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1. Introduction

1.1. The quantum group of sl2, U = 〈E, F, K±1〉, contains divided powers F (n) =

F n/[n]!. These divided powers form the canonical basis for half a quantum group U− =

Q(q)[F ], and they are a basic ingredient for higher rank quantum groups as well, cf. [12]. 

The divided powers satisfy a simple recursive relation

F · F (n) = [n + 1]F (n+1), (1.1)

and admit a closed multiplication formula

F (m) · F (n) =

[

m + n
n

]

F (m+n). (1.2)

Under the comultiplication Δ in (2.1), we have

Δ(F (n)) =

n
∑

a=0

qa(n−a)F (a) ⊗ F (n−a)K−a. (1.3)

1.2. The ıquantum groups arise from the theory of quantum symmetric pairs (see 

[9]). Fix ς ∈ Q(q)×. The ıquantum group Uı (of split rank 1) is a coideal Q(q)-subalgebra 

of U [8], which is the polynomial algebra in B:

U
ı = Q(q)[B],

where

B := F + ςEK−1. (1.4)

The ı-divided powers for ς = q−1 are ıcanonical basis for the ıquantum group U
ı

[1]. Explicit formulae for ı-divided powers for ς = q−1 were conjectured therein (for 

a somewhat different B; see Remark 2.1), and the conjecture was established in [3]. 

The same formulae of ı-divided powers were shown in [4] to be valid, for more general 

B = F + q−1EK−1 + [k]K−1, for k ∈ Z. (The special cases for k = 0, 1 were treated in 

[3], and the case for k = 1 appeared first in [1].)

The ı-divided powers for ς = q−1 have played a fundamental role in the general theory 

of ıcanonical bases [2]. The ı-divided powers with a general parameter ς appear in the 

Serre presentation of ıquantum groups [5] and also in Serre-Lusztig relations and braid 

group action for ıquantum groups [6].

The (split) ı-divided powers come in 2 forms {B
(n)

0
| n ≥ 0} and {B

(n)

1
| n ≥ 0}, 

depending on a parity 0, 1 (of the highest weight of a finite dimensional simple U-

module). The formulae for the ı-divided powers B
(n)

0
(respectively, B

(n)

1
) can be found 

in (2.3) (respectively, (2.4)).
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The ı-divided powers B
(n)

0
are determined by B

(0)

0
= 1 and the following recursive 

relations, for a ≥ 1,

B · B
(2a−1)

0
= [2a]B

(2a)

0
,

B · B
(2a)

0
= [2a + 1]B

(2a+1)

0
+ qς[2a]B

(2a−1)

0
.

(1.5)

For example, B
(1)

0
= B, B

(2)

0
= B2/[2], and B

(3)

0
= B(B2 − qς[2]2)/[3]!.

There are similar recursive formulae for the ı-divided powers B
(n)

1
; see (2.5).

1.3. The goal of this paper is to determine closed formulae for multiplication and 

comultiplication of ı-divided powers. These formulae are more involved than their coun-

terparts (1.2)–(1.3) for Lusztig’s divided powers, since ı-divided powers are not mono-

mials in B. It is remarkable that such closed formulae actually exist. The harder part of 

this work is to find these closed formulae, especially the comultiplication formulae. The 

proofs are routine by sometimes lengthy induction.

� The multiplication formulae for the ı-divided powers B
(n)

0
are given in Theorem 2.3.

� The multiplication formulae for B
(n)

1
are given in Theorem 3.1.

� The comultiplication formulae for B
(n)

0
are given in Theorem 4.2.

� The comultiplication formulae for B
(n)

1
are given in Theorem 5.1.

The comultiplication formulae are reminiscent of the PBW expansion formulae for 

the ı-divided powers; cf. [3,4].

1.4. Assume ς = q−1. The structure constants for multiplication of ı-divided powers 

(see Theorem 2.3 and Theorem 3.1) are typically given by ratios of products of quan-

tum integers. It may not be straightforward (though it is an interesting combinatorial 

problem) to recognize that they are integral and positive, i.e., they lie in N[q, q−1]. As ı-

divided powers are integral basis for an ıquantum group over Z[q, q−1] [1], these structure 

constants indeed lie in Z[q, q−1]. Positivity of these structure constants follows from the 

geometric interpretation of ıcanonical basis of type AIII [11,10]. Similarly, the structure 

constants for comultiplication with respect to (ı-)canonical bases are positive [7]; in the 

rank 1 setting, it follows from our closed formulae (see Remark 4.4).

New ı-divided powers associated to various rank 1 ıquantum groups were constructed 

in [2] with favorable integrality property, but otherwise remain to be poorly understood 

(in contrast to the ones studied in this paper); it is desirable to study and understand 

them better.

The formulae obtained in this work will be applied in some ongoing work on braid 

group action. It shall also find applications to ıquantum groups at roots of unity (as we 

learned from Huanchen Bao). These are the main reasons for which we decide to make 

the notes public (the main results have been known to us for some time). We hope they 

may be helpful in ıcategorification as well.
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2. Multiplication formulae for B
(n)

0

In this section, we recall the ı-divided powers, and then compute the multiplication 

formulae for ı-divided powers B
(n)

0
.

2.1. ı-Divided powers

Let U be the quantum group of sl2 over Q(q) with standard generators E, F, K±1. 

There is a comultiplication Δ : U → U ⊗ U [12] such that

Δ(E) = E ⊗ 1 + K ⊗ E, Δ(F ) = 1 ⊗ F + F ⊗ K−1, Δ(K) = K ⊗ K. (2.1)

We have

Δ(B) = B ⊗ K−1 + 1 ⊗ (F + ςEK−1). (2.2)

Denote by N the set of nonnegative integers. The following ı-divided powers B
(n)

0
and 

B
(n)

1
appear in [5], which generalize the ones in [1,3] for ς = q−1.

For n ∈ N, let

B
(n)

0
=

1

[n]!

{

B
∏k

j=1(B2 − qς[2j]2) if n = 2k + 1,
∏k

j=1(B2 − qς[2j − 2]2) if n = 2k.
(2.3)

See also (1.5) for a recursive definition.

For n ∈ N, let

B
(n)

1
=

1

[n]!

{

B
∏k

j=1(B2 − qς[2j − 1]2) if n = 2k + 1,
∏k

j=1(B2 − qς[2j − 1]2) if n = 2k;
(2.4)

The ı-divided powers B
(n)

1
are determined by the following recursive relations: B

(0)

1
=

1, and

B · B
(2a)

1
= [2a + 1]B

(2a+1)

1
,

B · B
(2a+1)

1
= [2a + 2]B

(2a+2)

1
+ qς[2a + 1]B

(2a)

1
.

(2.5)
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Remark 2.1. The above formulae for ı-divided powers (with ς = q−1) remain unchanged 

if we consider more general B = F + q−1EK−1 + [2p]K−1 (for fixed p ∈ Z) other than 

(1.4) with ς = q−1; see [4].

The ı-divided powers of Ḃ := F + q−1EK−1 + [2p + 1]K−1 (for fixed p ∈ Z) are given 

by the same formulae above (with ς = q−1) but with the parities 0 and 1 swapped; see 

[4]; such formulae first appeared in [1], which correspond to Ḃ with p = 0.

2.2. The multiplication formulae

The following simple identities can be verified directly.

Lemma 2.2. For n, m, � ∈ Z, we have

[n + m] + [n − m] = [n][2]qm , (2.6)

[n + m][n − m] = [n]2 − [m]2, (2.7)

[m][m + n] − [�][� + n] = [m − �][m + � + n], (2.8)

[2n] = [2][n]q2 . (2.9)

We have the following multiplication formulae for ı-divided powers B
(n)

0
.

Theorem 2.3. For k, a ≥ 1, we have

B
(2k−1)

0
B

(2a−1)

0
= (2.10)

[

2k + 2a − 2
2k − 1

]

(

B
(2k+2a−2)

0
+

k
∑

�=2

�
∏

m=2

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�)

0

)

,

B
(2k−1)

0
B

(2a)

0
= (2.11)

[

2k + 2a − 1
2k − 1

]

(

B
(2k+2a−1)

0
+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�B

(2k+2a−2�−1)

0

)

,

B
(2k)

0
B

(2a−1)

0
= (2.12)

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0
+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�B

(2k+2a−2�−1)

0

)

,

B
(2k)

0
B

(2a)

0
= (2.13)

[

2k + 2a
2k

]

(

B
(2k+2a)

0

+
k

∑

�=1

[2k + 2a − 2�]

[2k + 2a]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�B

(2k+2a−2�)

0

)

.
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Example 2.4.

B
(2)

0
B

(2a−1)

0
=

[

2a + 1
2

]

B
(2a+1)

0
+

[2a]2

[2]
(qς)B

(2a−1)

0
,

B
(2)

0
B

(2a)

0
=

[

2a + 2
2

]

B
(2a+2)

0
+

[2a]2

[2]
(qς)B

(2a)

0
,

B
(3)

0
B

(2a−1)

0
=

[

2a + 2
3

]

B
(2a+2)

0
+

[2a + 2][2a][2a − 2]

[3]!
(qς)B

(2a)

0
,

B
(3)

0
B

(2a)

0
=

[

2a + 3
3

]

B
(2a+3)

0
+

[4]

[2]

[

2a + 2
3

]

(qς)B
(2a+1)

0

+
[2a + 2][2a][2a − 2]

[3]!
(qς)2B

(2a−1)

0
,

B
(4)

0
B

(2a−1)

0
=

[

2a + 3
4

]

B
(2a+3)

0
+

[2a + 2][2a + 1][2a]2

[3][2]2
(qς)B

(2a+1)

0

+
[2a + 2][2a]2[2a − 2]

[4]!
(qς)2B

(2a−1)

0
,

B
(4)

0
B

(2a)

0
=

[

2a + 4
4

]

B
(2a+4)

0
+

[2a + 2]2[2a + 1][2a]

[3][2]2
(qς)B

(2a+2)

0

+
[2a + 2][2a]2[2a − 2]

[4]!
(qς)2B

(2a)

0
.

2.3. Proof of Theorem 2.3

Note in each of the four formulae (2.10)–(2.13) above the summation up to k can be 

replaced by the (same) summation up to min(k, a), since the additional terms clearly 

vanish when k > a. Therefore if we switch a and k then Equations (2.10) and (2.13)

remain unchanged while (2.11) and (2.12) get swapped. We have chosen to keep both 

equivalent formulations in the theorem to facilitate the inductive proof below.

We prove by induction on k. Below let us add indices to mark the identities in the 

theorem as (2.10)k, (2.11)k, (2.12)k, (2.13)k. For the base cases of induction, the identities 

(2.12)0–(2.13)0 are trivial, while the identities (2.10)1–(2.11)1 are simply (1.5).

The proof of the theorem will be completed in the following steps (i)-(iv):

(i) (2.11) ⇔ (2.12);

(ii) (2.11)k ⇒ (2.13)k;

(iii) (2.12)k+(2.10)k ⇒ (2.10)k+1;

(iv) (2.10)k ⇒ (2.12)k.

Step (i) follows by swapping k and a as we already noted, while (ii) follows by applying 

(1.5) directly.
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Let us prove (iii): (2.12)k+(2.10)k ⇒ (2.10)k+1. By (1.5), we have

B
(2k+1)

0
B

(2a−1)

0
=

B · B
(2k)

0
− (qς)[2k]B

(2k−1)

0

[2k + 1]
B

(2a−1)

0

=
B

[2k + 1]

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�B

(2k+2a−2�−1)

0

)

−
[2k](qς)

[2k + 1]

[

2k + 2a − 2
2k − 1

]

(

B
(2k+2a−2)

0

+

k
∑

�=2

�
∏

m=2

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�)

0

)

=

[

2k + 2a
2k + 1

]

(

B
(2k+2a)

0

+
k

∑

�=1

�
∏

m=1

[2k + 2a − 2�][2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2k + 2a][2m]
(qς)�B

(2k+2a−2�)

0

−
[2k]2(qς)

[2k + 2a][2k + 2a − 1]

(

B
(2k+2a−2)

0

+
k

∑

�=2

�
∏

m=2

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�)

0

)

)

=

[

2k + 2a
2k + 1

]

(

B
(2k+2a)

0
+

k+1
∑

�=2

�
∏

m=2

[2k + 2a − 2� + 2][2a − 2m + 4][2k − 2m + 4]

[2k + 2a − 2m + 3][2k + 2a][2m − 2]
(qς)�−1

· B
(2k+2a−2�+2)

0
−

[2k]2

[2k + 2a][2k + 2a − 1]

·
(

(qς)B
(2k+2a−2)

0
+

k+1
∑

�=3

�−1
∏

m=2

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�+2)

0

)

)

=

[

2k + 2a
2k + 1

]

(

B
(2k+2a)

0
+

k+1
∑

�=2

�
∏

m=2

[2a − 2m + 2][2k − 2m + 4]

[2a − 2� + 2][2k + 2a − 2m + 3][2k + 2a][2m − 2]

·
(

[2k + 2a − 2l + 2][2a] − [2k][2l − 2]
)

(qς)�−1B
(2k+2a−2�+2)

0

)

.

The last formula can be easily rewritten as (2.10)k+1 by noting that

[2k + 2a − 2l + 2][2a] − [2k][2l − 2] = [2a − 2� + 2][2k + 2a].
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Now we prove (iv): (2.10)k ⇒ (2.12)k. By (1.5), we have

B
(2k)

0
B

(2a−1)

0
=

B · B
(2k−1)

0

[2k]
B

(2a−1)

0

=
B

[2k]

[

2k + 2a − 2
2k − 1

]

(

B
(2k+2a−2)

0

+

k
∑

�=2

�
∏

m=2

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�)

0

)

=

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0
+

[2k + 2a − 2]

[2k + 2a − 1]
(qς)B

(2k+2a−3)

0

+

k
∑

�=2

�
∏

m=2

[2k + 2a − 2� + 1][2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 1][2k + 2a − 2m + 1][2m − 2]
(qς)�−1B

(2k+2a−2�+1)

0

+
k

∑

�=2

�
∏

m=2

[2k + 2a − 2�][2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 1][2k + 2a − 2m + 1][2m − 2]
(qς)�B

(2k+2a−2�−1)

0

)

=

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0
+

[2k + 2a − 2]

[2k + 2a − 1]
(qς)B

(2k+2a−3)

0

+
k−1
∑

�=1

�
∏

m=1

[2k + 2a − 2� − 1][2a − 2m][2k − 2m]

[2k + 2a − 1][2k + 2a − 2m − 1][2m]
(qς)�B

(2k+2a−2�−1)

0

+

k
∑

�=2

�
∏

m=2

[2k + 2a − 2�][2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 1][2k + 2a − 2m + 1][2m − 2]
(qς)�B

(2k+2a−2�−1)

0

)

=

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0
+

[2][2k + 2a − 2] + [2a − 2][2k − 2]

[2k + 2a − 1][2]
(qς)B

(2k+2a−3)

0

+

k−1
∑

�=2

�
∏

m=1

[2k + 2a − 2� − 1][2a − 2m + 2][2k − 2m + 2][2a − 2�][2k − 2�]

[2k + 2a − 2m + 1][2m][2a][2k][2k + 2a − 2� − 1]
(qς)�

B
(2k+2a−2�−1)

0

+

k
∑

�=2

�
∏

m=1

[2k + 2a − 2�][2a − 2m + 2][2k − 2m + 2][2�]

[2k + 2a − 2m + 1][2m][2a][2k]
(qς)�B

(2k+2a−2�−1)

0

)

=

[

2k + 2a − 1
2k

]

(

B
(2k+2a−1)

0
+

k−1
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m][2a][2k]

(

[2a − 2�][2k − 2�] + [2�][2k + 2a − 2�]
)

(qς)�B
(2k+2a−2�−1)

0

+

k
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)kB

(2a−1)

0

)

.

The last formula can be easily rewritten as (2.12)k by applying the identity (2.8). This 

completes the proof of Steps (i)–(iv) and hence of Theorem 2.3.
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3. Multiplication formulae for B
(n)

1

In this section, we present the multiplication formulae for ı-divided powers B
(n)

1
.

3.1. The multiplication formulae for B
(n)

1

Theorem 3.1. For k, a ≥ 0, we have

B
(2k)

1
B

(2a)

1
=

[

2k + 2a
2k

] (

B
(2k+2a)

1
+

k
∑

�=1

�
∏

m=1

[2a−2m+2][2k−2m+2]
[2k+2a−2m+1][2m] (qς)�B

(2k+2a−2�)

1

)

,

(3.1)

B
(2k)

1
B

(2a+1)

1
=

[

2k + 2a + 1
2k

] (

B
(2k+2a+1)

1
+

k
∑

�=1

�
∏

m=1

[2a−2m+2][2k−2m+2]
[2k+2a−2m+3][2m] (qς)�B

(2k+2a−2�+1)

1

)

, (3.2)

B
(2k+1)

1
B

(2a)

1
=

[

2k + 2a + 1
2k + 1

] (

B
(2k+2a+1)

1
+

k
∑

�=1

�
∏

m=1

[2a−2m+2][2k−2m+2]
[2k+2a−2m+3][2m] (qς)�B

(2k+2a−2�+1)

1

)

, (3.3)

B
(2k+1)

1
B

(2a+1)

1
=

[

2k + 2a + 2
2k + 1

] (

B
(2k+2a+2)

1
+

k+1
∑

�=1

(

[2k+2a−2�+2][2k−2�+2]
[2k+2a+2][2k+2] (3.4)

+ [2k+2a−2�+3]2[2�]
[2k+2a+2][2a−2�+2][2k+2]

)

·
�

∏

m=1

[2a−2m+2][2k−2m+4]
[2k+2a−2m+3][2m] (qς)�B

(2k+2a−2�+2)

1

)

.

Example 3.2.

B
(2)

1
B

(2a)

1
=

[

2a + 2
2

]

B
(2a+2)

1
+ (qς)

[2a + 2][2a]

[2]
B

(2a)

1
,

B
(2)

1
B

(2a+1)

1
=

[

2a + 3
2

]

B
(2a+3)

1
+

[2a + 2][2a]

[2]
(qς)B

(2a+1)

1
,

B
(3)

1
B

(2a)

1
=

[

2a + 3
3

]

B
(2a+3)

1
+ (qς)

[

2a + 2
3

]

B
(2a+1)

1
,

B
(3)

1
B

(2a+1)

1
=

[

2a + 4
3

]

B
(2a+4)

1
+

[2a + 2]2[2a] + [2a + 3]2[2a + 2]

[3]!
(qς)B

(2a+2)

1

+

[

2a + 2
3

]

(qς)2B
(2a)

1
,

B
(4)

1
B

(2a)

1
=

[

2a + 4
4

]

B
(2a+4)

1
+

[2a + 4]

[2]

[

2a + 2
3

]

(qς)B
(2a+2)

1
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+
[2a + 4][2a + 2][2a][2a − 2]

[4]!
(qς)2B

(2a)

1
,

B
(4)

1
B

(2a+1)

1
=

[

2a + 5
4

]

B
(2a+5)

1
+

[2a]

[2]

[

2a + 4
3

]

(qς)B
(2a+3)

1

+
[2a + 4][2a + 2][2a][2a − 2]

[4]!
(qς)2B

(2a+1)

1
.

3.2. Proof of Theorem 3.1

We prove by induction on k. Below let us add indices to mark the identities of Theo-

rem 3.1 as (3.1)k, (3.2)k, (3.3)k, (3.4)k. Note that (3.1)0–(3.2)0 are trivial while (3.3)1, 

(3.4)1 hold by (2.5).

The proof of the theorem will be completed in the following steps.

(i) (3.2) ⇔ (3.3);

(ii) (3.2)k ⇒ (3.4)k;

(iii) (3.4)k+ (3.2)k ⇒ (3.2)k+1;

(iv) (3.3)k+ (3.1)k ⇒ (3.1)k+1.

Step (i) follows by swapping a and k.

Let us prove (ii): (3.2)k ⇒ (3.4)k. Using (2.5), we have

B
(2k+1)

1
B

(2a+1)

1
=

B · B
(2k)

1

[2k + 1]
B

(2a+1)

1

=
B

[2k + 1]

[

2k + 2a + 1
2k

]

(

B
(2k+2a+1)

1

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+1)

1

)

=
1

[2k + 1]

[

2k + 2a + 1
2k

]

(

[2k + 2a + 2]B
(2k+2a+2)

1
+ [2k + 2a + 1](qς)B

(2k+2a)

1

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�

·
(

[2k + 2a − 2� + 2]B
(2k+2a−2�+2)

1
+ [2k + 2a − 2� + 1](qς)B

(2k+2a−2�)

1

)

)

=

[

2k + 2a + 2
2k + 1

]

(

B
(2k+2a+2)

1
+

[2k + 2a + 1]

[2k + 2a + 2]
(qς)B

(2k+2a)

1

+
k

∑

�=1

[2k + 2a − 2� + 2]

[2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1
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+

k
∑

�=1

[2k + 2a − 2� + 1]

[2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�+1B

(2k+2a−2�)

1

)

=

[

2k + 2a + 2
2k + 1

]

(

B
(2k+2a+2)

1
+

[2k + 2a + 1]

[2k + 2a + 2]
(qς)B

(2k+2a)

1

+
[2k + 2a]

[2k + 2a + 2]

[2a][2k]

[2k + 2a + 1][2]
(qς)B

(2k+2a)

1

+
k

∑

�=2

[2k + 2a − 2� + 2]

[2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+
k

∑

�=2

[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k − 2� + 2]

·
�

∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+
[2a + 1]

[2k + 2a + 2]

k
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)k+1B

(2a)

1

)

=

[

2k + 2a + 2
2k + 1

] (

B
(2k+2a+2)

1
+

k
∑

�=1

( [2k + 2a − 2� + 2]

[2k + 2a + 2]

+
[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2k − 2� + 2][2a − 2� + 2]

)

·
�

∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+
[2a + 1]2

[2k + 2a + 2][2a − 2k]

k+1
∏

m=1

[2a − 2m + 2]

[2k + 2a − 2m + 3]
(qς)k+1B

(2a)

1

)

=

[

2k + 2a + 2
2k + 1

] (

B
(2k+2a+2)

1
+

k+1
∑

�=1

( [2k + 2a − 2� + 2][2k − 2� + 2]

[2k + 2a + 2][2k + 2]

+
[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

)

.

Let us now prove (iii): (3.4)k+ (3.2)k ⇒ (3.2)k+1. Using (2.5), we have

B
(2k+2)

1
B

(2a+1)

1
=

B · B
(2k+1)

1
− (qς)[2k + 1]B

(2k)

1

[2k + 2]
B

(2a+1)

1
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=
B

[2k + 2]
B

(2k+1)

1
B

(2a+1)

1
−

[2k + 1]

[2k + 2]
(qς)B

(2k)

1
B

(2a+1)

1

=

[

2k + 2a + 2
2k + 1

]

B

[2k + 2]

(

B
(2k+2a+2)

1
+

k+1
∑

�=1

( [2k + 2a − 2� + 2][2k − 2� + 2]

[2k + 2a + 2][2k + 2]

+
[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

)

−
[2k + 1]

[2k + 2]

[

2k + 2a + 1
2k

]

·
(

(qς)B
(2k+2a+1)

1
+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�+1B

(2k+2a−2�+1)

1

)

=

[

2k + 2a + 2
2k + 1

]

1

[2k + 2]

(

[2k + 2a + 3]B
(2k+2a+3)

1

+
k+1
∑

�=1

( [2k + 2a − 2� + 2][2k − 2� + 2]

[2k + 2a + 2][2k + 2]
+

[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 3][2m]
[2k + 2a − 2� + 3](qς)�B

(2k+2a−2�+3)

1

)

−
[2k + 1]

[2k + 2]

[

2k + 2a + 1
2k

]

·
(

(qς)B
(2k+2a+1)

1
+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�+1B

(2k+2a−2�+1)

1

)

=

[

2k + 2a + 3
2k + 2

] (

B
(2k+2a+3)

1

+
k+1
∑

�=1

( [2k + 2a − 2� + 2][2k − 2� + 2]

[2k + 2a + 2][2k + 2]
+

[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·
[2k + 2a − 2� + 3]

[2k + 2a + 3]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+3)

1

−
[2k + 1]2

[2k + 2a + 3][2k + 2a + 2]

·
(

(qς)B
(2k+2a+1)

1
+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�+1B

(2k+2a−2�+1)

1

)

)

=

[

2k + 2a + 3
2k + 2

] (

B
(2k+2a+3)

1
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+

k+1
∑

�=1

( [2k + 2a − 2� + 2][2k − 2� + 2]

[2k + 2a + 2][2k + 2]
+

[2k + 2a − 2� + 3]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 5][2m]
(qς)�B

(2k+2a−2�+3)

1

−

k+1
∑

�=1

[2k + 1]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

·

�
∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 5][2m]
(qς)�B

(2k+2a−2�+3)

1

)

=

[

2k + 2a + 3
2k + 2

] (

B
(2k+2a+3)

1

+
k+1
∑

�=1

( [2k + 2a − 2� + 2][2a − 2� + 2][2k − 2� + 2] + [2k + 2a − 2� + 3]2[2�] − [2k + 1]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k + 2]

)

·
�

∏

m=1

[2a − 2m + 2][2k − 2m + 4]

[2k + 2a − 2m + 5][2m]
(qς)�B

(2k+2a−2�+3)

1

)

.

The RHS above can be converted to RHS (3.2)k+1 using the following identity (which 

can be derived easily via (2.7)–(2.8))

[2k + 2a − 2� + 2][2a − 2� + 2][2k − 2� + 2] + [2k + 2a − 2� + 3]2[2�] − [2k + 1]2[2�]

(3.5)

=[2a − 2� + 2][2k + 2][2k + 2a + 2].

Let us now prove (iv): (3.3)k+ (3.1)k ⇒ (3.1)k+1. Using (2.5), we have

B
(2k+2)

1
B

(2a)

1
=

B · B
(2k+1)

1
− [2k + 1](qς)B

(2k)

1

[2k + 2]
B

(2a)

1

=
B

[2k + 2]

[

2k + 2a + 1
2k + 1

]

(

B
(2k+2a+1)

1

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+1)

1

)

−
[2k + 1]

[2k + 2]

[

2k + 2a
2k

]

(qς)
(

B
(2k+2a)

1

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�B

(2k+2a−2�)

1

)

=
1

[2k + 2]

[

2k + 2a + 1
2k + 1

]

(

[2k + 2a + 2]B
(2k+2a+2)

1
+ [2k + 2a + 1](qς)B

(2k+2a)

1

)
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+
1

[2k + 2]

[

2k + 2a + 1
2k + 1

]

·
k

∑

�=1

[2k + 2a − 2� + 2]
�

∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+
1

[2k + 2]

[

2k + 2a + 1
2k + 1

]

·

k
∑

�=1

[2k + 2a − 2� + 1]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�+1B

(2k+2a−2�)

1

−
[2k + 1]

[2k + 2]

[

2k + 2a
2k

]

(

(qς)B
(2k+2a)

1

+

k
∑

�=1

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 1][2m]
(qς)�+1B

(2k+2a−2�)

1

)

=

[

2k + 2a + 2
2k + 2

] (

B
(2k+2a+2)

1

+
[2k + 2a][2a][2k] + [2k + 2a + 1]2[2] − [2k + 1]2[2]

[2k + 2a + 2][2k + 2a + 1][2]
(qς)B

(2k+2a)

1

+
k

∑

�=2

[2k + 2a − 2� + 2]

[2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+

k
∑

�=2

[2k + 2a − 2� + 3]2[2�]

[2a − 2� + 2][2k − 2� + 2][2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�

B
(2k+2a−2�+2)

1

−

k
∑

�=2

[2k + 1]2[2�]

[2a − 2� + 2][2k − 2� + 2][2k + 2a + 2]

�
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�

B
(2k+2a−2�+2)

1

+
[2a + 1]2 − [2k + 1]2

[2k + 2a + 2][2a + 1]

k
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)k+1B

(2a)

1

)

=

[

2k + 2a + 2
2k + 2

] (

B
(2k+2a+2)

1

+

k
∑

�=1

[2k + 2a − 2� + 2][2a − 2� + 2][2k − 2� + 2] + [2k + 2a − 2� + 3]2[2�] − [2k + 1]2[2�]

[2k + 2a + 2][2a − 2� + 2][2k − 2� + 2]

·
�

∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)�B

(2k+2a−2�+2)

1

+
[2a − 2k]

[2a + 1]

k
∏

m=1

[2a − 2m + 2][2k − 2m + 2]

[2k + 2a − 2m + 3][2m]
(qς)k+1B

(2a)

1

)

.

The RHS above can be easily converted to RHS (3.1)k+1 using (3.5).
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This completes the proof of Theorem 3.1.

4. Comultiplication formulae for B
(n)

0

In this section, we shall establish a closed formula for Δ(B
(n)

0
) in two different forms.

4.1. An anti-involution

Set

Ě := ςEK−1, h :=
K−2 − 1

q2 − 1
.

Define, for a ∈ Z, n ≥ 0,

[

h; a
n

]

=
n

∏

i=1

q4a+4i−4K−2 − 1

q4i − 1
, [h; a] =

[

h; a
1

]

. (4.1)

Then we have, for a ∈ Z, n ∈ N,

FĚ − q−2ĚF = qςh,

[

h; a
n

]

F = F

[

h; a + 1
n

]

,

[

h; a
n

]

Ě = Ě

[

h; a − 1
n

]

.

(4.2)

Lemma 4.1 ([3, Lemma 2.2]). (1) There is an anti-involution χ on the Q-algebra U

which sends E 
→ E, F 
→ F, K 
→ K, q 
→ q−1.

(2) Assume ς = q−1. Then χ restricts to an anti-involution of the Q-algebra U
ı

sending

F 
→ F, q−1EK−1 
→ q−1EK−1, K−1 
→ K−1, q 
→ q−1. (4.3)

Moreover, χ sends

h 
→ −q2h, B
(n)

0

→ B

(n)

0
, B

(n)

1

→ B

(n)

1
,

[

h; a
n

]


→ (−1)nq2n(n+1)

[

h; 1 − a − n
n

]

, ∀a ∈ Z, n ∈ N.
(4.4)

4.2. The comultiplication formulae

For x ∈ R, we denote

�x
 = max{m ∈ Z | m ≤ x}, �x� = min{n ∈ Z | n ≥ x}.



236 X. Chen, W. Wang / Journal of Algebra 619 (2023) 221–248

Theorem 4.2. For n even, we have

Δ(B
(n)

0
)

=
n

∑

r=0

B
(n−r)

0
⊗

(
� r

2
�

∑

c=0

r−2c
∑

a=0

q
(2c

2
)+(r−2c)(r−n)−a(r−2c−a)(qς)c

Ě
(a)

[

h; −� r−2
2 �

c

]

K
r−n

F
(r−2c−a)

)

.

(4.5)

For n odd, we have

Δ(B
(n)

0
)

=
n

∑

r=0

B
(n−r)

0
⊗

(
� r

2
�

∑

c=0

r−2c
∑

a=0

q
(2c+1

2
)+(r−2c)(r−n)−a(r−2c−a)(qς)c

Ě
(a)

[

h; −� r−1
2 �

c

]

K
r−n

F
(r−2c−a)

)

.

(4.6)

Example 4.3.

Δ(B
(2)

0
) = B

(2)

0
⊗ K−2 + B ⊗

(

q−1ĚK−1 + q−1K−1F
)

+ 1 ⊗
(

Ě(2) + q−1ĚF + F (2) + q(qς)[h; 0]
)

,

Δ(B
(3)

0
) = B

(3)

0
⊗ K−3 + B

(2)

0
⊗

(

q−2ĚK−2 + q−2K−2F
)

+ B ⊗
(

q−2Ě(2)K−1 + q−3ĚK−1F + q−2K−1F (2) + q3(qς)[h; 0]K−1
)

+ 1 ⊗
(

Ě(3) + q−2Ě(2)F + q−2ĚF (2) + F (3) + q3(qς)Ě[h; −1]

+ q3(qς)[h; −1]F
)

.

Remark 4.4. When passing to the modified quantum group, the terms 

[

h; k
c

]

in 

(4.5)–(4.6) are replaced by some quantum integers up to some q-powers, and then the 

formulas have positive integral coefficients.

4.3. Proof of Theorem 4.2

Denote by Sn,r ∈ U (for both n even and odd) the expressions in parentheses in the 

theorem such that

Δ(B
(n)

0
) =

n
∑

r=0

B
(n−r)

0
⊗ Sn,r.

We shall prove the theorem by induction on n. The base case when n = 1 is the formula 

(2.1). The induction is carried out in two steps I–II.

Step I. Assuming the second formula in Theorem 4.2 for odd n = 2� − 1, we shall 

prove the first formula for even n = 2�. It follows from (1.5) that
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[2�]Δ(B
(2�)

0
) = Δ(B)Δ(B

(2�−1)

0
) =

(

B ⊗ K−1 + 1 ⊗ (Ě + F )
)

· Δ(B
(2�−1)

0
). (4.7)

We shall compare the summands B
(2�−r)

0
⊗ − in both sides of (4.7). As the summands 

on the RHS of (4.7) are known by the induction hypothesis, we obtain the summands 

on the LHS and hence the formula for S2�,r.

Proving the formula in the theorem for even n = 2� reduces to establishing the 

identities (4.8)–(4.9) below:

[2�]S2�,r = [2� − r]K−1S2�−1,r + (Ě + F )S2�−1,r−1, for r = 2m even, (4.8)

and

[2�]S2�,r = [2� − r]K−1S2�−1,r + (Ě + F )S2�−1,r−1 + [2� − r + 1](qς)K−1S2�−1,r−2,

(4.9)

for r = 2m + 1 odd.

We first prove (4.8). By a direct computation, we have

qr−2a[2� − r] + q2�−a[a] + q2c+r−2�−a[r − 2c − a]
q−2rK−2 − 1

q4c−2rK−2 − 1

+ q2c−2�[2c]
q−2aK−2 − 1

q4c−2rK−2 − 1
= [2�].

(4.10)

Then we compute

RHS(4.8)

=[2� − r]K−1
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r−2c−a)(qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr+1−2�F (r−2c−a)
)

+ (Ě + F )
(

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

(qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−1−2c−a)
)

=[2� − r]
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r−2c−a)−2a(qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)
)
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+

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

[a + 1](qς)cĚ(a+1)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−1−2c−a)

+

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2−2a+2r−4�(qς)cĚ(a)[r − 2c − a]

·

[

h; − r
2

c

]

Kr−2�F (r−2c−a)

+

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

(qς)c+1Ě(a−1) q3−3aK−2 − q1−a

q2 − 1

·

[

h; 1 − r
2

c

]

Kr−2�F (r−1−2c−a)

=[2� − r]
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r−2c−a)−2a(qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)
)

+

r

2
−1

∑

c=0

r−2c
∑

a=1

q(2c+1

2
)+(r−1−2c)(r−2�)−(a−1)(r−2c−a)[a](qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)

+

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2−2a+2r−4�(qς)cĚ(a)[r − 2c − a]

·

[

h; − r
2

c

]

Kr−2�F (r−2c−a)

+

r

2
∑

c=1

r−2c
∑

a=0

q(2c−1

2
)+(r+1−2c)(r−2�)−(a+1)(r−2c−a)(qς)cĚ(a) q−3aK−2 − q−a

q2 − 1

·

[

h; 1 − r
2

c − 1

]

Kr−2�F (r−2c−a),

which is equal to

=[2� − r]
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r−2c−a)−2a(qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)
)
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+

r

2
−1

∑

c=0

r−2c
∑

a=1

q(2c+1

2
)+(r−1−2c)(r−2�)−(a−1)(r−2c−a)[a](qς)cĚ(a)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)

+

r

2
−1

∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r+1−2c)(r−2�−a)+a2

(qς)cĚ(a)[r − 2c − a]
q−2rK−2 − 1

q4c−2rK−2 − 1

[

h; 1 − r
2

c

]

· Kr−2�F (r−2c−a) +

r

2
∑

c=1

r−2c
∑

a=0

q(2c−1

2
)+(r+1−2c)(r−2�)−(a+1)(r−2c−a)(qς)cĚ(a)

·
(q−3aK−2 − q−a)(q4c − 1)

(q2 − 1)(q4c−2rK−2 − 1)

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)

=

r

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)

·

(

qr−2a[2� − r] + q2�−a[a] + q2c+r−2�−a[r − 2c − a]
q−2rK−2 − 1

q4c−2rK−2 − 1

+ q2c−2�[2c]
q−2aK−2 − 1

q4c−2rK−2 − 1

)

·

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)

(4.10)
= [2�]

r

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)

[

h; 1 − r
2

c

]

Kr−2�F (r−2c−a)

= [2�]S2�,r = LHS(4.8).

Next we prove (4.9). By a direct computation, we have

qr−2a[2� − r]
q2−2rK−2 − 1

q4c−2r+2K−2 − 1
+ q2�−a[a] + q2c+r−2�−a[r − 2c − a]

q2−2rK−2 − 1

q4c−2r+2K−2 − 1

+ q2c−2�[2c]
q−2aK−2 − 1

q4c−2r+2K−2 − 1
+ q1−r−2a[2� − r + 1]

(q4c − 1)K−2

q4c−2r+2K−2 − 1
= [2�].

(4.11)

Then we compute

RHS(4.9)

= [2� − r]K−1
(

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r−2c−a)(qς)cĚ(a)
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·

[

h; − r−1
2

c

]

Kr+1−2�F (r−2c−a)
)

+ (Ě + F )
(

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

(qς)cĚ(a)

·

[

h; − r−3
2

c

]

Kr−2�F (r−1−2c−a)
)

+ [2� − r + 1]K−1(qς)
(

r−3

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−1−2�−a)+a2

(qς)cĚ(a)

·

[

h; − r−3
2

c

]

Kr−1−2�F (r−2−2c−a)
)

,

which is equal to

=[2� − r]
(

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r+1−2�)−a(r+2−2c−a)(qς)cĚ(a) q2−2rK−2 − 1

q4c−2r+2K−2 − 1

·

[

h; − r−3
2

c

]

Kr−2�F (r−2c−a)
)

+

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

[a + 1](qς)cĚ(a+1)

[

h; − r−3
2

c

]

· Kr−2�F (r−1−2c−a) +

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r+1−2c)(r−2�−a)+a2

[r − 2c − a](qς)cĚ(a)

·
q2−2rK−2 − 1

q4c−2r+2K−2 − 1

[

h; − r−3
2

c

]

Kr−2�F (r−2c−a)

+

r−3

2
∑

c=0

r−1−2c
∑

a=0

q(2c+1

2
)+(r−1−2c)(r−2�−a)+a2

(qς)c+1Ě(a−1) q3−3aK−2 − q1−a

q2 − 1

·

[

h; − r−3
2

c

]

Kr−2�F (r−1−2c−a) + [2� − r + 1]

·
(

r−3

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−1−2�)−a(r−2c−a)(qς)c+1Ě(a)

·

[

h; − r−3
2

c

]

Kr−2−2�F (r−2−2c−a)
)

=

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)
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·
(

qr−2a[2� − r]
q2−2rK−2 − 1

q4c−2r+2K−2 − 1
+ q2�−a[a]

+ q2c+r−2�−a[r − 2c − a]
q2−2rK−2 − 1

q4c−2r+2K−2 − 1

+ q2c−2�[2c]
q−2aK−2 − 1

q4c−2r+2K−2 − 1
+ q1−r−2a[2� − r + 1]

(q4c − 1)K−2

q4c−2r+2K−2 − 1

)

·

[

h; − r−3
2

c

]

Kr−2�F (r−2c−a)

(4.11)
= [2�]

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)

[

h; − r−3
2

c

]

Kr−2�F (r−2c−a)

= [2�]S2�,r = LHS(4.9).

This completes Step I.

Step II. Assuming the first formula in the theorem for even n = 2�, we shall prove 

the second formula in the theorem for n = 2� + 1. It follows from (1.5) that

[2� + 1]Δ(B
(2�+1)

0
) =Δ(B)Δ(B

(2�)

0
) − [2�]Δ(B

(2�−1)

0
) (4.12)

=
(

B ⊗ K−1 + 1 ⊗ (Ě + F )
)

· Δ(B
(2�)

0
) − [2�]Δ(B

(2�−1)

0
).

We shall compare the summands B
(2�+1−r)

0
⊗− in both sides of (4.12). As the summands 

on the RHS of (4.12) are known by the induction hypothesis, we obtain the summands 

on the LHS and hence the formula for S2�+1,r.

Proving the formula in the theorem for even n = 2� + 1 reduces to establishing the 

identities (4.13)–(4.14) below:

[2� + 1]S2�+1,r = [2� + 1 − r]K−1S2�,r + [2� − r + 2](qς)K−1S2�,r−2 (4.13)

+ (Ě + F )S2�,r−1 − [2�](qς)S2�−1,r−2, for r = 2m even,

and

[2� + 1]S2�+1,r = [2� + 1 − r]K−1S2�,r + (Ě + F )S2�,r−1 − [2�](qς)S2�−1,r−2 (4.14)

for r = 2m + 1 odd.

Let us first prove (4.13). It follows by a direct computation that

qr−4c−2a[2� + 1 − r] + q−4c−r+3−2a (q4c − 1)K−2

q4−2rK−2 − 1
[2� + 2 − r]

+ q−4c−a+2�+1 q4c+4−2rK−2 − 1

q4−2rK−2 − 1
[a] (4.15)
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+ qr−a−2c−1−2�[r − 2c − a] + q−4c+2−2� q−2aK−2 − 1

q2 − 1

q4c − 1

q4−2rK−2 − 1

− q−4c+1 q4c − 1

q4−2rK−2 − 1
[2�]

= [2� + 1].

Then we compute

LHS(4.13)

= [2� + 1 − r]K−1S2�,r + [2� − r + 2](qς)K−1S2�,r−2

+ (Ě + F )S2�,r−1 − [2�](qς)S2�−1,r−2

= [2� + 1 − r]K−1
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)

·

[

h; − r−2
2

c

]

Kr−2�F (r−2c−a)
)

+ [2� + 2 − r]K−1(qς)
(

r−2

2
∑

c=0

r−2−2c
∑

a=0

q(2c

2
)+(r−2−2c)(r−2−2�−a)+a2

(qς)cĚ(a)

[

h; − r−4
2

c

]

· Kr−2−2�F (r−2−2c−a)
)

+ (Ě + F )
(

r−2

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2

(qς)cĚ(a)

·

[

h; − r−4
2

c

]

Kr−1−2�F (r−1−2c−a)
)

− [2�](qς)
(

r−2

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−2�−1−a)+a2

(qς)cĚ(a)

·

[

h; − r−4
2

c

]

Kr−2�−1F (r−2−2c−a)
)

= [2� + 1 − r]
(

r

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a+2)(qς)cĚ(a)

[

h; − r−2
2

c

]

· Kr−2�−1F (r−2c−a)
)

+ [2� + 2 − r]

·
(

r−2

2
∑

c=0

r−2−2c
∑

a=0

q(2c

2
)+(r−2−2c)(r−2−2�)−a(r−2c−a)(qς)c+1Ě(a)

·

[

h; − r−4
2

c

]

Kr−3−2�F (r−2−2c−a)
)
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+
(

r−2

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2

[a + 1](qς)cĚ(a+1)

·

[

h; − r−4
2

c

]

Kr−1−2�F (r−1−2c−a)
)

+
(

r−2

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r+1−2c)(r−1−2�−a)+a2

[r − 2c − a](qς)cĚ(a)

[

h; − r−2
2

c

]

· Kr−1−2�F (r−2c−a)
)

+
(

r−2

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2

(qς)c+1Ě(a−1) q3−3aK−2 − q1−a

q2 − 1

[

h; − r−4
2

c

]

· Kr−1−2�F (r−1−2c−a)
)

− [2�]
(

r−2

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−2�−1−a)+a2

(qς)c+1Ě(a)

[

h; − r−4
2

c

]

· Kr−2�−1F (r−2−2c−a)
)

=

r

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r−2�−1)−a(r−2c−a)(qς)cĚ(a) ·

(

qr−4c−2a[2� + 1 − r]

+ q−4c−r+3−2a (q4c − 1)K−2

q4−2rK−2 − 1
[2� + 2 − r] + q−4c−a+2�+1 q4c+4−2rK−2 − 1

q4−2rK−2 − 1
[a]

+ qr−a−2c−1−2�[r − 2c − a] + q−4c+2−2� q−2aK−2 − 1

q2 − 1

q4c − 1

q4−2rK−2 − 1

− q−4c+1 q4c − 1

q4−2rK−2 − 1
[2�]

)

·

[

h; − r−2
2

c

]

Kr−2�−1F (r−a−2c)

(4.15)
= [2� + 1]S2�+1,r = RHS(4.13).

Next we prove (4.14). By a direct computation, we have

qr−4c−2a[2� + 1 − r]
q4c+2−2rK−2 − 1

q2−2rK−2 − 1
+ q1+2�−4c−a[a]

q4c+2−2rK−2 − 1

q2−2rK−2 − 1
(4.16)

+ q−2c+r−1−2�−a[r − 2c − a] + q−2c+1−2�[2c]
q−2aK−2 − 1

q2−2rK−2 − 1
− q−4c+1[2�]

q4c − 1

q2−2rK−2 − 1

= [2� + 1].

Then we compute

LHS(4.14) = [2� + 1 − r]K−1S2�,r + (Ě + F )S2�,r−1 − [2�](qς)S2�−1,r−2,
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which is equal to

= [2� + 1 − r]K−1
(

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a)(qς)cĚ(a)

[

h; − r−3
2

c

]

· Kr−2�F (r−2c−a)
)

+ (Ě + F )
(

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c−a)(r−1−2�)+a2

(qς)cĚ(a)

[

h; − r−3
2

c

]

· Kr−1−2�F (r−1−2c−a)
)

− [2�]
(

r−3

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−1−2�−a)+a2

(qς)c+1Ě(a)

[

h; − r−3
2

c

]

· Kr−1−2�F (r−2−2c−a)
)

= [2� + 1 − r]
(

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−2�)−a(r−2c−a+2)(qς)cĚ(a)

[

h; − r−3
2

c

]

· Kr−2�−1F (r−2c−a)
)

+
(

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2

[a + 1](qς)cĚ(a+1)

[

h; − r−3
2

c

]

· Kr−1−2�F (r−1−2c−a)
)

+
(

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2+2a(qς)cĚ(a)

[

h; − r−1
2

c

]

q2r−2−4�[r − 2c − a]

· Kr−1−2�F (r−2c−a)
)

+
(

r−1

2
∑

c=0

r−1−2c
∑

a=0

q(2c

2
)+(r−1−2c)(r−1−2�−a)+a2

(qς)c+1Ě(a−1) q3−3aK−2 − q1−a

q2 − 1

[

h; − r−3
2

c

]

· Kr−1−2�F (r−1−2c−a)
)

− [2�]
(

r−3

2
∑

c=0

r−2−2c
∑

a=0

q(2c+1

2
)+(r−2−2c)(r−1−2�−a)+a2

(qς)c+1Ě(a)

[

h; − r−3
2

c

]

· Kr−1−2�F (r−2−2c−a)
)
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=

r−1

2
∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r−2�−1−a)+a2

(qς)cĚ(a) ·
(

qr−4c−2a[2� + 1 − r]
q4c+2−2rK−2 − 1

q2−2rK−2 − 1

+ q1+2�−4c−a[a]
q4c+2−2rK−2 − 1

q2−2rK−2 − 1
+ q−2c+r−1−2�−a[r − 2c − a]

+ q−2c+1−2�[2c]
q−2aK−2 − 1

q2−2rK−2 − 1
− q−4c+1[2�]

q4c − 1

q2−2rK−2 − 1

)

[

h; − r−1
2

c

]

· Kr−1−2�F (r−2c−a)

(4.16)
= [2� + 1]S2�+1,r = RHS(4.14).

This completes the proof of Theorem 4.2.

4.4. A new form of the formula for Δ(B
(n)

0
)

Let us reformulate the formulae in Theorem 4.2 in another form.

Proposition 4.5. For n even, we have

∆(B
(n)

0
)

=

n
∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

(−1)cq3c−(r−2c)(r−n)+a(r−2c−a)(qς)cF (a)

[

h; 1 − c + � r−2
2

�
c

]

Kr−nĚ(r−2c−a)
)

.

For n odd, we have

∆(B
(n)

0
)

=
n

∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

(−1)cqc−(r−2c)(r−n)+a(r−2c−a)(qς)cF (a)

[

h; 1 − c + � r−1
2

�
c

]

Kr−nĚ(r−2c−a)
)

.

Proof. Let us derive the first formula only from Theorem 4.2, and skip the entirely 

similar proof of the second one.

First, we assume ς = q−1. Recall the anti-involution χ such that χ(B
(n)

0
) = B

(n)

0
from 

Lemma 4.1. By checking on generators via the comultiplication formula (2.1), we see 

that (χ ⊗ χ) ◦ Δ ◦ χ = Δ. Therefore, (χ ⊗ χ)Δ(B
(n)

0
) = Δ(B

(n)

0
). We compute

(χ ⊗ χ)(RHS(4.5))

=

n
∑

r=0

B
(n−r)

0
⊗ χ

(

� r

2
�

∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−n)−a(r−2c−a)Ě(a)

[

h; −� r−2
2 


c

]

· Kr−nF (r−2c−a)
)

=
n

∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

q−(2c

2
)−(r−2c)(r−n−a)−a2

F (r−2c−a)(−1)cq2c(c+1)
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·

[

h; 1 + � r−2
2 
 − c

c

]

Kr−nĚ(a)
)

=
n

∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

(−1)cq3c−(r−2c)(r−n−a)−a2

F (r−2c−a)

[

h; 1 + � r−2
2 
 − c

c

]

· Kr−nĚ(a)
)

=
n

∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

(−1)cq3c−(r−2c)(r−n−a)−a2

F (a)

[

h; 1 + � r−2
2 
 − c

c

]

· Kr−nĚ(r−2c−a)
)

.

This proves the first formula for ς = q−1, i.e.,

∆(B
(n)

0
) =

n
∑

r=0

B
(n−r)

0
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

(−1)cq3c−(r−2c)(r−n)+a(r−2c−a)F (a)

[

h; 1 − c + � r−2
2

�
c

]

Kr−n(q−1EK−1)(r−2c−a)
)

.

(4.17)

We shall reduce the first formula for general parameter ς to the identity (4.17). We 

continue to denote by B = F + q−1EK−1 and B
(n)

0
the corresponding ıdivided powers 

with special parameter q−1. Below we shall denote by ′B = F + ςEK−1 and ′B
(n)

0
the 

corresponding ıdivided powers with general parameter ς.

Below we work with U over an extension field of Q(q). Consider the rescaling auto-

morphism of Hopf algebra

Φz : U → U ⊗ U, F 
→ z−1F, E 
→ zE, K 
→ K, where z := (qς)
1
2 .

Note that

Φz(F ) = z−1F, Φz(q−1EK−1) = z−1Ě,

Φz(B) = z−1 ′B, Φz(B
(n)

0
) = z−n ′B

(n)

0
, ∀n.

(4.18)

Indeed, the second identity follows by Φz(q−1EK−1) = zq−1EK−1 = z−1(ςEK−1) =

z−1Ě, and the remaining identities can be proved similarly.

Note that (Φz ⊗ Φz) ◦ Δ = Δ ◦ Φz. Now applying Φz ⊗ Φz to both sides of (4.17)

and using (4.18), we have obtained the first formula for general parameter ς in the 

proposition. �
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5. Comultiplication formulae for B
(n)

1

In this section we present the counterparts of Theorem 4.2 and Proposition 4.5 for 

the remaining family of ı-divided powers B
(n)

1
. We shall skip the entirely similar proofs.

Theorem 5.1. For n even, we have

Δ(B
(n)

1
) =

n
∑

r=0

B
(n−r)

1
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

q(2c+1

2
)+(r−2c)(r−n)−a(r−2c−a)(qς)cĚ(a)

[

h; −� r−1
2 


c

]

· Kr−nF (r−2c−a)
)

.

For n odd, we have

Δ(B
(n)

1
) =

n
∑

r=0

B
(n−r)

1
⊗

(

� r

2
�

∑

c=0

r−2c
∑

a=0

q(2c

2
)+(r−2c)(r−n)−a(r−2c−a)(qς)cĚ(a)

[

h; −� r−2
2 


c

]

· Kr−nF (r−2c−a)
)

.

Example 5.2.

Δ(B
(2)

1
) = B

(2)

1
⊗ K−2 + B ⊗ (q−1ĚK−1 + q−1K−1F ) + 1 ⊗ (Ě(2) + q−1ĚF

+ F (2) + q3(qς)[h; 0]).

Δ(B
(3)

1
) = B

(3)

1
⊗ K−3 + B

(2)

1
⊗ (q−2ĚK−2 + q−2K−2F )

+ B ⊗
(

q−2Ě(2)K−1 + q−3ĚK−1F + q−2K−1F (2) + q(qς)[h; 0]K−1
)

+ 1 ⊗
(

Ě(3) + q−2Ě(2)F + q−2ĚF (2) + F (3) + q(qς)Ě[h; 0] + q(qς)[h; 0]F
)

.

Proposition 5.3. For n even, we have

Δ(B
(n)

1
) =

n
∑

r=0

B
(n−r)

1
⊗

( � r

2
�

∑

c=0

r−2c
∑

a=0

qc−(r−2c)(r−n)+a(r−2c−a)(qς)cF (a)

·

[

h; 1 − c + � r−1
2 


c

]

Kr−nĚ(r−2c−a)

)

.

For n odd, we have

Δ(B
(n)

1
) =

n
∑

r=0

B
(n−r)

1
⊗

( � r

2
�

∑

c=0

r−2c
∑

a=0

q3c−(r−2c)(r−n)+a(r−2c−a)(qς)cF (a)

·

[

h; 1 − c + � r−2
2 


c

]

Kr−nĚ(r−2c−a)

)

.
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