Computing Fair and Efficient Allocations
with Few Utility Values***

Jugal Garg®, Aniket MurhekarP*

@ Unaversity of Illinois at Urbana-Champaign
b University of Illinois at Urbana-Champaign

Abstract

We study the problem of allocating indivisible goods among agents with additive
valuations in a fair and efficient manner, when agents have few utility values for
the goods. We consider the compelling fairness notion of envy-freeness up to any
good (EFX) in conjunction with Pareto-optimality (PO). Amanatidis et al. [1]
showed that when there are at most two utility values, an EFX allocation can be
computed in polynomial-time. We improve this result by showing that for such
instances an allocation that is EFX and PO can be computed in polynomial-
time. This is the first class apart from identical or binary valuations, for which
EFX+PO allocations are shown to exist and are polynomial-time computable.
In contrast, we show that when there are three utility values, EFX+PO alloca-
tions need not exist, and even deciding if EFX+PO allocations exist is NP-hard.

Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good (EQX) together with PO. We show that for
instances with two positive values an EQX+PO allocation can be computed
in polynomial-time, and deciding if an EQX+PO allocation exists is NP-hard
when there are three utility values.

We also study the problem of maximizing Nash welfare (MNW), and show
that our EFX+PO algorithm returns an allocation that approximates the MNW
to a factor of 1.061 for two valued instances, in addition to being EFX+4PO. In
contrast, we show that for three valued instances, computing an MNW allocation
is APX-hard. Finally, we we give a polynomial-time algorithm for computing
an MNW allocation for two-valued instances where the ratio of the two values
is greater than a certain threshold.

Keywords: Fair and efficient allocation, EFX, Nash welfare, EQX

*Supported by NSF Grant CCF-1942321 (CAREER)
** A preliminary conference version of this work has appeared in [2]
*Corresponding author
Email addresses: jugal@illinois.edu (Jugal Garg), aniket2@illinois.edu (Aniket
Murhekar)

Preprint submitted to Elsevier June 1, 2023

20

25

30

35

40

1. Introduction

The problem of fair division was formally introduced by Steinhaus [3], and
has since been extensively studied in various fields, including economics and
computer science [4, 5]. It concerns allocating resources (goods) to agents in a
fair and efficient manner, and has various practical applications such as rent
division, division of inheritance, course allocation, and government auctions.

Arguably, the most popular notion of fairness is envy-freeness (EF) [6, 7],
which requires that every agent prefers their own bundle of goods to that of
any other. However in the case of indivisible goods, EF allocations need not
even exist (consider allocating 1 good among 2 agents). This motivated the
study of its relaxations. One such relaxation is envy-freeness up to one good
(EF1) allocation, defined by Budish [8], where every agent prefers their own
bundle to the bundle of any other agent after removing some good from the
other agent’s bundle. It is well-known that an EF1 allocation always exists
and is polynomial-time computable [9]. However, an EF1 allocation may be
unsatisfactory because it allows the removal of the most valuable good from the
other agent’s bundle, which might be the main reason for huge envy to exist
in the first place. Therefore, stronger fairness notions are desirable in many
settings.

A stronger notion is called envy-free up to any good (EFX), defined by Cara-
giannis et al. [10], which requires every agent to prefer their bundle over the
bundle of any other agent after removing any good from the other agent’s bun-
dle. Clearly, any allocation that is EFX is also EF1, but not vice-versa. The
existence of EFX allocations is known for identical valuations [11], and was re-
cently shown for 3 agents with additive valuations [12].!1 At the same time, we
want the output allocation to be efficient because a fair allocation by itself may
be highly inefficient. Consider for example two agents A; and Ay and 2 goods
g1 and go where A; values only ¢; and does not value the other good. The
allocation in which g; is assigned to A and g is assigned to A; is clearly EFX.
However both agents get zero utility, which is highly inefficient. The allocation
in which g; is assigned to A; is more desirable since it is both fair as well as
efficient.

The standard notion of economic efficiency is Pareto optimality (PO). An
allocation is said to be PO if no other allocation makes an agent better off
without making someone else worse off. A stronger notion called fractional
Pareto optimality (fPO) requires that no other fractional allocation makes an
agent better off without making someone else worse off. Every fPO allocation
is therefore PO, but not vice-versa (see Appendix A for an example). Another
reason to prefer fPO allocations over PO allocations is that the former admit ef-
ficient verification while the latter do not: given an allocation, it can be checked
in polynomial time if it is fPO [15], whereas checking if an allocation is PO

ISettling the (non-)existence of EFX allocations is considered the biggest open question in
fair division [13]; see [14] and references therein for recent progress on this problem.

45

50

55

60

65

70

75

80

is coNP-complete [16]. Hence if a centralized entity responsible for allocating
resources claims the allocation is fPO, each agent can individually verify that
this is indeed the case; in contrast such a check is not efficiently possible if the
guarantee is only PO.

An important question is whether the notions of fairness (EF1 or EFX) can
be achieved in conjunction with the efficiency notions (PO or fPO). Further,
if yes, then whether they can be computed in polynomial-time. For this, the
concept of Nash welfare provides a partial answer. The Nash welfare is defined
as the geometric mean of the agents’ utilities, and by maximizing it we achieve a
tradeoff between efficiency and fairness. Caragiannis et al. [10] showed that the
maximum Nash welfare (MNW) allocations are EF1 and PO under additive val-
uations. However, the problem of computing an MNW allocation is APX-hard
[17] (hard to approximate). Bypassing this barrier, Barman et al. [15] devised a
pseudo-polynomial-time algorithm that computes an EF14PO allocation, and
Garg and Murhekar [18] showed that an EF14+fPO allocation can be computed
in pseudo-polynomial time. For the special case of binary additive valuations
an MNW allocation is EFX+fPO, and is known to be polynomial-time com-
putable [19, 20].

1.1. Our Contributions

In this work, we obtain several novel results on the notions of EFX, EQX,
PO, and MNW, especially for instances in which agents have few values for the
goods. A fair division instance is called k-valued if values that agents have for
the goods belong a set of size k.

EFX. Amanatidis et al. [1] showed that for 2-valued instances any MNW allo-
cation is EFX+PO, but left open the question of whether it can be computed in
polynomial-time. They presented a polynomial-time algorithm which computes
an EFX allocation for 2-valued instances, however, the outcome of their algo-
rithm need not be PO (see Appendix A for an example). In this work, we show
EFX+fPO allocations always exist for 2-valued instances and can be computed
in polynomial-time.? Further, apart from the classes of identical valuations and
binary valuations, this is the first class for which EFX+PO allocations exist and
can be computed in polynomial-time.

In general, EFX+PO allocations are not guaranteed to exist [11]. We there-
fore ask the natural question: what is the complexity of checking if an instance
admits an EFX+4PO allocation? We show that this problem is NP-hard, some-
what surprisingly, even for 3-valued instances.

EQ@X. Our techniques allow us to obtain similar results for the fairness notion
of equitability up to any good [21, 22]. An allocation is said to be EQX (resp.
EQ1) if the utility an agent gets from her bundle is no less than the utility any

20ur results extend to the much broader class where there are two values {a;, b; } per agent,
but a;/b; is the same across agents.

85

90

95

100

105

110

115

120

other agent gets after removing any (resp. some) good from their bundle. We
show that for positive 2-valued instances, an EQX+PO allocation can be com-
puted in polynomial-time, and in contrast, even checking existence of EQX+PO
allocations for 3-valued instances is NP-hard.

MNW. It is easy to see that an MNW allocation is PO. For 2-valued instances
we show the stronger guarantee of fPO. Next, we show our EFX+PO algorithm
returns an allocation that approximates the maximum Nash welfare to a factor
of 1.061 in addition to being EFX and PO. This guarantee is better than the
best known 1.45-approximation algorithm of [15] for the MN'W problem.

Amanatidis et al. [1] showed that computing an MNW allocation is NP-hard
for 3-values instances, which, as they remark “extends the hardness aspect, but
not the inapproximability, of the result of Lee [17] for 5-valued instances”, who
had shown that MNW is NP-hard to approximate within a factor of 1.00008.
In our work, we extend the inapproximability aspect too, and show that it is
NP-hard to approximate the MNW to a factor of 1.00019, even for 3-valued
instances, which is better than Lee’s result. Finally, we present a polynomial-
time algorithm for computing an MNW allocation for 2-valued instances where
the ratio of the two values is larger than m — n, where m is the number of goods
and n the number of agents.

Thus, for the problems of computing (i) EFX+PO, (ii) EQX+PO, and (iii)
MNW allocations, our work improves the state-of-the-art and also crucially pin-
points the boundary between tractable and intractable cases.

1.2. Other Related Work

Barman et al. [15] showed that for n agents and m goods, an EF14+PO allo-
cation can be computed in time poly(n, m, Vmaz), Where vp,q, is the maximum
utility value. Their algorithm first perturbs the values to a desirable form, and
then computes an EF1+fPO allocation for the perturbed instance, which for a
small-enough perturbation is EF14+PO for the original instance. Their approach
is via integral market-equilibria, which guarantees fPO at every step. Our algo-
rithm uses a similar approach, with one main difference being that we do not
need to consider any approximate instance and can work directly with the given
values. The outcome of our algorithm is EFX+fPO, which beats the guarantee
of EF1+PO.

Another key difference is the run-time analysis: our arguments show termi-
nation in poly(n,m) time for 2-valued instances, even when v,q, = 28 (ntm)
whereas the analysis of Barman et al. only shows a poly(n, m, Ve,) time bound,
even for 2-valued instances.

Garg and Murhekar [18] showed that an EF1+fPO allocation can be com-
puted in poly(n, m, Vs)-time, by using integral market-equilibria. They also
showed that an EF1+fPO allocation can be computed in poly(n,m)-time for
k-valued instances where k is a constant, however they do not show that the
allocation returned by their algorithm is EFX for 2-valued instances.

Freeman et al. [22] showed that EQ1+PO allocations can be computed in
pseudo-polynomial time for instances with positive values. They also show that

125

130

135

140

145

150

155

160

the leximin solution, i.e., the allocation that maximizes the minimum utility, and
subject to this, maximizes the second minimum utility, and so on; is EQX+PO.
However, as remarked in [11], computing a leximin solution is intractable.

Barman et al. [20] showed that for identical valuations, any EFX allocation
provides a 1.061-approximation to the MNW. Recently, [23] showed that for
2-valued instances where the two values are {p,q} for p,q € N and p divides
q, an MNW allocation is polynomial-time computable. We note that the class
we study for an exact algorithm (2-valued instances where the ratio of the two
values is at least m — n) is orthogonal to their class. Moreover, for general
2-value instances, their algorithm achieves an approximation ratio of at most
1.0345, whereas we obtain a ratio of 1.061. They also showed 1.000015-factor
APX-hardness when p > 3 and p,q are co-prime. Garg et al. [24] showed a
1.069-hardness of approximating MNW, although for 4-valued instances.

Instances with few values have been widely considered in the fair division lit-
erature: for instance Golovin [25] presents approximation algorithms and hard-
ness results for computing max-min fair allocations in 3-valued instances; Aziz
et al. [26] show PO is efficiently verifiable for 2-valued instances and coNP-hard
for 3-valued instances; Aziz [27], and Vazirani and Yannakakis [28] study the
Hylland-Zeckhauser scheme for probabilistic assignment of goods in 2-valued in-
stances; Bogomolnaia and Moulin [29] study matching problems with 2-valued
(dichotomous) preferences; Bliem et al. [30] study fixed-parameter tractability
for computing EF+PO allocations with parameter n + z, where z is the num-
ber of values; recently, Garg et al. [31] showed EF14+PO allocations of 2-valued
chores can be computed in polynomial time; and Garg et al. [32] study leximin
assignments of papers ranked by reviewers on a small scale, in particular they
present an efficient algorithm for 2 ranks, i.e., “high or low interest” and show
NP-hardness for 3 ranks. More generally, such instances have been studied in
resource allocation contexts, including makespan minimization with 2 or 3 job
sizes [33, 34].

2. Preliminaries

Problem setting. A fair division instance is a tuple (N, M, V'), where N = [n]
is a set of n € N agents, M = [m] is the set of m € N indivisible items, and
V ={v1,...,v,} is a set of utility functions, one for each agent i € N. Each
utility function v; : M — Zx¢ is specified by m numbers v;; € Z>q, one for
each good j € M, which denotes the value agent 7 has for good j. We assume
that the valuation functions are additive, that is, for every agent ¢ € N, and for
S C M,v(S) = Zjes v;;. Further, we assume that for every good j, there is
some agent 4 such that v;; > 0. Note that we can in general work with rational
values without loss of generality, since they can be scaled to make them integral,
and the efficiency and fairness guarantees we consider are scale-invariant.?

3The properties of EFX, PO, and Nash welfare are invariant under scaling, while EQX is
not scale-invariant in general. However, in our algorithms this is not an issue since we only

165

170

175

180

185

190

195

200

We call a fair division instance (N, M, V') a t-valued instance if [{v;; : i €
N,j € M}| =t. The class of 2-valued instances is made up of two disjoint
fragments: binary instances, where all values v;; € {0,1}; and {a, b}-instances,
where all values v;; € {a,b} for a,b € Z~(. An important subclass of 3-valued
instances is the {0, a, b} class, wherein all values v;; € {0,a,b} for a,b € Z.

Allocation. An (integral) allocation x of goods to agents is a n-partition
(X1,...,X,) of the goods, where x; C M is the bundle of goods allotted to
agent i, who gets a total value of v;(x;). A fractional allocation x € [0, 1]"*™ is
a fractional assignment of the goods to agents such that for each good j € M,
> ien Tij = 1. Here, z;; € [0, 1] denotes the fraction of good j allotted to agent i.
In a fractional allocation x, an agent i receives a value of v;(x;) = > e VigTig-

Fairness notions. An allocation x is said to be:

1. Envy-free up to one good (EF1) if for all i,h € N, there exists a good
J € xp st vi(x) > vi(xp \ {7}).

2. Envy-free up to any good (EFX) if for all ¢, h € N and for all goods j € x;
we have v;(x;) > vi(xp \ {4})-

3. Equitable up to one good (EQ1) if for all i,h € N, there exists a good
J € xp st vi(x:) > vp(xn \ {4}).

4. Equitable up to any good (EQX) if for all i, h € N and for all goods j € xj,
we have v;(x;) > vp(xn \ {7}).

Pareto-optimality. An allocation y dominates an allocation x if for all : € N,
v;(yi) > v;(x;) and there exists h € N s.t. vp(yn) > vr(xp). An allocation is
said to be Pareto-optimal (PO) if no allocation dominates it. Further, an allo-
cation is said to be fractionally Pareto-optimal (fPO) if no fractional allocation
dominates it. Thus, any fPO allocation is PO, but not vice-versa (see Appendix
A for an example).

Nash welfare. The Nash welfare of an allocation x is given by NW(x) =

(HieNvi(xi))l/n. An allocation that maximizes the NW is called an MNW
allocation or Nash optimal allocation. An allocation x approzimates the MNW
to a factor « if a- NW(x) > NW(x*), where x* is an MNW allocation.

Fisher markets. A Fisher market or a market instance is a tuple (N, M,V e),
where N = [n] is a set of n € N agents, M = [m] is a set of m € N divisible
goods, V' = {v1,...,v,} is a set of additive (linear) utility functions, and e =
{e1,...,e,} is the set of agents’ budgets, where each e; > 0. In this model,
agents can fractionally share goods. Each agent aims to obtain a bundle of
goods that maximizes her total value subject to her budget constraint.

Given a (fractional) allocation x with a price vector p, the spending of an
agent ¢ under (x,p) is given by p(x;) = Zjeija:ij. We define the bang-per-
buck ratio cy; of good j for an agent ¢ as a;; = v;;/p;, and the mazimum

uniformly scale the valuations of all agents, which preserves EQX.

205

210

215

220

225

230

235

240

bang-per-buck (MBB) ratio as a; = max; ;. We define MBB; = {j € M :
¢ij/pj = «;}, called the MBB-set, to be the set of goods that give MBB to
agent i at prices p. We say (x,p) is ‘on MBB’ if for all agents i and goods 7,
x5 > 0= j € MBB;. For integral x, this means that x; C MBB; for all i € V.
A market equilibrium or market outcome is a (fractional) allocation x of the
goods to the agents and set of prices p of the goods satisfying the following:

e the market clears, i.e., all goods are fully allocated. Thus, Vj € M,

Dien Tij =1,
e each agent spends their budget, i.e., Vi € N, p(x;) = EjeM Tip; = €,
and,

e agents only receive goods that give them maximum bang-per-buck, i.e.,
(x,p) is on MBB.

Market equilibria are an important tool in computing fair and efficient al-
locations because of their remarkable fairness and efficiency properties; see
e.g., [35, 15, 36, 37, 38, 22, 39].

Theorem 1. (First Welfare Theorem [40]) Let (x,p) be a equilibrium of a
Fisher market M. Then x is fractionally Pareto-optimal.

Given an allocation x for a fair division instance (N, M,V) and a vector of
prices p for the goods such that (x, p) is on MBB, one can define an associated
Fisher market instance M = (N, M,V,e) by setting e; = p(x;). It is easy to
see that (x,p) is a market equilibrium of M. Hence Theorem 1 implies:

Corollary 2. Given an allocation x and prices p of the goods such that (x,p)
is on MBB, the allocation x is fPO.

3. Computing EFX+4PO allocations

We first study the problem of computing an EFX+PO allocation for ¢-valued
instances when ¢ € {2,3}. We show that EFX+PO allocations can be computed
in polynomial-time for 2-valued instances, and in contrast, computing such al-
locations for 3-valued instances is NP-hard.

8.1. EFX+PO allocations for 2-valued instances

We consider {a,b}-instances, as it is known EFX+PO allocations can be
efficiently computed for binary instances. We remark that while the allocation
returned by the algorithm Match&Freeze of Amanatidis et al., [1] for {a,b}-
instances is EFX, it need not be PO (see Appendix A). We improve this result
by showing that:

Theorem 3. Given a fair division {a,b}-instance I = (N, M, V), an allocation
that is EFX, fPO and approzimates the mazximum Nash welfare to a factor of
1.061 can be computed in polynomial-time.

245

250

255

260

265

270

275

280

We prove this theorem by showing that Algorithm 1 computes such an al-
location. We first define some relevant terms, including the concept of price
envy-freeness introduced by Barman et al. [15]. A market outcome (x,p) is
said to be price envy-free up to one good (pEF1) if for all agents i, h € N there
is a good j € x;, such that p(x;) > p(xx \ {7}). Similarly, we say it is pEFX if
for all agents ¢, h € N, and for all goods j € xp, it holds that p(x;) > p(xx\{j}).
For market outcomes on MBB, the pEFX condition implies the EFX condition:

Lemma 1. Let (x,p) be an integral market outcome on MBB. Then x is fPO.
If (x,p) is pEFX, then x is EFX.

Proof. The fact that x is fPO follows from Corollary 2. Since (x, p) is pEFX, for
all pairs of agents i, h € N, and all goods j € x;, it holds that p(x;) > p(xx\{j}).
Since (x, p) is on MBB, x; C MBB;. Let a; be the MBB-ratio of ¢ at the prices
p. By definition of MBB, v;(x;) = a;p(x;), and vi(xx \ {j}) < a;p(xn \ {j}),
for every j € xp. Combining these, we get that x is EFX. O

Given a market outcome (x,p), we define the MBB graph to be a bipartite
graph G = (N, M, E) where for an agent ¢ and good j, (¢,j) € E iff j € MBB;.
Further, an edge (4, 7) is called an allocation edge if j € x;, otherwise it is called
an MBB edge.

For agents ig, . ..,i, and goods j1,...,js, a path P = (ig, j1,%1,J2,- - -, je, e)
in the MBB graph, where for all 1 < ¢ < £, jp» € x;,, N MBB,,_,, is called
a special path. We define the level A(h;ig) of an agent h w.r.t. ip to be half
the length of the shortest special path from iy to i, and to be n if no such
path exists. A path P = (ig,j1,%1,52,---,]¢,%¢) is an alternating path if it is
special, and if A(ig;i0) < A(i1;%0) < -+ < A(ig;i0), i.e. the path visits agents
in increasing order of their level w.r.t. ig. Further, the edges in an alternating
path alternate between allocation edges and MBB edges. Typically, we consider
alternating paths starting from the least spender (LS) agent, who is an agent
i with minimum p(x;) with ties broken lexicographically. We use alternating
paths to reduce the pEF1-envy of agent ¢ towards agent h by transferring goods
along the alternating path (ig, j1, 1, j2, - - -, Je, i¢), i-€., by transferring jp to ip—1,
etc. The structure of an alternating path ensures that transfers are done along
MBB edges, implying that resulting allocations remain on MBB, and hence
preserve the fPO property of the allocation. Figure 1 provides an example of
an alternating path.

Definition 1 (Component C; of a least spender ¢). For a least spender 4, define
C! to be the set of all goods and agents which lie on alternating paths of length
¢ starting from 4. Call C; = |J, C! the component of i, i.e., the set of all goods
and agents reachable from ¢ through alternating paths.

We now describe Algorithm 1. Let &k = a/b > 1. Let us first scale the
valuations to {1,k} since both properties EFX and fPO are scale-invariant.
The algorithm starts with a welfare maximizing integral allocation (x, p), where
p; = vi; if j € x;. The algorithm then explores if there is an alternating

285

290

295

Allocation edge

= = = MBB edge
O--O—0-—0-10
ip J1 iy J2) J3 i3

Figure 1: Example of an alternating path

Algorithm 1 EFX+{PO allocation for {a,b}-instances
Input: Fair division {a, b}-instance (N, M, V')
Output: An integral allocation x
1: Scale values to {1, k}, where k = a/b > 1.
2: (x,p) < Integral welfare-maximizing market allocation, where p; = v;; for
j € X;.
3: Let ¢ € argming,c yp(x) be the least spender
4: while there is an alternating path (¢,71,%1,...,7¢, 60), s.t. P(xi, \ {Je}) >
p(x;) do
5: Transfer j, from i, to i,_1, update allocation x
6: Update the LS i € argmin, c yp(x1)
7. if V agents h ¢ C;, and Vj € x5, : p(xp, \ {j}) < p(x;) then returnx >
pEFX condition satisfied for all agents not in component of LS, defined in
Def.1

8: else
9: Raise prices of goods in C; by a multiplicative factor of &k
10: Repeat from Line 3

path P = (i = 4o,41,%1, - ,je,i¢ = h), where i is the LS agent, such that
p(xn \ {j¢}) > p(x:), i.e., an alternating path along which the pEF1 condition
is violated for the LS agent. We call any such agent h who owns some good j
such that the pEF1 condition is not satisfied by the LS with respect to good j,
a pEF1-violator. When such a path is encountered, the algorithm transfers j,
from h to i,_1. This process is repeated from Line 3 to account for a possible
change in the LS, until there is no such path in the component C; of the LS
agent. Suppose there is some agent h ¢ C; for which the pEFX condition is not
satisfied with respect to the LS, then the algorithm raises the prices of all goods
in the component of the LS agent by a factor of k£, and the algorithm proceeds
once again from Line 3.

The proof of Theorem 3 relies on Lemmas 1-6. We state and sketch some
proofs below, and defer full proofs to Appendix B. We first show that we can
re-scale prices to {1, k}.

Lemma 2. For every outcome (X, p) constructed during the run of Algorithm 1,

300

305

310

there exists a set of prices q such that (x,q) is also on MBB, and for every
JEM, qj € {1,k}.

Proof. Note that initially all prices are either 1 or k. Since all price rises are by
a factor of k (Line 9), final prices are of the form p; = k%, for s; € Z>¢. Let
Jjo be the smallest priced good with p;, = k°, and let jy € x;, for some agent
i € N. Then Vj € x; : p; € {k*,k*'}. By the MBB condition for any agent
h # i for j' € xp and j € x;:
Ui’ Uhj
Py Pj

which gives:

Uhj/
Vhj
Thus all p; € {k® k*T' k*T2}. Either all p; € {k®,k*T'}, or 3j € x; with
p; = k*T2, for some agent h € N. Then by the MBB condition for any good j':

pjr < p; < kT2

Vhi Vh !

—hi > Zhi :

pj pj
which gives:

Djr = mpj > kst

Uhj
Thus either all p; € {k*,k*1} or all p; € {k*1 k*T2}. In either case we can
scale the prices to belong to {1, k}. O

This in fact shows that at any stage of Algorithm 1, the prices of goods are
in {k® k**1} for some s € Z>o. This, along with the fact that goods are always
transferred along MBB edges, and the prices are raised only by factor of &, leads
us to conclude that the MBB condition is never violated for any agent and the
allocation is always on MBB throughout the run of the algorithm. Hence the
allocation is fPO.

Lemma 3. The allocation x returned by Algorithm 1 is on MBB w.r.t. prices
p upon termination. Thus, x is fPO.

The full proof of the above Lemma appears in Appendix B. We now show
correctness:

Lemma 4. The allocation x returned by Algorithm 1, together with the prices
p on termination is pEFX.

Proof. To see why (x,p) is pEFX, first note that by Lemma 2, we can assume
the prices are in {1,k}. Suppose (x,p) is not pEFX. Then there must be an
agent h and some good j € xp s.t. p(xp \ {j}) > p(x;), where i is the least
spender. If h ¢ C;, the algorithm would not have halted (negation of condition
in line 8 holds). Therefore h is in C;. Since the algorithm has halted, this
means that along all alternating paths (¢, j1,41,...,h’, 4, h), it is the case that

10

315

320

325

330

335

340

345

350

p(xp \ {j}) < p(x;). Suppose there is some alternating path s.t. p; = 1. We
know for all j* € xp, pj» > 1. Thus:

p(xi) = p(xn \ {j}) = p(xn) =1 = p(xn \ {i'}),

which means that ¢ is pEFX towards h. Now suppose along all alternating
paths (4, j1,%1,...,h',j,h), it holds that p; = k. Since (x,p) is not pEFX, it
must be the case that there is some good j' € x5, that is not reachable from
i via any alternating path, with p;; = 1. This means that j' ¢ mbby . Since
J € mbby,, comparing the bang-per-buck ratios gives vy ;/p; > vp/j/pjr. This
implies vp,/; > kvy ;o which is not possible when vy, v/ € {1, k}, thus leading
to a contradiction. Hence we conclude that (x,p) is pEFX. O

Lemma 5. Algorithm 1 terminates in polynomial-time.

Proof. (Sketch) We first note that the number of alternating paths from an
agent ¢ to an agent h who owns a good j which is then transferred to an agent
R’ is at most n-n-m. Thus there are at most poly(n, m) transfers with the same
LS and no price rise step.

Next, we argue that the number of identity changes of the least spender
without a price rise step is poly(n,m). Suppose an agent i ceases to be the LS
at iteration ¢, and subsequently (without price-rise steps) becomes the LS again
for the first time at time t’. We show that the spending of 7 is strictly larger
at ¢ than at ¢, and hence has strictly larger utility. Since all utility values are
integers, the increase in i’s utility is by at least 1. In any allocation x, if s;
(resp. t;) is the number of goods in x; that are valued at b (resp. a) by i, the
utility of ¢ is u; = s;b+ t;a. Since 0 < s;,t; < m, the number of different utility
values i can get in any allocation is at most O(m?). Thus, for any agent i, the
number of times her utility increases is at most O(m?). This is our key insight.
It implies that without price rises, any agent can become the least spender only
O(m?) times. Hence, the number of identity changes of the LS in the absence
of price rise steps is at most O(nm?).

For polynomial run-time, it remains to be shown that the number of price-
rises is poly(n,m). We do this via a potential function argument similar to [22].
The full proof is present in 1. O

Finally, we show that the allocation returned by our algorithm also provides
a good approximation to the MNW, and defer the proof to the Appendix B.

Lemma 6. Let x be the allocation output by Algorithm 1. If x* is an MNW

allocation, then NW(x) > 13z NW(x*).

Proof. (Sketch) Let p be the price vector on termination. Consider a scaled fair
division instance I" = (N, M, V") with identical valuations, where v;; = p; for
each i € N,j € M. Since (x,p) is pEFX for the instance I (Lemma 4), x is EFX
for the instance I'. Barman et al., [20] showed that for identical valuations, any
EFX allocation provides a 1.061-approximation to the maximum Nash welfare.

11

355

360

365

370

375

380

385

390

Hence x provides a 1.061-approximation to the MNW of I’, and we can show

that because (x,p) is on MBB (from Lemma 3), x gives the same guarantee for
the MNW of the instance I. O

Lemmas 1, 3, 4, 5, and 6 together prove Theorem 3.

3.2. EFX+PO for 3-valued instances

On generalizing the class of valuations slightly to {0, a, b}, EFX+PO alloca-
tions are no longer guaranteed to exist [11] (see Appendix A for an example).

Therefore we investigate the complexity of checking if an EFX and PO allo-
cation exists or not, and show that this problem is NP-hard.

Theorem 4. Given a fair division instance I = (N, M, V'), checking if I admits
an allocation that is both EFX and PO is NP-hard, even when I is a {0,a,b}-
instance.

We reduce from 2P2N3SAT, an instance of which consists of a 3SAT formula
over n variables {z;};c[n) in conjunctive normal form, and m distinct clauses
{C}} em), with three literals per clause. Additionally, each variable x; appears
exactly twice negated and exactly twice unnegated in the formula. Deciding
if there exists a satisfying assignment for such a formula is known to be NP-
complete [41]. Given a 2P2N3SAT-instance ({Z;}ic[n], {C}}je[m]), we construct
a fair division instance with 2n 4+ m agents and 7n + m goods, with all values
in {0,1, 3} as follows:

1. For every variable x;, create two agents T; and F;. Also create 7 goods:
dr df, g, yl, 2T yE, 2F. Both T; and F; value g; at 3. T; values dI, yI, 2T
at 1, and F; values df',yf' 2 at 1. T; and F; value all other goods at 0.
2. For every clause C; = {1 V {3 V {3, create one agent D; and a good e;.
Dj values e; at 1. If for any k € [3], £, = x; for some i € [n] then D;
values y!', zI' at 1; and if for any k € [3], ¢, = —a; for some i € [n] then
Foat 1. D; values all other goods at 0.

_ F
Dj values y;", 2;

We show that this instance admits an EFX+PO allocation iff the formula has a
satisfying assignment. We illustrate the correspondence between PO allocations
and assignments, and how our construction enforces EFX allocations to give
rise to satisfying assignments (and vice versa). In any PO allocation, for every
i € [n], d* must be assigned to A;, for A € {T, F}; and g; must be assigned to
T; or F;. Consider the assignment x; = A, if g; is allotted to A;, for A € {T, F'},
for all ¢ € [n]. Suppose for some i € [n], g; is allocated to T;. Then in an EFX
allocation, because F; must not envy 7T; after removing dzT from the bundle of
T;, F; must get utility at least 3. This is only possible if both y/" and zf" are
allocated to F;. This leaves y! , 2! for the clause agents, when x; is True. Thus
if there is a satisfying assignment, the remaining goods can be allocated to the
clause agents in an EFX+PO manner. Also, if all assignments are unsatisfying,
some clause agent will end up not being EFX towards another agent in any PO
allocation.
We defer the full proof to Appendix B, and also show:

12

395

400

405

410

415

Algorithm 2 EQX+{PO allocation for {a,b}-instances
Input: Fair division {a,b}-instance (N, M, V)
Output: An integral allocation x

1: (x,p) + Integral welfare-maximizing market allocation, where p; = v;; for
j € X;.

2: Let ¢ € argming,c yvn(xp,) be the least utility (LU) agent

3: while there is an alternating path (4, j1, i1, ..., je, i), s.t. vi, (x4, \ {je}) >
v;(x;) do

4: Transfer j, from i, to i,_1, update allocation x

5: Update the LU agent i € argminy < yvn(xs)

6: if V agents h ¢ C;, and Vj € xp, : vp(xp \ {j}) < vi(x;) then return x
> EQX condition satisfied for all agents not reachable through alt. paths
from LU agent; C; is defined in Def. 1

7: else
8: Raise prices of goods in C; by a multiplicative factor of a/b
9: Repeat from Line 2

Lemma 7. Given a fair division instance I = (N, M,V), checking if I ad-
mits an allocation that is both EFX and fPO is NP-complete, even when I is a
{0, a, b}-instance.

4. Computing EQX+4PO allocations

We now consider relaxations of the fairness notion of equitability, which de-
mands that all agents receive roughly the same utility. An allocation is said to
be equitable up to any good (EQX) if for all i,h € N, for all j € x;, we have
v;(x;) > vp(xp \ {j})- It is known that for binary instances, EQX+PO alloca-
tions can be computed in polynomial-time, whenever they exist [22]. Hence we
first consider {a, b}-instances. We show that:

Theorem 5. Given a fair division {a,b}-instance I = (N, M, V'), an allocation
that is both EQX and fPO exists and can be computed in polynomial-time.

We prove this by showing that Algorithm 2 terminates in polynomial-time
with an EQX+fPO allocation. Since we are interested in EQX as opposed to
EFX, we need not construct a pEFX allocation and can instead work directly
with the values. Since the techniques used in the analysis of Algorithm 2 are
similar to the analysis of Algorithm 1, we defer the full proof to Appendix C.
We remark here that our techniques also enable us to show that EQ1+fPO
allocations can be computed in polynomial-time for {a, b}-instances of chores.

For {0, a, b}-instances, EQX+PO allocations need not exist (example in Ap-
pendix A). Therefore, we study the complexity of checking if an EQX+PO
allocation exists or not, and show that this problem too is NP-hard. The full
proof is deferred to Appendix C.

13

420

425

430

435

440

445

450

455

Theorem 6. Given a fair division instance I = (N, M, V'), checking if I admits
an allocation that is both EQX and PO is NP-hard, even when I is a {0,a,b}-
instance.

5. Maximizing Nash Welfare

We turn to the problem of maximizing Nash welfare for ¢-valued instances
when t € {2,3}. We state our results and sketch the proofs, and defer full proofs
to Appendix D.

5.1. MNW for 2-valued instances

Recall that for {a,b}-instances, we showed in Lemma 6 that Algorithm 1
approximates the MNW to a 1.061-factor. Our main result of this section is a
polynomial-time algorithm for computing the MNW allocation for a subclass of
2-valued instances.

Theorem 7. Given a fair division {a,b}-instance I = (N, M,V'), where a/b >
m —n, an MNW allocation can be computed in polynomial-time.

We present a high-level idea of our Algorithm 3 and technique. We scale
all values to {1, k}. We assume that for every agent ¢ € N, there is some good
Jj € M, such that v;; = k, since if for some agent i, v;; = 1, Vj € M, then we
could rescale her values and set v;; = k, Vj € M. Further we assume w.l.o.g.
that m > n, since otherwise an MNW allocation x can be found by computing
a weighted maximum matching. Under these assumptions, every agent receives
at least one good in x, and hence NW(x) > 0. We also use the fact that there
is a polynomial-time algorithm BinaryMNW that computes an MNW allocation
for binary instances.

The main idea is that when k¥ > m — n, any agent prefers a single good
that they value at k over any number of goods they value at 1, that they can
get. We first try to give every agent one good that they value at k. We do this
by computing a maximum matching M in G and checking if its size is n. If
yes, then we argue that an MNW allocation can be computed as follows. Let
Mpigh = {j € M : 3i € N s.t. v;; = k} be the set of goods valued at k by
at least one agent, and let Mo, = M \ Mp;qn be the set of goods valued at
1 by all agents. We consider the binary instance (N, Mpign, V') where for any
agent i and good j € Mpign, vj; = |vij/k] € {0,1}, and compute an MNW
allocation x’ using the algorithm BinaryMNW. Next, we construct x, an MNW
allocation of I, from the allocation x’ by allocating the remaining goods M.,
in a round-robin fashion to the set IV; of agents who get the least utility in
x’. This corresponds to the procedure RoundRobin on Line 10, which we now
describe. Let |Mjow| = |N1lg + r, where ¢, € Z>¢, and 0 < r < |[Ny|. Then
exactly r agents in Ny are given ¢+ 1 goods from Mj,,,, and |N1| — r agents are
given ¢ goods from M;,,,. This corresponds to lines 5-11 of Algorithm 3.

Suppose on the other hand M has size less than n. Let P be the set of agents
that are unmatched under M. We iteratively compute the sets Pt = {h € N :

14

460

465

470

Algorithm 3 MNW for {a, b}-instances with a/b >m —n

Input: Fair division {a,b}-instance (N, M, V)
Output: An integral allocation x
1: k< a/b
2: Scale valuations so that v;; < v;;/k, and s.t. for every i € N, there is some
jeMst. vy =k.
3: Let G = (N, M, E) be a bipartite graph with (¢,j) € E iff v;; =k fori € N
and j € M.

4: Compute a maximum matching M in G.

5: if |[M| =n then

6: M;”-gh<—{jeM:ElieNs.t. Uijzk'}

7: vgj — |vi;/k] for every i € N, j € Mpign

8: x" < BinaryMNW(N, Mp;ign, V')

9: Ny« {i € N : v;(x}) = minpen vp(x},) }

10: x < RoundRobin(x", N1, M \ Mpign) > see text
11: return x

12: else // M| <n

13: P + Set of agents unmatched under M

14: Compute the set @ as described in text

15: T <+ Set of goods matched to Q under M
16: v = |vij/k]| forie N\ (PUQ),j € M\T
17: x" < BinaryMNW(N \ Q, M\ T, V")

18: X, xj forie N\ Q

19: x; ={j} fori e @s.t. (i,j) e M

20: return x

Ji € P',3j € xp, s.t. v;; = k} for t > 0, where P° = P, and let Q = {J,~, P".
Then S = PUQ is a Hall’s violator set of agents. Let T be the set of neighbors
of S (and Q) in G. Algorithm 3 then computes an MNW allocation x’ for the
binary instance (N \ Q, M \ T, V"), where vj; = [v;;/k] for i € N\ S, and 1
if i € P, in polynomial-time using BinaryMNW, and then computes an MNW
allocation x of I from x’ by further allocating to agents in @ the good they
are matched to in M. This corresponds to lines 12-20 of Algorithm 3. The
formal proof of Theorem 7 lies on several non-trivial arguments and is deferred
to Appendix D.

It is known that an MNW allocation is PO [10]. Our next result improves
the efficiency guarantee offered by an MNW allocation of a 2-valued instance to
fractional Pareto-optimality.

Theorem 8. Given a fair division {a,b}-instance I = (N, M,V), any MNW
allocation is fPO. This result is sharp; an MNW allocation of a 3-valued instance
need not be fPO.

To show this, we present a price-setting algorithm in Appendix D that
assigns a price p; to each good j s.t. (x,p) is on MBB, where x is an MNW

15

475

480

485

490

495

500

505

510

allocation. Together with Corollary 2, this shows x is fPO. We include an
example in Appendix D showing sharpness.

5.2. MNW for 3-valued instances

Our final result shows APX-hardness for the MNW problem with we slighly
generalize the class of allowed values to {0, a,b}. This rules out the existence of
a polynomial-time approximation scheme (PTAS) for the MNW problem even
{0, a, b}-instances, thus strengthening the result of [1], who showed NP-hardness
for the same.

Theorem 9. Given a fair division instance I = (N, M, V), it is NP-hard to ap-
prozimate the MNW to a factor better than 1.00019, even for {0, a, b}-instances.

We present the reduction and defer the full proof to Appendix D. We con-
sider a 2P2N3SAT-instance: {;}ic[n], {Cj}jeim), where 3m = 4n. For each
variable x;, we create two agents T;, F; and one good g; which is valued at 2
by both T;, F;. For each clause C;, we create a good h; which is valued at 1
by agent A; if setting x; = A makes C; true, for A € {T, F}. We also create
2n — m dummy goods {d;};c2n—m] Which are valued at 1 by all agents. All
other values are 0. We show that if we can approximate the MNW to a factor
better than 1.00019, we can decide if there is an assignment with > p;m clauses,
or all assignments satisfy at most < pom clauses, for specific constants p1, ps.
The latter problem is known to be NP-complete [41].

6. Conclusion

In this paper, we push the boundary between tractable and intractable cases
for the problems of fair and efficient allocations. We presented positive algorith-
mic results for computing EFX+PO, EQX+PO, and 1.061-approximate MNW
allocations for 2-valued instances. In contrast, we showed that for 3-valued
instances, checking existence of EFX+PO (or EQX+PO) allocations is NP-
complete, and computing MNW is APX-hard. Our techniques can be adapted
to compute EQ14+PO allocations for 2-valued instances of chores. An inter-
esting direction for future work is to develop approximation algorithms for the
MNW problem for k-valued instances where k is a small constant at least 3.
Another challenging problem is investigating if EFX (or EFX4PO) allocations
exist (and can be efficiently computed) for 2-valued instances of chores.

References

[1] G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. Hollender, A. A.
Voudouris, Maximum Nash welfare and other stories about EFX, Theo-
retical Computer Science 863 (2021) 69-85.

[2] J. Garg, A. Murhekar, Computing fair and efficient allocations with few
utility values, in: In Proc. 14th Symp. Algorithmic Game Theory (SAGT),
2021.

16

515

520

525

530

535

540

545

550

3]

H. Steinhaus, Sur la division pragmatique., Econometrica 17 (1) (1949)
315-319.

S. Brams, A. Taylor, Fair Division: From Cake-Cutting to Dispute Reso-
lution, Cambridge University Press, 1996.

H. Moulin, Fair Division and Collective Welfare, Mit Press, MIT Press,
2004.

D. Foley, Resource allocation and the public sector, Yale Economic Essays
7 (1) (1967) 45-98.

H. R. Varian, Equity, envy, and efficiency, Journal of Economic Theory
9 (1) (1974) 63 — 91.

E. Budish, The combinatorial assignment problem: Approximate competi-
tive equilibrium from equal incomes, Journal of Political Economy 119 (6)
(2011) 1061 — 1103.

R. J. Lipton, E. Markakis, E. Mossel, A. Saberi, On approximately fair
allocations of indivisible goods, in: Proceedings of the 5th ACM Conference
on Electronic Commerce (EC), 2004, pp. 125-131.

I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah,
J. Wang, The unreasonable fairness of maximum Nash welfare, ACM Trans.
Econ. Comput. 7 (3).

B. Plaut, T. Roughgarden, Almost envy-freeness with general valuations,
STIAM Journal on Discrete Mathematics 34 (2) (2020) 1039-1068.

B. R. Chaudhury, J. Garg, K. Mehlhorn, EFX exists for three agents, in:
Proceedings of the 21st ACM Conference on Economics and Computation
(EC), 2020, p. 1-19.

A. D. Procaccia, Technical perspective: An answer to fair division’s most
enigmatic question, Commun. ACM 63 (4) (2020) 118.

B. R. Chaudhury, J. Garg, K. Mehlhorn, R. Mehta, P. Misra, Improving
EFX guarantees through rainbow cycle number, in: Proceedings of the 22nd
ACM Conference on Economics and Computation, EC ’21, Association for
Computing Machinery, New York, NY, USA, 2021, p. 310-311.

S. Barman, S. K. Krishnamurthy, R. Vaish, Finding fair and efficient allo-
cations, in: Proceedings of the 19th ACM Conference on Economics and
Computation (EC), 2018, pp. 557-574.

B. de Keijzer, S. Bouveret, T. Klos, Y. Zhang, On the complexity of effi-
ciency and envy-freeness in fair division of indivisible goods with additive
preferences, in: F. Rossi, A. Tsoukias (Eds.), Algorithmic Decision Theory,
2009, pp. 98-110.

17

555

560

565

570

575

580

585

[17]

[18]

[19]

[20]

[21]

22]

[25]

[26]

[27]

[28]

[29]

E. Lee, APX-hardness of maximizing Nash social welfare with indivisible
items, Information Processing Letters 122.

A. Murhekar, J. Garg, On fair and efficient allocations of indivisible goods,
Proceedings of the AAAT Conference on Artificial Intelligence 35 (6) (2021)
5595-5602.

A. Darmann, J. Schauer, Maximizing Nash product social welfare in allo-
cating indivisible goods, SSRN Electronic Journal 247.

S. Barman, S. K. Krishnamurthy, R. Vaish, Greedy algorithms for maxi-
mizing Nash social welfare, in: Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS), 2018,
p. 7-13.

L. Gourves, J. Monnot, L. Tlilane, Near fairness in matroids, in: Proceed-
ings of the 21st European Conference on Artificial Intelligence (ECAI),
2014, p. 393-398.

R. Freeman, S. Sikdar, R. Vaish, L. Xia, Equitable allocations of indivis-
ible goods, in: Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI), 2019, pp. 280-286.

H. Akrami, B. R. Chaudhury, M. Hoefer, K. Mehlhorn, M. Schmalhofer,
G. Shahkarami, G. Varricchio, Q. Vermande, E. v. Wijland, Maximizing
Nash social welfare in 2-value instances, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 36 (5) (2022) 4760-4767.

J. Garg, M. Hoefer, K. Mehlhorn, Satiation in Fisher markets and approx-
imation of Nash social welfare, CoRR abs/1707.04428.

D. Golovin, Max-min fair allocation of indivisible goods, Technical Report,
CMU-CS-05-144.

H. Aziz, P. Biré, J. Lang, J. Lesca, J. Monnot, Efficient reallocation un-
der additive and responsive preferences, Theoretical Computer Science 790
(2019) 1 — 15.

H. Aziz, The Hylland-Zeckhauser rule under bi-valued utilities, CoRR
abs/2006.15747.

V. V. Vazirani, M. Yannakakis, Computational complexity of the Hylland-
Zeckhauser scheme for one-sided matching markets, in: Proceedings of
the 12th Innovations in Theoretical Computer Science Conference, (ITCS),
2021.

A. Bogomolnaia, H. Moulin, Random matching under dichotomous prefer-
ences, Econometrica 72 (1) (2004) 257-279.

18

590

595

600

605

610

615

620

[30]

[37]

[38]

B. Bliem, R. Bredereck, R. Niedermeier, Complexity of efficient and envy-
free resource allocation: Few agents, resources, or utility levels, in: Pro-
ceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), 2016, p. 102-108.

J. Garg, A. Murhekar, J. Qin, Fair and efficient allocations of chores under
bivalued preferences, Proceedings of the AAAI Conference on Artificial
Intelligence 36 (5) (2022) 5043-5050.

N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, J. Mestre, Assigning papers
to referees, Algorithmica, v.x, x-x (2009) 58.

G. J. Woeginger, A polynomial-time approximation scheme for maximizing
the minimum machine completion time, Operations Research Letters 20 (4)
(1997) 149 — 154.

D. Chakrabarty, S. Khanna, S. Li, On (1, e)-restricted assignment
makespan minimization, in: Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2015, p. 1087-1101.

R. Cole, V. Gkatzelis, Approximating the Nash social welfare with indivis-
ible items, in: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing (STOC), 2015, p. 371-380.

B. R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, K. Mehlhorn,
On fair division for indivisible items, in: 38th TARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 2018, pp. 25:1-25:17.

J. Garg, M. Hoefer, K. Mehlhorn, Approximating the Nash social welfare
with budget-additive valuations, in: Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2018, pp. 2326-2340.

S. Barman, S. Krishnamurthy, On the proximity of markets with integral
equilibria, Proceedings of the 33rd AAAI Conference on Artificial Intelli-
gence (2019) 1748-1755.

P. McGlaughlin, J. Garg, Improving Nash social welfare approximations,
J. Artif. Intell. Res. 68 (2020) 225-245.

A. Mas-Colell, P. Mas-Colell, W. D, M. Whinston, J. Green, C. Hara,
P. Green, I. Segal, O. U. Press, S. Tadelis, Microeconomic Theory, Oxford
University Press, 1995.

P. Berman, M. Karpinski, A. Scott, Approximation hardness of short sym-
metric instances of MAX-3SAT, Electronic Colloquium on Computational
Complexity (ECCC).

19

625

630

635

640

645

650

Appendix A. Examples

Appendiz A.1. PO allocations are not necessarily fPO
Consider the following instance with two agents 1 and 2; and three goods

g1, g2 and g3.

Table A.1: Instance for which a PO allocation is not fPO

g1 | 92 | g3
A 4 2 1
Aq 4 1 2

Consider the allocation x given by x; = {g1},x2 = {92,93}. Agent 1 gets a
utility of u; = 4 and agent 2 gets us = 3. Clearly x is PO, because it maximizes
the utilitarian social welfare. Now consider the fractional allocation y given by
yv1 = {0.75¢g1,0.5g2},y2 = {0.2591,0.5g2, g3 }. Under y, agent 1 gets a utility of
4 but agent 2 agents a utility of 3.5, which is better than the utility under x.
Hence x is PO but not fPO.

Appendiz A.2. MatchédFreeze need not return a PO allocation

We show that the EFX allocation returned by the algorithm of [1] need not
be PO. Consider the following {a, b}-instance with three agents (A1, Az, As) and
8 goods (g1,..-,98). Let a > b> 0.

Table A.2: Instance for which Match&Freeze does not return a PO allocation

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98
Ay al|lal|lal|albd b b b
As |l a | a | a | a | b b b b
As |l a | a | a | b a | a

In the first iteration of Match&Freeze, suppose g; is matched to A; for i € [3].
In the second round, suppose the matching assigns g4 to A; and g5 to Az, after
which gg is assigned to As. Since gg is valued at b by As, and since A, values
g4 at a, agent A; gets frozen. In the next and final round, A3 gets gs and A,
gets g7. In the resulting allocation x, the vector of utilities the agents receive
is (2a,a + 2b,3a). However, consider the allocation y given by y1 = {g1, 93},
v2 = {92, 94} and y3 = {gs5, g7, gs}. The vector of utilities under y is (2a, 2a, 3a).
Thus when a > 2b, y dominates x, showing that x is not PO.

Appendiz A.3. EFX+PO allocations need not exist

Consider the instance in Table A.3 from [11] with 2 agents A;, As and 3
goods {g1,92,93}-

In any PO allocation, gs has to be allocated to A;, and g3 has to be allocated
to Az. Thus, the only PO allocations are ({g1,92},{93}), and ({92}, {91,93})-
However neither of them are EFX, since in the first allocation A, envies Aj
after removing go, and in the second allocation A; envies As after removing gs.
In fact, this example also shows that EQX+PO allocations need not exist.

20

655

660

665

670

Table A.3: Instance for which EFX+PO allocations do not exist

A1l 21110
As || 2 1 0 | 1

Appendix B. Missing Proofs from Section 3

Lemma 2. For every outcome (X, p) constructed during the run of Algorithm 1,
there exists a set of prices q such that (x,q) is also on MBB, and for every
jEeM,q; € {1k}

Proof. Note that initially all prices are either 1 or k. Since all price rises are by
a factor of k (Line 9), final prices are of the form p; = k%, for s; € Z>¢. Let
Jjo be the smallest priced good with p;, = k°, and let jy € x;, for some agent
i € N. Then Vj € x; : p; € {k*,k*T'}. By the MBB condition for any agent
h # i for j' € x; and j € x;:
Yhj' - Phj
Dy Dy

Y

which gives:
Vp 7
pjr < ﬂpj < EST2
Uhj

Thus all p; € {k® k*T! k*T2}. Either all p; € {k* k*t'}, or 3j € x;, with
p; = k*T2, for some agent h € N. Then by the MBB condition for any good j':

Yhj - Uhg'
pj Py
which gives:
pj/ 2 'UhJ/pj 2 ks+1 .
Uhj
Thus either all p; € {k*,k**'} or all p; € {k*1 k*T2}. In either case we can
scale the prices to belong to {1,k}. O

Lemma 3. The allocation x returned by Algorithm 1 is on MBB w.r.t. prices
p upon termination. Thus, x is fPO.

Proof. We first show that (x, p) forms a market equilibrium for the Fisher mar-
ket instance (N, M,V,e), where for every i € N, e¢; = p(x;). It is easy to see
that the market clears and the budget of every agent is exhausted. It remains to
be shown that every agent buys goods from their MBB-set. To see this, notice
that this is the case in the initial allocation in Line 2 of the algorithm. Suppose
we assume inductively that at iteration ¢, in the corresponding allocation x,
every agent buys MBB goods. We ensure that the goods are transferred along
MBB edges, and thus no transfer step causes the MBB condition of any agent
to be violated. Consider a price rise step, in which the prices of all goods in
C;, the component of the LS ¢, are increased by a factor of k. Notice that since

21

675

680

685

690

695

700

705

710

prices of these goods are raised, no agent h ¢ C; prefers these goods over their
own goods, and hence they continue to own goods from their MBB set. For any
agent h € C; and a good j ¢ C;, the bang-per-buck that j gets from h before
the price rise is strictly less than her MBB ratio, since j is not in the MBB
set of h. Further, since all prices are powers of k, the bang-per-buck values are
also (non-positive) powers of k. Thus after the price rise, it cannot happen that
a good j ¢ C; gives a higher bang-per-buck than the goods h already owns,
since her MBB ratio drops only by a factor of k. This shows that the MBB
condition is never violated for any agent throughout the algorithm. Thus, the
final allocation with the final price vector (x,p) forms a market equilibrium.
The First Welfare Theorem implies that x is fPO. O

Lemma 5. Algorithm 1 terminates in polynomial-time.

Proof. We first argue that the number of iterations with the same least spender
i in the absence of any price rise steps is poly(n,m). To see this, we count the
number of alternating paths from 7 to an agent A which owns a good j which
is then transferred to an agent h’. The number of such paths is at most n?m,
thus there are at most poly(n,m) transfers with the same LS and no price rise
step.

Next we argue that the number of identity changes of the least spender
without a price rise step is poly(n,m). First note that the spending of the least
spender never decreases in the execution of the algorithm. Next, observe that
in the absence of price rise steps an agent stops being a least spender only if
she gets a good. Suppose at an iteration ¢, when the allocation is x, the LS ¢
gets a good j and ceases to be the LS. Suppose she becomes the LS again for
the first time after ¢ at the iteration ¢, when the allocation is x”. If she did
not lose any good between ¢ and t”, then her spending has strictly increased.
Suppose on the other hand, let ¢’ be the iteration after ¢t and before ¢ where 4
loses a good j' for the last time. Let x’ be the corresponding allocation and let
h be the LS at t’. Let p be the price vector. Now observe that:

p(xj) = p(x; \ {i'}) > p(x}) > p(xi). (B.1)

The first inequality holds because j’ is the last good that ¢ loses. The second
inequality holds because ;' is removed from ¢ only because 7 violated the pEF1
condition w.r.t. the LS h at x’. The third inequality holds because the spending
of the LS does not decrease.

Since we are assuming that the prices remain unchanged, the MBB-ratio of
the agents do not change. Hence the agents’ utilities are proportional to their
spendings. This means that between the events when a LS ¢ ceases to be a LS,
and subsequently becomes the LS again, her utility has strictly increased, since
her spending strictly increases from (B.1). Since all utility values are integers,
the increase in i’s utility is by at least 1. In any allocation x, if s; (resp. t;) is
the number of goods in x; that are valued at b (resp. a) by i, the utility of ¢
is u; = s;b 4 t;a. Since 0 < s;,t; < m, the number of different utility values ¢
can get in any allocation is at most O(m?). Thus, for any agent 4, the number

22

715

720

725

730

735

of times her utility increases is at most O(m?). This means that without price
rises, any agent can become the least spender only O(m?) times. Thus the
number of identity changes of the LS in the absence of price rise steps is at
most O(nm?).

Thus, for polynomial run time, all that remains to be shown is that the
number of price rise steps is polynomial in n, m. For this, we observe that the
set F; of pEF1-violators just before price rise step number ¢ does not increase
with t. This is because if a new agent becomes an pEF1-violator after a transfer
step, she will cease to be an pEF1-violator in subsequent iterations before the
next price rise event, since she will lose one or more goods in a transfer step.
Further, no new agent can become an pEF1-violator due to a price rise step,
since the spending of the non-pEF 1-violator agents only increases in a price rise
step. The above is argued more formally in Lemma 16 of [15].

Thus, the goods belonging to the set of pEF1-violators have not experienced
any price rise step, and their prices are the prices at the beginning, i.e., either 1
or k. Just before the price rise step number ¢, let of, ..., af, be the MBB-ratios
of the agents. For any good j ¢ C;, where i is the LS agent, for every agent
h, the MBB-ratio of h must at least be the bang-per buck h gets from j. Thus
before any price rise step ¢, for every agent h and any good j ¢ C;:

oy
al, > 2 >

e (B.2)

| =

Consider the potential function given by ¢(t) = >, .y log,, a},. Before the first
price rise step, all the MBB-ratios are 1. Hence a}L =1 for every h € N. So,
(1) = 0. From (B.2), we have for all price rise steps, ¢(t) > nlog,(1/k) = —n.
After a price rise step, the price of every good in C; is raised by k. Hence
the MBB-ratio of every agent experiencing price-rise decreases by a factor k.
Since at least one agent experiences price-rise, ¢p(t + 1) < ¢(t) — 1. Thus, the
number of price rise steps is at most n. Hence the algorithm terminates in
polynomial-time. O

Lemma 6. Let x be the allocation output by Algorithm 1. If x* is an MNW

allocation, then NW(x) > 13z NW(x*).

Proof. Recall from Lemmas 3 and 4 that (x,p) is a pEFX market outcome on
MBB, where p is the price vector on termination. Let «; be the MBB-ratio
of agent 7 in (x,p). Consider a scaled fair division instance I’ = (N, M, V"),
where v}, = a%vij. Since the Nash welfare function is scale-invariant, if x* is
an MNW allocation for I, x* is also an MNW allocation for I’; further if x is a
B-approximation to the MNW value in I’, then x is also a S-approximation to
the MNW value in I. We also have by the MBB-condition that for every agent
i, vi(x;) = p(x;), and that v}(x}) < p(x}). Thus:

NW(x) = (] vixa)) " = (I] p(xa)) ™", (B.3)
]

i€[n i€[n]

23

740

745

750

755

and

= (I ven™™ < (I pxi))'™ (B.4)
1€[n] i€[n]

Next we consider an instance I"” = (N, M, V") with identical valuations, that
is: v, = pj foralli € N,j € M. Since (x,p) is pEFX for the instance I,
x is EFX for the instance I”. Let X be the set of all integral allocations of
the goods to agents. [20] showed that for a fair division instance with identical
valuations, any EFX allocation provides a 1.061-approximation to the maximum
Nash welfare. Thus, we have:

I/ l/n // l/n
>
(1L« -1 061 Iynea? vi ’

i€[n]

which gives:
) 1/n 1 l/n
(,H p(xi) " = g max (] pv)

€[n] i€[n]
B.5
> L(H p(X*))l/n. ()
— 1.061 ¢
i€[n]
Equations (B.3), (B.4) and (B.5) together give:
1
NW(x) > ——NW(x*
(%) = 756 "W,
as claimed. O

Theorem 4. Given a fair division instance I = (N, M, V'), checking if I admits
an allocation that is both EFX and PO is NP-hard, even when I is a {0,a,b}-
mstance.

Proof. We reduce from 2P2N3SAT. An instance of 2P2N3SAT consists of a 3SAT
formula over n variables x1,...,x, in conjunctive normal form. There are m
distinct clauses C1, Csy, ..., Cy,, with three literals per clause. Additionally, each
variable x; appears exactly twice negated and exactly twice unnegated in the
formula. Given an instance of 2P2N3SAT, deciding if there exists a satisfying
assignment is known to be NP-complete [41].

Given a 2P2N3SAT-instance: {x;}icin], {C}}je[m], We construct a fair divi-
sion instance with 2n + m agents and 7n + m goods, with all values in {0, 1, 3}
as follows:

1. For every variable z;, create two agents T; and F;. Also create 7 goods:
dT,dz ,gz,sz, ZT,yZF, 7. Both T; and F; value g; at 3. T} values dzT,le, zT

7,

at 1, and F; values df, yf ,zF at 1. T; and F; value all other goods at 0.

2. For every clause C; = £1 V {5 V {3, create one agent D; and a good e;.
D; Values ej at 1. If for any k € [3], ¢, = x; for some i € [n] then D;
values yl' 2] at 1; and if for any k € [3], £, = —x; for some i € [n] then
D; values yf', zF" at 1. D, values all other goods at 0.

10"

24

760

765

770

775

780

785

790

795

800

Suppose the formula has a satisfying assignment. Using this satisfying as-
signment, we create an allocation of goods as follows: For every z; set to True,
we assign g;,d? to T; and df,yF, zF to F;. For every x; set to False, we assign

AR
gi,df to F; and dl',yl, 2l to T;. We also assign e; to D; for every j € [m].
Since the assignment satisfies all clauses, there exists one literal which is True
in every clause C}. If this literal is an unnegated variable, say x;, then we assign
one of y] or 2z (whichever is left) to D;. If this literal is a negated variable,
say —z;, then we assign one of y/" or 2z (whichever is left) to D;. Notice that
every item has been assigned to an agent that values it at the highest among all
agents. Thus this allocation maximizes the utilitarian social Welfare, and is PO.
Further, it is also EFX. This is because under this assignment for every i € [n],
if x; is True, T; gets the highest utility of 4 and does not envy any agent, and
in this case F; gets a value of 3 and thus does not envy T; even after removing
d¥ from T;’s bundle. An analogous argument holds when z; is False. Next, for
each j € [m], D; gets a value of at least 2, and the number of goods belonging
to an agent D, valued at 1 by D, for j # j’ is at most 2 since the clauses are
distinct. Thus the maximum utility D; has for goods allocated to D;s is 2, and
thus D; does not envy Djs for any j' € [m]. Finally note that D; can have a
value of at most 2 for the goods owned by T; or F; for any ¢, and hence D; does
not envy either. Thus the allocation is EFX.

Suppose on the other hand every assignment is unsatisfying, i.e., under any
assignment there is always some clause C; all of whose literals are False. Suppose
there exists an EFX and PO allocation of goods to agents. Since the allocation
is PO, for every i € [n], dI’ must be assigned to T}, dI" must be assigned to Fj,
and g; must be assigned to either T; or F;. Also, for each j € [m], e; must be
assigned to D;. Suppose for some i € [n], g; is allocated to T;. Then, because
F; must not envy T; after removing d;fp from the bundle of T;, F; must have
utility at least 3. This is only possible if both y/” and 2/ are allocated to Fj.
Similarly, if g; is allocated to F;, then for the allocation to be EFX, yI" and 27
both must be allocated to T;. Now consider the assignment defined from the
allocation in the following manner: if g; is allocated to T;, set x; to True. If g;
is allocated to Fj, set x; to False. By our assumption, this assignment leaves
one at least one clause C; unsatisfied, which means all literals in that clause
evaluate to False. If z; is a literal appearing in Cj, then D; values yl', 2T but
since x; is set to False, both these goods are owned by T;. Similarly, if —x; is a
literal appearing in C}, then D; values yl' 2F | but since z; is set to True, both
these goods are owned by F;. Thus, all goods except e; that D; values belong
to other agents, with there being at least one agent (some T; or F; for some
i € [n]) who owns two such goods. Clearly D; will envy this agent (7; or F;)
after removing one good (d7 or df') from their bundle. Thus, the allocation is
not EFX, which contradicts our assumption.

This shows that checking if a fair division instance admits an EFX and PO
allocation is NP-hard. O

Lemma 7. Given a fair division instance I = (N,M,V), checking if I ad-
mits an allocation that is both EFX and fPO is NP-complete, even when I is a

25

805

810

815

820

825

{0, a, b}-instance.

Proof. Notice that our reduction in the proof of Theorem 4 constructs an in-
stance for which every PO allocation is also fPO, since every good is assigned
to an agent who values it at the highest among all agents. This shows that
checking if an allocation is EFX+fPO is NP-hard, even for {0, a, b}-instances.
Using the fact that checking whether an allocation is fPO or not can be de-
cided in polynomial-time (see for example [15]), we conclude that checking if an
allocation is EFX+fPO is in NP. This shows that checking if an allocation is
EFX+{PO is NP-complete, for {0, a, b}-instances as well. O

Appendix C. Missing Proofs from Section 4

Theorem 5. Given a fair division {a,b}-instance I = (N, M,V), an allocation
that is both EQX and fPO exists and can be computed in polynomial-time.

Proof. The proof relies on Lemmas 8 and 9 below.

Lemma 8. Let x be the allocation returned by Algorithm 2. Then x is EQX
and fPO.

Proof. Similar to Lemma 4, we can show that x together with the price vector

p on termination forms a market equilibrium. This shows via the First Welfare
Theorem that x is fPO. We can use Lemma 2 to scale all prices to {1, k}.
Suppose x is not EQX. Then there is an agent h such that for all j € xp,

op(xp \ {j}) > vi(x;). If b ¢ C;, then the algorithm would not have halted.

This means that h € C;.

Since the algorithm has halted, along all alternating paths P = (4, j1,41,...,h’,j, h),

it is the case that vp(xp \ {j}) < vi(x;). One of two of the following cases must

hold:

1. There is some alternating path P = (i, j1,%1,...,h', 4, h), with vp; = b.
Then for all j' € xp:

vi(x;) > vn(xn \ {5}) = vn(xn) — b= vn(xn \ {5'}),

and for all j' € x;, with vy = a:

vi(x;) > vp(xn \ {5}) > vn(xn) —a = vn(xn \ {5'}),

which means that the EQX condition is satisfied for h.

2. Suppose along all alternating paths P = (i, j1, 41, ..., 1, j, h), it holds that
vp; = a. If for all goods j’ € x;, not reachable along any alternating path,
it holds that vy = a, then the EQX condition is satisfied for h:

vi(x;) > vp(xn \ {7}) = vn(xn) — a = vn(xn \ {7'}).

On the other hand suppose there is a good j’ € x;, that is not reachable
from ¢ via any alternating path, with vp; = b. Note that this means

26

830

835

840

there are two goods j,j' € xp s.t. vp; = a, and v,y = b. By the MBB
condition, we must have p; = k and p;; = 1. Consider any alternating
path P = (i,j1,%1,...,h',j,h). Then it must be the case that j' ¢ mbby, .
If ap is the MBB-ratio of A/, then this means:

'Uh/j > ’Uh/j/

Qpr =)
pj pj

which gives vp/; > kvpsj which is not possible when vy, vpr 0 € {1, k}.
This shows that the returned allocation x is EQX. O
Lemma 9. Algorithm 2 terminates in polynomial-time.

Proof. Using similar arguments as made in Lemma 5, we can conclude that
the number of transfers without a change in the identity of the LU agent is
poly(n,m), and also that the number of identity changes of the LU agent without
a price rise step is poly(n,m). Thus for polynomial run time, we only need to
bound the number of price rise steps by a polynomial in n, m.

For this, we observe that the set of EQIl-violators before a price rise step
does not increase during the execution of the algorithm. This is because if a
new agent becomes an EQ1-violator after a transfer step, she will cease to be an
EQ1-violator in subsequent iterations before a price rise event. Also, due to a
price-rise step, no new agent can become an EQ1-violator since the utility of all
agents remains the same. Thus, the goods belonging to the set of EQ1-violators
have not experienced any price rise step, and their prices are either a or b. Just
before the price rise step number ¢, let of,...,a!, be the MBB-ratios of the
agents. For any good j ¢ C;,, where i is the LU agent, for every agent i, the
MBB-ratio of ¢ must at least be the bang-per buck ¢ gets from j. Thus, just
before any price rise step ¢, for every agent ¢ and any good j ¢ Cj,:

al > i >
by

(C.1)

ISERS

Consider the potential function given by:

o(t) = Z logy, o
i€[n]

Before the first price rise step, all the MBB-ratios are 1. Hence o} = 1 for
every i € N. So, ¢(1) = 0. From (C.1), we have for all price rise steps,
o(t) > nlog,(b/a) = —n. Also after a price rise step, at least one agent’s
MBB-ratio value decreases by a factor k, thus ¢(t + 1) < ¢(t) — 1. Thus, the
number of price rise steps is at most n. Hence, the algorithm terminates in
polynomial-time. O

This concludes the proof of Theorem 5. O

27

845

850

855

860

865

870

875

880

Theorem 6. Given a fair division instance I = (N, M, V'), checking if I admits
an allocation that is both EQX and PO is NP-hard, even when I is a {0,a,b}-
instance.

Proof. Once again, we reduce from 2P2N3SAT. Let the 2P2N3SAT instance
contain n variables z1,...,z, and m distinct clauses Cy,C5,...,C,,. Each
clause Cj is of the form £}V (7 V €3, where for each t € [3], the literal £} is either
x; or —zx; for some i € [n).

Given a 2P2N3SAT-instance: {z;}icn), {Cj}jem], We construct a fair di-
vision instance with 2n + 3m agents and Tn + 2m goods as follows, where
2b < a < 3b. In fact our reduction works for the case of {0,1,3}-instances
too.

1. For every variable x;, create two agents T; and F;. Also create 7 goods:
dr,dl, gyl 2Tyl 2F. Both T; and F; value g; at a. T; values dI, yI, 2T
at b, and F; values df', yF', 2F" at b. T; and F; value all other goods at 0.

2. For every clause C; = E} \Y, E? V 3, create three agents Djl»7 Djz-7 DJ?? and two
goods pj, q;. For t € [3], each Dj values both p; and g; at a. If K;- = g, for

T 2T at a; and if 5 = —x; then DY values

ARt

some 4 € [n] then DY values y
yF 2 at a. D? values all other goods at 0.

Suppose the formula has a satisfying assignment. Using this satisfying as-
signment, we create an allocation of goods as follows: For every x; set to True,
we assign g;,d! to T; and dF,yF' 2F to F;. Additionally, we assign y] and 2]
to the agents D; for which Ez» = x;. Analogously, for every z; set to False, we
assign g;,d" to F; and dI,yl, 2] to T,. Further, we assign yf" and 2! to the
agents D; for which E; = —x;. We also assign p;, q; to agents in {Djl», D?,D?}
for every j € [m], so that every agent D; gets utility of at least a. This is
possible since the assignment satisfies all clauses, meaning that there exists at
least one True literal in every clause. Notice that every item has been assigned
to an agent that values it at the highest among all agents. Thus this allocation
maximizes the utilitarian social Welfare, and is PO. Further, it is also EQX.
This is because under this assignment for every i € [n], if x; is True, T; gets a
utility of a 4+ b, and F; gets a utility of 3b. If z; is False, T; gets a utility of 3b,
and F; gets a utility of a+b. The utility of any agent D; is either a or 2a. Since
2b < a < 3b, we see that the allocation is EQX.

Suppose on the other hand every assignment is unsatisfying, i.e., under any
assignment there is always some clause C; all of whose literals are False. Suppose
there exists an EQX and PO allocation of goods to agents. Since the allocation
is PO, for every i € [n], diT must be assigned to Tj;, dZF must be assigned to Fj,
and g; must be assigned to either T; or F;. Also, for each j € [m], p; and ¢; must
be assigned to agents in {D}, D3, D?}. Suppose for some i € [n], g; is allocated
to T;. The utility of T; is at least a + b. Since the allocation is EQX, F; must
have a utility of at least a, which equals T}’s utility after removing d! of value
b. Since a > 2b, this is only possible if F; receives d, y/" and 2}, thus obtaining
a total value of 3b. Similarly, if g; is allocated to F;, then for the allocation

to be EQX, 3! and 2] must be allocated to T;. Now consider the assignment

28

885

890

895

900

905

910

915

920

defined from the allocation in the following manner: if g; is allocated to Tj;, set
x; to True, and if g; is allocated to Fj;, set x; to False. By our assumption, this
assignment leaves at least one clause C; unsatisfied, which means all literals in
that clause evaluate to False. If for some t € [3], £} = x;, then DY values yl, 2T
However since z; is False, these goods have been assigned to T;. Similarly if
E;- = —x;, then D; values yf, 2F. However since x; is True, these goods have
been assigned to F;. We conclude that the three agents D}, D3, D} can receive
only the goods p; and g;, implying that some agent will get a utility of 0. Thus
the allocation cannot be EQX, which contradicts our assumption.

This shows that checking if a fair division instance admits an EQX and PO
allocation is NP-hard. O

Similar to Lemma 7, we can show that:

Lemma 10. Given a fair division instance I = (N, M, V'), checking if I admits
an allocation that is both EQX and fPO is NP-complete, even when I is a
{0, a, b}-instance.

Appendix D. Missing Proofs from Section 5

Theorem 7. Given a fair division {a,b}-instance I = (N, M, V'), where a/b >
m —n, an MNW allocation can be computed in polynomial-time.

Proof. Suppose we are given a {a, b}-instance (N, M, V) with k = a/b > m —n.
Since Nash welfare is scale-invariant we can scale the values to {1,k}. We can
also assume without loss of generality that m > n, since if m < n, then an
MNW allocation x can be computed by solving a weighted maximum matching
problem. Since all agents value all goods positively, NW(x) > 0. Further we can
assume that for every agent ¢ € N, there is some good j € M, such that v;; = &,
since if for some agent 4, v;; = 1 for all j € M, then we could rescale her values
and set v;; = k for all j € M. For a set of agents S C N, let x5 = [J;cgxi be
the set of goods owned by agents in S.

The main idea in computing an MNW allocation is that when k > m—n, any
agent prefers a single good that they value at k over any number of goods they
value at 1. We use this idea to show several properties of an MNW allocation
x. Partition the set of agents into L sets depending on the number of goods of
value k they own in x. Specifically, let N = Ny U---U N, such that there exist
numbers m; < --- < myp € Z>q, such that for any 1 < ¢ < L, for all agents
i € Ng it holds that |{j € x; : v;; = k}| = m,. We show:

Lemma 11. There exists r € Z>¢ s.t. for all i € N1, v;(x;) = mik +r;, where

ri € {r,r+1}.

Proof. Let i € argmin;cyv;(X;), and let 7 = v;(x;) — m1k. Suppose there exists
h € Ny s.t. vp(xp) —mik > r+ 2. Then on transferring one good j € x; with
vp; = 1, we can observe that the NW strictly increases, contradicting the fact
that x is Nash optimal. O

29

925

930

935

940

Lemma 12. For all i ¢ Ny, and for all j € x;, vy = k.

Proof. Suppose for some ¢ > 2 there is some agent h € Ny and some good j € xp,
with vj; = 1. Consider an agent i € argmin, ¢y, v/ (Xi/), and let v;(x;) = mik+r
for some r € Z>¢. Since £ > 2, my > my + 1, and hence

vp(xp) > mek+1> (mi +1)k+1 .

Note that each agent other than ¢ owns at least one good, and h owns at least
two goods. Hence ¢ can own at most m —n goods. Thus »r < m —n < k, and
vi(x;) + 1 <mik+k+1<wvp(xp). Now consider the allocation x” obtained on
transferring j from h to ¢. Then v, (x},) = vp(xs) — 1 and v;(x}) > vi(x;) + 1.
We have:

3 (x;)un (x3,) > vi(%;) v (xn)
= vp(xp) > vi(x) + 1,

which was shown to be true, contradicting the fact that x is Nash optimal. [

Lemma 13. Suppose m; > 1. Consider any good j € x; for an agent i € Ny
with vi; = 1. Then for every agent h € Ny it must be the case that vy,; = 1.

Proof. Suppose for sake of contradiction there is some j € x; for ¢ € N; with
vij = 1, and some h € N with vy,; = k. First let us assume h € N, for £ > 2.
Since every agent owns at least one good and i owns at least two (since my > 1),
h can own at most m — n goods. Thus my < m —n < k. This means that
vp(xp) +k=mek +k <k?+k <mik® +k = k(mik + 1) < kv;(x;). Consider
the allocation x’ obtained on transferring j from ¢ to h. Then v;(x}) = v;(x;)—1
and vy (x},) = vp(xn) + k. We have:

v (X})vn (X)) > vi(X;)vn(Xn)
<= kvi(x;) > vp(xp) + k,

which was shown to be true, contradicting the fact that x is Nash optimal.
Now suppose h € N;. If there is some good j' € xj; with v,j» = 1, then
on swapping j and j' among the agents i and h, observe that the NW strictly
increases. If there is no such j’, then transferring j from ¢ to h strictly increases
the NW, again contradicting the fact that x is Nash optimal. O

Consider a bipartite graph G = (N, M, E) with edges between the agents N
on one side and M on the other, where (4, j) € E iff v;; = k. Then:

Lemma 14. G has a matching of size n iff my > 1.

Proof. The reverse direction is obvious. If m; > 1, then in the allocation every
agent gets a good that she values at k. This constitutes a matching in G of size
n.

On the other hand, suppose G has a matching of size n and yet m; = 0 in an
MNW allocation x. Now consider walks starting from an agent ig € Ny of the

30

945

950

955

960

965

970

975

form (i, j1,1,..., s, 0s), where for every 1 < r <'s, v;,_,; =k and j, € x,,.
Note that such a walk exists because for we ensure the valuations are such that
for any agent there is some good she values at k. Suppose there is some such
walk in which there is some agent is ¢ N; who owns two goods js and js11
which she values at k. Then on transferring good j, to i,_1 for each r € [s],
we observe that the NW strictly increases as v;,(x;,) < k, and v;, (x;,.) > 2k.
Similarly, if there is a walk that is actually a cycle, i.e., i5 values a good jo € x;,
at k, then upon transferring goods along the cycle the NW strictly improves.
Finally suppose for every such walk starting with an agent iy € Ny, terminates
at an agent 75 who is either in Ny or is in Ny and owns only one good j, that
she values at k. Consider the set S of agents which are part of such walks.
Then by the property of such walks, agents in S collectively like at most |S| —1
goods at value k. That is, Hall’s condition is violated for the set S in the graph
G. However this contradicts the fact that G has a matching of size n, hence
disproving the assumption that m; = 0. O

Let Mpign ={j € M : 3i € N s.t. v;; = k} be the set of goods valued at k
by at least one agent, and let Mo, ={j € M : Vi € N :v;; =1} = M \ Mpgn
be the set of goods valued at 1 by all agents. Suppose G has a matching of size
n. From Lemma 13 it is clear that all goods owned by agents in N; that are
valued at 1, are also valued at 1 by any other agent, i.e., they belong to Mj,,.
Consider the allocation x’ given by x| = x; N Mp,g4p, for all agents ¢. Then from
Lemma 14, every agent gets at least one good they value at k in x’. From
Lemma 12, every agent owns only goods they value at k in x’. Thus, it is clear
that x’ maximizes the NW for the instance I’ = (N, Mp;g, V'), where for any
agent i € N and good j € Mpign, vi; = |vij/k] € {0,1}. Since I" is a binary-
valued instance, using the algorithm BinaryMNW of [20] we can compute x'.
Then using Lemma 11, x can be obtained from x’ by allocating M;,,, to agents
in N7 in a round-robin fashion, which is done by the procedure RoundRobin.
This corresponds to lines 5-11 of Algorithm 3.

We now consider the case of m; = 0. By Lemma 14 we know that there is
no matching of size n in G. Let us now define the sets: Ni™' ={h e N :3i ¢
Ni,3j € xp, s.t. vy =k} for t > 0, where N = N;. We show:

Lemma 15. Suppose m; = 0. Then N} C Ny fort > 1 and my = 1.

Proof. Suppose for some T' > 1 and i; € NJ there is some agent h € N, s.t. for
some good jry1 € Xp S.t. Vhj.,, = k. By definition for 0 < ¢ < T there exist
agents i; € N and goods ji+1 € X;,,, such that ji11 € x441 and v;,5,,, = k for

all 0 < ¢t < T, where h = i7y;. Let X' be the allocation obtained from x by
transferring good j; to i;—; for each ¢t € [T + 1]. We have:

Vio (Xio Jun (X1,) > ig (Xig Jun (Xn)
= up(xp) > vy (x4) +

As shown before, v;,(x;,) < m —n < k. Hence v;,(x;,) + k < 2k. Now see
that vy, (xp) = mek. If either £ > 3, or £ = 2 and mo = 2, then v, (xp) > 2k >

31

980

985

990

995

1000

vy (Xi,) + k, which means x is not Nash optimal. Now suppose £ = 1. Then
performing the transfer of goods as before, and additionally transferring a good
Jjo € X;, to i741 improves the NW since the valuation of ig improves. This
shows that N C N for all t > 1, and mo = 1. O

Let U,~; N3 = N3, which is a union of at most n sets since Ny C Na.
Further, Lemma 15 also shows that set of goods valued at k by some agent in N,
or N3 is owned by agents in N3 only. That is, {j : v;; = k,i € NyUN3} = xp;.
From Lemma 12, all agents not in N7 own at least one good they value at k.
This shows that N; U N3 is a Hall’s violator set S of agents in G. If M is the
maximum matching in G, then N; comprises of agents who do not get matched
under M, and NS is the set of agents in S who are matched under M.

We now show how an MNW allocation x can be computed. Let M be the
maximum matching and let P be the set of agents that are unmatched under
M. The set P corresponds to the set V7 in the preceding analysis. Analogous to
how N3 was computed, compute the set), and define S = PUQ to be a Hall’s
violator set of agents. Let T be the set of neighbors of S in G. Notice that in
any MNW allocation, the agents in Q) get only a single good, which they value at
k. Further agents in S value only goods in T" at k. This means that x’ actually
maximizes the NW for the instance I’, where I' = (N \ Q, M \ T, V), and x’ is
the allocation x but restricted to agents in N \ Q. Notice from Lemma 12, all
agents apart from P get only goods that they value at k. Also since agents in
P value all goods not in T at 1, in fact x’ maximizes the NW for the instance
I"=(N\Q,M\T,V’), where:

’U/ N L’Um/kj leEN\S
Yo l1ifieP

foralli € N\ Q and j € M\ T. Since I"” is now a binary instance, we can
compute an MNW allocation x” in polynomial-time. Then, x can be obtained
by x’ by simply assigning to the agents in @ the goods in T' they were matched
to under M. This corresponds to lines 12-20 of Algorithm 3.

To conclude, Algorithm 3 computes an MNW allocation for {a, b}-instances
with a/b > m — n in polynomial-time. O

Theorem 8. Given a fair division {a,b}-instance I = (N, M,V), any MNW
allocation is fPO. This result is sharp; an MNW allocation of a 3-valued instance
need not be fPO.

Proof. We do this by showing that there are prices p for the goods s.t. (x,p)
is on MBB. We further require that all p; € {1, k} by invoking Lemma 2. For a
set of agents S C N, let x5 = (J;cg X be the set of goods owned by agents in
S.

For this we present the price-setting algorithm, Algorithm 4.

Algorithm 4 terminates in polynomial-time since it sets the price of each
good exactly once, and in every iteration of the loops the price of at least one
good is set. Let p be the prices of the goods as set by Algorithm 4. Note that

32

1005

1010

1015

1020

1025

Algorithm 4 Price-setting algorithm

Input: MNW allocation x for an {a, b}-instance (N, M, V)
Output: Prices p of goods s.t. (x,p) is on MBB

—_
N =

e e
@ Gk w

-
=@

k<« a/b
Ny = {Z e N : Hj,j’ € x; s.t. Vij = k,Uij/ =].}
NQZ{iENZVjGXi,Uij:k}
Ngz{iENZVjGXi7Uij:1}.
for all j € xy, do
Dj < Vij, lf] € X; for i € N1
for all j € zn, do
Dj ~—1
repeat
NQI — {Z € N2 : E'] ¢ x; s.t. P = 1,’Uij =]C}
for all j € xy; do
Dj —1
Ng(—NQ\Né

: until N #£ 0
: for all j € xy, do > At this point, Nj =0

pj(—k

the MBB ratios of agents in N7 or N3 are 1. The MBB ratio of agents in N,
can be either 1 or k.

Now we claim that (x,p) is on MBB. Suppose for the sake of contradiction

for some agent ¢ the allocation is not on MBB. We consider two cases:

1. Agent i € N1 U N3 is not on MBB. Since the MBB ratio of agent i, a; = 1,

there must be some good j € xj, \ x; for some agent h s.t. v;;/p; > 1,
which means v;; = k and p; = 1. Suppose h € Ny. Since p; = 1, by
our Algorithm 4 this happens only if there is some j; € x5, \ x5 s.t.
pj; = 1, vp;, = k. Further, suppose h;y € Na. We continue the same
reasoning and arrive at a sequence of goods and agents (i,j = jo,h =
ho,ji,h1,. .., je, he), st jo € Xp,,, pj,, = 1, for all 0 < ¢/ < £. Further
Uh,j, = k and hy € Ny, for all 0 < ¢/ < £ —1. Also vp,5, = 1 and
he € N1 U Ns. Such a path exists by the price-setting algorithm and
because the number of agents in Ny is bounded by n. Now transferring j,
to hy—q for all 1 < ¢ < ¢, j to i, and some good j' € x; with v;;; =1 to
hy improves the Nash welfare, leading to a contradiction. Note that this
analysis also subsumes the cases of h € N7 and h € N3. Therefore for no
agent ¢ € N1 U N3 the MBB condition is violated.
. Agent i € Ny is not on MBB. If a; = k then the MBB condition cannot
be violated for 4. Then it must mean that «; = 1, and that there is a good
J ¢ x; with p; = 1 and v;; = k which causes the MBB condition of i to be
violated. However, in this case, Algorithm 4 would have set the prices of
goods in x; to 1 instead of k (from Line 12, since ¢ would belong to NJ by

33

1030

1035

1040

1045

Line 10), causing «a; to equal k instead of 1. This means that the MBB
condition of no agent ¢ € Ny is violated.

In other words, the allocation (x,p) is on MBB. Thus, any MNW allocation for
{a, b}-instances is fPO.
For sharpness, consider the 3-valued instance of Table D.4.

Table D.4: A 3-valued instance for which MNW allocation is not fPO

go | 91 | 92
Ay 5 2 1
As 5 1 2

The MNW allocations are x = ({go}, {91, 92}) and y = ({91, 92}, {go}) with
Nash welfare /5 - 3 = v/15. However it is easy to see that in any fPO allocation
z, g; € z; for i € [2]. Such an allocation has Nash welfare only v/7 -2 = /14.
Hence MNW allocations need not be fPO for k-valued instances for k > 3. O

Theorem 9. Given a fair division instance I = (N, M,V'), it is NP-hard to ap-
prozimate the MNW to a factor better than 1.00019, even for {0, a, b}-instances.

Proof. We consider a 2P2N3SAT-instance: {;}ic[n], {C}}jem], Where 3m = 4n.
There exist constants pp, p2 such that it is NP-hard to decide if there is an
assignment with > p;m clauses satisfied, or if in all assignments at most < pom
clauses are satisfied [41]. Here, p; = (1016 — €)/1016, po = (1015 + €)/1016, for
small € > 0.

For each variable x;, we create two agents T;, F; and one good g; which is
valued at 2 by both Tj, F;. For each clause C}, we create a good h; which is
valued at 1 by agent A; if setting z; = A makes C; true, for A € {T,F}. We
also create 2n — m dummy goods {d;} ec[2n—m) Which are valued at 1 by all
agents. All other values are 0. Let G be the collection of g;’s, H of h;’s and D
of d;’s. Overall, there are 2n agents and 3n goods.

Suppose that there is an assignment with £ > p;m satisfied clauses. Then
we construct an allocation as follows. For every variable z; set to True, assign
g; to F;, and for every variable x; set to False, assign g; to T;. Let P be the set
of n agents who get a good from G, and @ be the set of agents who don’t. For
each satisfied clause Cj, give h; to an agent in @) who has positive value for it.
Thus ¢ goods from H are allocated. Suppose p agents get utility 2 from goods
in H. Then ¢ — 2p agents get utility of 1 from H, and n — ¢ + p agents get 0
utility from H (since each h; gives utility 1). Corresponding to each unsatisfied
clause C};, the remaining m — ¢ goods from H must be assigned to an agent in P
who already has some good from G. We now allocate goods from D to agents
in @ to try and “balance” the agents’ utilities so that agents get a utility of 2.
The “demand” for goods of value 1 is 2(n — £+ p) + ¢ — 2p = 2n — ¢, and the
“supply” is 2n — m. The shortage is m — £, hence n — m + £ agents in @) get
a utility of 2, and m — £ agents in @ get a utility of 1. Let H' C H be the
goods h; corresponding to unsatisfied clauses C; must be allocated to agents

34

in P. Consider a bipartite graph with goods H’ on one side and agents P on
the other side, with an edge from a good to an agent if the agent has value 1
for the good. Here, H’' corresponds to unsatisfied clauses, and P corresponds
to False literals. Since each unsatisfied clause contains three literals which are
False under the given assignment, in the graph each good in H’ will have edges
to exactly three agents in P in this graph. Further we know that all clauses
contain distinct literals, and all clauses are distinct. Thus any W C H’ has
at least |IW| outgoing edges. By Hall’'s Marriage Theorem, this graph has a
matching saturating H’, further |H'| = m — ¢ < (1 — p1)m < n = |P|, since
p1 > 1/4. We then allocate goods in H' to their matched agents. This completes
the allocation, and we have exactly m — ¢ agents in P getting a utility of 3. This
implies a lower bound M NW on the maximum Nash welfare:

MNWE = (3m=t . g2n-2m+2t qm—0) b

1

feen @) e

p1m

m.n—mﬁ.%zn
> (3™ 4m™m) (3) :

Now suppose under all assignments at most pam clauses are satisfied. Con-
sider the Nash optimal allocation. Since it is PO, every g; is assigned to either
T; or F;. Let P be the set of n agents owning a good from G, and @ the set
of n agents who don’t get goods from G. Agents in P get utility of at least 2.
Consider an assignment defined as follows: for every g; assigned to T;, set x; to
False; and for every g; assigned to Fj, set x; to True. Let £ be the number of
satisfied clauses. Consider the set H' of goods h; corresponding to unsatisfied
clauses C;. Any good h; ¢ H' must be allocated to an agent A; s.t. setting
z; = A makes Cj; true, for A € {T, F'}. Clearly, this agent A; belongs to Q. Let
p be the number of agents in @ which get utility of 2 from goods in H \ H'.
Then ¢ — 2p agents from @ get a utility of 1, and n — £ 4+ p agents from @ get
0 utility from goods in H \ H'. The goods from D must be allocated to agents
only in @, since it is sub-optimal (for maximizing NW) to give a good d; to an
agent in P who then gets a utility of 3, while some agent in @) has a utility of at
most 1. Hence by a similar argument as the previous part, exactly m — £ agents
in Q get utility of 1 in the optimal allocation. Now consider goods in H’. These
goods must be allocated to agents in P, who also own some good from G. To
get an upper bound on Nash welfare, we can consider the best case where each
good in H' is given to exactly one agent in P. Thus m — £ agents in P get a
utility of 3, and rest of the agents in P get utility 2. This gives an upper bound

35

1050

MNWYUY on the maximum Nash welfare:

MNWU = (3m—t . g2n-—2m+2¢ 1m7€)ﬁ

1

m n—m 4 N
= (3 4T <3)) (D.2)

Thus from Equations D.1 and D.2, we cannot approximate the Nash welfare to
a factor better than:

MNW": (4) e

=3 (3

unless P = NP. With the best known values for p1, pa from [41], we get « =
1.00019, which is better than the factor 1.00008 of [17], which applies for 5-
valued instances. An APX-hardness result for 3-valued instances was not known
until now. The best hardness factor for the general MN'W problem is 1.069 due
o [24], however this only applies to 4-valued instances. O

36

	Introduction
	Our Contributions
	Other Related Work

	Preliminaries
	Computing EFX+PO allocations
	EFX+PO allocations for 2-valued instances
	EFX+PO for 3-valued instances

	Computing EQX+PO allocations
	Maximizing Nash Welfare
	MNW for 2-valued instances
	MNW for 3-valued instances

	Conclusion
	Examples
	PO allocations are not necessarily fPO
	Match&Freeze need not return a PO allocation
	EFX+PO allocations need not exist

	Missing Proofs from Section 3
	Missing Proofs from Section 4
	Missing Proofs from Section 5

