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A B S T R A C T   

This study is aimed at demonstrating the fatigue and fracture mechanisms in nanoscale NiTi shape memory alloy 
thin films. During functional fatigue, permanent strains are attributed to residual martensite pinned by Ni4Ti3 
precipitates and interfacial dislocations parallel to type II internal twins of the martensite. These residual 
martensite-austenite interfaces acted as heterogeneous nucleation sites for stress-induced martensite in subse-
quent cycles thereby explaining the reduction in transformation stress. Finally, structural failure was observed to 
occur along the dislocation-rich austenite-martensite interface, making it the weakest link in the microstructure 
thus establishing a direct link between mechanisms of functional fatigue that result in the accumulation of 
permenant strain and mechanisms of structural fatigue that result in fracture. This work provides a compre-
hensive understanding of deformation mechanisms in nanoscale shape memory alloys and points to fundamental 
mechanisms that are applicable to macro scales.   

Shape memory alloys (SMAs) have been around for nearly 75 years 
[1]. Since its discovery in 1963, NiTi has become one of today’s most 
successful shape memory alloys. Under the right temperature condition, 
an austenitic to martensitic phase transformation, resulting in large 
strain accommodation, can be achieved by applying an external load. 
Reversal of this phase transformation by unloading (superelastic effect) 
or unloading followed by heating (shape memory effect) recovers almost 
all the strain, with some irrecoverability that accumulates upon cycling. 
Due to their unique functional properties, SMAs are used in engineering 
applications like biomedical stents, solid-state actuators, active/passive 
damping, and elastocaloric cooling, to name a few [2–7]. Barring the 
extensive applications of SMAs in macro-scale applications, there is 
immense interest in exploiting SMAs in the small length scales such as in 
micro-stents, micro-valves, micro-pumps, actuators in 
micro/nano-electro-mechanical systems (MEMS/NEMS), and bio-
mimetic systems [8–19]. It is, therefore, imperative to understand the 
nanoscale mechanisms that enable the functionality of shape memory 
alloys. Moreover, nanoscale shape memory alloys’ fatigue and fracture 
behavior are unknown. 

Superelasticity in the micro to the nanoscale has been primarily 
studied by pillar compression tests with pillar diameters ranging from 2 
µm to 140 nm [18,20–28]. One study demonstrated that superelasticity 

vanishes below 200 nm [22], whereas another study [24] reports 
superelasticity in a 140 nm pillar. However, studies reporting nano-
mechanical tensile behavior of shape memory dogbone thin films are 
scarce. Few studies report tensile straining of NiTi thin films [29,30] but 
not the fatigue behavior. The dynamic aspects of stress-induced 
martensite nucleation, growth, shrinkage, and accumulation of unre-
covered strain have not been observed in real-time before. Due to 
dimensional constraints, electron transparency is limited for micro-
pillars. On the other hand, in-situ TEM tensile testing would circumvent 
this issue as the sample thickness can reach electron transparent levels. 
Here, we demonstrate superelasticity in NiTi thin films with a thickness 
of the order of 100 nm and the width/length of the order of couple 
micrometers therefore representing the plane stress condition. Nano-
mechanical tensile fatigue of electron transparent NiTi thin films was 
carried out for multiple cycles. The stress-induced reversible martensitic 
transformation was observed with unprecedented clarity to reveal the 
underlying mechanisms behind unrecovered strains and fracture 
behavior. 

To realize these findings, site-specific sample fabrication was 
employed using the focused ion beam milling (FIB) technique coupled 
with a Bruker™ push-to-pull device (Fig. 1a) and Hysitron PI95 
Picoindenter. Such a push-to-pull device has been employed before to 
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study the mechanical behavior of nanofibers, polymers, pure metals, and 
oxides [31–37]. Single crystals of Ni50.8Ti (at%) were grown using the 
Bridgeman technique, solutionized at 920 ◦C for 2 h in argon, and water 
quenched. Then, miniature blocks of 4 × 4 × 8 mm3 dimension were 
EDM cut and aged at 550 ◦C for 1.5 h to introduce homogenous lentic-
ular Ni4Ti3 precipitates[38]. The transformation temperatures obtained 
via differential scanning calorimetry (DSC) were as follows: Austenite 
start (As) = −18 ◦C, Austenite finish (Af) = 1 ◦C, Martensite start (Ms) =
−55 ◦C and Martensite finish (Mf) = −70 ◦C. This heat treatment results 
in a single-step stress-induced B2 austenite to B19’ martensite phase 
transformation at room temperature. 

The crystallographic orientation of the EDM-cut blocks was identi-
fied as [101], [131] and [212] using electron backscattered diffraction 
(EBSD). FIB lift-out samples were extracted from the [101] plane with 
[111] foil normal corresponding to the [121] loading direction. These FIB 
samples were first pre-thinned to 800 nm on the conventional TEM 
copper grid at 30 kV and 0.43 nA probe current. Then the sample was 
transferred onto the push-to-pull device using the Autoprobe™ micro- 
manipulator needle and attached by depositing platinum (see supple-
mentary materials). The lamella was then thinned down to an electron 
transparent level of ≈100 nm at 30 kV accelerating voltage and a current 
of 0.23 nA and then at a current of 80 pA. Final thinning was done at 5 
kV and 48 pA probe current to obtain high-quality TEM samples suitable 
for simultaneous imaging and nanomechanical tensile testing (Fig. 1b). 

Hysitron PI95 Picoindenter was used for the nanomechanical test. An 
in-situ tensile test was performed in a JOEL 2010 LaB6 TEM operating at 
200 kV accelerating voltage. Once the sample was tilted to achieve the 
appropriate diffraction and contrast condition, the diamond indenter 
was fine aligned with the PTP. The samples were loaded under 
displacement control at the rate of 3–5 nm/s resulting in a strain rate of 
5 × 10−4 to 1.3 × 10−3 s−1. The engineering strain was calculated by 
manually measuring the displacement of microstructural markers in the 
sample, and engineering stress was calculated from the measured load. 
PTP stiffness, measured after sample failure, ranged from 400 to 500 N/ 
m, close to the manufacturer’s specification of 450 N/m. The load car-
ried by the PTP was subtracted from the total load to obtain the load 
carried by the micro-tensile sample. Videos were captured during insitu 
loading using the Gatan SC1000 CCD camera at 1fps, 4000 × 2600 pixel 
resolution. Transformation stress was obtained by visually extracting the 
timestep at the onset of transformation and aligning it with the load vs 
time plots. 

Cycle 2 stress-strain loop is shown in Fig. 2. As shown in the inset of 
TEM snapshot A in Fig. 2, the zone axis belongs to 〈111〉. Before loading, 
the sample’s initial microstructure consisted of residual martensite from 
cycle 1 (not shown here) and two precipitate variants with longitudinal 
axis parallel to [110]B2and [011]B2, the former being the dominant one 
with a volume fraction of ≈20%. A maximum displacement of 150 nm, 

corresponding to a maximum strain of 5.3%, was applied. At a stress 
value of about 392 MPa corresponding to the axial strain of 0.85%, 
martensite nucleates along the interface of precipitate variant 2, as 
shown by the red arrow in TEM snapshot B in Fig. 2 (see supplementary 
video 1). As the applied displacement is increased, new martensite 
variants nucleate and grow. However, a stress plateau or a slope change 
was not observed. This suggests that a nanoscopic nuclei of martensite 
appear in the so-called elastic regime, well before the stress-strain curve 
deviates from linearity. This was also observed in bulk samples when a 
considerable temperature change, indicative of latent heat release dur-
ing the austenite to martensite transformation, was measured in the 
elastic regime of the stress-strain curve [39]. Once the stress reaches a 
value of about 682 MPa, the internally twinned residual martensite 
domains grow (TEM snapshot C in Fig. 2). This results in intrinsic soft-
ening, as evidenced by a gradual stress drop due to unpinning of the 
residual martensite-austenite interface. However, due to intermittent 
pinning of the interface at precipitate interfaces, tiny stress jumps can be 
seen (inset of stress displacement curve in Fig. 2). Pinning and unpinning 
of these interfaces explains the serrated yield plateau commonly 
observed during bulk deformation of shape memory alloys. Addition-
ally, the movement of the residual martensite-austenite interface is 
facilitated by the growth of the internal twins, i.e., detwinning which 
also gives rise to intrinsic softening. The width of the residual martensite 
domains is visibly larger as loading reaches a maximum displacement of 
150 nm and 668 MPa stress corresponding to a stress drop magnitude of 
14 MPa. During the unloading stage, martensite needles begin to shrink. 
A few ‘pop-ins’ are observed in the stress-displacement curve (point E in 
Fig. 2); this corresponds to unpinning the residual martensite-austenite 
interface, which facilitates sudden retraction of the interface leading to a 
jump in displacement magnitude. The unloaded microstructure (TEM 
snapshot F in Fig. 2), shows that the residual martensite domains have 
grown. They seem to be pinned at the tips of precipitate variant 1 and 
the interface of precipitate variant 2 (red arrows in the TEM snapshot F 
in Fig. 2). The SAD pattern reveals one of the orientation relationships 
between B2 and B19’ as [111]B2‖[110]B19′ and martensite twinning was 
identified as type II with [110]B19′ ‖[101]B19′ . This means every 
(111)B2plane transforms into a (110)B19′ plane during loading and vice 
versa during unloading. The precipitate shares {111}B2as the habit 
plane with the austenite. So based on the precipitate stress field and the 
orientation relationship between austenite and martensite, the 
precipitate-B2 interface is the most conducive location for martensite 
nucleation. Additionally, introducing precipitates starve the surround-
ing matrix of Ni leading to an increase in Ms [40,41] and also generates 
an internal stress field that interacts with the external stress to prefer-
entially nucleate specific martensitic habit plane variants [40,42–44]. It 
was also observed that martensite moves along the said interface and 

Fig. 1. (a) Push-to-pull device and conical, flat punch diamond indenter. (b) Higher magnification of electron transparent tensile sample.  
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gets pinned at the interface/tips during unloading. The coherency stress 
field is larger near the tips as pointed out in experimental and compu-
tational studies [45] and itcould play a role. This suggests that the 
precipitates aid in the forward (austenite to martensite) transformation. 
However, they impede the reverse transformation. 

Next, these samples were loaded to the same maximum displacement 

for over 25 cycles. As shown in Fig. 3, the transformation stress gradu-
ally decreases, and internally twinned residual martensite accumulates 
in the microstructure. Consequently, the stiffness reduces from 790 N/m 
in cycle 2 to 540 N/m in cycle 25. The higher magnification bright field 
TEM image, taken after cycle 14 (Fig. 3), clearly shows parallel dislo-
cations at the residual martensite-austenite interface. In our previous 

Fig. 2. The stress displacement curve for cycle 
2 with the precipitate volume fraction as inset. 
Superelastic behavior is evident. The stress drop 
and the stress pop-in are visible during loading 
and unloading, respectively. They correspond 
to unpinning of the austenite-residual 
martensite interface to facilitate growth/ 
shrinkage during loading/unloading. A to F are 
the TEM bright field images corresponding to 
points (A, B, C, D, E, and F) annotated in the 
stress-displacement curve. Martensite nucle-
ation and growth are visible. Martensite ap-
pears pinned by the tips/interface of the 
precipitate after unloading. The residual 
martensite has [111]B2‖[110]B19′ orientation 
relationship and the martensite twinning was 
identified as type II with [110]B19′ ‖[101]B19′ as 
evidenced from the SADP (inset of F). See sup-
plementary video 1.   
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experimental and modeling work [39,46], we showed that these dislo-
cations could be traced back to the internal twins of the martensite. 
During reverse movement of the austenite-martensite boundary, the 
type I or type II internal twins of the martensite transform to parallel 
dislocations on the <111>{011}B2 or <100>{011}B2 slip system, 
respectively, based on lattice correspondence. At this point, it should be 
noted that the most energetically favorable slip system is the <100>
{011} [47]. The type of internal twins of the martensite depends on the 
martensite correspondent variant pair (CVP) activated, which in turn 
depends on the local resolved shear stress due to the applied stress and 
the local stress field of the precipitate variant present [42]. As the CRSS 
to move a dislocation in NiTi is much higher than the CRSS for trans-
formation [47], once the internal twin transforms to parallel disloca-
tions during unloading, these dislocations become sessile and pin the 
interface. This stabilizes martensite even after unloading, thereby giving 
rise to residual strain. As seen clearly in Fig. 3, these dislocations are 
parallel to the internal twins of the residual martensite. The internal 
twinning of the martensite is identified to belong to type II from the 
diffraction pattern shown in the inset of Fig. 1F. Directly identifying the 
slip system of these dislocations in the current experiments is not 
possible due to the absence of double tilt capability in the picoindenter, 
however the dislocation trace is parallel to the trace of (110)B2slip plane. 
To provide clear insight into the microstructural mechanisms behind the 
reduction in transformation stress and the accumulation of residual 
martensite, in-situ TEM experiments performed at higher magnification 
are discussed next. 

High-magnification snapshots taken during cycles 11 and 12 are 
presented in Fig. 4 (also see supplementary videos 2 and 3). During 
loading, at 248 MPa, martensite needles nucleate from the interface of 
precipitate variant 2 (Fig. 4a), tips of residual martensite (Fig. 4a), and 
the residual martensite-austenite interface (Fig. 4b). The parallel dislo-
cations at the austenite-martensite interface aid in the nucleation of 
fresh martensite needles. This leads to the reduction in transformation 
stress in the subsequent fatigue cycle. The nucleation barrier for stress- 
induced martensite is significantly reduced with additional nucleation 
sites, such as the residual martensite interface, which offers an internal 
stress field to assist transformation. As the applied displacement is 

increased further, at 600 MPa, fresh martensite needles nucleate from 
the tips of precipitate variant 1 (Fig. 4a). During unloading, martensite 
needles recede to their point of nucleation along the same path. 
Martensite needles that nucleated from the residual martensite tips/ 
interface do not recover completely and get pinned at the tips/interface, 
contributing to the accumulation of residual strain (compare snapshots 
taken at 0 nm and unloaded state in Fig. 4). Gradually, by this process, 
the residual martensite domains grow. One can also see that martensite 
gets pinned at the interface of the precipitate (see unloaded state in 
Fig. 4a). Finally, after 25 cycles of fatigue deformation, the thin film 
sample was pulled to failure—a crack initiated from a notch that was 
created during the sample fabrication. As the sample was pulled to 
failure, the stress-strain behavior exhibited a hardening-type response 
until, as shown in Fig. 5, crack propagated to failure along the austenite- 
martensite interface at 790 MPa. This makes sense as the dislocation- 
rich interface is the weakest link in the microstructure. Even though 
the crack nucleated from a notch, the crack preferred to propagate along 
the austenite-martensite interface. Therefore, these in-situ TEM obser-
vations provide a direct physically-rooted link between the mechanisms 
of functional fatigue that accumulate permanent strain and mechanisms 
of structural fatigue that result in fracture. Similar observations of 
cracking along the A-M interface were made on fatigued bulk FeMnAlNi, 
FeMnAlNiTi and CuZnAl SMAs [48–50]. 

Even though these observations were made during the nano-
mechanical fatigue testing of NiTi SMA, the underlying mechanisms for 
fatigue degradation could be applicable in the bulk state as well. 
Introducing Ni4Ti3 precipitates in NiTi SMA is commonly thought as 
beneficial for superelasticity and fatigue resistance, however it was 
shown in this study that precipitates aid forward transformation but 
seem to restrict reverse transformation by pinning martensite. This 
mechanism can be translated to micro and bulk samples. Recent studies 
on NiTi micropillars have revealed dislocation activity around pre-
cipitates [44] and dislocations even shear into the precipitates in bulk 
samples [39]. Additionally, it was also shown that the transformation 
induced dislocations stem from the internal twins of the martensite. So, 
one can conceive that, during unloading, these dislocations get pinned at 
the precipitate-B2 interface due to the coherency stress field which in 

Fig. 3. Fatigue loading of the in-situ TEM sample for over 25 cycles. (a) Stress displacement curves. (b) Microstructure of the undeformed sample. (c) Upon fatiguing 
for ten cycles, residual martensite accumulates in the microstructure. (d) The reduction in transformation stress. (e) and (f) The residual martensite domains are 
pinned by parallel dislocations at the austenite-martensite interface. The dislocations originate from the internal twins of the martensite. 
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turn pins the austenite-martensite interface in the nano-samples. How-
ever, in the bulk samples, the austenite-martensite interface can be 
relatively glissile and only the transformation induced dislocations get 
pinned leading to the formation of elongated dislocation segments 
during martensite shrinkage as evidenced in our earlier work [39]. 
Nevertheless, residual martensite has also been observed in other studies 
reporting cyclic deformation of micro and bulk NiTi [51–54]. Therefore, 
the stabilization and accumulation of residual martensite domains in 
bulk could be facilitated via the same mechanisms reported in this study. 

In conclusion, this study has demonstrated that excellent super-
elasticity can be achieved in NiTi shape memory alloy nanoscale thin 

films. A clear understanding of martensite nucleation, growth, and 
shrinkage was achieved by directly observing the stress-induced 
martensitic transformation in the nanoscale volumes. The microstruc-
tural mechanism behind the accumulation of residual martensite and the 
source of martensite pinning was uncovered in real-time. This study 
confirmed some previously proposed functional degradation mecha-
nisms, such as parallel dislocations emanating from type II internal twins 
of the martensite, and uncovered new mechanisms, such as martensite 
pinning by precipitate tips/interfaces. Finally, a direct link between 
functional fatigue and structural failure was established by demon-
strating fracture along the dislocation rich austenite-martensite 

Fig. 4. Higher magnification TEM snapshots were taken during the loading/unloading of (a) cycle 11 and (b) 12. Martensite nucleation from the residual martensite- 
austenite interface from prior cycles can be evidenced. During unloading, these martensite needles do not recover completely, get pinned, and result in the net growth 
of the residual martensite domains. Furthermore, residual martensite pinned at the interface of precipitates can be seen as well. See supplementary videos 2 and 3. 
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