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1. Introduction

1.1.  The quantum group of sly, U = (E, F, K*!), contains divided powers F) =
F™/[n]!. These divided powers form the canonical basis for half a quantum group U~ =
Q(q)[F], and they are a basic ingredient for higher rank quantum groups as well, cf. [12].
The divided powers satisfy a simple recursive relation

F.F™ = [n4+1)Fr+Y, (1.1)

and admit a closed multiplication formula
Fm) gy — | MR pmin) (1.2)
n . :
Under the comultiplication A in (2.1), we have

A(FM) =37 gm0 pl) g pln—a) jg—a, (1.3)

a=0

1.2.  The iquantum groups arise from the theory of quantum symmetric pairs (see
[9]). Fix ¢ € Q(q)*. The iquantum group U” (of split rank 1) is a coideal Q(g)-subalgebra
of U [8], which is the polynomial algebra in B:

U' = Q(q)[B],
where
B:=F+c¢EK " (1.4)
The t-divided powers for ¢ = ¢~ ' are icanonical basis for the :quantum group U*

[1]. Explicit formulae for i-divided powers for ¢ = ¢~ !

were conjectured therein (for
a somewhat different B; see Remark 2.1), and the conjecture was established in [3].
The same formulae of ¢-divided powers were shown in [4] to be valid, for more general
B=F+q¢'EK!+[k]K~!, for k € Z. (The special cases for k = 0,1 were treated in
[3], and the case for k = 1 appeared first in [1].)

The +-divided powers for ¢ = ¢! have played a fundamental role in the general theory

3

of rcanonical bases [2]. The -divided powers with a general parameter ¢ appear in the
Serre presentation of :quantum groups [5] and also in Serre-Lusztig relations and braid
group action for vquantum groups [6].

The (split) +-divided powers come in 2 forms {Bé") | n > 0} and {Bé") | n > 0},
depending on a parity 0,1 (of the highest weight of a finite dimensional simple U-
module). The formulae for the +-divided powers Bé") (respectively, Bﬁn)) can be found

1
in (2.3) (respectively, (2.4)).
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(0)

The -divided powers B are determined by B>’ = 1 and the following recursive

0 0
relations, for a > 1,
B-BZ* = [24] BE, (1.5)
B. BéQa) =[2a + 1]Bé2a+1) + qg[2a]Bé2a_1).

For example, B = B, BY = B2/[2], and BYY = B(B? — ¢¢[2]?)/[3]!.

0
There are similar recursive formulae for the :-divided powers B%n); see (2.5).

1.3.  The goal of this paper is to determine closed formulae for multiplication and
comultiplication of +-divided powers. These formulae are more involved than their coun-
terparts (1.2)—(1.3) for Lusztig’s divided powers, since «-divided powers are not mono-
mials in B. It is remarkable that such closed formulae actually exist. The harder part of
this work is to find these closed formulae, especially the comultiplication formulae. The
proofs are routine by sometimes lengthy induction.

> The multiplication formulae for the +-divided powers Bén) are given in Theorem 2.3.

)

> The multiplication formulae for Bén are given in Theorem 3.1.

)
)

> The comultiplication formulae for Bé" are given in Theorem 4.2.

> The comultiplication formulae for B%" are given in Theorem 5.1.
The comultiplication formulae are reminiscent of the PBW expansion formulae for

the -divided powers; cf. [3,4].

1.4.  Assume ¢ = ¢~ !. The structure constants for multiplication of +-divided powers
(see Theorem 2.3 and Theorem 3.1) are typically given by ratios of products of quan-
tum integers. It may not be straightforward (though it is an interesting combinatorial
problem) to recognize that they are integral and positive, i.e., they lie in N[q, ¢71]. As -
divided powers are integral basis for an i«quantum group over Z[q, ¢~ '] [1], these structure
constants indeed lie in Z[q, ¢~ !]. Positivity of these structure constants follows from the
geometric interpretation of scanonical basis of type AIII [11,10]. Similarly, the structure
constants for comultiplication with respect to (z-)canonical bases are positive [7]; in the
rank 1 setting, it follows from our closed formulae (see Remark 4.4).

New 1-divided powers associated to various rank 1 :quantum groups were constructed
in [2] with favorable integrality property, but otherwise remain to be poorly understood
(in contrast to the ones studied in this paper); it is desirable to study and understand
them better.

The formulae obtained in this work will be applied in some ongoing work on braid
group action. It shall also find applications to :quantum groups at roots of unity (as we
learned from Huanchen Bao). These are the main reasons for which we decide to make
the notes public (the main results have been known to us for some time). We hope they
may be helpful in scategorification as well.



224 X. Chen, W. Wang / Journal of Algebra 619 (2023) 221-248

Acknowledgment. We thank Collin Berman for his help in 2018 with Mathematica
computation regarding comultiplication formulae. XC is supported by the National Nat-
ural Science Foundation of China (No. 12271447), and the Fundamental Research Funds
for the Central Universities grant 2682020ZT100 and 2682021ZTPY043. WW is partially
supported by the NSF grant DMS-2001351.

2. Multiplication formulae for Bén)

In this section, we recall the :-divided powers, and then compute the multiplication

formulae for +-divided powers Bén).

2.1. 1-Divided powers

Let U be the quantum group of sly over Q(q) with standard generators E, F, K.
There is a comultiplication A : U — U ® U [12] such that

AE)=E®1+K®E, AF)=10F+FeK ' AK)=K®oK. (2.1)
We have
AB)=B® K '+1® (F+¢EK™"). (2.2)

Denote by N the set of nonnegative integers. The following :-divided powers Bé") and

Bén) appear in [5], which generalize the ones in [1,3] for ¢ = ¢~ 1.

For n € N, let
my 1 | BIIS_(B*—qs[2j]?) ifn=2k+1, (2.3)
O [l | TI_y(B? —qsl2j — 2?)  ifn =2k :
See also (1.5) for a recursive definition.
For n € N, let
w1 [ BITt_ (B —qs[2j — 1) ifn=2k+1, -
T [t Iy (B2—gsl2i—1%)  ifn=2k; '

The ¢-divided powers B%n) are determined by the following recursive relations: B%O) =

1, and

B-B® = [2a+ 1]BP*Y,

(2.5)

B-BE*Y = 24+ 2|BE**) + g¢[2a + 1]BEY.
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Remark 2.1. The above formulae for i-divided powers (with ¢ = ¢~!) remain unchanged
if we consider more general B = F + ¢ ' EK ! + [2p]K~! (for fixed p € Z) other than
(1.4) with ¢ = ¢~ 1; see [4].

The +-divided powers of B := F +¢ 'EK ' 4 [2p+ 1]K~" (for fixed p € Z) are given
by the same formulae above (with ¢ = ¢~—1) but with the parities 0 and T swapped; see
[4]; such formulae first appeared in [1], which correspond to B with p = 0.

2.2. The multiplication formulae

The following simple identities can be verified directly.

Lemma 2.2. For n,m,{ € 7, we have

[n+m] + [n—m] = [n][2]gm (2.6)
[n+m][n —m] = [n]* — [ 1%, (2.7)
[m][m 4+ n] = [€][¢ + n] = [m — £[m + £+ n], (2.8)
2n] = [2][n]e> (2.9)
We have the following multiplication formulae for +-divided powers Bén).
Theorem 2.3. For k,a > 1, we have
B(Qk I)B(2a 1) (2.10)
ke
2k + 2a — (2k+2a-2) —2m+2][2k —2m +2] ;| (2k+2a—20)
BX
[ 2k — 1 ( +;ﬂ£{2 %t 2a—2miipm—2) Do ’
BE VBl = (2.11)

k L
2k + 2a — 1 ( (2k+2a 1) [2& —2m+ 2] [2k —2m 4+ 2] ¢ »(2k+2a—20—1)
+2 11 (a<)" By :

2k -1 — [2k + 2a — 2m + 1][2m]

BEM Y = (2.12)

k¢
2k + 2a — 1 (2k+2a—1) [2a — 2m + 2][2k — 2m + 2] ¢ »(2k+2a—20—1)
Bl BY
[ ( 2 11 2k + 20 —2m +1)zm] 99 5o ’

2k 2
BEY B = (2.13)

2k + 2a (2k+2a)
[ 2% ] (Ba

k ¢
Qk 2 —2€ 2 -2 212k — 2 2 _
JFZ + 2a H a—2m+ 2] m + ]( g)gBé2k+2a 2@)>'

[2k + 24 [2k + 2a — 2m + 1][2m]

=1 m=1
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Example 2.4.

B@ pa-1) _ [2a 4 1] p2a+1) [2a]?
0 [2

4+ =4 (qg)B(2a 1)

0 2 0

)

]
]
B@ pa) _ [2a + 2] pB2a+2) [2a]? B(za)
o Br = e B T (@)

Bé:})BéQa—l) _[2a+2] BRat+2) | 2a + 2][2a][2a — 2]( )BL2)

L ™ Bl 0

a [ | a 4 a
Bé?’)BéQ ) _ Qa;r?: BéQ +3) —i—% [2&; 2} (go) BEwHD

[2a + 2][2a][2a — 2] (q§)2B£2a71)7

(3! 0
2a + 3] p2ats) | [2a +2][2a + 1][2a]? (2a+1)
0 o | ]B U e @R

[2a + 2][2a)?[2a — 2]

(gs)*BS* Y,

[4]!
a 2 a a 2a+2
BB 2a Zﬂ BEHH | 2 +2][35?2] 2+1][2 ](qg) Be+?)
4 [2at2] [?Z]]! 20 =2) o2 p,

2.3. Proof of Theorem 2.3

Note in each of the four formulae (2.10)—(2.13) above the summation up to k can be
replaced by the (same) summation up to min(k,a), since the additional terms clearly
vanish when k& > a. Therefore if we switch @ and k then Equations (2.10) and (2.13)
remain unchanged while (2.11) and (2.12) get swapped. We have chosen to keep both
equivalent formulations in the theorem to facilitate the inductive proof below.

We prove by induction on k. Below let us add indices to mark the identities in the
theorem as (2.10)g, (2.11)g, (2.12), (2.13). For the base cases of induction, the identities
(2.12)9—(2.13)g are trivial, while the identities (2.10);—(2.11); are simply (1.5).

The proof of the theorem will be completed in the following steps (i)-(iv):

(i) (2.11) & (2.12);

(i) (2.11)% = (2.13)k;

(i) (2.12)5+(2.10)) = (2.10) 413

(iv) (2.10)g = (2.12)%.

Step (i) follows by swapping k and a as we already noted, while (ii) follows by applying
(1.5) directly.
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Let us prove (iii): (2.12)+(2.10)x = (2.10)g+1. By (1.5), we have

2k 2k 1
Bk gRa—1) _ B- Bé (g )[Qk] )
0 [2k + 1]

B 2k 4+ 2a —1 (B£2k+2a—1)
2k + 1] 2k 0

=]

(2a—1)
36

Eal

.
2a —2m +2][2k —2m + 2], , (2k420—20-1)
B
DML 2+ 20 —2m1jzm] ) Bo )

{=1m=1
[Qk](qc) 2k +2a — 2 (B(2k+2a—2)
2k +1] 2k -1 0

k 0
20 —2m + 2|2k —2m + 2], | _(2k+2a—20)
By
+ZH[2k+2a—2m+l][2m—Z](c) 0 )

k¢
[Qk + 2a — 2£] [20, —2m + 2] [2k —2m + 2] ¢ (2k+2a—2¢0)
2 11 2k + 20 —2m + 12k + 2a2m] 99 B

[2K]? (as) (2k+2a—2)
 [2k +2a][2k + 20 — 1] (BG '

k¢
2a — 2m + 2][2k — 2m + 2 _ kt2a—20
+Z H [ 1l ](qg)z lBéQ +2 2)))

2k + 2a — 2m + 1][2m — 2]

_[2k+ 20] (g Zlﬁ 2k + 2a — 20 + 2][2a — 2m + 4][2k — 2m + 4]
=3t >

{—1
1 2k + 20— 2m 32k + 2am—2 49

| gk+2a—2042) [2k]°
0 2% + 2a][2k 1 2a — 1]
k+1 -1

[2a — 2m + 2][2k — 2m + 2] —1 p(2k+2a—20+2)
B(2k+2a 2) -1 g(2k+2a >
((as) +ZH 2k+2a—2m+1][2m—2](q§) 0

{2k+2a} ( (2k+2a)+’“z“ H 24 — 2m + 2][2k — 2m + 4]

2k +1 [2a — 2¢ + 2][2k 4 2a — 2m + 3][2k + 2a][2m — 2]

1 p(2k+2a—26+2
- ([2k+ 20— 20+ 2][20] — [20][21 — 2]) (g6) T B,
The last formula can be easily rewritten as (2.10)x41 by noting that

2k + 2a — 20 + 2][2a] — [2k][20 — 2] = [2a — 20 + 2][2k + 2d].
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Now we prove (iv): (2.10)g = (2.12)%. By (1.5), we have
(2k—1)
B - By B£2a71)
[2K]

B [2k+2a-2 (2k+2a—2)
g | (2

k

4
[2a — 2m + 2][2k — 2m + 2] (-1 p(2k+2a—20)
BY
+ZH[2k+2a72m+1][2m72](q<) 0 )

(2k) pp(2a—1) _
BEY R =

(=2 m=2
2k +2a — 1 ( (2k42a-1) , [2k +2a — 2] (2k+2a—3)
= B e E—— B
[ 2k } 0 2k 20— 1] 9P

14
[2]? + 2a — 2/ + 1] [2@ —2m + 2] [2k‘ —2m + 2] (-1 p(2k+2a—20+1)
BY
+ zgmll O+ 20— 1Rkt —2m+Em—g 4 5

kot
2k + 2a — 2{][2a — 2m + 2][2k — 2m + 2] ., (2k+2a—20—1)
+Zl_:[ 2k + 2a — 1][2k + 2a — 2m + 1][2m — 2] (g5)" By )

_ 2k +2a—1 (B(2k+2a 1)+ [2k 4 2a — 2]
[2k + 2a — 1]

14
[2]{} + 2a — 20 — 1] [2@ — 2m] [2k — 2m] 0 (2k+2a—20—1)
B¢
+ 2 ngl 2k + 20 = 12k + 20 — 2m — 1j2m] @) Fo

(2k+2a—3)
(¢5) By

k 14
[Qk —|— 2a — 2(] [2& — 2777, —|- 2} [2]€ — 2m —|— 2] ¢ (2k+2a72671)
+Zl_:[ 2k 20— 12k £ 20— am + m —2 ) 5o )

2a —1 (2k+2a-1) [ ][2]€+2a_2] + [QQ_Z][2]€—2]
ok } (B + o
4

[2k + 20 — 20 — 1)[2a — 2m + 2][2k — 2m + 2)[2a — 20][2k — 24] (2k-+2a—2¢-1)
R | R e e e T T e AR

kot
[2k + 2a — 20][2a — 2m + 2][2k — 2m + 2][2¢] e
+ éz:; }1 2k + 2a — 2m + 1][2m][2a][2K] (gs)t BLFH22 1 )

(2k+2a—3)
(¢5) By

4

2k +2a—1 (2k+2a—1) [2a — 2m + 2][2k — 2m + 2]
= BY

[ 2% } (5 +Znn1 2k + 2a — 2m + 1][2m)][2a] [2K]
(2a — 20)[2k — 20] + [20)[2k + 2a — 2£]) (g¢)* B2 727D

k
[2a — 2m + 2][2k — 2m + 2] k (2a—1)

*}1 2+ 2a—2m1)zm] 99 B )

The last formula can be easily rewritten as (2.12); by applying the identity (2.8). This
completes the proof of Steps (i)—(iv) and hence of Theorem 2.3
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3. Multiplication formulae for Bén)
In this section, we present the multiplication formulae for ¢-divided powers B%n).

3.1. The multiplication formulae for B%")

Theorem 3.1. For k,a > 0, we have

(2k) p(2a) _ | 2k + 2a (2k+2a) | Sn o [2a—2m42][2k—2m+2] ¢ p(2k+2a—20)
By By _{ 2k By +e§1m111 2+ 2a—2m+12ml (49) By

(2k) p(2a+1)
B1 BT -

2k +2a+1 2k+20+1) | <~ 5 [2a—2m42][2k—2m+2] (2k+2a—20+1)
|: 2k :| <Bl +€; mlll [2k+2a—2m+3][2m] (qc)eBT ’ (32)

BEHD pl2e) _

{2192—22_31—# 1] <B§2k+2a+1) n EXZ mﬁ_l p[éﬁ?f%ﬁi_g?{;;{f] (qg)@B§2k+2a2£+1)> (33)
B pet))

PR (e S (s o

¢
[2k+2a—20+3]%[2¢] [2a—2m+2][2k—2m+4] 0 »(2k+2a—20+2)
+[2k+2a+2][2a—2€+2][2k+2]) 'mH:1 2k+2a—2m+3][2m] (g¢) By ‘ ) :

Example 3.2.

@) p2a) | 2a4 2] ,2a+2) [2a + 2][2a] (24

.BT _BT = i 2 ] BT + (QC)TBT y
@) p2a+1) _ |20+ 3] L2at3) | [2a + 2][24] (2a+1)
BT BT = i 2 ] BT + T(QC)BT s

B?’)B?“) _[2a+3 B§2a+3) +(g9) {2a + 2] e+

. 3] 3 1 ’
3%3)B%2a+1) _ _Za?j— 4] B%Qa“) n [2a + 2]?[2d] +[3E]2'a + 3]%[2a + 2] (qC)B?aJrz)

2a+2 a
o

B ) _ [Qaj 4} Bt [ a[2] ] [261;2} (q5) B+
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[2a + 4][2a n[L4]2‘} [2a][2a — 2] (qg)zBéga),
B?)B?aﬂ) _ {2(14—# 5] B§2a+5) n % [2@?4} (qc)B?aH)
[2a + 4][2a —i[—4]2'} [2a)[2a — 2] (qc)gB?a-s-l).

3.2. Proof of Theorem 3.1

We prove by induction on k. Below let us add indices to mark the identities of Theo-
rem 3.1 as (3.1)g, (3.2), (3.3)k, (3.4)k. Note that (3.1)9—(3.2)¢ are trivial while (3.3),
(3.4)1 hold by (2.5).

The proof of the theorem will be completed in the following steps.

(i) (3.2) & (3.3);

(i) (3.2)r = (3.4):
(iil) (3.4)x+ (3.2)k = (3.2)k+1;
(iV) (33)k+ (51)k = (3~1)k+1

Step (i) follows by swapping a and k.
Let us prove (ii): (3.2)x = (3.4)g. Using (2.5), we have

(2k)
B§2k+1)B£2a+l) _ B BT B£2a+1)

2k +1]

2k + 1]

B 2k +2a+1 (2k-+2a+1)
[ 2k } (BT
kot
2a —2m + 2|2k —2m + 2], , (2k420—20+1)
B
NIE 2%+ 2a —2m i 3zm] 99 B )

{=1m=1

1 . )
= T [2k +2QI€a + 1} ([Qk + 2a + Q]B(2k‘+2 +2) 4 2k + 2a + 1}(qc)B(2k+2 )

k¢
[2a — 2m + 2][2k — 2m + 2]
+ZH [2k + 2a — 2m + 3][2m] (gs)’

- ([2k + 2a — 20 + 2] BEFTOT2H) 4 [9k 4 2a — 20 4 1)(qs) BEF T 2@))

_[2k+2a+2 p2k+20+2) [2k + 2a + 1] ( )B£2k+2a)
2k +1 1 [2k + 2a + 2] !

E

V4
2k+2a—2€+2 2a—2m+2][2k—2m+2] ¢ (2k+2a—2€+2)
B
+Z 2% + 20 + 2] H 2%+ 20— 2m + 3jzm] 49 B

=1 m=1
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k

[2k + 2a — 20 + 1]
+3!

{=1

[2k + 2a + 2]

[2a — 2m + 2][2k — 2m + 2]( )Z+IB£2]<;+20,—2€))
[2k + 2a — 2m + 3][2m] !

":]N

m=1

2k +2a + 2 (2k42a+2) | [2k +2a +1] (2k+2a)
= 37 _— —
[ 2k + 1 }( T k20t P

[Qk =+ 2(1] [2&] [2]{3] ( )B£2k+2a)
2k + 2a + 2] [2k + 2a + 1)[2] ‘17T

+

2k + 2a — 20 + 2] ﬁ 2a—2m+2][2k—2m+2}( Je plak20-2e+2)
2k+2a+2] 1Lk 420 —2m+ 3][2m] I

[2k 4 2a — 20 + 3]%[2/]
2k + 2a + 2][2a — 20 + 2][2k — 20 + 2]

+

=~ M- 1M

[2a — 2m + 2][2k — 2m + 2] (gs)( B2E+2a=2042)
[2k + 2a — 2m + 3][2m] 1

m=1

k
[2a + 1 [2a — 2m + 2|[2k — 2m + 2 .
1] s sy as) 5

[2k—|—2a—|—2 [2k + 2a — 2m + 3][2m]

m=1

2k +2a + 2 (2k+2a+2) 2]6 4+ 2a — 20 + 2]
= BY § :
[ 2%k + 1 M * ( 2k + 20+ 2]

2k + 24 — 20+ 3]2[2(]
* [2k+2a—|—2][2k—2€+2][2a—2€+2])

¢
H [2a — 2m + 2|[2k — 2m + 2] (g g)gB£2k+2a—2€+2)
[2k + 2a — 2m + 3][2m] 1

m=1

k+1

[2a + 1]2 H [2a — 2m + 2] (q)+1 B2

2k + 2a + 2|[2a — 2k 2k +2a — 2m + 3 I
m=1

k+1
_ [2k + 2a + 2} (B@k“a”) N Z ([Qk +2a — 20 + 2][2k — 20 + 2]

2k +1 1 pot [2k + 2a + 2][2k + 2]

[2k 4 2a — 20 + 3]%[2/]
2k + 2a + 2][2a — 2¢ + 2][2k—|—2])

¢
H [2a — 2m + 2][2k — 2m + 4] ( )gB(2k+2a2Z+2)>

[2k + 2a — 2m + 3][2m] 1

m=1

Let us now prove (iii): (3.4)x+ (3.2)r = (3.2)+1. Using (2.5), we have

(2k+1) @M
k) pa+) _ B - By —(g9)[2k + 1] B e+
T b 2k + 2] i
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B (2k+1) p(2a+1) 2k +1] (2k) (2a+1)
= B B - B B>
2k +2] 1 d 2k 4299 I

k+1
B . 2k + 2a — 20 + 2|[2k — 20 + 2
[2k+2a+2} <B(2k+2 +2)+Z([ + 2a + 2] ]

2k+1 2k +2] \ 7T ~ 2k + 2a + 2][2k + 2]

[2k + 2a — 20 + 3]2[2/]
TRkt 20 1 220 - 2€+2][2k+2])

ﬁ [2a — 2m + 2][2k — 2m + 4] ( )gB£2k+2a722+2)
[2k + 2a — 2m + 3][2m] 1

m=1
_[2k+1]) [2k+2a+1
2k +2] 2k

koot
“ [2a — 2m + 2][2k — 2m + 2] (2k+2a—20+1)
] B(2k+2 +1) +1 gt
(( +ZH 2k 20— 2mtgpm] 9 D )

{=1m=1
| 2k+2a+2 1 (2k+2a+3)
_[ %t 1 }[2k+2]<[2k+2a+3]B
+’§([2k+2a—2€+2][2k—2€+2} . [2k + 2a — 20 + 3)2[2(] )
£ 2k + 2a + 2][2k + 2] 2k + 2a + 2][2a — 20 + 2][2k + 2]

[2a — 2m + 2][2k — 2m + 4]
[2k + 2a — 2m + 3][2m]

::]&

[2k + 2a — 20 + 3](q<)fB§2’“+2“‘2“3))

m=1

2k +1] {2k+2a+1}

2472 2k
k L
(2k+2a+1) [2a —2m + 2][2k —2m + 2] |, (2k+2a-2041)
) )BY B

<( +;m:1 [2k + 2a — 2m + 3][2m] (g5) 1 )
_|2k+2a+3 B (2k+2a+3)
=| 2k+2 T

ML 19k 4 2a — 20 4 2)[2k — 20+ 2 2k + 2a — 20 + 3|2[2¢

+3°( )
i 2k + 2a + 2][2k + 2] 2k + 2a + 2][2a — 20 + 2][2k + 2

2k + 20— 20+ 3] ﬁ [2a — 2m + 2][2k — 2m + 4] (o) BE20-2649
[2k + 2a + 3] [2k + 2a — 2m + 3][2m)] 1

B 2k + 1)
[2k + 2a + 3][2k + 2a + 2]

m=1

[2a — 2m + 2][2k — 2m + 2] (2k+2a—26+1)
B(2k+2a+1) +1 gt )
((@s) + ; wnl %k t20—2mtapm 49 B

_|2k+2a+3 RB(2k+2a+3)
- 2k +2 1
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/2K + 2a — 20 + 2)[2k — 20 + 2] [2k + 2a — 20 + 3)2[2¢]
+;( 2k + 2a + 2][2k + 2] [2k+2a+2][2a—2€+2][2k+2]>

[2a — 2m + 2][2k — 2m + 4]
[2k + 2a — 2m + 5][2m]

':]e\

¢ o (2k+2a—20+3)
(45)" By
m=1

s 2k + 1]2[2(]

p 2k + 2a + 2][2a — 2¢ + 2][2k + 2]

M

[2a — 2m + 2][2k — 2m + 4]
o2 [2k+ 20— 2m + 5][2m]

_ [2k + 2a + 3} (B(2k+2a+3)

::N

¢ o (2k+2a—20+3)
(45)' BE )
2k + 2 T

k+1

+§:(2h+%—2£+ﬂ@m—%+ﬂpk—2ﬂ+ﬂ+Dk+2a—%+3f@ﬂ
[2k + 2a + 2][2a — 2¢ + 2][2k + 2]

—pk+uﬂyw

¢
H [2a — 2m + 2][2k — 2m + 4] (qg)gB£2k:+2a72ﬁ+3)
S0 [2k+2a —2m + 5][2m] 1 '

The RHS above can be converted to RHS (3.2)x1 using the following identity (which
can be derived easily via (2.7)—(2.8))

[2k + 2a — 20 + 2][2a — 20 + 2][2k — 20 + 2] + [2k + 2a — 2¢ + 3][2€] — [2k + 1]2[2¢]

(3.5)
=[2a — 20 + 2][2k + 2][2k + 2a + 2].

Let us now prove (iv): (3.3)r+ (3.1)x = (3.1)g+1. Using (2.5), we have

2k+1 2k
p2k+2) p2a) _ B B% ) - [2k + 1](%)3% ) (2a)
1 1 [2k + 2] 1
B [Qk + 2a + 1] (B(2k+2a+1)
T

TRk+2] | 2k+1

"5 [2a— 2m+ 2)[2k — 2m + 2]
*ZZH 2k 1 20 — 2m + 3]12m)
g % {2k2—fl—f2a] (g6) (B§2k+2a)

4

k
[2a — 2m + 2][2k — 2m + 2]
Jr;};[l [2k + 2a — 2m + 1][2m]

_ 1 2k +2a+1 (2k+20+2) | (2k+2a)
T [2k +2] [ 2k + 1 ] ({2k +2a+ 213 + [2k + 20+ 1)(gs) BE )

—

m=

( g)(B%Qk-Q—Qa—QZ-&-l))

(qg)gB?Hza—zé))
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1 2k +2a +1
] 2k +1

T2k
k
2a —2m +2|[2k —2m + 2] |, (2k420—2042)
[2k + 2a — 20 + 2] B7
; k+2a—26+ }1 o+ 20— 2mi3zm] B

1 2k +2a+1
[2k+2 2k+1

14

k
2a —2m + 2] [2]€ —2m + 2] (+1 p(2k+2a—2¢)
[2k + 2a — 20 By
; t2a—-26+1 ngl Okt 20— 2mt 3zm 4 D

{2/{ n 2} [Qk;km] ((as) B2
k

4
[2a —2m + 2][2k —2m +2] ;1 (2kt2a—20)
B¢
ZH Okt 20 —2m+ pm] ) P )

=
2k + 2a + 2 B2k+2a+2)
- 2k +2 T

(26 -+ 2a][20][2K] + (2% + 20 + 1P[2) — 2K+ 1P peaicran
! 2k + 2a + 2][2k + 2a + 1][2] (g9)B;™"

+i[2k+2a—2€+2} H 2a—2m—|—2][2k:—2m+2]( Je plaks20-2e+2)
— [2k+2a+2] 2k + 2a — 2m + 3][2m] 1
+i [2k+2a—2€+3] ﬁ 2a—2m+2][2k—2m+2}( )[B(2k+2a722+2)
2a — 20 4 2][2k — 20+ 2 2k+2a+2 [2k + 2a — 2m + 3][2m T
=2 m=1
k

_Z [2k + 1}2[216} ﬁ 2a—2m+2][2k—2m+2}( )ZB£2k+2a_zz+2)
2a — 20 4 2][2k — 20 + 2][2k + 2a + 2] [2k 4+ 2a — 2m + 3][2m 1
£=2

m=1

[2a + 1) — [2k + 1]2
[2Kk + 2a + 2][2a + 1]

=

2a — 2m + 2|2k — 2m + 2 o
[ [ ]( )k+1B%2 ))

[2k + 2a — 2m + 3][2m]

m=1

_|2k+2a+2 B2k+20+2)
- 2k +2 T

+Xk: [2k + 2a — 20 + 2)[2a — 20 + 2][2k — 2€ + 2] + [2k + 2a — 2¢ + 3]2[26] — [2k + 1]2[2(]

- [2k + 2a + 2][2a — 2¢ + 2][2k — 20 + 2]

-

¢ [2a — 2m + 2][2k — 2m + 2] ( )gB(2k+2a—2€+2)

[2k + 2a — 2m + 3][2m] 1

[2a — 2k] k [2a — 2m + 2|[2k — 2m + 2] (20)
H [2k+2a—2m+3][2m] (g)kJrlBT )

The RHS above can be easily converted to RHS (3.1)x41 using (3.5).
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This completes the proof of Theorem 3.1.
4. Comultiplication formulae for Bén)
(n)

In this section, we shall establish a closed formula for A(Bj") in two different forms.

4.1. An anti-involution

Set
K21
E:=¢EK™',  h:i="—
g —1
Define, for a € Z,n > 0,
h;a B n q4a+4i—4K—2 -1 . B h7a
|: n :| - g q4z’ -1 ’ [haa'] - 1 . (41)
Then we have, for a € Z,n € N,
FE — ¢ 2EF = sh, {h;a}p_p[h;cH-l}’ {h;a}E_E[h;a—l}.
n n n n

Lemma 4.1 (/3, Lemma 2.2]). (1) There is an anti-involution x on the Q-algebra U
which sends E — E,F — F, K — K,q— ¢~ ..
(2) Assume ¢ = q 1.

sending

Then x restricts to an anti-involution of the Q-algebra U*

F—F, q¢'EK'os¢'EK' K'eK?!' ¢-q¢t (4.3)
Moreover, x sends
hs —¢*h, BY s BY, BY B,
[hr’ﬂ = (—1)ng?n ) [h; 1 ;La B n} ,VYa€Z,n€N.
4.2. The comultiplication formulae

For x € R, we denote

|z] = max{m € Z | m < x}, [z] =min{n € Z | n > z}.
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Theorem 4.2. For n even, we have

(n)
A(B5)
n L%J r—2c 2e h r—2
_ ZBénfr) ® (Z Z q(2)+(r—2c)(r—n)—a(r—2c—a)(qc)CE(a) { ,—l_cTJ} Kr_nF(T_QC_a)).
r=0 c=0 a=0
(4.5)
For n odd, we have
(n)
A(B)
n L%J r—2c set1 . he r—1
_ ZBénf’F) ® (Z Z q( A )+(7‘—20)(7‘—n)—a(r—2c—a)(qg)CE(a) |: 7—LCTJ:| KT_nF(T_QC_a)).
r=0 c=0 a=0
(4.6)
Example 4.3.

ABP)=BP @ K2+ B (¢ 'EK~ + ¢ 'K 'F)
+1@ (E® + ¢ 'EF + F® + q(¢9)[h;0]),
ABY =B @ K%+ B © (¢ 2EK 2 + ¢ 2K *F)
+B@ (¢ PEWK ™ + ¢ PEK'F + ¢ 2K ' F@ 4 ¢*(g) [ 0] K 1)
+1® (B® 4 ¢ 2E@F 4 ¢ 2EF® 1+ FO + ¢3(¢)Elh; —1]
+4°(gs)[h; —1]F).
Remark 4.4. When passing to the modified quantum group, the terms {h’ck] in

(4.5)—(4.6) are replaced by some quantum integers up to some g-powers, and then the
formulas have positive integral coefficients.

4.8. Proof of Theorem 4.2

Denote by S, € U (for both n even and odd) the expressions in parentheses in the
theorem such that

n

ABIMY =3"BI @ 8,0
r=0

We shall prove the theorem by induction on n. The base case when n = 1 is the formula
(2.1). The induction is carried out in two steps I-1I.

Step I. Assuming the second formula in Theorem 4.2 for odd n = 2¢ — 1, we shall
prove the first formula for even n = 2¢. It follows from (1.5) that
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20A(BRY) = A(B)ABZ ) = (B@K +1® (E+F)) ABZ). (47)

We shall compare the summands Bé%”) ® — in both sides of (4.7). As the summands
on the RHS of (4.7) are known by the induction hypothesis, we obtain the summands
on the LHS and hence the formula for Sy ;.

Proving the formula in the theorem for even n = 2¢ reduces to establishing the
identities (4.8)—(4.9) below:

[20)S90., = [20 — 1] K " Sop 1, 4 (E + F)Sa_1,_1, for r = 2m even,  (4.8)
and

20)S90, = [20 — 1)K Sop_ 1 4 (B + F)Sap_10—1 + [20 — 7+ 1)(g5) K " 891 r_2,

(4.9)
for r = 2m + 1 odd.
We first prove (4.8). By a direct computation, we have
—2r 5 —2
r—aa —a c+r—20—a q K -1
T R R N i = =
4.10
2c—2¢ g K2 -1 (4.10)
Then we compute
RHS(4.8)
% r—2c
=[20 —r|K~ 1( Z q () +(r—20) (r+1-20)—a(r—2¢c— @) (g¢)° E@
c=0 a=0
. |:h7 1- %:| KT+1—2ZF(T—2c—a)>
c
%_1 r—1—2c¢
+(E+ F)( TS (CHmimze-2tae oy )
c=0 a=0
) |:h, 1-— %:l Kr72EF(r7172cfa)>
c
% r—2c it
(35 g0 a2ty
c=0 a=0
]

|: ;16 % K~ 2€F(7‘ 2c— a))



238

X. Chen, W. Wang / Journal of Algebra 619 (2023) 221-248

5—1lr—1-2¢

2C+1 (r—1—2¢)(r—20—a)+a? cri(a
+ Z Z q 1-2¢)(r—20—a)+ [+ 1](qs) Flat1)
c=0 a=0

|:h71 :|Kr QEF(T 1—2c—a)

5—1lr—1-2¢
2L+1 (r—1—2¢)(r—26—a)+a*—2a+2r— ct(a
+Z Z q 1-20)(r=26a) 20427 4L (g ye (@) [ _ 9 _ ]
c=0 a=0

. |:hvc_%:| KT72ZF(T7207Q)

a7lr1-2¢ 3-3a7—2 _ ,1-a
2c+1 _ oy 2 N K= —
+ E E q (r—1—2c)(r—2¢—a)+a (qg)chlE(a l)q ; — q
c=0 a=0

|:h7 1c :|Kr QEF(T 1—2c—a)

r—2
2£—T( q 2c+1 +(7« 2¢)(r+1—2¢)—a(r—2c—a)— 2a(q§>cE(a)
h

[V
o

c=0 a=0
A |: 31— %:| KT—Q@F(T—QC—G,))
Cc

5—1r—2¢

2°+1 (r— c)(r— a—1)(r—2c—a cr(a
+ Z Z 1-26)(r=26) = (a=1)(r=2¢=0a) [g) (g )¢ (@)
c=0 a=1

|:h7 1C :|Kr QZF(T 2c—a)

5—1lr—1-2¢c
+ Z Z q QC'H (r— 1—2c)(r—2[—a)+a2—2a+2r—4l(qg)CE(a) [T — 9% — CL]
c=0 a=0

. |:hvc_§] KT—QZF(T—Qc—a)

5 r—2c —3a 77—2 —a
2" 1 r c)(r— a r—2c—a cpa(a) ¥ K —4q
£303 gl e (ggye e T
c=1 a=0 q
|:h 1- :|Kr 2€F(7‘ 2c— a)
c—1

which is equal to

.
2

r—2c
:[2€ _ 7’} ( Z Z q(2c2+1)+(7"—2c)(r+1—2£)—a(r—2c—a)—2a (QC)CE(G)
a=0

c=0
X |:h7 10_ §:| Kr—2ZF(T—2(:—a))
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5*1r

i 2c+1 (r—1-2¢)(r—2¢)—(a—1)(r—2c—a) [a](qc)cE(a)
=0 a=1

. |:h,1 - %:| Kr72ZF(r72c7a)
c

**17’ 1-2¢

2c+1 r c)(r— a a c a 72TK72 _ 1 hl —3
+Z Z +(+1 2¢)(r—20—a)+ (qg)E()[r_QC_a]W[{ ’ . 2:|
c=0 a=0
% r—2c vt
KRRz 1§ S ()12 (20~ (@) (200 (g ()
c=1 a=0
. (q—3aK—2 _ q—a)<q4C — 1) h 1-— K= 2€F(T 2c—a)
(- D= 7K 2-1) |
5 r—2c
_ Z Z 2¢) 4 (r—2¢) (r—26) —a(r—2c— a)(qg) E(@
c=0 a=0
—2r 7 —2
r—2a 2l—a 2ctr—20—a d K -1
.(q (20— 7]+ ¢ a] +¢ [T—QC‘“]M——?—l

—2a 77—2
2c—2¢ ¢ "KT° -1
+ 2c| ——s————
9 [2 qle—2r K—2 — 1)

. |:h7 1- %:| KT72€F(7'72070,)
C
% r—2c
410 r—2c)(r— a(r—2c—a c h;1_£ — r—2c—a
S ()220 a2 >(qg)E<>{ ) 2:|K 2 pp(r—2c—a)
c=0 a=0

= [20]S0, = LHS(4.8).

Next we prove (4.9). By a direct computation, we have

2—2r pr—2 2—-2r p—2
r—2a q K -1 20—a 2c+r—20—a q K -1
q (26 =] g2z —2 _ | +¢7 a4 [r—2c—ad] gz —2 _ |
—2a p—2 4c —2
2c—20 q K -1 1—r—2a (q - 1)K _
+4q [2¢] qle—2r+2K—2 _ | +4q (26 =7 +1] g2+ 22 _1 [24].
(4.11)

Then we compute

RHS(4.9)

r—1
r—2c

BN
2£—T (Z q 2c+1 +(7~ 2¢)(r+1—20)—a(r—2c— a)(qg) E(a)
c=0 a=0
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T3 r—1-2c
- 2c+1
+(E+F)(Z 3 G120 (=20 +a? (g ye (@)
c=0 a=0
h;*T; K QZF(T 1-2¢ a))
c
—2—
+[20—r+ 1K ( Z () +(r— 2720)(r717227a)+a2(qc)cE(a)

. |:h7 _TT:| Kr—l—QZF(T—2—2c—a))’
Cc

which is equal to

1,9 29 2
Zetl r—2c)(r+1—2¢)—a(r+2—2c—a cpaa) 4 K -1
:[25_7«](2 q( )4+ (r—2¢)(r+1-20)—a(r+2-2 ) (gg) X )q40*27’+2K*2 —
c=0 a=0
h: —r=3
. |: 5 ) :|KT—2€F(7‘—20—<1))
C

e . ._r=3
+Z Z 2+1 +(r 1—2¢)(r—20—a)+a? [a+ ](qg)cE(aJ,-l) |:h, 3 :|

c=0 a=0 ¢
r21 r—1—2c¢ 2 +1
KT 2€F(7 1—2c— a)_’_z Z q +(7+1 2¢)(r—20—a)+a? [ _2c_a](q§)cE(a)
c=0 a=0
q2_2TK_2 -1 |:h7 _T23:| Kr72€F(r72cfa)
1

q4c—27'+2K—2 _ c

2 r—1—2¢ 3—3a 57—

(2 +(r—1-2¢)(r—20—a)+a? e+l 7a(a—1) 4 K~*

IR (4s)"'E T
c=0 a=0

l1—a

._r=3
. |:ha D) :|K1“—2ZF(T—1—2C—¢1) + [2€—T'+ 1]

. ( q(2c;1)+(r7272c)(r71726)7a(r7267a)(q<)6+1E(a)

0
.[h;—%] 220 r—2—2c— a))

— Z q\> +(7" 2¢)(r—20)—a(r—2c— a)(qg)cE(a)
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2—2r -2
r—2a q K—=-1 20—a
’ (q 20— 7] qle2rt2 -2 | +4q [a]
2—2r pm—2
2c+r—20—a q K -1
T4 [r—2¢c~d] o222 _ 1
—2a y—2 4c —2
2c—2¢ q K -1 1-r—2a (q — 1)K
T4 [2¢] 22 _ 1 Ta 26 —r+1] qlo—2r+2 -2 _ 1)
|:h7 _%:| Kr72ZF(r72c7a)
C
T‘;l 2%
/ r—ec ._r=3
(4;1) [2@] Z Z q(22c)+(r—2c)(r—2£)—a(r—20—a) (CIC)CE(G) |:h, —T:| Kr_ggF(r_gc_a)
C
c=0 a=0

= [20]Sa¢, = LHS(4.9).

This completes Step 1.

Step II. Assuming the first formula in the theorem for even n = 2¢, we shall prove
the second formula in the theorem for n = 2¢ 4 1. It follows from (1.5) that

2+ 1ABED) =A(B)ABSY) — [20A(BE ) (4.12)
- (B K '+1®(E+ F)) CABPY) — [20A(B# V).
We shall compare the summands BéZZH_T) ® — in both sides of (4.12). As the summands

on the RHS of (4.12) are known by the induction hypothesis, we obtain the summands
on the LHS and hence the formula for Say1 .

Proving the formula in the theorem for even n = 2¢ + 1 reduces to establishing the
identities (4.13)—(4.14) below:
(20 +1]S20s1,r = [20+ 1 — 1] K Sop, + [20 — 7+ 2](q5) K ™" Sap,—o (4.13)
+ (E + F)Sapr—1 — [20](qs)S20—1 r—2, for r = 2m even,

and

[2£ + 1]Sgg+1’r = [2€ +1-— T]K_lszgﬂa + (E + F)SQZ’T,1 — [2(](q§)52471’r,2 (4.14)
for r =2m + 1 odd.

Let us first prove (4.13). It follows by a direct computation that

(q* — 1)K~

—de—2 —dc—r43-2
q T2+ L =] g T GW

[20+2—7]

4c+4—27"K—2 -1

—4c—a+24+1 q
+4q q4—2rK—2 —1 [a]

(4.15)
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Cdepo_o0q K21 gt —1

r—a—2c—1-2¢
+q [r—2c—a]+q B Sy
4c
Cdep1 41
=T el
20 +1].

Then we compute

LHS(4.13)
=[204+1- T]K_lsgg’r +[20—7r+ 2](q§)K_1S%T,2
+ (E + F)S%,r—l - [25]((1@)522—1,7«—2

5 r—2c

—[20+1—7]K (Z Z Hr=20)(r—20) —a(r—2e-a) (g ye Fi(@)
c=0 a=0
. |:h7T52:| KT—QEF(T—Qc—a)>
C
T22 r—2—2c h 4
—|—[2€—|—2—7‘] ( Z q +(7 —2-2¢)(r—2—2(—a)+a? (qg)cE(a)|: i 5 :|
c=0 a=0

.Kr7272lF(r7272c7a)) 4 (E n F)( Z q(220)+(r71720)(r717227a)+a2 (qC)CE(a)

— [2£+1—T( Z +(r 2¢)(r—20)—a(r—2c— a+2)(q€) E(a) |:h T22:|

: KT*%IF(T*?C*“)) + 2042 —7]

722r 2—2c¢

( Z q +(r 2—2¢)(r—2—2€)—a(r—2c— a)(qg)c+1E(a)
=0 a=0

C

. |:h7 _T24:| Kr—3—22F(T—2—20—a))
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52 r—1—2c

( Z q (%) +(r—1—2¢)(r—1—2¢—a)+a? a +1](qg)cE(“+1)

T

c=0 a=0
. [hv_%:| KT—I—QZF(T—1—2c—a))
C
TT_QT‘—I—QC . h'—ﬂ
(X X gt [r—2c—a]<q<>CE(“){ el }
c=0 a=0

. Kr7172€F(T72cfa))

2 r—1-2c 3_3 — —
— r— c)(r— a)+ta c a— ‘K 2 — ql “ h; —r=4
(Z Z q ) (r—1—2¢)(r—1—20—a)+a> (gs)° T 14 o { ; }

c=0 a=0
. KT—I—QZF(T—1—2C—(1))

—2—
( Z 2c+1 +(,« 2—2¢)(r—26—1—a)+a? (qg)c+1E(a) {h T;4:|
c
c=0 a=0

. KT72€71F(1"727207¢1)>

r—2c

g3 =202t malr=2ea) (gye ) (gr=1e2e]a0 11— ]

[V}

c=0 a=0

Cde—rt3-2q (¢ — DK ? [20 4+ 2 — 1] 4 g de-at20i1 R

q4—2rK—2 —1

+a q4—27"K—2 -1 [a]

—ZaK—2 -1 q4c -1
q2 —1 q472rK72 _

4c r—2
—4c+1 q - — 1 h7 -5 r—20—1 (r—a—2c¢
—q WW])[ C2:|K 7 )

+ qr—a—QC—l—QZ[,r —2—a]+ q—4c+2—zeq

U2 120 4 1)1, = RHS(4.13).

Next we prove (4.14). By a direct computation, we have

q4c+2*2TK*2 -1 q4c+272rK72 -1

r—4c—2a 14+2¢6—4c—a
20+1— 4.16
q 20+ 1 —7] PTK-2_1 +4q [a] PTK-2 (4.16)
—ZaK—Q —1 dc _ 1
—2efr—1-20—af,. _ 9. _ —2e+1-2191 4 _ g—detlgyp q
+ q [’r c a’] + q [ C] q2_2TK_2 _ 1 q [ ]QQ_QTK_Q _ 1

= [2¢0+1].
Then we compute

LHS(4.14) = [20 + 1 — ] K 89y, 4 (E + F)Sar—1 — [20)(gS)Sar—1.r—2,
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which is equal to

r—1
5 r—2c

-3
= _ +(T 2¢)(r—20)—a(r—2c—a) c t(a) h; —I==
=[204+1—7]K (qu (¢5)°E [ cz]
c=0 a=0
. KT—QZF(T—QC—(I))
; r—1—2c —
(Z Z (r—=1—2c—a)(r—1— 2@)+a (QC)CE( a) |:h,—T3:|
c=0 a=0 ¢
. Kr—l—ZZF(r—1—2c—a))
= 2 +1 h r—3
< +(r—2—2c)(r—1—20— a)+a c+1 7a(a) YT
(% 5 a0 [
. Kr—l—QKF(r—2—2c—a))
r—2c 3
2€+ 1—r <Z Z +(r 2¢)(r—20)—a(r—2c— a+2)(q§)cE(a) I:h 5 :|
c=0 a=0 ¢
. Kr—2£—1F(r—2c—a))
Tgl r—1—2c¢ r—3
(3 glremimarztasey g () plerh [h; _T]
c=0 a=0 ¢
K1 ZZF(T’ 1-2¢ a))
Tgl r—1—2c , L 1
+<Z Z q(2)+(7‘ 1—-2¢)(r—1—2¢—a)+a +2a(qg)cE(a)|: ) 5 ]qzr 2 4e[ 2% — d
c=0 a=0
K" 1 QZF(T’ 2c a))
T;l r—1—2c¢ (2C)+( | 26)(r1—20—a)+ R 11 (a1 q3—3aK—2 _ ql—a h: _r=3
r—1-2¢)(r—1—20—a)+a c a— ; 3
+<; ;}qz (@)™ F g% -1 [ c ]
. Kr7172ZF(r7172c7a))
2= r—3
( Z 2c+1 +(r 2—2¢)(r—1—2¢— a)+a (qg)CHE(“) [h —T:|
e — c

. Kr—l—QZF(r—2—2c—a))
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r—1
2 T

[
(¢}

4c+2—2rK—2 -1
q2—2rK—2 —1

q(26;1)+(7“—20)(r—2€—1—a)+a2 (qg)cEVv(a) . <qr—4c—2a[2£ +1— 7’} q

c=0 a=0

q4c+2—2rK—2 -1
2TK-2_1
—2a 57 —2 dc .oor—1

¢ K L g2 q 1 ) h; ===

q272rK72 -1 q272'rK72 -1 c

. KT—I—QZF(T—2c—a)

4 q—20+r—1—2£—a[r — % — a]

+ q1+2€—4c—a[a]

+ q72c+172€[2c}

CLY 199 4 1)800s 1, = RHS(4.14).

This completes the proof of Theorem 4.2.
4.4. A new form of the formula for A(Bén))
Let us reformulate the formulae in Theorem 4.2 in another form.

Proposition 4.5. For n even, we have

A(BgY)
n Lfl r—2c . r—2

_ Z B%n—r) ® (Z Z (_1)cq307(r72c)(r7n)+a(r72cfa) (qQ)CF(a) h7 1-— Cc+ LTJ Kr—nE(T72cfa)> )
= c=0 a=0

Forn odd, we have

A(BJY)
L I r—2¢ h 1
_ZB(n M@ (Z Z( 1)eqe=(r=20)(r=m)ta(r—2¢=a) (g ye po(a) —c+L L Kr—nE(r—zc—a))_
r=0 c=0 a=0

Proof. Let us derive the first formula only from Theorem 4.2, and skip the entirely
similar proof of the second one.

First, we assume ¢ = ¢~ '. Recall the anti-involution y such that X(Bén)) = Bén) from
Lemma 4.1. By checking on generators via the comultiplication formula (2.1), we see
that (x ® x) o A o x = A. Therefore, (xy ® X)A(Bén)) = A(Bén)). We compute

(x ® x)(RHS(4.5))

L;J r—2c

_ZB(n 7‘)®X(Z Z g\ +(r 2¢)(r—m)—a(r—2c— a)E(a) |:h \&7;2J:|

c=0 a=0
. Kran(r72cfa))

LéJ r—2c

_ZB(” ) ® (Z Z q (226)—(r—2c)(r—n—a)—a2F(T—Qc—a)(_1)cq2c(c+1)

c=0 a=0
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. |:ha 1+ \_%J - C:| Kranvv(a))

&
n [5] r—2¢ r—92
:ZBén_r) ®( Z c 3c (r—2c)(r—n—a)—a F(T 2c—a) |:h71+ |_CQ J_C:|
r=0 c=0 a=0
K" nE(a))
[5] r—2¢ —
_ZB(" r) ® (Z Z c 3c—(7’—2c)(7'—n—a)—a2F(a) |:h7 1+ I_C22J - C:|
c=0 a=0

. Kranvl('r‘chfa)) )

This proves the first formula for ¢ = ¢~ 1, i.e.,

B(") Z B('ﬂ 7")®

L%J r—2c —
(Z Z (_1)uq3(;—('r'—2(;)(7’—1L)+a(1'—2c—a)F(a) h«, 1-— C:‘ I_TQJ K'r'—n(q—lEK—l)(T—Qc—u,)) .

c=0 a=0
(4.17)

We shall reduce the first formula for general parameter ¢ to the identity (4.17). We
continue to denote by B = F 4+ ¢ 'EK~! and Bé") the corresponding idivided powers
with special parameter ¢~'. Below we shall denote by ‘B = F + ¢EK ! and ’Bén) the
corresponding :divided powers with general parameter .

Below we work with U over an extension field of Q(g). Consider the rescaling auto-

morphism of Hopf algebra

[NIE

®,:U—-UU, F 27 'F, Evw 2E, K~ K, where z:= (¢s)2.
Note that

. (F)=2z"'F, ®&.(¢'EK ") =2"'F,
) ) (4.18)
9.(B)=2"""B, ®.(BjY)=z"'BJ", vn.

Indeed, the second identity follows by ®.(¢ 'EK™1) = 2¢ 'EK~! = :7}(cEK™!) =
2~'E, and the remaining identities can be proved similarly.

Note that (¢, ® ®,) o A = Ao ®,. Now applying ¢, ® &, to both sides of (4.17)
and using (4.18), we have obtained the first formula for general parameter ¢ in the

proposition. 0O
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5. Comultiplication formulae for Bé")

In this section we present the counterparts of Theorem 4.2 and Proposition 4.5 for
the remaining family of ¢-divided powers Bén). We shall skip the entirely similar proofs.

Theorem 5.1. For n even, we have

5] r—2¢

B™) ZB(n r)®(zi

2p+1 r—26) (r—n e c r—1
q +(r—2¢)(r—n)—a(r—2 a)(qg) E(a)[ L 2 J]
c=0 a=0

. Kran(T72cfa)).
For n odd, we have
[5] r—2¢

n 2 r—2
_ Z Bén r) (Z Z ¢\ (r—2¢)(r—m)—a(r—2c—a) <(J§) E(a) |:h —LCQJ:|
r=0

c=0 a=0

. Kran(r72cfa)> )
Example 5.2.

ABY=BP 9 K2+ Bo (¢ ' EK + ¢ 'K\ F) + 10 (E® + ¢ 'EF
+ F® 4 ¢*(45)[h; 0]).
ABPY =BY @ K=+ B® © (¢ 2EK % + ¢ 2K 2F)

+B® (q*QE@)K*l Fq3EKTIF 4 ¢ 2K~ F® 4 g(gs)[h; 0K~
+1® (E(g) + ¢ 2EPF 4+ ¢ 2EF® 4 FO) 4 q(qg)E[h; 0] + q(qs)[h; 0]F> )
Proposition 5.3. For n even, we have

L

[V

n I r—2¢
A(Bin)) Z B(n ) ® ( Z qcf(r72c)(r7n)+a(r72cfa) (qg‘)CF(a)
r=0 c=0 a=0

) |:h, 1—c+ V;lJ:| Kr—nE(r—Qc—a)) ]
C

For n odd, we have

ISR

[5] r—2¢
Z q3c—(r—2c)(r—n)+a(r—2c—a)<q€)cF(a)
c=0 a=0

. |:ha 1—c+ I_%J] KT—nE(T—2c—a)> )

C
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Data availability
No data was used for the research described in the article.
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