Similarly we say (X ,D) is b-Kawamata log terminal (b-klt) if it is b-lt and �D� = 0.
Finally we define the notion of b-dlt pairs as follows; a b-log variety (X ,D) is b-divisorially
log terminal (b-dlt) if there exists a log resolution f : Y → X of (X ,D) such that

b(E; X ,D) > −1 (2.23)

holds for any f -exceptional divisor E .

Lemma 2.22 Let (X ,D) be a Q-Gorenstein b-log variety with �D� = 0, and E be a divisor
over X. Then a(E; X ,DX ) > (resp. ≥)− 1 ⇐⇒ b(E; X ,D) > (resp. ≥)− 1.

Proof This follows immediately from (2.20) in the definition of b-discrepancy.

Lemma 2.22 immediately implies the following corollaries.

Corollary 2.23 Let (X ,D) be a b-log variety with �D� = 0. Then (X ,D) is b-lt (resp. b-lc)
if and only if the log variety (X ,DX ) is lt (resp. lc) in the usual sense.

Corollary 2.24 A b-log variety (X ,D) is b-dlt if and only if b(E; X ,D) > −1 holds for any
exceptional divisor E over X whose centre on X is contained in the non-snc locus of (X ,DX ).
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Proof The equivalence of corresponding conditions for usual log discrepancy (= equivalence
of two different definitions of the notion of dlt pairs) is well known [28, Proposi-
tion2.44], [34].On theother hand, one can immediately check that eachof them is respectively
equivalent to the b-counterpart because of Lemma 2.22. ��

Remark 2.25 We also note that b-log variety (X ,D) is b′-terminal (resp. b′-canonical) if and
only if it is b-terminal (resp. b-canonical). This follows immediately from Definition 2.19.

Remark 2.26 If (X ,DX ) is not log canonical then its discrepancy is equal to −∞. This
observation allows us to see that it is also true that (X ,D) is b′-lc if and only if (X ,DX )

is lc. Similarly, if (X ,DX ) is klt, then (X ,D) is b′-klt. On the other hand, as the following
example shows, the converse does not hold.

Let X be a cone over an elliptic curve E and let f : Y → X its minimal resolution. Note
that the exceptional divisor is isomorphic to E . LetDbe ab-divisor on X such thatDX = 0 and
the coefficient ofD along E satisfies dE > 0. Then one can check that (X ,D) is b′-lt, though
X is (strictly) lc. Actually one can find a Brauer class α ∈ Br(k(X)) whose ramification
along E corresponds to an étale double cover of E , so that the associated b-divisor Dα has
dE = 1

2 . One can similarly check that Corollary 2.24 is not true for b′-discrepancy.

Example 2.27 Let (X , D) be a log variety with �D� = 0 and consider the proper transform
b-divisor D̂. Then

(X , D) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

terminal

canonical

klt

purely log terminal

dlt

log canonical

⇐⇒ (X , D̂) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b − terminal

b − canonical

b − klt

b − log terminal

b − dlt

b − log canonical

(2.24)

(see [28, Definition 2.34]).

For those readers who would like particular examples, we discuss the b-discrepancy of
toric b-log varieties in detail in Sect. 5; in particular, we compute the invariants for toric b-log
3-folds in Example 5.3.

In order to run the b-log MMP with b-terminal singularities, it is necessary to first resolve
singularities to a b-terminal model. The existence of such a resolution is established in
Theorem 2.30, and the proof of this theorem is the goal of the rest of this section.

Lemma 2.28 Let (X ,D) be a Q-Gorenstein b-log variety and f : Y → X a model on which
the trace (K + D)Y isQ-Cartier. Suppose b(E; X ,D) ≤ 0 holds for any f -exceptional prime
divisor E. Then for any exceptional divisor F over Y , we have the inequality

b(F; Y ,D) ≥ b(F; X ,D). (2.25)

Proof We show the claim for b′-discrepancies, since it is equivalent. Let g : Z → Y be a
model over Y on which the centre of F is divisorial. Then around the generic point of F we
have
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KZ + DZ = g∗(KY + DY )+ b′(F; Y ,D)F (2.26)

= g∗
(
f ∗(KX + DX )+

∑

E

b′(E; X ,D)E

)
+ b′(F; Y ,D)F (2.27)

= ( f ◦ g)∗(KX + DX )+
((

∑

E

b′(E; X ,D)mF E

)
+ b′(F; Y ,D)

)
F .

(2.28)

Since b′(E; X ,D) ≤ 0 and mF E ≥ 0 hold for all E , we see

b′(F; X ,D) =
∑

E

b′(E; X ,D)mF E + b′(F; Y ,D) ≤ b′(F; Y ,D).

��
Remark 2.29 Assume that the pair (X ,D) is b-lt with �D� = 0, so that the associated pair
(X ,DX ) is klt. Then by [28, Proposition 2.36 (2)] and Remark 2.19, there are only finitely
many exceptional divisors over X with non-positive b-discrepancies.

We will provide a second proof of the result below in Corollary 4.14. The second proof
uses toroidal geometry and is longer but it is also more explicit and more elementary in the
sense that it does not use the result [19, Exercise 5.41] which depends on [7].

Theorem 2.30 Let (X ,D) be a b-log variety with �D� = 0 such that X is a quasi-projective
variety over k. Then there exists a projective birational morphism f : Y → X such that the
b-log variety (Y ,D) is b-terminal and Y is Q-factorial.

A key ingredient of the first proof of Theorem 2.30 is the following corollary of [7]. For
convenience of the reader, we include its proof here. It is taken from [26, Theorem 17.10].

Proposition 2.31 (=[19, Exercise 5.41])Let (X ,�) be a klt pair, and E be a finite collection of
exceptional divisors E over X with a(E; X ,�) ≤ 0. Then there exists a projective birational
morphism f : X → Y from aQ-factorial variety Y such that the set of f -exceptional divisors
is precisely E .
Proof Let A be the set of all exceptional divisors E over X with a(E; X ,�) ≤ 0, which is
a finite set by [28, Proposition 2.36 (2)], and put Ec := A \ E .

Let g : Z → X be a log resolution of the pair (X ,�) which also extracts all members of
E . Let A be the set of exceptional divisors of g, and put Ec := A \ E . By the assumption,
we can take some c ∈ (0, 1) ∩Q such that for all E ∈ Ec it holds that c + a(E; X ,�) > 0.
Now let h : Z ��� Y be a minimal model of the klt pair

(
Z ,�Z := g−1∗ �+ c

∑

E∈Ec

E +
∑

E∈E
−a(E; X ,�)E

)
(2.29)

over X , with the structure morphism f : Y → X , whose existence is guaranteed by [7,
Theorem 1.2 (1)]. We check that this is the desired morphism.

The canonical bundle formula with respect to f , with a slight modification, is as follows.

KY + f −1∗ �+ c
∑

E∈Ec

h∗E +
∑

E∈E
−a(E; X ,�)h∗E (2.30)

= f ∗ (KX +�)+
∑

F : f−exceptional
a(F; X ,�)F + c

∑

E∈Ec

h∗E +
∑

E∈E
−a(E; X ,�)h∗E

(2.31)
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By definition, the left hand side of (2.30) is f -nef. Hence so is the following divisor.
∑

F : f -exceptional
a(F; X ,�)F + c

∑

E∈Ec

h∗E +
∑

E∈E
−a(E; X ,�)h∗E (2.32)

Since this is an f -exceptional divisor, [28, Lemma 3.39] implies that this divisor indeed
satisfies ≤ 0 (i.e., its negation is an effective divisor). By the choice of c, we conclude that
all members of Ec are contracted by h and hence the set of f -exceptional divisors is a subset
of E . On the other hand, if a member E ∈ E is contracted by h, then we obtain the following
contradiction.

a(E; X ,�) = a(E; Z ,�Z )
[KM98, Lemma 3.38 (4)]

< a(E; Y ,�Y ) = a(E; X ,�), (2.33)

where �Y := h∗�Z = f −1∗ �−∑
E∈E a(E; X ,�)h∗E . The last equality follows from the

log crepancy KY +�Y = f ∗ (KX +�X ). Thus we conclude that all members of E appear
on Y , which concludes the proof.

Proof of Theorem 2.30 By Lemma 2.20, we find a projective log resolution X1 → X so
that the pair (X1,DX1) is snc. Since X1 is snc and �DX1� = 0, the pair (X1,DX1) is klt.
As noted in Remark 2.29, there are only finitely many exceptional divisors over X1 whose
b-discrepancies are non-positive. Let E be the set of such divisors. Now we apply Proposi-
tion 2.31 to E and obtain a birational projective morphism

g : Y → X1 (2.34)

from a normal Q-factorial variety Y such that the set of g-exceptional divisors is exactly the
set E . By Lemma 2.28, we see that the b-log variety (Y ,D) is b-terminal. ��

Given a b-log variety (X ,D),we call the pair (Y ,D), supplied by the above Theorem 2.30,
a b-terminal resolution of X . Note that a b-log terminal resolution need not be snc, and it
is not clear if any b-log variety (X ,D) admits a resolution which is simultaneously snc and
b-terminal.

Question 2.32 Let (X ,D) be a b-log variety with �D� = 0. Is there always a projective
birational morphism Y → X such that the b-log variety (Y ,D) is snc and b-terminal?

3 Theminimal model program for b-log varieties

We generalize various definitions in the minimal model theory to b-log varieties. The follow-
ing definitions for b-log varieties are based on those for the usual log varieties, which can be
found in standard references on (log) MMP; see, say, [28, Section 3.7].

Definition 3.1 Let (X ,D) be a b-lc pair with �D� = 0, and X quasi-projective and Q-
factorial, equipped with a projective morphism π : X → U to a normal quasi-projective
variety U .

• The pair (X ,D) is π -minimal if KX +DX is π -nef. Note that the definition of a minimal
model does not depend on the type of singularities of the pair.

• An extremal contraction of (X ,D) over U is a morphism f : X → Y over U which is
an extremal contraction of the lc pair (X ,DX ). We say f is divisorial/small/a Mori fibre
space if f is divisorial/small/a Mori fibre space in the usual sense.
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• A flip of the pair (X ,D) over U is a birational map X ��� X ′ over U which is a flip of
the pair (X ,DX ) in the usual sense. Note that this is consistent with D being a b-divisor.
Since X ��� X ′ is an isomorphism in codimension 1 on both X and X ′, it follows that
DX ′ is necessarily the proper transform of DX on X ′.

• A minimal model program of (X ,D) over (or relative to) U is a sequence of birational
maps over U

X = X0 ��� X1 ��� · · · ��� Xn (3.1)

which is a minimal model program of the usual lc pair (X ,DX ) over U (see Corol-
lary 2.23).

Remark 3.2 If ϕ : X ��� Y is either a divisorial contraction or a flip of the b-log variety
(X ,D) over U , then clearly DY = ϕ∗DX . Therefore any subsequence

Xi ��� Xi+1 ��� · · · ��� X j

of (3.1) is a b-log MMP for the pair (Xi ,D).

Lemma 3.3 Let ϕ : X ��� Y be either a divisorial contraction or a flip of the b-log variety
(X ,D) over U. Then for any exceptional divisor E over X we get the inequality

b(E; X ,D) ≤ b(E; Y ,D). (3.2)

If CX E or CY E is contained in the exceptional locus of ϕ or ϕ−1, then (3.2) becomes a strict
inequality.

Proof It follows from (2.17) that

b(E; Y ,D)− b(E; X ,D)

rE
= b′(E; Y ,D)− b′(E; X ,D) = a(E; Y ,DY )− a(E; X ,DX ).

(3.3)

Therefore the conclusions follow from the negativity lemma for usual discrepancies [28,
Lemma 3.38]. ��
Corollary 3.4 The notion of b-terminality (resp. b-canonicity, b-log terminality, b-klt, b-log
canonicity) is preserved under b-MMP.

Proof Since the arguments are essentially the same, we only discuss the case of b-terminality.
Let (X ,D) be a b-terminal pair and consider a step of b-MMP ϕ : X ��� Y . If E is an
exceptional divisor over X , then Lemma 3.3 implies

b(E; Y ,D) ≥ b(E; X ,D) > 0.

If ϕ is a divisorial contraction which contracts the prime divisor E ⊂ X , then since
b(E; X ,D) = 0 by the definitions, we can use the second claim of Lemma 3.3 to see

b(E; Y ,D) > b(E; X ,D) = 0.

Example 3.5 Recall that the b-discrepancy of the proper transform b-divisor (X , D̂) is the
same as the usual discrepancy as discussed in Examples 2.18, 2.27. In addition, the contrac-
tions and flips of the b-log MMP are simply those of the log MMP, so running the b-log
MMP for the b-log variety (X , D̂) is identical to running the log MMP for the pair (X , D).
One may resolve singularities before running the MMP and we note that if one first resolves
(X , D̂) to a model which is terminal, canonical, lt or lc, the minimal model (if it exists) will
have the same class of singularities by Corollary 3.4.
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Next, we explain how the G-equivariant MMP is a special case of the b-log MMP.

Example 3.6 Recall the b-log variety associated to the equivariant setting, discussed in Exam-

ple 2.10. Let E ⊂ Y be a prime f -exceptional divisor and set Ẽ :=
(
π−1Y (E) ⊂ Ỹ

)

red
. Then

it follows that a(Ẽ; X̃) = b(E; X ,D) by the following computation. Let f : Y → X be a
birational morphism and let f̃ : Ỹ → X̃ be the corresponding map on the normalizations of
Y and X in the Galois cover. Write πX : X̃ → X and πY : Ỹ → Y . We have that

∑

Ẽ

a(Ẽ; X̃)Ẽ = KỸ − f̃ ∗KX̃ (3.4)

= π∗Y (KY + DY )− f̃ ∗π∗X (KX + DX ) (3.5)

= π∗Y (KY + DY )− π∗Y f ∗(KX + DX ) (3.6)

= π∗Y

(
∑

E

b′(E; X ,D)E

)
(3.7)

2.10.2=
∑

Ẽ

b′(E; X ,D)rE Ẽ (3.8)

=
∑

Ẽ

b(E; X ,D)Ẽ (3.9)

Since KX̃ = π∗(KX + DX ) we obtain that the MMP of the pair (X ,D) corresponds
precisely to the G-equivariant MMP of X̃ .

3.1 Fundamental theorems for b-log varieties

In this section we establish some foundational results about the b-log MMP by transplanting
the corresponding results from (the ordinary) log MMP.

Theorem 3.7 Let π : (X ,D) → U be a b-lc pair over U. If KX + DX is not nef, then there
exists an extremal contraction. If it is a flipping contraction, then the flip exists.

Proof Since (X ,DX ) is log canonical, the assertions immediately follow from [14, Theo-
rem 1.19] and [5, Corollary 1.2] or [18, Corollary 1.8], respectively. ��
Theorem 3.8 Let (X ,D) be a b-canonical pair with �D� = 0. Suppose either the dimension
of X is at most 3, or DX is big and KX + DX is pseudo-effective, or KX + DX is big.
Then the pair admits a minimal model and the log-canonical divisor of the minimal model
is semi-ample.

Proof Since the log variety (X ,DX ) is klt, the assertions immediately follow from the results
of [7, 24]. ��
Remark 3.9 Let (X ,D) be a b-canonical pair with �D� = 0. If we assume that the log MMP
terminates for (X ,DX ) then the pair admits a minimal model. If the pair admits a canonical
model then it is unique by [28, Theorem 3.52].

Definition 3.10 Let ϕ : X ��� X ′ be a birational map between normal varieties. A common
resolution of ϕ is a smooth varietyW and projective birationalmorphisms p, p′ : W ⇒ X , X ′
such that p′ = ϕ ◦ p as rational maps (see Fig. 1). Note that one can be obtained by resolving
the singularities of the closure of the graph of φ in X × X ′.
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Fig. 1 Common resolution

Proposition 3.11 Let (X ,D) and (X ′,D) be b-terminal minimal models over U of the same
b-terminal pair. Then any birational map ϕ : X ��� X ′ over U is an isomorphism in codi-
mension 1.

Proof The proof below is a slight modification of the one in [23, p. 420], but we give more
details for the convenience of the readers. Take a common resolution of singularities W as
in Figure 1. By the symmetry, it is enough to show that any p-exceptional divisor is also
p′-exceptional. Consider the canonical bundle formula

KW + DW = p∗(KX + DX )+ E = (p′)∗(KX ′ + DX ′)+ E ′. (3.10)

Set

F = min(E, E ′) (3.11)

and

E = E + F, (3.12)

E ′ = E
′ + F . (3.13)

The assumption is equivalent to E �= 0, since (X ,D) is b-terminal. By Lemma 3.12 below,
one can find an irreducible curve C such that C �⊂ Supp E

′
, (E .C) < 0, and p(C) = point.

This clearly contradicts the equality (3.10), since

0 >
(
p∗(KX + DX )+ E)

)
.C =

(
(p′)∗(KX ′ + DX ′)+ E

′)
.C ≥ 0. (3.14)

��
Lemma 3.12 Let p : W → X be a birational projective morphism of normal varieties over
a field of characteristic zero. Assume that W is smooth, and let E be a non-trivial effective
p-exceptional Q-divisor and E

′
be an effective divisor on W none of whose component is

contracted by p. Then there exists an irreducible projective curve C ⊂ W contracted to a
point by p, E .C < 0, and C �⊂ Supp E

′
.

Proof The proof below is taken from [28, Proof of 3.39]. Consider the decomposition

E =
dim X∑

i=2
Ei , (3.15)

where Ei is the sum of the components � ⊂ E such that the codimension of p (�) is i . Let
k ≥ 2 be the minimum integer such that Ek �= 0. Take a general complete intersection Hk−2
of codimension k − 2 on W . Set G := E |Hk−2 . Then by the genericity we may assume that
Gi = Ei+k−2|Hk−2 for all i ≥ 2 and that no irreducible component of E

′∩Hk−2 is contracted
by the morphism p|Hk−2 . We may also assume that if we let H

k−2
be the normalization of

p
(
Hk−2), then the morphism p|Hk−2 : Hk−2 → H

k−2
is projective and birational. Note that
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if one can find an irreducible projective curve C ⊂ Hk−2 which is contracted by p|Hk−2 ,
G.C < 0, and C �⊂ Hk−2 ∩ E

′
, then as a curve on W it has the required properties as well.

Hence we can assume that k = 2.
If k = 2 take a general complete intersection S ⊂ X of dimension 2 which is normal [33,

Theorem 7], T = p−1 (S) ⊂ Y is smooth, and T ∩ E2 = T ∩ E . We may moreover assume
that p|T : T → S is an isomorphism on an open neighbourhood of T ∩ Supp E

′
, since the

image of the exceptional locus of Supp E
′
under the morphism p has codimension at least

three. Hence it follows that N := T ∩ E2 is a non-trivial effective p|T -exceptional divisor
none of whose irreducible component is contained in Supp E

′
. By the Hodge index theorem

N 2 < 0. Since N is an effective divisor, there is at least one component C ⊂ N such that
N .C < 0. It is now obvious that the curve C , seen as a curve on W , has all the required
properties. ��

We next look at some results that hold specifically for surfaces. A b-terminal pair (S,D),
where S is a surface will have (S,DS) log terminal, so we know that S has quotient singu-
larities.

Corollary 3.13 Let (S,D) be a b-terminal pair of dimension 2 with non-negative Kodaira
dimension. Then it admits a unique minimal model.

Proof The existence of a minimal model is already settled. The uniqueness follows from the
previous proposition and the following well-known lemma. ��
Lemma 3.14 If a birational map ϕ : S ��� S′ between normal surfaces is an isomorphism
in codimension 1 on both S and S′, then it is an isomorphism.

Proof Consider a common resolution p, p′ : W → S, S′ satisfying p′ = ϕ ◦ p. By the
assumption, an irreducible curve C ⊂ W is contracted to a point by p if and only if it
is contracted to a point by p′. Therefore, if we consider the image � of the morphism
p × p′ : W → S × S′, the natural projections � → S and � → S′ are birational and finite,
hence isomorphisms by the Zariski’s main theorem [20, Chapter III, Corollary 11.4]. Thus
ϕ extends to an isomorphism whose graph is �. ��
Theorem 3.15 Under the assumptions of Proposition 3.11, the birational map ϕ can be
decomposed into a sequence of flops.

Proof Proposition 3.11 gives the only requiredmodification of the proof of [23, Theorem1].��

4 Toroidal b-log varieties

In this section we will discuss discrepancy and b-terminalizations for toroidal b-log varieties.
We will repeat some earlier results, but we include new proofs using toroidal methods,
since they are more explicit and constructive. Sncpairs are toroidal and toroidal varieties
are naturally stratified, so we begin by proving some results concerning discrepancy for snc
pairs.

4.1 Snc stratifications

Let (X , D) be an snc log canonical pair, and Di be the irreducible components of D. A
stratum of the pair (X , D) is defined to be an irreducible component of the intersection of
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some of the divisors Di . For the blow up f : Y = BlZ X → X of X along a stratum Z ⊂ X ,
we define the boundary divisor DY by the following equality of Q-divisors.

KY + DY = f ∗(KX + D) (4.1)

Since (Y , DY ) is again an snc log canonical pair, we can repeat the same process as above
recursively.

Definition 4.1 We say that an exceptional divisor over X is extracted by repeatedly perform-
ing blowups along the strata if it appears on a model over X which is obtained by recursing
the process above for finitely many steps.

Proposition 4.2 Let (X , D) be an snc klt pair and E an exceptional divisor over X which
can not be extracted by repeatedly performing blowups along the strata. Then

a(E; X , D) > 0. (4.2)

The following lemma will be used in the proof of Proposition 4.2.

Lemma 4.3 Let f : Y → X and g : Z → Y be birational morphisms between normal
projective varieties. Let D be a Q-divisor on X such that KX + D and KY + DY , where
DY := f −1∗ D, are both Q-Cartier. Let E ⊂ Y be an f -exceptional divisor, and F ⊂ Z be a
g-exceptional divisor which satisfies CY F ⊂ E. Assume that for any f -exceptional divisor
E ′ ⊂ Y other than E we have a(E ′; X , D) ≥ 0. Then

a(F; X , D) ≥ a(F; Y , DY )+ a(E; X , D). (4.3)

Proof Define the divisor D′ on Y by the equality

KY + D′ = f ∗(KX + D). (4.4)

We see

a(F; X , D)− a(F; Y , DY ) = a(F; Y , D′)− a(F; Y , DY ) (4.5)

=
∑

E ′
a(E ′; X , D)mF (E ′)+ a(E; X , D)mF (E) ≥ a(E; X , D), (4.6)

concluding the proof. ��
Proof of Proposition 4.2 Any exceptional divisor E over X can be realized as a codimension 1
regular point on a variety, by repeatedly blowing up its centre for finitely many times (starting
with the blow-up of CX E); see [28, 2.45]. Let t be the number of necessary blowups. We
prove the statement by induction on t .

Suppose t = 1. By replacing X with X \Sing(CX E), we may assumeCX E is smooth. Set
c = codimX CX E , and let D =∑

ai Di be the decomposition of D into irreducible divisors.
Reorder the Di so that CX E ⊂ Di ⇐⇒ i ≤ d . Note that multCX E Di = 1 for i ≤ d and
since CX E is not a stratum, we have the inequality c > d . So we obtain the formula

a(E; X , D) = c − 1−
d∑

i=1
ai . (4.7)

If d = 0, we see a(E; X , D) = c − 1 ≥ 1. If d > 0, we see

c − 1−
d∑

i=1
ai = c − d − 1+

d∑

i=1
(1− ai ) ≥ 0+ (1−min{ai }) > 0. (4.8)
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Now let us consider the induction step. Consider the sequence of blowups which realizes
the divisor E :

Xt → Xt−1 → · · · → X1 → X (4.9)

Let Ei ⊂ Xi be the exceptional divisor of the i-th blowup.
Suppose that CX E is not a stratum. Then by setting Z = Xt and Y = X1, we can apply

Lemma 4.3 to obtain the inequality

a(E; X , D) ≥ a(E; Y , DY )+ a(E1; X , D). (4.10)

Note that by the case t = 1, we know a(E1; X , D) > 0. Moreover, since DY , the strict
transform of D on Y , is again snc and CY E is not a stratum, we can apply the induction
hypothesis to see a(E; Y , DY ) > 0. Thus we obtain the conclusion from (4.10).

Finally, suppose that CX E is a stratum. In this case, define the divisor D′ by KY + D′ =
f ∗(KX + D). By applying the induction hypothesis to (Y , D′), we get

a(E; X , D) = a(E; Y , D′) > 0. (4.11)

Thus we conclude the proof. ��
Theorem 4.4 Let (X ,D) be an snc b-log variety with �D� = 0. Let E be any exceptional
divisor over X with b(E; X ,D) ≤ 0. Then E is extracted by repeatedly performing blowups
along strata of the snc pair (X ,DX ).

Proof Since the log variety (X ,DX ) is snc and �DX� = 0, [28, Corollary 2.31(3)] shows
that it is klt. Hence an exceptional divisor E which is not extracted by repeatedly performing
blowups along strata satisfies the following inequality.

b′(E; X ,D)
Remark2.19≥ a(E; X ,DX )

Proposition4.2
> 0 (4.12)

This concludes the proof. ��

4.2 Toric b-log varieties

Now we will study b-log varieties where the b-divisor is supported on a toric divisor in a
toric variety. In addition to allowing explicit computations, we will provide a second proof of
one of the main results of this paper, Theorem 2.30, which shows the existence of b-terminal
resolutions, or b-terminalizations. This result is of central importance, since without it, one
can not begin the b-log minimal model program with b-terminal singularities.

Let us review some basic facts from toric geometry. We will use results and notation
from [12]. Let X be a toric varietywith open dense torus T 	 Gn

m ⊆ X . The variety X is deter-
mined by a rational fan � in the real vector space spanned by the lattice N = Hom(Gm, T ).
In particular toric geometric valuations of k(T ) are given by rational rays in RN . More pre-
cisely, there is a correspondence between primitive vectors w = (w1, . . . , wn) ∈ Zn 	 N
(primitive means gcd(wi ) = 1) and toric divisors Dw on some toric model of k(T ).

Let �(1) be the set of rays of the fan �. Write uρ for the minimal generator in N of a ray
ρ in �. Write Dρ or Duρ for the divisor associated to ρ. A toric Q-divisor D can be written
as D = ∑

dρDρ . If D isQ-Cartier it has an associated support function φD : |�| → R with
the following properties:

(1) φD is linear on each cone σ ∈ �.
(2) φD(N ) ⊆ Q.
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(3) φD(uρ) = −dρ .
(4) D = −∑

ρ∈�(1) φD(uρ)Dρ .

Let X be the toric variety associated to a simplicial fan �. Recall the following equality:

−KX =
∑

ρ∈�(1)

Dρ (4.13)

Note also that support functions are preserved by pullback. More precisely, let f : X̃ → X
be the map of toric varieties associated to a map of fans f� : �̃ → �. Then for a Q-Cartier
divisor D on X , we get that

φ f ∗D = φD ◦ f� : |�̃| → R.

The proof of the following proposition follows the notation and proof of [12, Propo-
sition 11.4.24]. Given a b-divisor D ∈ Div(K ) and a normal model X of K , as in
Definition 2.16, we will write

DX =
∑

�

d�� =
∑

�

(
1− 1

r�

)
�.

We say that (X ,D) is a toric b-log variety if X is a toric variety and D is supported on toric
divisors for all models.

Proposition 4.5 Let X be the toric variety associated to the fan � and let (X ,D) be a
toric b-log variety. Let w be an element of the lattice N that is in a (possibly not maximal)
simplicial cone σ in�, with ramification index rw . Suppose σ has a set of minimal generators
σ = 〈v1, . . . , vm〉with v1, . . . , vm in the lattice N with ramification indices r1, . . . , rm .Write
w = a1v1+· · ·+amvm. Then the discrepancy of the divisor Dw associated tow, over (X ,D)

is given by

b′(Dw; X ,D) = a1
r1
+ · · · + am

rm
− 1

rw
. (4.14)

b(Dw; X ,D) = a1rw
r1

+ · · · + amrw
rm

− 1. (4.15)

Proof Let �̃ be a simplicial refinement of� that contains 〈w〉 as a ray. Let E = �̃(1)\�(1)
be the set of exceptional divisors. Note that

KX + DX = −
∑

ρ∈�(1)

Dρ +
∑

ρ∈�(1)

(
1− 1

rρ

)
Dρ (4.16)

= −
∑

ρ∈�(1)

(
1

rρ

)
Dρ (4.17)

and similarly for X̃ . Now
∑

ρ∈E
b′(Dρ, X ,D)Dρ = KX̃ + DX̃ − f ∗(KX + DX ) (4.18)

= −
∑

ρ∈�̃(1)

(
1

rρ

)
Dρ + f ∗

⎛

⎝
∑

ρ∈�(1)

(
1

rρ

)
Dρ

⎞

⎠ . (4.19)
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Now let φ be the support function associated to the divisor

B =
∑

ρ∈�(1)

(
1

rρ

)
Dρ.

Since |�̃| = |�| we will also denote the support function of f ∗B by φ. Note that

f ∗B = −
∑

ρ∈�̃(1)

φ(uρ)Dρ (4.20)

= −
∑

ρ∈�(1)

φ(uρ)Dρ −
∑

ρ∈E
φ(uρ)Dρ (4.21)

=
∑

ρ∈�(1)

1

rρ
Dρ −

∑

ρ∈E
φ(uρ)Dρ, (4.22)

so that
∑

ρ∈E
b′(Dρ, X ,D)Dρ = −

∑

ρ∈E

(
1

rρ
+ φ(uρ)

)
Dρ. (4.23)

To elucidate this sum we consider the coefficient of Dw as above. Sincew = a1v1+· · ·+
amvm and φ(vi ) = −1/ri we get the desired result. ��

The next result follows from Remark 2.29, since toric b-log varieties are b-klt. However,
since this also follows directly from toric geometry, we include an alternate proof.

Proposition 4.6 Let (X ,D) be a toric b-log variety. Then there are finitelymany toric divisors
Dw over X such that b(Dw, X ,D) ≤ 0.

Proof Let � be the fan associated to X , let σ ∈ � be a cone, and write σ = 〈v1, . . . , vm〉
for minimal generators vi in N . Given a primitive vector w = a1v1 + · · · + amvm ∈ σ, the
formula (4.15) for discrepancy gives

b(Dw; X ,D) = a1rw
r1

+ · · · + amrw
rm

− 1.

Since rw ≥ 1, and this is positive when the ai are sufficiently large, there are finitely possible
w ∈ σ such that b′(Dw; X ,D) ≤ 0. The result follows since there are finitely many cones in
�. ��
Proposition 4.7 Let X be a toric variety associated to the fan �. Let Dw1 , . . . , Dwp be a
finite set of divisors over X corresponding to the primitive vectors w1, . . . , wp ∈ |�| with
〈wi 〉 /∈ �. Then there is a Q-factorial toric variety X ′ and a birational projective toric
morphism f : X ′ → X such that the exceptional divisors of f are exactly the toric divisors
Dw1 , . . . , Dwp .

Proof We first replace� by a simplicial refinement by triangulating the non-simplicial cones
as described in [12, Proposition 11.1.7]. Given a divisor Dw1 to extract, we form the star
subdivision�1 := �∗(w1) as constructed in [12, p. 515, Section11.1]. This forms a simplicial
refinement of � with exactly one new ray 〈w1〉. We then repeat for all wi to obtain �′
simplicial with new rays corresponding exactly to those primitive vectors with non-positive
discrepancy. ��
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The next result follows from themore general Theorem 2.30, but wewill use the statement
below in the toroidal setting to provide a more constructive proof of this theorem.

Proposition 4.8 Any toric b-log variety has a toric Q-factorial b-terminalization.

Proof By Proposition 4.6, there are only finitely many exceptional divisors over X with non-
positive b-discrepancies. Then apply Proposition 4.7 to extract these divisors by a morphism
f : X ′ → X corresponding to simplicial fan �′ refining �. Now by Lemma 2.28, the
discrepancy for X ′ is larger than the discrepancy for X . Thus we conclude that f is the
desired morphism. ��
Remark 4.9 TheQ-factorial b-terminalization of a toric b-log variety (X ,D) we constructed
in Proposition 4.8 is dominated by a Q-factorial terminalization (in the usual sense) of the
log variety (X ,DX ). Indeed, let g : Y → X be a projective birational morphism from a Q-
factorial variety which extracts exactly those exceptional divisors over X whose discrepancy
with respect to the boundary divisorDX is non-positive (i.e., aQ-factorization); the existence
of such a morphism follows from Proposition 2.31 or Proposition 4.7. Note that, by (2.18),
all exceptional divisors of the morphism f : X ′ → X constructed in Proposition 4.8 are
extracted by g as well. This implies that g is the composition of a contracting birational map
h : Y → X ′ with f . Since Y is a toric variety, we can replace it with a small Q-factorial
modification such that h becomes a genuine morphism (see, say, the last paragraph of the
proof of [21, 1.11 Proposition]).

4.3 Toroidal b-log varieties

Now we consider toroidal b-log varieties. We will use [25] for definitions, notation and basic
results, but we will provide some heuristic explanations. We say a log variety (X , D) is
toroidal if U = X \ Supp D ⊂ X is a toroidal embedding as in [25, p.54]. As explained
in [25, p.71], we can associate a conical polyhedral complex with integral structure � =
(|�|, σ Y , MY ) to a toroidal embedding. A conical polyhedral complex consists of a finite
collection of cones {σ Y }Y with an integral structure σ Y ⊂ RNY = RHom(MY ,Z) for each
cone, indexed by the natural stratification {Y } associated to the toroidal embedding U ⊂ X .
The affine toric variety associated to the cone σY corresponding to stratum Y describes the
étale local structure of U ⊆ X at the generic point y in Y . A face of a cone in � is again
a cone in � and the cones (with their integral structures) are glued along faces. Unlike the
case of a fan used in toric geometry, there is no ambient lattice N so that |�| ⊂ RN and we
can have more than two faces glued along a face of codimension one. The conical polyhedral
complex does not uniquely determine the toroidal variety. However, akin to refinements of
fans in toric geometry, there is a correspondence between finite rational partial polyhedral
(f.r.p.p.) decompositions (see [25, Definition 2, p.86] for the precise definition) �′ of �

with |�′| = |�| and proper birational morphisms X ′ → X that are allowable (or toroidal)
modifications by [25, Theorem 6∗, p. 90].We say a b-log variety (X ,D) is toroidal if (X ,DX )

is toroidal. Note that this implies that for all allowable modifications, X ′ → X , we have that
(X ,DX ′) is also toroidal. We call the exceptional divisors that are divisors in allowable
modifications the toroidal divisors over X .

Since a toroidal variety is characterized by being étale locally an affine toric variety with
toric boundary, we see that an snc pair (X , D) is toroidal. Suppose we are given a rational ray
ρ in a cone σY ⊆ � corresponding to the stratum Y . We can form the star subdivision �∗(ρ)

where we add one ray ρ = 〈uρ〉 and subdivide every cone τ = 〈u1, . . . , um〉 containing ρ
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by forming cones 〈uρ, u1, . . . , ûi , . . . , um〉 exactly as in [12, p. 515, Section 11.1]. We note
the following facts about the star subdivisions:

• �∗(ρ) is a f.r.p.p. decomposition of �.
• |�∗(ρ)| = |�|.
• There is the corresponding projective allowable modification X∗(ρ)→ X .
• If � is simplicial, then so is �∗(ρ) and X∗(ρ) is Q-factorial.
• The cones of dimension one (rays) in �∗(ρ) are rays in � with the addition of the one

new ray ρ.

• The divisor Dρ is Cartier.

The next lemma follows easily from [25, Theorem 10∗, p.90].

Lemma 4.10 Let (X , D) be toroidal and let � = (|�|, σ Y , MY ) be the associated conical
polyhedral complex with integral structure. Let σY = 〈u1, . . . , um〉 be minimal primitive
generators of σY and ρ = 〈∑ ui 〉 then X∗(ρ) → X is the normalization of the blow up of
the stratum Y .

Proof Since the ideal sheaf of any stratum of the log variety (X , D) is a canonical coherent
sheaf of fractional ideals in the sense of [25, p.90], any blowup of X along a stratum corre-
sponds to a f.r.p.p. decomposition of � by [25, Theorem 10∗, p. 93]. This is clearly given by
the star subdivision described above. ��
Corollary 4.11 If (X , D) is snc, then the divisors over X obtained by blowing up strata are
exactly the toroidal divisors over X.

Proof It is clear that the divisors obtained by blowing up strata will be toroidal, so we must
prove the converse. We first consider the case of affine space as a toric varietyGn

m ⊂ An . Let
e1, . . . , en be the minimal generators of the cone in the lattice N . In this case, a toric divisor
corresponds to primitive vector w with all coordinates non-negative. We will construct a
sequence of blow ups at smooth toric subvarieties to obtain 〈w〉 as a ray. We write w =∑

ai ei with ai ≥ 0. If all ai ≤ 1 we are done. Otherwise we form the star subdivision
at v = ∑

sgn(ai )ei where sgn(ai ) is the sign function. Now w will be in a new smooth
simplicial cone which includes v as a vertex and we have

w = v +
∑

ai �=0
(ai − 1)ei .

Now the coefficients ofw in terms of generators of the newcone are smaller and the coefficient
of v is one. So by repeating this process we will eventually obtain w.

Now given a general snc toroidal pair (X , D), any toroidal divisor corresponds to a ray
ρ = 〈w〉 in some cone σY associated to some stratum Y . Since the cone σY is smooth and
simplicial, we can carry out the sequence of star subdivisions described above. This will
yield a sequence of blow ups at strata eventually realizing the toroidal divisor corresponding
to w. ��
Proposition 4.12 Let (X ,D) be an snc b-log variety. Let E be a divisor over X. If E is not
toroidal then b(E; X , D) > 0. If E is toroidal then the centre of E on X is in a strata Y
and E corresponds to a ray 〈w〉 in the cone σY = 〈v1, . . . , vm〉 with minimal generators
vi . Let rw be the ramification index of E, let ri be the ramification index of vi , and write
w = a1v1 + · · · + amvm. Then

b(E; X ,D) = a1rw
r1

+ · · · + amrw
rm

− 1.
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Proof This first statement follows by combining Corollary 4.11 and Theorem 4.4. For the
second statement, we know by Corollary 4.11 that E can be obtained by blowing up strata
and so will appear in a toroidal morphism that is étale locally toric along Y . So we can
apply Proposition 4.5. ��
Proposition 4.13 Let (X ,D) be a toroidal b-log variety. Then there is a birational projective
toroidal modification f : X ′ → X such that X ′ is Q-factorial and the exceptional divisors
of f are exactly the toroidal divisors Dw over X with b(Dw; X ,D) ≤ 0.

Proof As noted in Remark 2.29, there are only finitely many exceptional divisors over X
whose b-discrepancies are non-positive. Alternatively, this can be seen by combining Theo-
rem 4.4 and Proposition 4.6.

Let � = (|�|, σ Y , MY ) be the conical polyhedral complex with integral structure asso-
ciated to X and let S be the set of such divisors with non-positive b-discrepancies. Now
take any divisor E in S. By Theorem 4.4, E is obtained by repeatedly blowing up strata.
Hence there is a f.r.p.p. decomposition of � in which there exists a one-dimensional cone
ρE corresponding to E .

So there is a vector w ∈ MY in a cone σ Y in �. We take the star subdivision �(w) of �,
and repeat inductively for all w ∈ S, until we obtain �′ a f.r.p.p decomposition of � whose
set of one-dimensional cones is {ρE | E ∈ S} together with those in �.

There exists a corresponding projective allowable modification Y → X by [25, Theo-
rem 6∗, p.90], which extracts only those divisors which are contained in S. ��
Corollary 4.14 (Proof of Theorem 2.30 via toroidal modification) Let (X ,D) be a b-log
variety. Then there is a projective birational map Y → X such that (Y ,D) is Q-factorial
and b-terminal.

Proof Let (X ,D) be a b-log variety. By Lemma 2.20, we find a log resolution X1 → X of the
log variety (X ,DX ) so that the pair (X1,DX1) is snc. Note that (X1,DX1) is toroidal. Now
by Proposition 4.13 we can find a projective allowable modification Y → X1 that extracts
exactly the toroidal divisors Dw over X1 with b(Dw; X1,D) ≤ 0. By Theorem 4.4 these are
all the divisors over X with b(Dw; X1,D) ≤ 0. So by Lemma 2.28 we see that (Y ,D) is
b-terminal, and as in the first proof of Theorem 2.30, the composition Y → X1 → X is a
desired b-terminalization. ��

5 Toric Brauer classes

Let X be a toric variety with open dense torus T of dimension n. We define a toric Brauer pair
to be a pair (X , α) where α ∈ Br T 	 ∧2(Hom(μ,Q/Z)n) as noted in [13]. Following [13],
we fix a primitive p-th root of unity so we have an isomorphism Z/p 	 μp . At this point,
p is an arbitrary non-zero integer, but we will often restrict to p being prime and note when
this occurs. Then we associate a skew symmetric matrix to α Mα ∈ (Z/p)n×n , where p is
the order of α. Let ρ = Cone(w) be a ray in RN generated by the primitive vector w ∈ N ,
and let w ∈ (Z/p)n be the reduction of w modulo p. They also show in [13, Lemma 1.7(b)]
that the Brauer class α ramifies on the divisor D〈w〉 if Mαw in (Z/p)n is non-zero, and that
the ramification index of α on D〈w〉 is the order of Mαw in (Z/p)n .

Proposition 5.1 Let (X , α) be a toric Brauer pair such that α has odd prime order p. If Mα

has full rank then (X , α) is b-terminal (b-canonical, b-lt, b-lc) if and only if X is terminal
(canonical, lt, lc).
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Proof Let w = (a1, . . . , an) be a primitive vector in the lattice N . Since Mα has full rank
Mαw = 0 if and only if w ∈ pN , but then w is not primitive. So the order of Mαw is p
for all primitive w. So every toric divisor D has ramification index p, and so rD = p. Then
when we compute the discrepancy using the formula of (4.15), all ri = rw = p, and

b(Dw; X ,D) = (a1 + · · · + an − 1) = a(Dw, X).

So all log discrepancies equal the corresponding b-log discrepancies. ��
Note that in dimension two, if (X , α) is b-terminal then X is terminal (equivalently smooth)
as shown in [8]. This yields the following question.

Question 5.2 Is there a natural condition on a b-divisor D, or a Brauer class α so that (X ,D)

or (X , α) b-terminal implies X is terminal?

However, when p is odd, Mα must have even rank and so we cannot expect the above
results to hold when both n and p are odd. Below we present an example which shows
that Proposition 5.1 cannot be generalized to hold dimension 3.

Example 5.3 We present an example of a toric Brauer pair (X , α) in dimension 3 such that
X is log terminal with the minimal discrepancy arbitrarily close to −1, whereas the b-log
variety (X ,Dα) is b-terminal.

We will let X be the singularity 1
r (1, 1, 0), so that the minimal discrepancy is −1 + 2/r

and note that

−1+ 2

r
→−1 as r →∞.

The singularity X can be globally presented as a toric variety using the standard lattice Z3

and the cone generated by the columns of the following matrix

(v1, v2, v3) =
⎛

⎝
1 −1 0
0 r 0
0 0 1

⎞

⎠ .

We fix a prime p and we let the skew symmetric matrix corresponding to the toric Brauer
class α be

Mα =
⎛

⎝
0 0 −r
0 0 −1
r 1 0

⎞

⎠ ∈ (Z/p)3×3 . (5.1)

In order to check that the pair (X ,Dα) isb-terminal, it is enough to checkb(D〈w〉; X ,Dα) >

0 for any primitive vector w in the cone. By using the formula (4.15), we can directly check
this by elementary arguments.

When the dimension n is odd and we have rank n − 1, one can compute the discrepancy
for an snc Brauer pair as follows, where we do the case n = 3 in detail.

Assume p is a prime so the ramification indices are p or 1. We also identify Z/p with
μ−1p so that α is represented by a skew-symmetric matrix

M =
⎛

⎝
0 c2 −c1
−c2 0 c0
c1 −c0 0

⎞

⎠
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where c j ∈ Z/p. We assume that M �= 0 so that it has rank 2 and ker M is the (Z/p) span
of the vector (c0, c1, c2). We further assume that at least two of the c j are non-zero so that
α ramifies on all three planes. For i = 0, . . . , p − 1, j = 0, 1, 2 we let ci j ∈ {0, . . . , p − 1}
be the smallest non-negative integer whose residue modulo p is ic j .

Toric exceptional divisors E(a0,a1,a2) above X correspond via the toric dictionary to prim-
itive triples (a0, a1, a2) ∈ N3. From [13, Lemma 1.7b], α is unramified along E(a0,a1,a2) if
and only if (a0, a1, a2) ∈ ker M modulo p.

Given an integer x , define

rp(x) = min{x + yp | x + yp ≥ 0, y ∈ Z}
to be the least non-negative residue of x modulo p.

Proposition 5.4 We use the above notation and let

c = min{rp(ic0)+ rp(ic1)+ rp(ic2) | i ∈ (Z/p)∗}.
Then (X , α) is always b-lt, but will be

(1) b-terminal if c > p, in which case (c0, c1, c2) ≡ (k, a, p − a) (mod p) for some
k, a �≡ 0 up to permutation.

(2) b-canonical if c = p, in which case
∑

ci ∈ pZ.
(3) b-lt and not b-canonical if c < p.

Proof It suffices to compute discrepancy for toric exceptional divisors E . This isb′(X , α; E) =
1
p (a0 + a1 + a2) − 1

rE
where rE is the ramification index along E = E(a0,a1,a2). Now

a0 + a1 + a2 > 1 so this is positive unless eE = 1. In this case, (a0, a1, a2) ≡ i(c0, c1, c2)
modulo p for some i . Then b′ is minimized when (a0, a1, a2) = (ci0, ci1, ci2) for some i
whence we obtain b′(X , α; E) = 1

p (c− p). Note that the minimum occurs when rE = 1 and
so b′(X , α; E) = b(X , α; E), and we obtain the first part of each statement. To obtain the
classifications in the first two cases, we use the well known characterization of toric terminal
3-fold singularities described in [30, Example-Claim 14-2-5]. For the last statement, it is
clear that b(X , α; E) > −1 for all E . ��

To compute the discrepancies for b-log varieties that come from ramification information,
it is necessary to compute the ramification indices globally before carrying out an étale
localization. Since the ramification indices change after étale localization, we note that the
discrepancy of aBrauer pair cannot be based on local information in the sense of the following
example.

Example 5.5 Suppose that p = 3. We let α correspond to (c0, c1, c2) = (1, 2, 0) and α′
correspond to (c0, c1, c2) = (1, 1, 0). Note that (X , α) is Brauer canonical but (X , α′) is not.
Furthermore, if f : X ′ → X is the blowup along the coordinate line C : x0 = x1 = 0, then
the discrepancy of (X , α′) along the exceptional divisor is negative. However, if P ∈ C is a
general point, then (X , α) and (X , α′) are isomorphic in an étale neighbourhood of P .
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