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Abstract

This paper concerns modeling, simulations and control design of turbo-electric distributed propulsion (TeDP) systems
needed to power future hybrid aircraft systems. The approach taken is the one of control co-design by which the
sizing and hardware selection of components and the TeDP architecture design are pursued so that potential effects of
control and automation are accounted for from the very beginning. Unique to this approach is a multi-layered modular
modeling and control approach in which technology-specific modules comprising the complex dynamical system
are characterized using unified interaction variables at their interfaces with the rest of the system. The dynamical
performance of the interconnected system is assessed using these technology-agnostic interface variable specifications
and, as such, can be applied to any candidate architecture of interest. Importantly, even the inputs to the TeDP system
coming from pilot commands are modeled using such interface variables. This new multi-layered modeling captures
the dynamics of energy and power as interactions. It also has a rather straightforward physical interpretation. The
paper builds on our earlier results introduced for terrestrial power systems, including small micro-grids. We show
how system feasibility and stability can be checked in real-time operations by modules exchanging the information
about their interaction variables and adjusting in a near-autonomous manner so that, as system conditions vary, the
interconnected system still functions. No such systematic control co-design exists to the best of our knowledge,
but it is needed as both new technologies and more complex, often conflicting performance objectives emerge. We
illustrate the approach on a representative TeDP architecture and compare it to today’s state-of-the-art. We close
with a discussion on the generalization of the method for any given candidate architecture. Having such an approach
dramatically reduces the R&D&D of novel candidate architectures.

Keywords: Turbo-electric distributed propulsion (TeDP), Modeling and control of power trains for aircrafts,
Microgrids, Interconnected dynamic systems, Distributed Control, Energy and Power Dynamics

1. Introduction

This paper introduces a new modeling, simulations
and control approach to power trains in complex air-
craft and other aerospace space vehicle systems by
viewing them as dynamically interacting interconnected
modules. These power trains are effectively “flying
microgrids” comprising diverse power sources (per-
manent magnet (PM) machines, DC generators, syn-
chronous machines (SM), doubly-fed induction genera-
tors (DFIG) rotating at different speeds) interconnected
via AC/DC power electronically-controlled inverters of
dispersed storage, such as small batteries and/or capac-
itors. Such systems have never been modeled to the de-
gree of granularity required to ensure stable and efficient
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performance over broad ranges of operating conditions.
This is an important problem that is closely related to
the composability of heterogeneous dynamical compo-
nents and their specifications for contributing to the de-
sired performance of the system. This problem has been
tackled in the past by practitioners defining the map-
pings at interfaces based on experimental/expert system
knowledge or by the theoreticians establishing condi-
tions hard to relate to the physical processes in the com-
plex system. The two approaches can hardly ever be re-
lated and, more importantly, cannot be used for power-
ing challenging future missions. This paper overcomes
the static mappings traditionally utilized at the inter-
faces and, instead, specifies input-output characteristics
of components/group of components using dynamical
modeling in energy/power state space and, as such, sets
the basis for relating the mathematical conditions to the
physical processes.
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In this new modeling approach, each module com-
prises a group of components in which dynamics of
physical variables are modeled first in standard state
space form, generally used for control design. Sec-
ond, the model is transformed into a higher-level gen-
eral technology agnostic model. This recently proposed
transformed state space model represents the dynam-
ics of stored energy and its rate in each of these mod-
ules within any power train. The interaction variables,
the key to modeling and controlling mutual effects of
components are shown to be instantaneous real and in-
stantaneous reactive power. This modeling approach
sets the basis for capturing effects of highly different
sub-processes, such as the inter-dependence of power
electronically controlled components and thermal pro-
cesses; interdependence across the entire turbo-electric
distributed propulsion (TeDP) and alike. For the first
time, dynamics of interconnected energy sources (gen-
erators) of different types (DC, DFIG, SM) and the
propulsor/fans of different types are modeled for prov-
able control design, with a clear understanding of phys-
ical processes, such as balancing of power and its rate
of change.

The interconnected dynamic model is systematically
derived by writing conservation of both real power and
rate of change of reactive power. Notably, the notions
of instantaneous real and reactive power, typically de-
fined for electric systems, are defined for all types of
energy conversion modules the same way by utilizing
the effort-flow analogies. These models provide great
physical intuition about energy conversion dynamics in
these complex systems, as the proposed model in trans-
formed state space has a straightforward interpretation
in terms of exergy and anergy. Both efficiency and sta-
bility conditions become apparent. Based on these con-
cepts, it becomes possible to understand potential ben-
efits from new technologies. For example, in this pa-
per, several different power train designs for future air
vehicles are modeled and their energy-based control is
simulated and assessed. A sliding mode control (SMC)
robust implementation of this energy-based control is
introduced, and theoretical conditions are derived for
near-optimal stable control design at provable perfor-
mance. Future extensions of these concepts to modeling
and controlling complex aircraft and other vehicles are
discussed.

The paper is organized as follows: In Section 2 the
need for hybrid power trains is briefly described. In Sec-
tion 3 power train design as a control co-design problem
for complex dynamical systems is introduced. In Sec-
tion 4 a multi-layered modeling in transformed energy
state space is summarized and illustrated on a simple

TeDP architecture. This is followed in Section 5 by
summarizing distributed feasibility and stability condi-
tions in energy space. In Section 6 a control co-design is
formulated, and it is shown how it can be implemented
so that the feasibility and stability conditions are met. In
particular, a general method for designing future power
trains for ensuring feasible and stable operations for
given ranges of missions and according to given perfor-
mance objectives is introduced. In Section 7 represen-
tative examples of candidate architectures are discussed
from the viewpoint of their performance based on to-
day’s approaches. Benchmarking is done by assessing
whether the proposed approach meets today’s equip-
ment testing standards. Notably, the end-to-end sys-
tem performance standards are not in place. These are
created by drawing on comparisons with general Multi-
Input Multi-Output (MIMO) Linear Quadratic Regulat-
ing (LQR) control combined with state-of-the-art con-
trollers of individual equipment. Finally, in the closing
Section 8 summary of the proposed approach is given
together with several open questions and ideas for fu-
ture R&D&D.

2. Motivation

The approach proposed in this paper is motivated
by several reasons. First, and perhaps most impor-
tant, is that the expected performance of future air-
craft and other space vehicles is becoming more com-
plex and demanding than in the past. In addition to
ensuring safe and reliable power provision to the air-
craft, the power train should be able to minimize fuel
use and reduce noise and emissions [30]. Today’s all-
mechanical power trains are rigid and hard to design
for accommodating new placement of propulsors for
more efficient flights [12]. Also, fast missions and sud-
den unplanned maneuvers require fast control of power
management. Candidate TeDP architectures compris-
ing power electronically-controlled secondary genera-
tion, storage and motors hold a new promise of enabling
safe and flexible power. The required technological
advances are being made. The fundamental challenge
comes from having to design and control these man-
made systems for the first time. The required R&D&D
is very challenging given the overall complexity of these
emerging architectures.

Technical challenges are multi-fold and come from
the need to understand dynamical interactions be-
tween highly heterogeneous components and to design
their control and protection. Having secondary power
sources lead to new operating problems, such as sup-
porting bidirectional power flows when needed. The
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highly time-varying missions require the control design
to produce power at the rate needed to ensure feasibility
and stability. Most challenging are emerging operating
problems during unplanned equipment failures. Ideally,
it would be good to have self-adaptation for safety in
an autonomous way and, at the same time, not trigger
protection.

2.1. Lack of dynamical system approaches
Most of the ongoing efforts are toward better stand-

alone hardware components and materials. At the
same time, there are simulation-based approaches to
assessing the performance of these candidate architec-
tures. Selection of the best type of electric machines,
both generators and motors, and their integration into
well-functioning end-to-end TeDP systems for satisfy-
ing given flight specifications are currently being done
for specific candidate architecture on a case-by-case ba-
sis. This design method is time-consuming and does not
enable quick screening of several architectures and se-
lecting the one best suited for given flight specifications.

It may come as a surprise that there has been very lit-
tle work done on systematic modeling for the control of
TEDP architectures. The modeling and control of even
a small system comprising a permanent magnet (PM)
generator expected to rotate at the same speed as the en-
gine and supplying a propulsor motor rotating at a dif-
ferent speed and controlling torque or power given from
the pilot command remain an open problem at present.
The controllable equipment is currently tested against
the static step changes in power outputs so that the tran-
sient and steady-state responses following step-change
meet certain frequency and voltage specifications [26].
The problem of supplying continuously varying power
or torque is qualitatively different, as will be described
in the simple voltage-controlled RL circuit in Appendix
A [23]. It considers the easiest control design problem
in the context of the circuit in Figure A.16 to control
voltage u(t) to exactly regulate port voltage v(t). This
results in producing of controlled power Pu(t) to match
power seen by the component Pm(t). However, due to
measurement errors and control implementation delays,
there is a power mismatch ∆P(t) which could lead to
oscillations between the controlled component and the
rest of the system, particularly when the component in-
ertia, in this case, inductance L is small. Also, if the
power mismatch ∆P(t) sustains over time, this could
lead to increasing mismatches and protection discon-
necting equipment.

This simple example without loss of generality illus-
trates the need for more coordinated control of inter-
connected dynamical components. This need brings up

questions regarding the performance of TeDP architec-
tures based on centralized fast communications, on the
one hand, and distributed cooperative control, on the
other. In this paper, we describe the general complexity
of the centralized model and its fail-safe communication
needs for provable performance. In turn, these point
into the direction of requiring distributed control imple-
mentation, which further raises questions regarding the
achievable performance in a distributed way. These gen-
eral questions and challenges have prompted us to in-
troduce a multi-layered control design proposed in this
paper.

3. TeDP architecture as a complex dynamical sys-
tem: Problem posing

Possible TeDP designs could be to use different types
of electrical machines, mainly either PM or DC ma-
chines, or their combinations. More advanced ma-
chines, such as doubly-fed induction generators (DFIG)
[5], and switched reluctance motors [4] are also being
considered for power trains in future aircraft systems.
In this paper we consider two such designs shown in
Figures 1 and 2, respectively. Also, a typical design

Figure 1: An example TeDP system comprising DC machines

Figure 2: An example TeDP system comprising permanent magnet
machines

involves the need for generators and motors to move at
different speeds ωre f

1 (t) and ωre f
2 (t), respectively. This,

in turn requires some sort of AC/DC and DC/AC con-
version [24], or some other novel designs, including res-
onant converters [29]. Shown in Figure 3 is a sketch
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Figure 3: An example TeDP system comprising synchronous ma-
chines connected through an AC-DC-AC converter

of such power electronically controlled system. We
consider all these systems as interconnected dynamical
systems whose interactions and performance are deter-
mined by embedded automation and control. Two quali-
tatively different design problems arise. Most generally,

Figure 4: A general TeDP system comprising sub-systems Σ1 and
Σ2 interacting through port inputs r1, r2. The system is subject to
a possibly state-dependent time-varying torque disturbance m2 that
is expected to be controlled through the available controllable inputs
u1, u2.

any of these typical representative TeDP architectures
can be conceptualized as shown in Figure 4. The ba-
sic functionality of this interconnected system is to pro-
duce power or torque by the motor in order for its rotor
to move fans. Depending on the design of interest, this
can be achieved by controlling the motor as a variable
speed drive (VSD) or by directly controlling torque or
power absorbed by the rest of the system. For example,
when Σ2 in the TeDP system in Fig. 4 powers a fan, the
disturbance m2 is characterized as the torque Tm,2 which
is generally modeled as

Tm2 = Tm2,0

(
ω2

ω2,0

)ε
(1)

Here, ω2 is the angular frequency of the motor. Tm2,0,
ω2,0 represent nominal values of the load torque and an-
gular frequency respectively. ε can take the values of
0,−1 and 2 to model loads of different types called con-
stant torque load, constant power load and a propulsive
load, respectively.

When ε = −1 the performance requirement is for mo-
tor rotor to follow given instantaneous power. This re-
quirement has been known to be quite challenging be-
cause of inherent negative incremental impedance prob-
lem for some ranges of power [1]. Shown in Figure 5

Figure 5: Typical mission requirements: Instantaneous power require-
ment of the fans driven by the motors

are such typical performance objectives. First, when the
mission trajectory is quasi-stationary compared to the
system dynamics, it is possible to have a feed-forward
(tertiary) level coordinating scheduler of set points for
the controllable equipment so that commands are given
in a top-down way to regulate and stabilize the con-
trollers so that power is provided in response to the
higher level commands. The second design problem is
to enable power train to respond to hard-to-predict both
relatively slow and fast changes from nominal sched-
ules in an autonomous way without being given feed-
forward commands. While this distinction seems to be
secondary, it is actually quite important for designing
stable and feasible control to enable TeDP power over
broad ranges of time varying conditions. Today’s ap-
proach to design and control power train is so that dur-
ing (N − 1) or (N − 2) equipment failures known based
on experience and off-line simulations studies the objec-
tives are still met. The second design problem is much
more challenging because the control and automation
must be much more self-adaptive without having pre-
dicted conditions.

3.1. Nonlinear MIMO control design problem

The machine models in each of the architecture in
Fig. 1-3 are reviewed in some detail in Appendix Ap-
pendix B. Notably, a closer look into a general elec-
tric machine modeling shows that, independent from the
type of the machine, its dynamical standard state space
model needed for control design takes on the following
general form:

ẋi = fx,i(xi) + gr
i (xi)ri + gm

i (xi)mi + gu
i (xi)ui (2)
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Here, xi represents the state variable of the component
i. The inputs entering the electric machine are the port
inputs, controllable inputs, and exogenous disturbances
denoted as ri, ui and mi, respectively. Not all the com-
ponents have all the types of inputs entering. For in-
stance, in Figure 4, the disturbances m2 enter compo-
nent 2 alone.

A linearized counterpart of Eqn. (2) is then given as

ẋi = Ai
(
x∗i , ui

∗) xi + Bi
(
x∗i

) [
ri ui mi

]T
(3)

Here, x∗i , u
∗
i respectively represent the equilibrium state

and control for the present value of the port and distur-
bance inputs r∗i ,m

∗
i , respectively. It is only when switch-

ing models are to be utilized such as for the one in Fig.
3 that the component models take the form in Eqn. (3).
In general, however, most TeDP architectures have con-
stant matrix Bi and the matrix Ai is only state dependent.
The interconnected TeDP models are constructed by ob-
taining expressions for port inputs in terms of the state
variables of the neighboring components by applying
basic Kirchoff’s laws at the junction [3]. However, for
the architectures in Fig. 1 and 2, the inherent structure
of the machine models in Eqn. (2) is lost due to the pres-
ence of dependent states resulting from inductor cutsets
[3]. The state of the art approach for analysis of such
systems has been to introduce a capacitor between the
components such as the one in Fig. 3 to preserve the in-
herent structure of the stand-alone machine and thereby
design the stand-alone control.

As an example for the DC system architecture in
Fig. 1, the stand-alone DC generator (motor) torque (ar-
mature) and field control are designed using timescale
separation-based model reduction [6]. DC machine
models are linear except for dependence of the matrix
Ai on field current state. Timescale separation is, there-
fore, utilized to facilitate decoupled control of field and
angular speed (terminal voltage).

Another state of the art approach commonly utilized
is the field oriented control first introduced for induc-
tion machines [27]. It utilizes a transformed space to
facilitate decoupled control of flux and angular speed
(or terminal voltage) in a way similar to that of DC
machines. Synchronous machines have two degrees
of control (field voltage and torque). Often the dis-
turbances are such that the terminal voltage does not
change much. In such cases architecture in Fig. 2 with
a single degree of control is sufficient. Other times, it is
ensured so by introducing a large buffer capacitors be-
tween the machines. In the absence of synchronous ma-
chines with field control, another alternative is to insert
an AC-DC-AC converter to provide additional degree of

control, as sketched in Figure 3.
The stand-alone control designed by assuming the

component is disconnected from the rest of the system is
not provable from the systems point of view especially
in the presence of fast time-varying disturbances. To
ensure decoupled control design results in stability, an
additional buffer capacitance possibly with power elec-
tronics is needed, which adds to the weight of the TeDP
system.

Another alternative approach is to design an LQR
centralized control from the linearized system model.
It should be noted that it is not straightforward to obtain
error-free interconnected system models in the absence
of buffer capacitor between components. We have uti-
lized a software called CAMPS (Centralized Automated
Modeling of Power Systems) that constructs intercon-
nected system models in an automated way [21, 15] and
which has been further developed to simulate TeDP ar-
chitectures [28]. The software also has additional func-
tionalities to find the equilibrium, perform linearized
stability analysis and compute the most critical states
contributing to instability, and to design LQR tuned
gains for the controllers. This LQR control is treated
in this paper as the benchmark control.

Although CAMPS does systematic design, the ap-
proach is generallly not applicable to designing prov-
able performance control in response to large ranges
of disturbances, since the linearized models utilized for
control design are provable only for small perturbations
around the operating point where tuning is done. For
sudden changes in operating conditions, a new nonlin-
ear MIMO control problem has to be formulated, in-
stead.

Notably, independent from the specific structure and
internal primary control design problem, we make fol-
lowing observations:

• Generally, the control design problem in standard
state space is a nonlinear control problem.

• The interconnected TeDP system becomes a non-
linear MIMO control design problem, for which no
general off-shelf designs exist.

When different advanced machine controllers are de-
signed they are tested so that their own output vari-
ables of interest (frequency, voltage) meet specifica-
tions. Given the discussion in Appendix A, it is not
clear how the component will interact with the rest of
the system. It is with these observations in mind that we
introduce our energy space multi-layered modeling for
control design.
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4. Unified multi-layered modeling of a TeDP using
transformed energy state space

The fundamental issues of the emerging TeDP sys-
tems are made evident through the simulations of a sim-
ple resistive inductor circuit example in Appendix A. In
summary, the traditional control approaches are based
on models constructed from the first law of energy con-
servation principles alone. Such models do not consider
the rate at which the external power injections Pm en-
ter. This time-variation could be a result of challenging
TeDP mission requirements. However, it can also be
because the decentralized control actions are most often
taken by each of the components in the TeDP systems.
For instance, in the system of Fig. 1, Pm(t) seen by Σ1
is a result of the inherent dynamics and control actions
taken in Σ2. As a result, its dynamics can not neces-
sarily be counteracted by disturbance rejection-type of
control that is synthesized by traditional approaches uti-
lizing static power measurements of Pm. Furthermore,
such an approach does not explicitly consider the rate
at which Pm varies, which may jeopardize the overall
system stability.

Aforementioned issues are marginally overcome to-
day in energy systems through over design and conser-
vative control strategies. One example of such conser-
vative control is to prepare the system for the worst pos-
sible operating conditions. However, the root cause of
non-provable control design is the lack of sufficiently
granular models needed to capture the dynamics of
interactions between sub-systems. In this paper, we
propose a multi-layered modeling in transformed state
space to capture interactions from the very beginning to
perform control co-design. The model in transformed
state space is derived for precisely capturing the dynam-
ics of interactions between sub-systems through a well
defined physical quantity in phasor domain in electri-
cal energy systems called reactive power. This physical
quantity was defined in time-domain for the first time in
[32]. We generalize it for multiple energy domains and
use it to develop a sufficiently rich model for analyzing
and controlling the dynamics of interactions.

We consider any candidate architecture, partitioned
into sub-systems as shown in Fig. 1 - 3. Note that the
partitioning is non-unique and it depends very much on
the knowledge of state variables needed for distributed
control design. We then zoom-in to each of the modules
for control design to specifically shape certain variables
called interaction variables that have special structural
properties. We show that each component needs to sat-
isfy certain feasibility and stability conditions by its in-
teraction variables, upon which it can be integrated with

rest of system. These steps are to be performed through
information exchange with neighbors in an interactive
manner. These are also the general steps introduced
in [10] for control co-design. In this paper, we sim-
plify the task of control co-design by the introduction of
unified dynamical models based on interaction variables
and making different steps involved in control co-design
seamless.

The standard state space models introduced in Eqn.
(2) are a result of first law of energy conservation. We
have derived unified energy-based models to capture the
the rate of change of the energy component that does
useful work and wattless work required for energy trans-
fer, referred to as exergy and anergy, respectively. No-
tably, this model observes both first and second law of
thermodynamics. The modeling relies on harnessing the
structural properties of an interaction variable, which
are defined as follows [16, 19, 23]:

Definition 1. (Interaction Variable) [16, 23] 1

Let Ei, pi, Pu
i , Pm

i , Q̇u
i , Q̇m

i represent the stored energy,
rate of change of stored energy, instantaneous power at
control terminal and disturbance terminal and general-
ized rate of reactive power at control and disturbance
terminals respectively of component i. Each of these
variables is computable as a function of local state vari-
ables and state derivatives, summarized in Appendix C.

The interaction variable zr,out
i is defined as a function

of local variables that satisfies the property.

zr,out
i = constant (4a)

when all interconnections are removed. Mathemati-
cally, the interaction variable is defined as

zr,out
i =


t∫

0

(
pi(s) +

Ei(s)
τi
− Pu

i (s) − Pm
i (s)

)
ds

t∫
0

(
−ṗi(s) + 4Et,i(s) − Q̇u

i (s) − Q̇m
i (s)

)
ds


(4b)

In order to differentiate the interactions resulting
from internal energy conversion processes as per the
Definition 1, and the ones obtained as a result of inter-
connection, we utilize the superscripts ‘out’ and ‘in’ re-
spectively. The incoming interaction variable is a result
of interconnection, as shown in the zoomed-out repre-
sentation of the interconnected system in Fig. 6. Notice

1This definition was provided in particular for electric power sys-
tems under an assumption of real-reactive power decoupling [16, 17].
We now further extend this notion by relaxing the decoupling assump-
tion.
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Figure 6: Zoomed-out representation for the interconnected system:
Incoming interactions (zr,in

i ) are shown with blue arrows, while the
outgoing ones (zr,out

i ) by virtue of local energy conversion dynamics
are shown in brown for each of the components in the closed-loop.
After interconnection, the incoming interaction variable is equal to
the negative of outgoing interaction variables of its neighbors.

that the outgoing interaction variables as per Definition
1 depend only on local state variables and their deriva-
tives. Its time derivative however depends on the rate
of change of the incoming interaction variables żr,in

i that
are function of state variables of other components in
the system.

4.1. Unified energy-based higher-layer model
The interaction variables defined in Eqn. (4b) drive

the the dynamics of energy Ei and its rate of change pi,
the model of which is provided in Eqn. (5a). Here, the
state variables are aggregate dynamical energy variables
denoted as xz,i =

[
Ei, pi

]T .

Energy space state dynamics: xz,i(0) = xz,i0 (5a)

ẋz,i = Az,ixz,i + BtEt,i (ẋi) + Bz

(
żr,out

i + żu
i + żm

i

)
Rate of change of common outputs: zr,out

i (0) = zr,out
i0

żr,out
i = φz,i(xi, ri, ui,mi, ż

r,in
i ) (5b)

In this model, Et,i is the stored energy in tangent space
as defined in Definition 5. It models higher-order ef-
fects of local state variables, which is treated as an ad-
ditional bounded disturbance to the energy space model.
In Eqn. (5), the matrices and vectors utilized are: Bt =

[0, 4]T , Bz = [1 − 1]T for any component and matrix

Az,i =

[
0 −1/τi

0 0

]
depends only on the time constant

τi defined in Definition 6. Each of the control and distur-
bance ports are associated with respective interactions,
denoted using superscripts u and m respectively as fol-
lows: żu

i =
[
Pu

i , Q̇
u
i

]T
and żm

i =
[
Pm

i , Q̇
m
i

]T
respectively.

These vector entities comprise instantaneous power and
rate of change of generalized reactive power that can be
defined using respective ports’ effort and flow variables
as in Definitions 2 and 3 respectively [19, 32].

Next, the common output variable, i.e the interaction
variable is defined in Eqn. (4b). It can only be numeri-
cally computed given the information of internal states

and its derivatives as shown in Eqn. (5b) [23]. This is
represented through an abstract map φz,i. Since outgo-
ing interaction variable by Definition 1 is also a function
of state derivatives (function of port input ri), the rate of
change of outgoing interaction variable depends on the
rate of change of incoming interaction variable. Such
dependence makes the modeling framework inherently
interactive. For more details on the interactive modeling
approach, the reader is referred to [19, 18, 23].

Remark 1. The term
∫ t

0 Et,i(s)ds in the energy space
can be interpreted as the component of rate of change
of energy that does useful work. In contrast the term(
Qr,out

i + Qu
i + Qm

i

)
corresponds to the component that

contributes to inefficiencies (non-damping losses) asso-
ciated with energy transfer. The former is called rate of
change of exergy while the latter is called rate of change
of anergy [2, 20]. For the purposes of TeDP control de-
sign, we claim that control designed to minimizing these
dynamic inefficiencies results in better transient perfor-
mance for challenging missions and could thereby sub-
stantially reduce the size of the engines.

Notably, the aggregate energy space model is linear in
energy space variables. However, the model is depen-
dent on internal variables in conventional space. The
resulting interactive stand-alone component model, as
shown in the schematic in Fig. 7 is not in a standard
state space form. We emphasize that such modeling
structure is inherent as claimed in Willems’ seminal pa-
per on behavioral modeling of physical systems [31].

4.2. Stand-alone component model
We next introduce the zoomed-in component models.

The physical models introduced in Eqn. (2) are related
to the interaction variable and its dynamics, through a
bi-directional dynamic mapping as shown in Fig. 7.
From this figure, it is important to note that the physical
lower layer model is characterized now using extended
state space x̃i = [xi,mi, ri]T ∈ X̃i. Here, we characterize
the persistent disturbances and incoming interactions at
the ports through the instantaneous power and general-
ized reactive power at ports by the vector żm

i and żr,in
i re-

spectively. An example of the zoomed-in representation
of the multi-layered modeling for the candidate archi-
tecture in Fig. 1 is given in Section 4.3 We next discuss
the specifics of the energy-based dynamical model.

In addition to the state dynamics, it now becomes im-
perative to model the dynamics of the disturbance and
port inputs in order to include the dependence of instan-
taneous and reactive power entering the respective ter-
minals (żm

i , ż
r,in
i ). Characterization of these power vari-

ables, in turn, helps retain the linear structure of the
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Figure 7: Interactive stand-alone model of an open-loop component i:
The lower layer models are utilized to compute the outgoing interac-
tion variable żr,out

i , which drive the higher-layer energy dynamics of
the component. The incoming interaction variable from the grid żr,in

i ,
is utilized by the lower-layer models to evaluate the extended state
trajectories x̃i =

[
xi,m,ri

]
given their initial conditions.

higher layer energy space model in Fig. 7, also elu-
cidated in Eqn. (5). The dynamics of extended state
variables are expressed in Eqn. (6).

Extended state space model : x̃i(0) =
[

xi0 mi0 ri0

]T

 ẋi

ṁi

ṙi

︸ ︷︷ ︸
˙̃xi

=


fx,i(xi) + gi

m(xi)mi + gi
r(xi)ri

fm,i(x̃i) + gm
m,i(x̃i)mi + gm,i

r(x̃i)ri

fr,i(x̃i) + gm
r,i(x̃i)mi + gr,i

r(x̃i)ri

 +
0 0

gzm
m,i(x̃i) 0

0 gzr
r,i(x̃i)


[

żm
i

żr,in
i

]
+


gi

u(xi)
gu

m,i(x̃i)
gu

r,i(x̃i)

 ui︸                                                             ︷︷                                                             ︸
f̃x̃i (x̃i,żm

i ,ż
r,in
i ,ui)

(6)
Here fx,i, gr

i , g
m
i are the same functions defined in Eqn.

(2). The rest of the functions are a result of expressions
for reactive power at respective ports according to Defi-
nition. 3.

4.3. Example of multi-layered modeling for DC system
architecture

Consider the TeDP system in Fig. 1. The unified na-
ture of the energy-based modeling lets each of the com-
ponents be represented the same way as in Fig. 6. The
lower layer physical dynamics block in extended state
space and that of the mapping blocks in the zoomed-in

representation however depends very much on the spe-
cific details of the components being modeled.

The physical dynamics of the component models in
extended state space for DC generator (i = 1) and DC
motor (i = 2) is shown in Eqn. (7).

DC machine stand − alone model :
diai

dt
= −

Rai

Lai
ia1 +

1
Lai

(
va1 − Ki f iωi

)
iai(0) = iai,0 (7a)

dωi

dt
= −

Di

Ji
ω1 +

1
Ji

(
Tmi + Kii f iiai

)
vai(0) = vai,0 (7b)

di f i

dt
= −

R f i

L f i
i f 1 +

v f i

L f i
v f i(0) = v f i,0 (7c)

dTmi

dt
=

dωi

dt
Tmi

ωi
−

1
ωi

Q̇mi Tmi(0) = Tmi,0 (7d)

dvai

dt
=

1
2iai

( ˆ̇Pr,in
i − Q̇r,in

i

)
vai(0) = vai,0 (7e)

Here, the Eqns. (7a) - (7c) represent the physical dy-
namics of generator or motor. The sign convention as-
sumed is that the armature current is directed into the
component. The right hand side of this model is rep-
resented as f̃x̃i in the general model in Eqn. (6). The
disturbance Tm2 in Fig. 1 needs to be modeled as a state
to accommodate its time-varying properties depending
on the information given. For the general disturbance
characterization in Eqn.(1) , the reactive power injected
can be characterized as

Q̇m2 = Tm2ω̇2 − ω2Ṫm2

= Tm2,0

(
ω2
ω2,0

)ε
ω̇2 − Tm2,0

ε
ω2,0

(
ω2
ω2,0

)ε−1
ω̇2

(8)

Depending on the type of disturbance characterization,
we thereby have different dynamical evolution trajecto-
ries of the torque seen by the motor. On the other hand
for the generator, the Eqn. (7) can be avoided for the
open-loop model. An anologous dynamic map will be
defined later in Section 6.

The Eqn. (7e) lets us characterize the interactions
with the rest of the system. The incoming interaction
variables are defined as the negative of the outgoing in-
teraction variables of the neighbors as shown in Eqn.
(9).

Zoomed − out interconnection relations :
żr,in

1 = −żr,out
2 żr,in

2 = −żr,out
1

(9)

The outgoing interaction variables to be communi-
cated to the neighbors for use in Eqn. (9) are computed
by utilizing the map in Eqn. (5b) which is a result of
definition of interaction variables in Eqn. (4b). The map
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φz,i

(
x̃i, ˙̃xi, ż

r,in
i

)
for the DC machine is given as follows:

Interaction variable computation :

Pi
r,out = Laiiai

diai

dt
+ L f ii f i

di f i

dt
+ Jiωi

dωi

dt︸                                     ︷︷                                     ︸
pi

+ Raiiai
2 + R f ii f i

2 + Diωi
2︸                         ︷︷                         ︸

Ei/τi

−
(
Tmiωi + v f ii f i

)︸             ︷︷             ︸
Pi

u+Pi
m

Q̇r,out
i = 2

Lai

(
diai

dt

)2

+ L f i

(
di f i

dt

)2

+ Ji

(
dωi

dt

)2︸                                             ︷︷                                             ︸
4Et,i

−
dp̂i
dt −

(
Tmi

dωi

dt
−

dTmi

dt
ωi + v f i

di f i

dt
− i f i

dv f i

dt

)
︸                                              ︷︷                                              ︸

Q̇u
i +Q̇m

i

(10)
These maps are valid for both DC generator and motor.
The internal extended state variables and their derivative
are utilized to obtain the numerical values of żr,out

i . Note
however that the expression above includes the com-
putation of second derivative of stored energy as dpi

dt .
This requires computation of second derivative of state
variables, which may not be readily available and thus
are estimated using previous available values. Further-
more, the vector żr,in

i has the components of instanta-
neous power and generalized reactive power rate, the
rate of change of instantaneous power for use in Eqn.
(7e) is also estimated through the usage of previous
timestep values and is thus denoted with a hat symbol.

Notice that the modeling method is inherently inter-
active in nature, which is required for distributed con-
trol design. It has a linear structure as viewed by the
higher layer unified energy space model in Eqn. (5a)
for i = 1, 2 and Eqn. (9). However, the stand-alone
component models interacting with higher layer models
require advanced numerical methods, which is outside
the scope of this paper. The reader is referred to [13] for
additional details on some preliminary numerical meth-
ods.

5. Distributed feasibility and stability conditions in
energy state space

The modeling approached introduced in the previous
section accounts for the interactions with the rest of the
system. It lends itself to distributed control design and
also facilitates control co-design approach. The discus-
sion of latter will be postponed to next section. In this
section, we assume given the incoming interaction vari-
ables into the component, and design a distributed sta-
bilizing controller possibly with additional objectives of

regulation of output variables of interest. Sufficient con-
ditions on feasibility and stability of the resulting closed
loop model will further be derived.

5.1. Stand-alone component control:

The proposed control design approach involves two
steps:

• Higher-layer reactive power control: In this layer,
we utilize the linear energy space model shown in
Eqn. (5a) to design the generalized reactive power
injected into the control terminals with an objective
of aligning the outgoing interaction variables with
the incoming reactive power.

• Lower-layer implementation: The task of imple-
menting the higher layer reactive power flow is car-
ried over in this layer. Additional objectives of the
regulation of output variable dictating quality of
service can further be accommodated in this layer
as needed.

The block diagram of the proposed design scheme is
shown in Fig.

The higher layer design is performed by selecting an
output variable yz,i in energy space as follows:

yz,i =
Ei

τi
− Pu

i − Pm
i (11)

This variable corresponds to the energy absorbed or in-
jected by the component after energy dynamics settle,
i.e. pi = 0. By taking its time derivative and plugging in
the relations given by the interaction model in Eqn. (5a),
we have the dynamic input-output relation between the
second component of input żu

i and the chosen output yz,i

as shown in Eqn. (13).

ẏz,i =
pi

τi
− Ṗm

i − Ṗu
i = −ṗi + Ṗr,out

i

=
(
−4Et,i + Ṗr,out

i + Q̇r,out
i + Q̇m

i

)︸                                 ︷︷                                 ︸
ηi(x̃i, ˙̃xi,żm

i )

+ Q̇u
i︸︷︷︸

uz,i

(12a)

Based on this model, we proposed a feedback lineariz-
ing control in energy space with a positive gain Ki > 0
as in Eqn. (12b).

uz,i = −ηi(x̃i, ˙̃xi, żm
i ) − Ki(yz,i − yre f

z,i ) + ẏre f
z,i (12b)

We select yre f
z,i = Pr,in

i so that the component aligns with
the rest of the system upon interconnection. In prac-
tice, the variable ηi need not be known exactly. Even
if the bounds on the nonlinearity in the energy space

9



Figure 8: Block diagram of closed loop module formed by component-level distributed interactive control. The measurements of the energy
produced by the component after energy dynamics settle yz,i is utilized in the higher layer to dictate the generalized reactive power that is needed
to regulate its value to a consistent reference values yre f

z,i = Pr,in
i . This reactive power is implemented in the inner loop (lower layer) by utilizing

internal extended state space variables x̃i

are known, an alternative sliding mode implementation
can be performed, which altogether obviates the need to
measure internal state variables and the derivatives. For
details, the reader is referred to [22].

The corresponding higher layer design uz,i can then
be mapped to the physical control by utilizing the def-
inition of reactive power in Definition 3 and then rear-
ranging the terms, resulting in Eqn. (14).

u̇i =
ẇu

i

wu
i

ui −
1

wu
i

uz,i = f u
i (x̃i, uz,i) (12c)

Here wu
i is the dual variable associated with the control

input. For example, if torque is the control input, its
dual variable will be the state at the same port, which
is the angular velocity. Note that the map f u

i is well
defined since wu

i is non-zero for non-zero higher layer
design variables żu

i =
[
Pu

i , Q̇
u
i

]
.

Notably, irrespective of the internal details of the
components in any TeDP architecture, the higher layer
design can be performed in a unified way. Only minimal
information on the port variables of control terminal are
needed for physical control implementation. The con-
trol design introduced in this section not only leads to
provable stability upon interconnection, but also lead
to efficient utilization of controllers. This is because
the interactive control at any time instant cancels the
residual reactive power at interfaces thereby minimiz-
ing the dynamical inefficiencies. Furthermore, the refer-
ence values utlized by the higher layer facilitate coordi-
nated control between the components. This is in sharp

contrast to the stand-alone component control design
that is performed under the assumption of weak cou-
pling, or competitive disturbance rejection or feedback-
linearization based schemes.

5.2. Sufficient component-level conditions

The proposed two-layered design can also be inter-
preted as an input-output linearization based control.
The input-output linearized model in closed loop can
be written as in Eqn. (13).

ẏz,i = −Ki

(
yz,i − yre f

z,i

)
+ ẏre f

z,i (13a)

˙̃xi = f̃x̃i (x̃i) + g̃m
x̃i

(x̃i)żm
i + g̃r

x̃i
(x̃i)żr,in

i

+g̃u
x̃i

(x̃i)Ui(x̃i, Pi
m, yz,i) (13b)

Here, the map Ui(xi, Pm
i , yz,i)→ ui is defined as in Eqn.

(14) to obtain physical control ui given the output vari-
able in energy space.

ui =
1

wu
i

(
Ei(xi)
τi
− yz,i − Pi

m
)

(14)

The input-output model in Eqn. (13) has a relative de-
gree equal to one since the first time derivative of the
output is directly dependent on the control in energy
space uz,i = Q̇u

i . The rest of the state variables charac-
terizing the internal dynamics, are not directly affected
by the virtual control in energy space uz,i. They are only
affected by physical control ui, which is re-expressed
through the map Ui(xi, Pm

i , yz,i).
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It is often useful to analyse the normal form form
to understand the input-output behavior of closed-loop
component models. Normal form models follow the
same properties as the original model in closed loop
only if there exists a diffeomorphism between the two
[9]. Since the relative degree of the input-output lin-
earized model is 1, the existence of the bijective map
between ui and yz,i given by Eqn. (14) and (11) is suffi-
cient to prove the diffeomorphism [22]. We thus utilize
the normal form model for the stability analysis in our
claim for sufficient stability conditions.

Theorem 1. (Stability of closed-loop model)
Consider the virtual control uz,i designed as in Eqn.
(12b). and the closed loop model formed by equations
(6), (12c) with the output variable definition in Eqn.
(11) and the reference value yre f

z,i = [1, 0] żr,in
i = Pr,in

i .
Assume existence of unique equilibrium x̃∗i for each
value of żr,in

i (t)∀t, the quasi-static equilibrium thus ob-
tained is stable in the sense of Lyapunov if the rate at
which useful energy gets generated by the component is
less than the tracking error.∫ t

0
4Et,i(s)ds ≤

(
yz,i(t) − yre f

z,i (t)
)

(15)

Proof. The proof is detailed in Appendix D.

When two or more components are left to interact,
the incoming interaction variable drives the system dy-
namics. It changes the natural equilibrium of the stand-
alone component model to that of the interconnected
system model. However, this dynamic adjustment at the
interfaces is contingent upon the existence of intercon-
nected system equilibrium and the dynamical exchange
of power across components. As a result, there are two
related questions that are to be answered: (i) if there
exists an interconnected system equilibrium and (ii) if
the such equilibrium is stabilizable. The theorem 1 an-
swers the second question in part assuming there exists
an equilibrium for each incoming interaction variable
from the rest of the system. We next address the first
question assuming the sufficient stability conditions are
satisfied, i.e. we derive conditions under which the com-
ponent can be connected to the rest of the system. We fi-
nally propose a control co-design method that accounts
for the interdependencies in Section 6,

5.3. Sufficient system-level conditions
The interaction variables shared between components

may interactively settle down to a common value re-
sulting in a system equilibrium or may become unsta-
ble. We propose sufficient feasibility conditions that can

be checked by each component in a feed-forward way
to ensure feasible interconnection. In closed loop, the
energy space model representation observes dynamical
model as in Eqn. (16).

Interaction model in closed loop: (16)
ẋz,i = Az,ixx,i + BtEt,i + Bzż

r,out
i xz,i(0) = xz,i0

The matrices Az,i, Bt, Bz are the same as defined for Eqn.
(5). It should be noted that żr,out

i and Et,i here are func-
tions of local energy conversion dynamics, the trajecto-
ries of which evolve as per the extended space model in
closed loop dictated by Eqn. (6), (12b) and (12c).

Let us first characterize the variation of incoming
and outgoing interaction variables over a period of time
t ∈ [kT, (k + 1)T ] in the sets Zr,in

i [k] and Zr,out
i [k] re-

spectively. Here, T >> tr where tris the settling time of
input-output model in Eqn. (13a). The settling time of
the output variable in energy space is approximately five
times the time constant of the closed loop input-output
model, which is equal to 5

Ki
. Alternatively, an equiva-

lent sliding mode control was proposed in [22] which
has finite settling time properties.

We propose that each component based on previous
time period Zr,in

i [k − 1], compute the set Zr,out
i [k] by

utilizing the relation in Eqn. (13a). Thus characterized
sets are then communicated to neighbors and then at the
present time period, the set of incoming interaction vari-
able at each of the components is computed as

Z
r,in
i [k] =

−∑
j∈Ci

z j
r,out

∣∣∣∣∣∣∣∣ z j
r,out ∈ Z

r,out
j [k]


Numerical algorithms to characterize the sets of outgo-
ing interaction variables are a topic of future research.
In this paper, we assume these sets can be computed
ahead of time by each component.

We propose a sufficient condition utilizing these sets
computed in a look-ahead manner for each time interval
T to claim general dissipativity result that holds for
time t ∈ [kT, (k + 1) T ].

Lemma 1. (Feasibility of component interconnection)
If the set Zr,out

i [k] as characterized by the closed
loop interactive model of Σi ∀zr,in

i (t) ∈ Z
r,in
i [k]

observes the condition Zr,out
i [k] ⊆ Z

r,in
i [k], then,

Σi is dissipative with respect to the supply function(
Ṗr,in

i (t) + Q̇r,in
i (t)

)
∀t ∈ [kT, (k + 1)T ].

Proof. The proof is elaborated in Appendix E.
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Each of the components satisfying Lemma 1 implies
that there exists an interconnected system equilibrium
x∗i (t)∀i as viewed by each of the components. Such
equilibrium is possibly time-varying but is stabilizable
under the conditions stated in Theorem 1. Furthermore,
the general dissipativity result in Lemma Appendix E is
additive across components which leads to the follow-
ing interconnected system stability result.

Theorem 2. (Stability of interconnected system)
Assume Σi in closed loop at each time t observes the
properties stated in Theorem 1 ∀zr,in

i (t) ∈ Zr,in
i [k]. As-

sume further that the pre-chraracterized sets of inter-
action variables satisfy sufficient feasibility conditions
stated in Lemma 1. Several such components inter-
acting with each other through memory-less junctions
result in an interconnected system that is stable in the
sense of Lyapunov ∀t ∈ [kT, (k + 1)T ].

Proof. The proof is provided in Appendix F,

After the energy dynamic transients settle i.e. when
Ėi = pi = 0, the feasibility conditions imply that the
error

(
yz,i − yre f

z,i

)
< 0. This condition is also consistent

with the sufficient feasibility condition, since the stored
energy in tangent space is always positive. The two
conditions therefore result in perfect alignment of in-
teraction variables viewed from the perspective of both
component-level and system-level. The feasibility con-
ditions are intended to be checked in a feed-forward way
which is elaborated upon next. They can also be accom-
modated in a look-ahead centralized controller with dy-
namical energy space constraints [14] for optimal tra-
jectory planning. However, such an extension is out of
the scope of this paper.

6. Towards control co-design for provable perfor-
mance of TeDP systems

The new energy space modeling and control approach
lends itself well to integrating control design at early
stages of system design [11]. Proposed control co-
design is qualitatively different from today’s testing
whether each stand alone component meets specifica-
tions measured in terms of frequency and voltage re-
sponse for given ranges of loads [26]; recall from Ap-
pendix A that these tests are insufficient to ensure ex-
pected system-wide interaction dynamics. Instead, the
control design is iterative process in which there exists
a trade-off between making module-level control follow
specifications and system-level design realizing that the
components can not meet specifications and the need
for new equipment. For example, torque control may

not be sufficient. So TeDP designer may add storage
to follow the mission. More traditional approach is to
add large capacitance as a buffer between components
to ensure components meet certain specifications. In-
stead approach here is an interactive control co-design
in which different alternatives between more enhanced
component control and the need for adding more storage
or large capacitors. It comprises following steps [11]:

• Step 1: Design control of each module to meet best
possible performance characterized and measured
in terms of its interaction variables

• Step 2: Assess whether the interactions between
the modules with given specifications result in
system-wide dynamics that is feasible within the
engineering specifications, stable and robust

• Step 3: Simulate and analyze whether the system
performance on scenarios given by the user for the
worst case scenario is as expected.

• Step 4: If not, iterate starting from Step 1.

• Step 5: Stop when performance is acceptable.

In this paper we pursue this control co-design ap-
proach by starting with the candidate TeDP architecture
of interest and given its performance (providing time-
varying torque to propulsors, for example). Given can-
didate hardware components (generators, motors) and
candidate architecture like the ones shown in Figures 2
and 3, the architecture is decomposed into sub-systems
and the performance of each sub-system is modeled
and assessed in terms of its ranges of interaction Vari-
ables. Different control methods are assessed for their
impact on the ranges of power, rates of change reac-
tive power and energy over the given time horizon, as
illustrated in Section 7.1 next. Next, feasibility and sta-
bility are assessed in a feed-forward way for the next
time horizons using conditions described in Section 5.
If these conditions are not met, enhancements of sub-
system controllers can be pursued and/or new compo-
nents, such as larger capacitors, power electronically-
controlled switches for controlling reactive power dy-
namics in addition to mechanical torque control, or
eventually even real battery storage may be added.
Since system-level assessment is done in linear energy
state space, it becomes possible to have provable feasi-
bility and stability conditions. In short, pursuing Step
1 in conventional state space, and Step 2 using higher
level energy state space modeling supports iterative con-
trol co-design approach for provable performance eve
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in these otherwise complex nonlinear MIMO TeDP dy-
namical systems. Moreover, since testing for feasibil-
ity and stability can be done using only local state vari-
ables and interaction variables, cooperative distributed
semi-autonomous performance is supported by the sub-
systems comprising these systems. The controllers are
robust with respect to communications failures, and this
further ensures more safe performance which is one of
the most critical aspects of control design for aircrafts.

7. Illustrative TeDP systems

Any machine model constituting the TeDP system
has a general electromechanical structure as explained
in Appendix B which can be utilized to pose the con-
trol problem in a unified manner as explained in Section
5. In this section, we specifically consider the TeDP ar-
chitecture in Fig. 2 for illustrations. The parameters of
the system considered are provided in Appendix G.

In section 7.1, we first assess if the traditional con-
trol co-design approach explained in Section 6 can still
ensure interconnected system stability. We provide an
elaborate comparative simulation results of state of the
art approaches and that of energy-based control. Next
in section 7.2, we consider a more challenging time-
varying torque disturbances corresponding to different
requirements of the fan connected to the motor shaft as
in Eqn. (1). We show proof-of-concept effectiveness
of our proposed energy-based control co-design relative
to state of the art approaches for the the simplest TeDP
architecture in Fig. 1.

7.1. Control co-design for static changes
The traditional control co-design involves each stand-

alone machine control tuned for each step change in
the expected disturbance in the best possible way. Of-
ten the anticipated disturbances from rest of the system
are modeled as a Thevinin’s equivalent impedance for
which the tuning of controller is done. The resulting in-
terconnected TeDP system is then anticipated to remain
stable.

We first consider the step change in power distur-
bances (ε = −1 in Eqn. (1)) as shown in Fig. 9. This
torque seen by Σ2 in any of the TeDP architectures ap-
proximately manifest as the power disturbances seen by
Σ1 at the interface for negligible damping losses in Σ2.
The stand-alone tuning of Σ1 in traditional control co-
design approach is done for an equivalent Thevenin’s
resistance constructed at the terminals assuming nomi-
nal voltage of 1p.u..

Assuming negligible damping losses, the permanent
magnet generator is tuned best possible way for each of

Figure 9: Step change in disturbances entering the TeDP system:
These are mechanical power values required by the fan connected to
the motor shaft.

the step changes in power. We consider two different
control approaches. The first is the common governor
control of generator responding to the error in output
of importance. Traditionally the chosen output is fre-
quency which leads to the PID control as in Eqn. (17)
with y1 = ω1. The second is the full state feedback con-
trol as in Eqn. (18).

u1 = −Kp1

(
y1 − y1

re f
)
− Ki1

t∫
0

(
y1 − y1

re f
)

dt − Kdi
dyi
dt

(17)
u1 = −K1 (x1 − x1

∗) + u1
∗ (18)

Here once again u1 is the torque applied and the states to
which control responds is the entire state vector of per-
manent magnet generator i.e. x1 =

[
δ1, ω1, iS d1, iS q1

]T
.

x∗1 and u∗1 respectively are the equilibrium and the in-
put corresponding to equilibrium for each of the step
changes considered. Since the entire state vector equi-
librium for each step change can not be know exactly,
we utilize the equilibrium corresponding to the first
step.

Most importantly, the state of the art controller de-
sign methods can not be utilized to directly regulate
voltage. However, with energy-based control, the out-
put variable and its reference value in energy space has
been changed to accommodate regulation objectives as
follows:

yz1 = R1

(
id1

2

+iq1
2

)
+ (F1 + Kω) (ω1 − ω0)ω1︸                                             ︷︷                                             ︸

E1/τ1

−Tm1ω1︸ ︷︷ ︸
P1

u

yz1
re f = P1

r,inKv
Vre f

V
=

(
vd1id1 + vq1iq1

)
Kv

Vre f√
v2

d1+v2
q1

(19)
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Figure 10: Block diagram of closed loop permanent magnet generator module with component-level distributed interactive control. The measure-
ments of the energy produced by the component after energy dynamics settle yz,1 is utilized in the higher layer to dictate the generalized reactive
power that is needed to regulate its value to a consistent reference values yre f

z,1 = Pr,in
1 . This reactive power is implemented through the torque

control in the lower layer by utilizing the information of angular frequency and its derivative

Here the gains Kω,Kv > 0 dictate the tradeoff between
the frequency regulation and voltage regulation objec-
tives respectively. These output variables in energy
space are utilized for torque control through a dynamic
control mapped as in Eqn. (12c) which for the example
of permanent magnet generator leads to :

dTm1
dt = Tm1

ω1

dω1
dt −

1
ω1

uz1

where
uz1 = α1sign

(
yz1 − yz1

re f
) (20)

Here the energy space design is implemented through a
sliding mode equivalent control, in contrast to the gen-
eral feedback linearizing control stated in Eqn. (12b).
The sliding mode gain α1 is the upper bound on the non-
linearities η1 defined in Eqn. (13a). Interested readers
are referred to [22] for more details on the equivalent
sliding mode control.

The general control block diagram shown in Fig. 8
for the particular case of permanent magnet genera-
tor without considering regulation objectives is summa-
rized in Fig. 10. Notice that some of the energy space
variables denoted with a ‘ˆ’ need to be estimated using
previous available measurements as explained for the

DC machine example in Section 4.3. This is because
of the inherently interactive dynamic model of the com-
ponent. The lower layer physical model of permanent
magnet generator is given in Eqn. (B.4) which is uti-
lized to compute energy variables needed for the higher
layer model and control design. The extended state dy-
namics corresponding to the voltage variables is given
by the following set of dynamical equations:

d
dt

[
vd1
vq1

]
︸  ︷︷  ︸

r

=

 ω0vq1

−ω0vd1 +
ˆ̇P1

r,in
−(Q̇r,in

1 −2ω0(vq1id1−vd1iq1))
2P1

r,in/(
√

vd1
2+vq1

2)


(21)

These relations are a result of definition of instanta-
neous power and generalized reactive power in rotating
reference frame. The derivation is out of scope of this
paper. Notice that from an implementation standpoint,
the only measurements needed are that of energy space
variables yz,1 for higher layer design and the angular fre-
quency and its derivative for the lower layer implemen-
tation.

The resulting stand-alone response of the generator
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(a) Angular frequency ω1 (b) Input torque Tm1 (c) Terminal voltage magnitude |V1 |

Figure 11: Comparison of generator trajectories for the armature power disturbances in Fig. 9 with PID control (Eqn. (17)) in blue; LQR control
(Eqn. (18)) in red and energy-based control (Eqn. (20)) in yellow.

(a) Angular frequency ω1 (b) Input torque Tm1 (c) Terminal voltage |V1 |

Figure 12: Comparison of generator trajectories when connected to the motor with propulsor disturbances in Fig. 9 with PID control (Eqn. (17)) in
blue; LQR control (Eqn. (18)) in red and energy-based control (Eqn. (20)) in yellow.

frequency when compared to the state of the art meth-
ods is shown in Fig. 11(a). It can be seen that the tran-
sient overshoots are much lower with energy-based de-
sign. It is extremely hard to tune the PID control for a
given step change in power disturbances. Hence in these
plots, we have obtained the trajectories for a equiva-
lent Thevenin’s resistance at the armature representing
the given armature disturbance. As a result, the control
torque applied in steady state for the second step change
is slightly different with the PID control as shown in
Fig. 11(b). Much more important is to note that there
is a slight frequency offset with energy-based control in
Fig. 11(a), which is because of the voltage regulation
objective considered in the design. For Kv = 60 and
Kω = 100 in the design in Eqn. (19), the voltage trajec-
tories are shown in Fig. 11(c).

Next, when the stand-alone permanent magnet gen-
erator is connected to the motor that is actually subject
to the disturbances in Fig. 9, the interconnected system
frequency trajectories are shown in Fig. 12(a). It is ex-
pected that the interconnected system response is simi-
lar to the stand-alone component response. But clearly
there are some oscillatory modes that persist in the in-
terconnection system with PID control resulting from

the interconnection. For certain operating conditions,
these oscillations could be as large that they could even
potentially destabilize the interconnected system.

Comparing the other two controllers in the intercon-
nected system, it can be seen from Fig. 12(b) that the
LQR control settles slightly faster than the energy-based
control, but it however has significantly larger transient
overshoots. The voltage trajectories of the intercon-
nected system surprisingly result in voltages close to 1
p.u. as shown in Fig. 12(c) which was not achievable
with stand-alone component tuning with conventional
methods. From these plots, we can conclude that con-
ventional control co-design methods may lead to erro-
neous conclusions on interconnected system response.
It could also potentially lead to over designing of the en-
gine in the TeDP system. In contrast the energy based
controllers are designed with an objective of aligning
power interactions with rest of system, thereby result-
ing in similar stand-alone and interconnected system re-
sponses.

Next we consider a time-varying disturbance that
could potentially enter the TeDP systems especially
when subject to challenging aircraft missions.
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(a) Angular frequency ω1 (b) Input torque Tm1 (c) Terminal voltage magnitude |V1 |

Figure 13: Comparison of generator trajectories for the armature power disturbances in Fig. 15 with PID control (Eqn. (17)) in blue; LQR control
(Eqn. (18)) in red and energy-based control (Eqn. (20)) in yellow.

(a) Angular frequency ω1 (b) Input torque Tm1 (c) Terminal voltage |V1 |

Figure 14: Comparison of generator trajectories when connected to the motor with propulsor disturbances in Fig. 15 with PID control (Eqn. (17))
in blue; LQR control (Eqn. (18)) in red and energy-based control (Eqn. (20)) in yellow.

7.2. Control co-design for continuous changes in load

For this case study we consider the time-varying
power disturbances corresponding to ε = −1 in Eqn.
(1) as shown in Fig. 15. In the previous sub-section,

Figure 15: Disturbances entering the TeDP system: These are me-
chanical power values required by the fan connected to the motor
shaft.

the control co-design was performed for 50 second av-
eraged values of power disturbances in Fig. 15. For the
continuous variations however, since re-tuning of con-

trollers can not be formed at every instant, we utilized
re-tuned gains only at t = 0 and t = 50. The resulting
stand-alone mode responses are shown in Fig. 13.

The LQR and PID controllers fail at 85th second
due to voltage instability created by constant power dis-
turbances. In contrast, the interconnected system re-
sponses with conventional control methods are stable
with a co-incidentally good frequency and voltage reg-
ulation as shown in 14.

From this exercise, we can conclude that we can-
not achieve provable performance with the conventional
controllers tuned in stand alone mode upon interconnec-
tion. This happens because the constant power distur-
bances seen by generator get filtered through the natural
dynamics of the motor. Such effects are to be explicitly
considered through the modeling of interaction dynam-
ics. We do so with energy based controllers and thus
the trajectories are stable at any operating point in both
stand-alone and interconnection modes. The voltage
and/or frequency regulation is treated as a secondary
control objective over slower timescales and thus per-
fect regulation could not be achieved in stand alone
mode. Furthermore, the incoming reactive power dy-
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namics are assumed to correspond to the worst case
value corresponding to a constant power sink with zero
inertia. However, in the interconnection mode, the iner-
tia of rest of the system in not zero in reality. Thus, the
response only gets better as seen in Fig. 14, depending
on the value of inertia of the rest of the system.

If the voltage or frequency regulation is an important
specification that ought to be satisfied in stand-alone
mode, one approach is to have an accurate representa-
tion of the incoming reactive power from the rest of the
system. Alternatively, additional hardware that can pro-
vide extra degree of control can be added in. For exam-
ple, if we consider the power electronics interface such
as the one shown in Fig. 3, we can achieve potentially
achieve better frequency and voltage regulation even in
stand-alone modes. This is a topic of future research.

8. Summary and future work

We have proposed a control co-design method that in-
volves feed-forward conditions on energy variables for
feasible interconnection. These conditions result from
the distributed multi-layered interactive energy-based
control that is technology-agnostic. The component-
level design focuses on minimizing the dynamic inef-
ficiencies associated with power transfer between the
components thus leading to smarter utilization of avail-
able control hardware. The feed-forward sufficient con-
ditions are distributed and easy-to-check by the compo-
nents themselves.

Alternatively, a system-level controller can check for
these conditions. Upon violation, minimal hardware to
be procured can be identified. For example TeDP sys-
tem considered in Section 7, if the disturbance magni-
tudes were ten times larger, the existing hardware is not
sufficient since the feasibility conditions may get vio-
lated. When such infeasibilty is detected, it is the job of
system-level controller to activate additional hardware.
Corresponding system-level problem can be posed to
even identify minimal storage needed to still accommo-
date ten times large disturbance. While this paper pro-
vides the tools to facilitate provable control co-design as
explained in Section 6, problem posing for the tradeoff

analysis between the hardware sizing and smart actua-
tors for different mission requirements need to still be
pursued.

Another promising direction of future research is to
ensure sufficient stability condition in Eqn. (15). In
the current control design method, it is assumed that
such condition is satisfied, which is even hard to check
ahead of time. We have proposed an alternative model
in [14] where the exergy dictating variable Et,i is treated

as a state variable in conjunction with the model in Eqn.
(5a). The corresponding third-order energy space model
for a single port component is given in Eqn. (22).

d
dt

 Ei

pi

Et,i

︸  ︷︷  ︸
xz,i

=


0 1 0
0 0 4
− 1
τi

0 0

 xz,i +

 0 0
−1 0
0 1


[

Q̇u
i

Pt,i
u

]
︸   ︷︷   ︸

uz,i

(22)
This model also has additional degree of control in en-
ergy space called power in tangent space Pu

t,i which can
be utilized to ensure satisfaction of sufficient stability
condition. If instantaneous power at control port Pu

i is
defined as viii, then Pu

t,i is defined as dvi
dt

dii
dt . This model

can especially be useful in power electronics based con-
trol where fast switching control is permissible.
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Appendix A. New challenge of tuning controllable
equipment

Consider a simple R-L circuit element with a con-
trollable voltage source that supplies a constant power
as shown in Fig.A.16. The inductor and resistor in Fig.

Figure A.16: Motivating example: Controllable lossy inductor

A.16 represent the inertia and damping of any compo-
nent under consideration. The inductor is associated
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with a state variable current i, and the voltage source in-
jects a controllable power Pu = ui for the disturbances
seen at its interface Pm = vi. The net power that can be
injected by the controllable sources shown in green in
Fig. 1 can be abstracted as controllable power Pu while
the one that the fans powering the mission absorb can
be abstracted as net uncontrollable power disturbances
Pm. With this resemblance between the general TeDP
system in Fig. 4 to that in Fig. A.16 established, we
illustrate the inherent operating problems when subject
to time-varying interactions by showing the simulation
response of the circuit in Fig. A.16.

From an energy standpoint, the initial stored energy
in the inductor of the representative circuit in Fig. A.16
is given by the initial current i0, as E0 = 1

2 Li20 is sup-
posed to decay exponentially, the rate of which is dic-
tated by the system damping if the controlled power Pu

is designed to exactly counteract Pm at each time in-
stant. Simple energy conservation principles give the
governing dynamics as follows:

Ė(t) = −Ri2 + Pm(t) + Pu(t) E(0) =
1
2

Li20 (A.1a)

= −
2R
L

E + Pm(t) + Pu(t) (A.1b)

The common control methods such as pole placement
technique that can be employed in Fig. A.16 can be
interpreted using the following control strategy [7].

Pu(t) = −KE(t) + Pm(t − δt)

This control Pu(t) is implemented as a discrete time con-
trol. The second component is a feed-forward signal to
balance the power at equilibrium. It is either measured
locally, or provided by a coordinator. These signals are
provided with a time-delay of δt. Smaller the delay δt,
less conspicuous would be the affects of the imperfect
counteraction of the feed-forward signal. The purpose
of the first component of control is to modify the tran-
sient characteristics of the response through a control
gain K as found by the pole placement techniques. The
resulting closed-loop energy dynamics are as follows:

Ė = −

( R
2L

+ K
)

E + ∆Pm(t) (A.2)

Since the control application is a function of the mea-
sured power interaction at the interface a sampling
timestep δt ahead of time, the closed loop dynamics sees
a net disturbance ∆Pm(t) Notice that for static power in-
teractions, ∆Pm(t) = 0 and thus the damping injection
does result in current settling down to zero at a closed-
loop time constant as modulated by the damping injec-
tion gain K.

Now consider the following complex scenarios that
are possible in future TeDP systems, the effects of which
can be understood through time domain simulations of a
representative controllable lossy inductor system in Fig.
A.16.

• Non-stationary disturbances: Characteristic of de-
centralized control actions
Each Σi designs the control without the knowledge
of the neighbor’s energy conversion dynamics. As
a result, Σi sees zero-mean disturbances, as shown
by the red plot in Fig. Appendix A. The effect
such disturbance would have on any system with
local control, we simulate the trajectories obtained
in the simplest case of a representative inductor
system in Fig. A.16. The resulting current trajec-
tories are shown in Fig. Appendix A in black.
We see that the inductor current trajectory leads to
the equilibrium. However, the trajectories would
oscillate at the same frequency as that of the dis-
turbance.

• Low inductance: Characteristic of increased
power electronics usage
Present trends of increased power electronic inter-
facing and decommissioning of diesel engines for
greener energy is indicative of the systems with
lower inertia. For the same disturbance signal con-
sidered in the previous case, if the inductance of
the controllable lossy inductor system is made ten
times smaller to represent the low inertia systems,
the simulated current trajectories are shown in Fig.
17(b) in black. Notice that the magnitude of os-
cillations increased several folds that it can even
trigger the protection devices.

• Non-zero-mean disturbances: Characteristic of
challenging mission requirements
For a persistent dynamic disturbance signal shown
in red in Fig. 17(c). The resulting effect on the sys-
tem is depicted using the lossy inductor example
through the resulting time domain simulations of
inductor current, as shown in black in Fig. 17(c).
Notice for this case that the control design accu-
mulates error over time, and as a result, currents
do not ever settle.

Furthermore, consider the same analysis performed
using the dual of the system in Fig. A.16. This dual sys-
tem would be a lossy controllable capacitor where the
voltage inputs are replaced with current inputs, and the
lossy inductor is replaced with a capacitor with shunt
conductance [8]. The voltage trajectories in the dual cir-
cuit would be the same as the current oscillations seen
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(a) Effect of non-stationary zero-mean dis-
turbance

(b) Voltage across capacitor (c) Applied control voltage

Figure A.17: Current trajectories (in black) obtained for different time-varying disturbances ∆Pm(t) (in red)
.

in Fig. A.17. These voltage oscillations are indicative
of circulating currents, resulting in increased losses and
lower power transfer efficiency.

We have illustrated the detrimental effects changing
TeDP systems could have, by performing time domain
simulations of a representative simple inductor system.
In an actual system, these disturbances could be even
worse, because of the parameter and model uncertainty.
On the bright side they could be better too. In this analy-
sis of representative inductor system, we have only seen
the effect of provable linear quadratic control-based pro-
portional control. However industry today is dominated
by PID controllers, where the tuning is performed un-
til the issues with regards to transients or steady-state
error are all resolved. However tuning control gains
especially for complex systems, suitable for all oper-
ating conditions is extremely time-consuming and non-
provable.

Appendix B. Background on physical modeling of
electrical machines

In any electrical machine, there are multiple windings
carrying current I that are associated with flux linkages
ψ = LI in the air gap. Here, I and ψ are the vectors asso-
ciated with respective quantities in each of the windings.
L is a symmetric matrix that captures the self and mu-
tual inductances between different windings. The rate
of change of flux linkages induces EMF as per Fara-
day’s law of electromagnetism. The flux linkages are
often position dependent, which together with the con-
sideration of voltage drop across the resistance of the
windings, lead to general form of electrical dynamical

equations in Eqn. (B.1a). Here V is the vector of ap-
plied voltages across and R is a diagonal matrix with
resistance values of each of the windings.

Furthermore, the current carrying wires in the pres-
ence of flux linkages experience a force that is also
called as electromagnetic torque Te as a result of
Lorentz’s force law. This phenomena together with Net-
won’s second law of motion leads to the general form of
mechanical dynamical relations in Eqn. (B.1b).

dI
dt

= L(θ)−1

V − RI − IT ∂L(θ)
∂θ

ω︸      ︷︷      ︸
U

 (B.1a)

dω
dt

=
1
J

Tm − Dω −
1
2

IT ∂L(θ)
∂θ

I︸       ︷︷       ︸
Te

 (B.1b)

dθ
dt

= ω (B.1c)

In the equations above, the components U and Te repre-
sents the electromechanical coupling. Electric machines
used in various architectures differ fundamentally in
terms of the construction which dictates the number of
winding to be modeled and the position dependence of
inductance matrix.

As an example, a synchronous machine consists of
three windings on the stator (ia, ib, ic) and there is a field
winding with DC excitation (i f ) on the rotor that creates
electromagnetic flux. In the generation mode, the rotor
is driven with an input torque, and the flux linking with
the stator windings changes with position of the rotor
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thereby inducing and EMF on stator terminals. In the
motor mode, the stator terminals are excited with AC
voltages carrying AC currents with a phase difference of
1200 creating a rotating magnetic flux in the air gap. The
current in the field winding when linked with this mag-
netic flux experiences an electromagnetic torque. Often
other windings called damper windings are modeled on
the rotor to capture the effects of eddy currents that flow
through the rotor, which are not included here.

In the generator mode, the controls are the field exci-
tation voltage v f and input torque Tm, u = [v f ,Tm]. In
the motor mode, the control is u = [v f ], the mechanical
torque enters as a disturbance m = [Tm]. In both cases,
interaction with rest of the system is through the arma-
ture terminal voltages applied across each of the phases
r = [va, vb, vc]. We next utilize the general physics-
based structure of machine models to obtain particular
machine models in standard state space form.

Appendix B.1. Example 1: Synchronous machine
Notice that the model in Eqn. (B.1) is a non-linear

set of equations, which makes the control problem ex-
tremely hard. A trick often utilized in machine model-
ing is to convert abc reference frame quantities into a
rotating reference frame with the rotor angle θ which is
rotating at a speed of ω through Park’s transformation
for balanced three phase quantities as follows [3]. For
the case of balanced phases, T (θ) operator as defined in
Eqn. (B.2) can be used instead to map quantities from
and to Iab = [ia, ib]T and Idq =

[
id, iq

]T
[3].

Idq =
√

2

 sin
(
θ + π

3

)
sin (θ)

cos
(
θ + π

3

)
cos (θ)

︸                               ︷︷                               ︸
T (θ)

Iab Vdq = T (θ) Vab

(B.2)
Upon application of this transformation, the standard
state space model can be written as follows:

d
dt


id
iq
iF

ω

︸︷︷︸
x

=


−

Rs
Ls,eq

0 R f

Meq
iq

0 −
Rs

Ls,eq
0 −id +

Meq

2Ls,eq
i f

Rs
Meq

0 −
R f

L f ,eq

Meq

2L f ,eq
iq

0 −
Meq

J i f 0 −D
J

︸                                                  ︷︷                                                  ︸
A(x)

x

+


1

Ls,eq
0

0 1
Ls,eq

0 0
0 0

︸            ︷︷            ︸
Br

[
vd

vq

]
︸ ︷︷ ︸

r

+


0 0
0 0
1

L f ,eq
0

0 1
J

︸         ︷︷         ︸
Bu

[
vF

Tm

]
︸  ︷︷  ︸

u

dθ
dt = ω

(B.3)

Here, the resistances and equivalent self inductances
R and Leq for stator and field windings are identified
with subscripts s and f respectively. The mutual induc-
tance is denoted as Meq. The field excitation and the
torque are controllable inputs ui while the disturbances
enter indirectly through the port inputs ri. But for the
motor mode of operation, vF is controllable input and
Tm is the disturbance. ri in some machines is assumed
to be controllable through additional power electronics,
which will be discussed later. Note that the states of this
model are x =

[
id, iq, iF , ω, θ

]
. The coupling between the

currents and angular frequency makes this a nonlinear
multi-input multi-output control problem. It is typi-
cally assumed that the angular frequency evolves much
slower than the electromagentic currents. Furthermore,
it is assumed that the field current evolves slower than
the stator currents. As a result, independent control of
the frequency and field current is typically performed by
utilizing the resulting linear time-scale separated mod-
els [6].

The general standard state space model in linearized
form, is shown in Eqn. (B.3). It should be noted that
when linearization is performed, matrix A(x) is com-
puted around an equilibrium x = x∗ and thereby con-
verting the problem into linear multi-input control de-
sign problem.

Appendix B.2. Example 2: Permanent magnet machine
A special case of synchronous machine is the perma-

nent magnetic machine. In this machine, it is assumed
that the rotor provides constant magnetization. As a re-
sult, this machine is modeled by assuming a fictitious
field winding producing a magnetization MeqiF = K
which is dependent on the rotor position. In Eqn. (B.3),
making this substituting and eliminating the dynamics
of the fictitious field winding, we obtain the following
state space model:

d
dt


id
iq
ω
θ

︸︷︷︸
x

=


−

Rs
Ls,eq

0 iq 0
0 −

Rs
Ls,eq

−id + K
Ls,eq

0
0 −K

J −D
J 0

0 0 1 0

︸                                      ︷︷                                      ︸
A(x)

x

+


1

Ls,eq
0

0 1
Ls,eq

0 0
0 0

︸            ︷︷            ︸
Br

[
vd

vq

]
︸ ︷︷ ︸

r

+


0
0
1
J
0

︸︷︷︸
Bu

[Tm]︸︷︷︸
u

(B.4)
The control design problem posed for this machine as
a result can be understood as non-linear single input
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control problem. The non-linearity is only because of
the last column in the matrix A(x) in Eqn. (B.4). Note
that these equations are written in rotor reference frame.
If they had been written in network reference frame, the
corresponding state space model can be written as

d
dt


id
iq
∆ω
δ

︸  ︷︷  ︸
x

=


−

Rs
Ls,eq

ω0
K sin(δ)

Ls,eq
0

−ω0 −
Rs

Ls,eq

K cos(δ)
Ls,eq

0
−K

J sin (δ) −K
J cos (δ) −D

J 0
0 0 1 0

︸                                               ︷︷                                               ︸
A(x)

x

+


1

Ls,eq
0

0 1
Ls,eq

0 0
0 0

︸            ︷︷            ︸
Br

[
vd

vq

]
︸ ︷︷ ︸

r

+


0
0
1
J
0

︸︷︷︸
Bu

[Tm]︸︷︷︸
u

(B.5)
Here the mechanical states or rotor angular position and
speed are replaced with relative rotor angle δ and rela-
tive angular frequency ∆ω = ω − ω0, where ω0 is the
arbitrary reference frame speed assumed. The control
design problem then becomes that of a nonlinear sin-
gle input control problem. The nonlinearity is a result
of trigonometric terms. In the literature, these models
often assume small variations of relative angular posi-
tion and thereby pose the problem as single input linear
control problem. The single input may not sufficiently
be utilized to control the disturbances. As a result, of-
ten a rectifier is utilized in conjunction with the PMSG.
Furthermore, in the case of motor mode of operation,
there is no control at all. In such cases, it becomes im-
perative to add an inverter in conjunction with the stator
windings of the machine.

Appendix B.3. Example 3: Permanent magnet machine
with an AC-DC converter

The dynamical model of a typical three-phase AC/DC
converter can be written in network reference frame as:

did
dt = −RPE

LPE
id + ω0iq + 1

LPE
(sdvDC − vd)

diq
dt = −RPE

LPE
iq − ω0id + 1

LPE

(
sqvDC − vq

)
dvDC

dt = 1
CPE

(
sdid + sqiq − iDC

) (B.6)

Here, RPE , LPE and CPE represent the filter impedances
and id, iq and vDC represent the d and q axis equivalent
currents of the filter and voltage at the DC interface of
the power electronics converter respectively. iDC is the
current entering the DC terminal of the power electron-
ics unit.

We use the same notation for currents here, since two
currents flowing into the stator and that into the recti-
fier unit considered here are the same. Resolving the

algebraic dependency, the state space model in standard
form for the permagnet machine connected to a rectifier
unit can be written as

d
dt


id
iq
∆ω
vDC

 =


−

Rs+RPE
Ls,eq+LPE

ω0
K sin(δ)

Ls,eq+LPE
0

−ω0 −
Rs+RPE

Ls,eq+LPE

K cos(δ)
Ls,eq+LPE

0
−K

J sin (δ) −K
J cos (δ) −D

J 0
sd

CPE

sq

CPE
0 0

︸                                                 ︷︷                                                 ︸
A(x,u)

x

+


0
0
0
1

CPE

︸   ︷︷   ︸
Br

[iDC]︸︷︷︸
r

+


0 vDC

Ls,eq+LPE
0

0 0 vDC
Ls,eq+LPE

1
J 0 0
0 0 0

︸                            ︷︷                            ︸
Bu(x)

 Tm

sd

sq

︸  ︷︷  ︸
u

dδ
dt = ∆ω

(B.7)
Notice that the the port input that enter this module is
now the current entering the DC interface. Not only the
matrix A is state dependent but is also control depen-
dent. Furthermore, the input matrix is a state dependent
matrix. This problem therefore has to be posed as a
bilinear multi-input control problem. In the state of
the art literature, it is typically assumed that the capac-
itance vDC is large and thereby under timescale separa-
tions assumption, the problem treated as a multi-input
linear control problem for small changes in rotor rela-
tive angles.

In summary, depending on the objectives of power
train, torque control is often sufficient. But other times,
when there is a need to control fast disturbances enter-
ing the system, switching control is needed. But the
resulting control problem is quite complex, But there
exists extensive literature of field oriented control orig-
inally pursued for induction machines that is now be-
ing applied to power electronics converters at the inter-
faces. The major assumptions involved are that of the
small variations of DC voltage and that the field and
speed can be independently controlled because of in-
herent timescale separation of machine models.

Appendix B.4. Example 4: DC Machine
Finally, we develop the model for DC machine since

it is the easiest to study from a control design point of
view. The general principles of machine modeling be-
ing the same, these machines consists of single winding
on the rotor and an external DC source that generates
a constant magnetic field. It is assumed in this ma-
chine that magnetic field is generated by a field wind-
ing which is unaffected by the armature windings. This
phenomena is analogous to that of the permanent mag-
net machine model except that there is a single armature
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winding. We can therefore derive DC machine model
starting from the permanent magnet machine model in
Eqn. (B.3) by using the subscript a instead of q to rep-
resent armature quantities and make the d-axis variables
equal to zero. The resulting standard state space model
is shown in Eqn. (B.8).

d
dt

 ia
iF

ω

 =


−

Ra
La

0 kBi f

0 −
R f

L f
0

−kBi f 0 −D
J

︸                        ︷︷                        ︸
A(x)

 ia
iF

ω



+


1
La

0
0

︸ ︷︷ ︸
Br

[va]︸︷︷︸
r

+


0 0
0 0
1

L f
0

0 1
J

︸       ︷︷       ︸
Bu

[
vF

Tm

]
︸  ︷︷  ︸

u

dθ
dt = ω

(B.8)

Here we have denoted M
Leq

with kB commonly known as
the motor constant. In contrast to the permanent mag-
net machine model, we model the dynamics of the field
winding using the second element on the Eqn. (B.8)
under an assumption of negligible magnetic effects that
the armature windings would have on the field. With
such a model, we can pose the control problem as that of
nonlinear multi-input control design. Typically, field
winding is assumed to evolved much slower, thereby
making is a linear control problem. The resulting model
is a second order system which can be treated as an
equivalent RLC circuit shown in Fig. B.18. With the

Figure B.18: Equivalent RLC circut of a DC machine: Convention
of DC generator is shown here where the control inputs are mechan-
ical torque Tm and field excitation voltage vF labeled in green. The
interaction with rest of the system is through the armature voltage va
labeled in blue.

field winding modeled however, the equivalent circuit
can be understood as if iF dynamics dictate the modula-
tion of power from armature to shaft and vice-versa.

Appendix C. Energy space variables definitions

In what follows, we summarize definitions of energy
variables used in the modeling introduced in Section 4.

Definition 2. (Instantaneous power)
The power interaction of the component i with the rest

of the system is given by the mapping Pi : Ei × Fi → Pi

and is defined as
Pi = eT

i fi (C.1a)

where vi ∈ Ei and fi ∈ Fi respectively represent the
effort and flow variables appearing at the ports of inter-
connection.

Based on port variable characterization, we further
define generalized rate of reactive power as follows:

Definition 3. (Generalized reactive power dynamics)
Generalized reactive power Qi is a quantity, the time

derivative of which is given by a mapping Q̇i : TEi ×

TF i → TQi and is defined as

Q̇i = eT
i

d fi
dt
− f T

i
dei

dt
(C.1b)

where TEi and TF i represents the tangent manifold of
efforts and flow variables respectively.

Let the inertia of the component model in Eqn. (2) be
characterized using an inertia matrix Hi(xi) [19, 25].

Definition 4. (Stored energy)
Stored energy of component i is given by the energy

function Ei : Xi → R defined as

Ei(xi) =
1
2

xT
i Hi(xi)xi (C.1c)

for an inertia matrix Hi(xi) ∀xi ∈ Xi.

Definition 5. (Stored energy in tangent space)
Given the positive definite inertia matrix Hi(xi) used to
define stored energy as in Definition 4, the stored energy
in tangent space Eti is defined over the tangent bundle
TXi := ∪xi∈Xi xi×TxiXi where TxiXi is the tangent space
of Xi at xi, through the mapping Et,i : TXi → R as

Et,i(xi, ẋi) =
1
2

ẋT
i Hi(xi)ẋi (C.1d)

Similar to inertia matrix Hi(xi), let us denote dissipa-
tion matrix through Bi(xi), which is a diagonal matrix.

Definition 6. (Time constant)
Dissipation of a component i is described through a
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dissipation function in quadratic form through the map-
ping Di : Xi → R defined as

Di(xi) = xT
i Bi(xi)(xi)xi (C.1e)

for some matrix Bi(xi)∀xi ∈ Xi. The ratio of stored en-
ergy and the damping of the component is called as the
time constant.

τi =
Ei(xi)
Di(xi)

(C.1f)

From Equations (C.1c) and (C.1e), this quantity can
be upper bounded by the largest singular value of
D−1

i (xi)Hi(xi).

Appendix D. Proof of Theorem 1 of Section 5

Proof. (1) Consider now the candidate storage function
S i as in Eqn. (D.1a).

S i =


t∫

0

4Et,i(s)ds +
1
τ i

Ei(t)

 +
∣∣∣∣yz,i − yre f

z,i

∣∣∣∣ (D.1a)

By taking its time derivative and plugging in the expres-
sions from Eqn. (5), we have

dS i(t)
dt =

(
Ṗr,out

i (t) + Q̇r,out
i (t) + Ṗm

i (t)
+Q̇m

i (t) + Ṗu
i (t) + uz,i

)
+

sign
(

yz,i(t)−
yz,i

re f (t)

) (
−4Et,i(t) + Ṗr,out

i (t) + Q̇r,out
i (t)

+uz,i + Q̇m
i (t) − ẏre f

z,i

)
(D.1b)

=
(
Ṗu

i (t) + Ṗm
i (t)

)
−

(
ẏre f

z,i (t)+
4Et,i(t)

)
sign

(
yz,i(t)−
yz,i

re f (t)

)
+

(
1 + sign

(
yz,i(t)
−yz,i

re f (t)

)) (
Ṗr,out

i (t) + Q̇r,out
i (t)

+Q̇m
i (t) + uz,i

)
(D.1c)

Plugging in the control design in Eqn. (12b) where the
expression for ηi is expanded using Eqn. (13b), we ob-
tain the following relation.

dS i(t)
dt = Ṗu

i (t) + Ṗm
i (t) −

(
4Et,i(t)
+ẏre f

z,i (t)

)
sign

(
yz,i(t)
−yz,i

re f (t)

)
+

(
1 + sign

(
yz,i(t)
−yz,i

re f (t)

))


Ṗr,out
i (t) + Q̇r,out

i (t) + Q̇m
i (t)+

−Ṗr,out
i (t − δt) − Q̇r,out

i (t − δt)
−Q̇m

i (t − δt) + 4Et,i(t − δt)

+ẏre f
z,i (t) − Ki

(
yz,i(t − δt)
−yz,i

re f (t − δt)

)



(D.1d)

Here, we have utilized the previous timestep val-
ues of energy space quantities since the time deriva-
tives of states involved in their computation are
unknown at present timestep. By utilizing Tay-
lor’s series approximation for simplification of the
term

(
yz,i(t − δt) − yz,i

re f (t − δt)
)

sign
(
yz,i(t) − yz,i

re f (t)
)
,

we obtain

dS i
dt = −Ki

∣∣∣∣∣∣ yz,i(t − δt)−
yz,i

re f (t − δt)

∣∣∣∣∣∣ +

(
4Et,i(t − δt) + Ṗu

i (t)
+Ṗm

i (t) + ẏre f
z,i (t)

)
−4δEt,isign

(
yz,i(t) − yz,i

re f (t)
)
+(

1 + sign
(

yz,i(t)
−yz,i

re f (t)

))
δ

(
Ṗr,out

i (t) + Q̇r,out
i (t)

+Q̇m
i (t)

)
(D.1e)

Here, δ(x) = x (t) − x (t − δt) representing dif-
ference between values of quantities between two
subsequent timesteps. Next, assuming negligi-
ble second order effects of the derivative terms
δ
(
Ṗr,out

i (t) + Q̇r,out
i (t) + Q̇m

i (t)
)

and δ
(
Et,i

)
, we obtain

dS i
dt = −Ki

∣∣∣yz,i(t − δt) − yz,i
re f (t − δt)

∣∣∣
+

(
4Et,i(t − δt) +

pi(t)
τi
− ẏz,i (t) + ẏre f

z,i (t)
) (D.1f)

Substituting the output variable derivative expression in
closed loop, we finally obtain

dS i
′

dt = −Ki

∣∣∣yz,i(t − δt) − yz,i
re f (t − δt)

∣∣∣ +(
4Et,i(t − δt) + Ki

(
yz,i(t − δt) − yz,i

re f (t − δt)
))
(D.1g)

For all operating conditions, a sufficient condition for
stability in the sense of Lyapunov is to have the second
term of the equation considered to be less than zero.
Taking the time integral of the second term condition
yields the result stated.

Appendix E. Proof of Lemma 1 of Section 5

Proof. At instantaneous time, the feasibility conditions
can also be re-stated as an inequality condition to be
satisfied element-by-element as zr,out

i � zr,in
i Taking the

derivative of the first element of the inequality and the
second element of the inequality and adding them up,
we obtain

Ṗr,out
i + Q̇r,out

i ≤ Ṗr,in
i + Q̇r,in

i (E.1a)

By utilizing the definition of outgoing interaction vari-
able in Eqn. (16),

Ṗr,out
i = ṗi +

d
dt

(
1
τi

Ei

)
(E.1b)

Q̇r,out
i = 4Et,i − ṗi (E.1c)
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Now combining Eqns. (E.1a) - (E.1c), we have

d
dt


t∫

0

4Et,i(s)ds +
1
τ i

Ei(t)

︸                          ︷︷                          ︸
S i(t)

≤ Ṗr,in
i + Q̇r,in

i︸       ︷︷       ︸
wi(t)

(E.1d)

The component model in closed loop is thus dissipative
w.r.t the sum of incoming interaction variables as de-
fined in wi(t) above.

Appendix F. Proof of Theorem 2 of Section 5

Proof. By adding up the dissipativity conditions in Eqn.
(E.1d) for each of the components in the network N ,

d
dt

( ∑
i∈N

Vi(xi)
)
≤

∑
i∈N

(
Ṗr,in

i + Q̇r,in
i

)
∑

i∈N

(
Ṗr,out

i + Q̇r,out
i

)
≤

∑
i∈N
−

( ∑
j∈Ci

(
Ṗr,out

j + Q̇r,out
j

))
1T
|N|×1

(
Ṗr,out+

Q̇r,out

)
≤ −1T

|N|×1L|N|×|N|
(

Ṗr,out

+Q̇r,out

)
1T
|N|×1

(
I|N|×|N| + L|N|×|N|

) (
Ṗr,out + Q̇r,out

)
≤ 0

⇒ d
dt

(
1T
|N|×1

(
I|N|×|N| + L|N|×|N|

)
V
)
≤ 0

(F.1)
Here, P,Q are the vector forms of the components’ real
and reactive power. |.| operator here represents the car-
dinality of the set. I and 1 respectively represent the
identity matrix and the column vector comprising ele-
ment 1, with its subscript denoting the order. L is an
interconnection matrix which is a symmetric matrix. Its
element Li j = 1 is the components i and j are connected,
and zero if not. Finally, V is the vector representation
of potential functions considered at each of the compo-
nents. Each element of V is positive definite since stored
energy is always positive and time constant is assumed
positive. We therefore have stability in the sense of Lya-
punov.

Remark 2. Any physical system however has some re-
sistive losses through parasitic conductance at each of
the memory-less junctions, making the right hand side
of the the inequality in Eqn. (F.1) strictly negative defi-
nite, thereby resulting in asymptotic stability of the time-
varying equilibrium x∗(t) corresponding to the time-
varying disturbances entering the system.

Appendix G. TeDP system parameters

In section 7, we have considered the architecture in
Fig. 2 for illustrations. It comprises a permanent mag-
net generator connected to a permanent magnet motor
connected through a wire.

The wire parameters considered are RT L = 0.01209
p.u. and LT L = 0.52095 p.u. on a base value of 100
KVA, 80 KV and 60 Hz.

On the same base values, the motor parameters in
context of the model in Eqn. (B.5) with a subscript 2
for the motor are tabulated below:

Variable Meaning Value
Ls,eq2 Synchronous inductance (re-

actance)
0.1 p.u.

K2 Speed voltage from rotor flux
at nominal speed

1 p.u.

Rs2 Stator Resistance 0 p.u.
H2 = J2

2ωb
Inertia constant 3.5 s

D2 Damping coefficient 0 p.u.

The generator parameters for use with model in Eqn.
(B.5) are:

Variable Meaning Value
Ls,eq1 Synchronous inductance (re-

actance)
0.1 p.u.

K1 Speed voltage from rotor flux
at nominal speed

1 p.u.

Rs1 Stator resistance 0 p.u.
H1 = J1

2ωb
Inertia constant 10 s

D1 Damping coefficient 0 p.u.

The disturbance entering the system is mechanical
load torque on the propulsor motor and is primarily de-
termined by the fan blade pitch and the flight condition
of the aircraft. The torque is assumed to vary accord-
ing to the expression in Eqn. (1) where Tm2,0 represents
a quasi-static value representing the current blade pitch
and flight condition.
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