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IHALL ALGEBRA OF THE PROJECTIVE LINE AND
q-ONSAGER ALGEBRA

MING LU, SHIQUAN RUAN, AND WEIQIANG WANG

Abstract. The iHall algebra of the projective line is by definition the twisted
semi-derived Ringel-Hall algebra of the category of 1l-periodic complexes of
coherent sheaves on the projective line. This 1Hall algebra is shown to realize
the universal g-Onsager algebra (i.e., iquantum group of split affine A1 type)in
its Drinfeld type presentation. The 1Hall algebra of the Kronecker quiver was
known earlier to realize the same algebra in its Serre type presentation. We
then establish a derived equivalence which induces an isomorphism of these two
1Hall algebras, explaining the isomorphism of the g-Onsager algebra under the
two presentations.
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1. Introduction

1.1. Bridgeland [7] has realized a whole quantum group via the Hall algebra of 2-
periodic complexes, building on the classic construction of Ringel-Hall algebra of a
quiver which realizes half a quantum group [15, 30, 32].

Recently, two of the authors [26,29] have developed 1Hall algebras of iquivers to
realize the (universal) quasi-split iguantum groups of Kac-Moody type. A universal
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Iquantum group admits a Serre type presentation and contains various central gen-
erators, which replace the parameters in an iquantum group arising from quantum
symmetric pairs a la G. Letzter [20,21]. The 1Hall algebras are constructed in the
framework of semi-derived Ringel-Hall algebras of 1-Gorenstein algebras ([29, Ap-
pendix A], [26]), which were generalizations of earlier constructions [7,14,23]. In
particular, Bridgeland’s Hall algebras realization of quantum groups can be refor-
mulated as 1Hall algebras of iquivers of diagonal type.

There has been a current realization of the affine quantum groups formulated by
Drinfeld [4,11,13], which plays a crucial role on (algebraic and geometric) rep-
resentation theory. Hall algebra of the projective line was studied in a visionary
paper by Kapranov [18] and then extended by Baumann-Kassel [3] to realize the
current half of quantum affine sl,. The Hall algebra of a weighted projective line
was developed in [33] to realize half an affine quantum group of ADE type, which
were then upgraded to the whole quantum group via Drinfeld double techniques
[9,12].

According to the iprogram philosophy [1], iquantum groups are viewed as a
vast generalization of quantum groups, and various (algebraic, geometric, categori-
cal) constructions on quantum groups should be generalizable to iquantum groups.
Earlier notable examples of such generalizations include g-Schur duality, (quasi-) R-
matrix, canonical basis, Hall algebras, and quiver varieties.

As a most recent development in the iprogram, a Drinfeld type (or current)
realization of the (universal) iquantum group of split affine ADE type has been
obtained by two of the authors [28]. The (universal) iguantum group of split affine
A, type is also known as the (universal) q-Onsager algebra €'. The current pre-
sentation in the rank one case was motivated by the construction of root vectors in
[2], where one finds more references on the g-Onsager algebra.

1.2. The goal of this paper is to realize the universal g-Onsager algebra in its current
presentation °" §' via the 1Hall algebra of the projective line over a finite fieldk =
Fq, denoted by 'H(P!)e (By 1Hall algebra of the projective line, we mean the twisted
semi-derived Ringel-Hall algebra of the category of 1-periodic complexes of
coherent sheaves on the projective line. Both this category and the category of
modules of an iquiver algebra are weakly 1-Gorenstein exact categories, and so the
general machinery of semi-derived Ringel-Hall algebra in [29, Appendix A] applies.)
We further show that the isomorphism of the universal g-Onsager algebra in two
(Serre vs Drinfeld) presentations is induced from a derived equivalence of the
categories underlying the two (quiver vs P1) |I-|!all algebra realizations.

1.3. In its current presentation [28], the universal q-Onsager algebra °'®' is gen-
erated by By, Hm, forr @Z, m 2 1, and two central elements K;, C, subject to
relations (3.13)—(3.15). The generators H,, can be replaced by another set of
generators ©,, for m > 1, and the relations (3.13)—(3.14) can be replaced by
(3.17)—(3.18).

The following is the first main result of this paper. Let v = V—q.

Theorem A (Theorem 4.2, Proposition 6.3). There exists a Q(v)-algebra homo-
morphism Q : Pr 1§ -=> '"H{P?}) which sends, for all r@Z and m2 1,

|V=V

1
Ki>[Kol, € >[Ksl, Bar>- —710), ©n>On, Hn > M.
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The imaginary root vectors O, (and ®,,) are realized via B, in terms of torsion
sheaves on Plf; see (4.1) and (6.9), while the real root vectors B, are realized via
torsion-free sheaves O(r).

To show that Q : D'l§?'|v:V - 'Hi(Pf() is @ homomorphism, we must verify three
main relations for the g-Onsager algebra, (3.15), (3.17), and (3.18).

The counterpartin 'I-ﬁ(P}() of the relation (3.17) asserts the commutativity among
B.,, where ®,, are defined in terms of torsion sheaves. It is well known that the
category of torsion sheaves supported on a fixed closed point x @ P* is equivalent to
the category of finite-dimensional nilpotent representations of the Jordan quiver (i.e.,
the quiver with one vertex and one loop). As we show the 1Hall algebra of the
Jordan quiver is commutative, the commutativity of ®,, follows.

Recall the Hall algebra of the Jordan quiver is historically the original example of
Hall’s construction; it is isomorphic to the ring of symmetric functions and leads to a
basis given by Hall-Littlewood functions. The i1Hall algebra of the Jordan quiver
admits rich combinatorial properties as well, which will be studied in depth in a
separate publication [24].

Various well-known constructions in the Hall algebra of the Jordan quiver are
essentially used in computations of the counterpart of @, in the Hall algebra of P2 ip
[34, Example 4.12]. (This did not appear in [3].) As we do not have the results on
IHall algebra of the Jordan quiver available to us, our verification of the relation
(3.18) takes a more direct approach which requires some serious computations. In
addition, the relations (3.18) and (3.15) contain terms involving Ks which do not
arise in the computations [3,18,34] of similar identities in Hall algebra of the
projective line; some new homological computations are needed to determine these
Ks terms.

Finally, we obtain an 1Hall algebra realization HR of the generators H in U';&cf.
Proposition 6.3. In contrast to its counterpart in [3] (also cf. [34]), the H P has a
subtle summand involving Ks. While we have a self-contained long proof for the
formula of W,,, a similar proof is still needed to produce a similar result for iHall
algebra of the Jordan quiver [24]. On the other hand, appealing to this result loc.
cit. allows us to shorten the proof for Hb,, considerably, which is the approach we
follow here.

1.4. Beilinson [5] constructed a tilting object which induces a derived equivalence
Db(coh(Pl})) > D°(rep(Qxr)), where rep,(Qx;) is the category of finite-dimensional
representations of the Kronecker quiver Qgr; see (5.4). We establish a similar
derived equivalence in the setting of 1-periodic complexes (which is again induced
by a tilting object), cf. Proposition 5.9.

As a special case of the main result in [26], there is a realization of the uni-
versal g-Onsager algebra U2 (in its Serre type presentation) via the iHall algebra of
the Kronecker quiver 'H(k&y,), that is, we have an injective homomorphism ¢ :
e, s > 'H(k&y,). The aforementioned derived equivalence induces an iso-

morphism of 1Hall algebras 'l¢(kQy,) 'I-E(Plk), providing a categorification of the
algebra isomorphism @' B Pri@' of the g-Onsager algebra in two (Serre and Drinfeld
type) presentations. We summarize our second main result as follows.
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Theorem B (Proposition 5.10, Theorem 5.11). We have the following commutative
diagram
B

@ll\/:\/ 7Drlgllv=v
@ Q
'He(kQyr) 'H(PL) .

In particular, the homomorphism Q is injective.

This is similar to the interpretation by Burban-Schiffmann [8] that the Drinfeld-
Beck isomorphism for quantum affine sl, can be explained via Beilinson’s derived
equivalence when combined with Cramer’s result [10]. A possible relevance of de-
rived equivalence to the two different presentations of quantum affine sl, was re-
marked by Kapranov [18] (also cf. [3]).

1.5. This work opens up further research directions. It will be natural to develop
connections between IHall algebras of weighted projective lines and the iquantum
groups of split affine ADE type in Drinfeld type current presentations, and this
will be carried out in [25]. It will also be interesting to study the 1Hall algebras of
higher genus curves, in particular, of elliptic curves.

1.6. The paper is organized as follows. In Section 2, we review the category of
coherent sheaves on the projective line and define the corresponding 1Hall algebra.
The new Drinfeld type presentation of the universal g-Onsager algebra is summa-
rized in Section 3.

In Section 4, we show that Q : °'®, . - 'B(P}) is a homomorphism in
Theorem A by verifying the three defining relations of °*8' in 'i§(P}). A derived
equivalence leading to the isomorphism of 1Hall algebras is established and then
Theorem B is proved in Section 5. In Section 6, we provide an 1Hall algebra
realization I-le of the generators H,.

2. 1Hall algebra of the projective line

In this section, we review some basic facts on the category coh(Pkl) of coherent
sheaves of the projective line over a finite field k (also cf. [3]). We then apply the
machinery of semi-derived Ringel-Hall algebra [23, 26, 29] to formulate the iHall al-
gebra of coh(Pkl) (and also the 1Hall algebras of the Jordan quiver and the Kronecker
quiver).

2.1. Coherent sheaves on P}. Let k = Fq be a finite field of q elements. For a
(not necessarily acyclic) quiver Q, we denote

. rep,(Q) — category of finite-dimensional representations of Q over k,

. repl?”(Q) — subcategory of rep, (Q) formed by nilpotent representations of Q.
Note that rep,(Q) = rep,?”(Q) if Q is acyclic.

For a quiver with relations (Q, 1), let A = kQ/(l) be its (not necessarily finite-
dimensional) quiver algebra. We define rep,(Q, 1) and repK””(Q, I) similarly. We
also denote rep(A) L rep, (Q, 1) and rep™!(A) def req(”“(Q, I). Note that rep(A) =
rep"!(A) if A is finite-dimensional.

The coordinate ring of the projective line P} over k is the Z-graded ring S =
k[Xo, X1] with deg(Xo) = deg(X1) = 1. A closed point x of P} is given by a prime

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



IHALL ALGEBRA OF THE PROJECTIVE LINE AND g-ONSAGER ALGEBRA 1479

homogeneous ideal of S generated by an irreducible polynomial in S. The degree of
X, denoted by deg(x) or dy, is defined to be the degree of the defining irreducible
polynomial associated to x. We denote

. mod?(S) — category of finitely generated Z-graded S-modules,

. modg(S)— subcategory of mod?(S) of finite-dimensional graded S-modules,

. coh(P}) — category of coherent sheaves on P},

. vec(P}) — category of locally free sheaves on P,

. tor(P}) — category of torsion sheaves on P,

. tory(P,) — category of torsion sheaves on P} supported on a closed point x & P}.

We can associate a coherent sheaf iVl on F;(l to any M B mod?(S). This gives rise
to a category equivalence (which goes back to Serre): modZ(S)_modoz(S) @ coh(Pkl).
The category coh(Pl}) is a finitary hereditary abelian Krull-Schmidt category with
Serre duality of the form

Extl(X,Y)B DHom(Y, T (X)),

where D = Homy(-, k) and t is given by the grading shift with (-2). This im-
plies the existence of almost split sequences for coh(Pkl) with the Auslander-Reiten
translation t.

The pair (tor(P}), vec(P})) forms a split torsion pair in coh(P!), namely, any
coherent sheaf can be decomposed as a direct sum of a torsion sheaf and a vector
bundle, and there are no nonzero homomorphisms from tor(Py) to vec(P?}).

Any indecomposable vector bundle on P} is a line bundle; more precisely [16],
it is of the form O(n) = 8[n], for n @ Z, where S[n] is the n-th shift of the trivial
module S, i.e., S[n]; = S,+;. In particular, if n = 0, then O := O(0) is the structure
sheaf of PE. The homomorphism between two line bundles is given by

(2.2) Hom(O(m), O(n)) & S,_p,

which then has dimension n- m+ 1 if n> m and 0 otherwise.
The category of torsion sheaves splits into a direct sum of blocks

M
tor(P}) = tor,(P}).

x@P 1

The category torx(P;) is equivalent to the category of finite-dimensional modules
over the discrete valuation ring (stalk) O, at x. Hence, it is equivalent to the
category repk”x”(QJ) of finite-dimensional nilpotent representations of the Jordan
quiver Q; over the residue field k, of O,, where k, is a finite field extension of k
with [ky : k] = dy. Any indecomposable object in torx(Pt) is of the form S,{") of
length n > 1, where S = S(Xl) is simple.

The SL") is uniserial in the sense that all the subobjects of S (X") form anincreasing
chain

0 Sx u Siz) u u S)((n—l) u Ss(n),

and all the quotient objects of SE”) form a decreasing chain

S(n) p S)((n_l) p p Si(z) p Sx P 0.

X

Here u : S,((i_l) - S)((i) denotes the irreducible injection map and p : S(Xi) - S&i_l)

denotes the irreducible surjection map, respectively.
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Assume that a closed point x is determined by a homogeneous polynomial
f(X1, X5) of degree d. Then Sf(") is determined by the exact sequence

f(X1,X2)0

0-> O(-nd) —=**=% 0 -> s{" -> 0.
In particular, we have

(2.2)
1 i ,
Hom(O,s/™) B k7, Hom(s(™,s(M) 8 p Ext?(s{"), s{m)) B kmintm.n}

For m < n, the extension in Ext2(S!", s!{™) is of the following form, for some
0<as m:

a n—m+a)t n—m+al_pa)
g(n 0.

(p?,u

(23) Oisim) S)((m—a)s()?+a) (u

We denote by N(Plf) the set of all functions n : Pk1 - N such that ny, = 0 for

only finitely many x @ P,.1 We sometimes write n @ N(P,) as n = (ny)x@p: Oorn=
k

(nx)x. We define a partial order < on N(P?): ‘

(2.4) n < mif and only if n, < m, for all x @ P
For n @ N(P%), we denote the torsion sheaf

M
(25) Sn = Sinx),

xBP

whose degree is given by

X
knk := dyny.

xBP}

For two distinct closed points x, y @ P, the categories tor,(P/) and tor,(P}) are
orthogonal in the sense that there are no nontrivial homomorphisms and extensions

between them, that is, Hom(S'™, S\(/n)) = 0= Ext*(s!™, S(y")), for m,n> 1.
Let T = O@O(1). Then [5] T is a tilting sheaf in coh(Pllj, whose endomorphism
ring is the quiver algebra kQg, of the Kronecker quiver

Qg : 0 —1.
It follows that there is an equivalence between the bounded derived categories

D°(coh(P})) B D°(rep(Qur)).

Denote by B the image in its Grothendieck group Ko (A) of the isoclass of F in

an abelian category A. Then, the isomorphism classes @ and ®(1) form a basis of
Ko(PZ) := Ko(coh(P})). Denote by

(2.6) 5:=0(1)- &,

then {®, 6} is also a basis. We define two Z-linear functions degree and rank on
Ko(P2) such that

deg(®)= 0, deg(6)=1, rk(®)=1, rk(s)= 0.
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Then deg(b(d)) = dand deg(g((”)) = ndy ford@Z and n > 0; and for any coherent
sheaf F, the integer rk(P) coincides with the geometric rank of F. Moreover, the
assignment
Ko(PY) - 22, o > (rk(i), deg(k))
is an isomorphism of Z-modules.
The Euler form on Ko(Pt) is defined and then computed by Riemann-Roch as
follows:

he, Pi = dim¢Hom(E, F) - dimExt*(E, F)

rk(B) rk(P) + rk(P) deg(P) - rk(i) deg(P).

(2.7)

2.2. Hall algebras. Let E be an essentially small exact category in the sense of
Quillen, linear over a finite field k = Fq. Assume that E is Hom-finite and Ext’-
finite. Given objects M, N, L B E, let Ext'(M, N), @ Ext'(M, N) be the subset
parameterizing extensions whose middle term is isomorphic to L. The Hall algebra
(or Ringel-Hall algebra) H(E) is defined to be the Q-vector space with the isoclasses
[M] of objects M of E as a basis and multiplication given by (cf., e.g., [7])

X | Ext'(M, N),|

M= THom(v, N)|
[L]@Iso(E)

[L].

Remark 2.1. Ringel’s version of Hall algebra [32] uses a different multiplication
formula, but these two versions of Hall algebra are isomorphic by rescaling the
generators by the orders of automorphisms.

Given three objects X, Y, Z, the Hall number is defined to be
FZv = |{L@BZ |L BY andZ/L B X}|.
Denote by Aut(X) the automorphism group of X. The Riedtman-Peng formula
reads
| Ext(X, Y )| | Aut(z)|

(2.8) FXy = | Hom(X, Y )| '|Aut(X)||Aut(Y)|'

2.3. Category of 1-periodic complexes. Let A be a hereditary abelian category
which is essentially small with finite-dimensional homomorphism and extension
spaces.

A 1l-periodic complex X* in A is a pair (X, d) with X B A and a differential
d: X - X. A morphism (X,d) = (Y,e) is given by a morphism f : X =Y in
A satisfying f - d = eo f. Let C1(A) be the category of all 1-periodic complexes
in A. Then C1(A) is an abelian category. A 1-periodic complex X* = (X, d) is
called acyclic if Kerd = Imd. We denote by C1,ac(A) the full subcategory of C1(A)
consisting of acyclic complexes. Denote by H(X *) @ A the cohomology group of
X*®, i.e., H(X®) = Kerd/Imd, where d is the differential of X *.

The category C1(A) is Frobenius with respect to the degreewise split exact struc-
ture. The 1-periodic homotopy category Ki(A) is obtained as the stabilization of
C1(A), and the 1-periodic derived category D4 (A) is the localization of the homo-
topy category K1 (A) with respect to quasi-isomorphisms. Both K;(A) and D1 (A)
are triangulated categories.

Let C°(A) be the category of bounded complexes over A and DP(A) be the
corresponding derived category with the shift functor 2. Then there is a covering

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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functor i : CP(A) - C4(A), inducing a covering functor m : D°(A) - Dy (A)
which is dense (see, e.g., [35, Lemma 5.1]). The orbit category D°(A)/Z is a
triangulated category [19], and we have

(2.9) D.(A)' D°(A)/s.
For any X B A, denote the stalk complex by
Cx = (X,0)
(or just by X when there is no confusion), and denote by K x the following acyclic
complex: U .. q
Ky :=(X@X,d), where d = 0 0o
Lemma 2.2 (Also cf. [22]). For any acyclic complex K* and p 2 2, we have
(2.10) Ext"c’l(A)(K‘,—)= 0= Ext‘(’:l(A)(—,K').

Proof. It is enough to prove Extcpl(A)(K', Cx) = 0= Exté’l(A)(Cx, K*) for any
X B A, by noting that C;(A) coincides with the extension closure of Cx (X B A).
Denote by C,,(A) the category of m-periodic complexes over A for any m > 1.
By the same proof of [23, Proposition 2.3], one can obtain that the analogous result
holds for m-periodic acyclic complexes (m > 2).
Fix m below such that chark - m. There is a covering functor

Mg : Cm(A) - C1(A)
which admits a left (and also right) adjoint functor n? : C1(A) == Cm(A) preserving
acyclic complexes. One can prove that (2.10) holds for any acyclic complex K °
Im(mg). Since chark - m, the adjunction K* - mgn?(K*) induces that K* is a
direct summand of mgm?(K*). So (2.10) holds for any acyclic complex K *. oS

Lemma 2.3. For any X°,Y ° @ Cy(A), we have H(X®) = H(Y °) if and only if
there exist two short exact sequences

0->U;->Z7Z°->X"->0, 0->U;-—>Z7Z">Y" >0
with U7, Uy @ Cq ac(A).
Proof. We only need to prove the “only if” part. If H(X*) Y H(Y °), then X* = ¥&°

in Dy(A) by (2.9). The desired exact sequences follow from the definition of
Di(A). ot

Let B be an abelian category. For any B B, its Ext-projective dimension
proj.dim B is defined to be the smallest number i B N such that Exté*l(B, -) = 0;
dually one can define its Ext-injective dimension inj. dim B.

Corollary 2.4. For any K* B C;(A) the following are equivalent: (i) proj.dimK®<
oo; (ii) inj.dimK® < oo; (iii) proj.dimK® < 1; (iv) inj.dimK*® < 1; (v) K* is
acyclic.

Proof. The proof is the same as that of [26, Corollary 2.12], now with the help of
Lemma 2.2 and Lemma 2.3. o]

Remark 2.5. For any hereditary abelian category A, it follows from Corollary 2.4
that C1(A) is a weakly 1-Gorenstein exact category. Therefore the general machin-
ery of semi-derived Ringel-Hall algebras in [29, Appendix A] will be applicable to
C1(A).
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2.4. 1Hall algebras. We continue to work with a hereditary abelian category A as
in Section Z.E. Let H(C1(A)) be the Ringel-Hall algebra of C1(A) over Q(v), i.e.,

H(C1(A)) = X*181so(c,(A)) Q(v)[X*°], with multiplication defined by
N X | Ext' (M*,N°)i | .
[L*1BlIso(C1(A)) ’

Following [22, 23,26, 29], we consider the ideal | of H(C1(A)) generated by
(2.11)
{[K:'1= (K51 1Ky, K5 B Caac(A) with It dy - = Ithdy -}
{[L°]- [K*BM"] |@ exact sequence 0 > K* > L* > M* = 0 with K* acyclic}.
We denote
S :={al[K*]BH(C1(A))/I |]aBQ(v)™, K* acyclic},

a multiplicatively closed subset of H(C1(A))/I with the identity [0].
With the help of Corollary 2.4 and Remark 2.5, we have the following.

Lemma 2.6 ([29, Proposition A.5]). The multiplicatively closed subset S is a right
Ore, right reversible subset of H(C1(A))/l. Equivalently, there exists the right

localization of H(C;(A))/I with respect to S, denoted by (H(C1(A))/1)[S™1].

The algebra (H(C1(A))/1)[S™] is the semi-derived Ringel-Hall algebra of C;(A)
in the sense of [23,29] (also cf. [14]), and will be denoted by SDH(C1(A)).

For any o B Ko (A), there exist X, Y @ A such that o = X - Y. Define[K,]
:= [Kx] ! [Ky ]71. This is well-defined, see, e.g., [23, §3.2]. Denote by T (A) the
subalgebra of SDH(C4(A)) generated by all acyclic complexes [K*].

Lemma 2.7 is well known.

Lemma 2.7. For X,Y @A, we have
Extg,(a)(Cx, Cy )B Exth(X, Y )BHoma(X,Y).
For any K* @ Cy,,(A) and M* B C;(A), by Corollary 2.4, define
hK*, M *i = dimHomc,(a)(K*, M*) = dimy Ext¢ (K", M*),
hM*,Ki = dimiHome,(a)(M ", K") - dimgExte, x) (M ", K").

These formulas give rise to well-defined bilinear forms (called Euler forms), again
denoted by h-, ‘i, on the Grothendieck groups Ko(C1,ac(A)) and Ko(C1(A)).

Denote by h-, iy the Euler form of A. Let res : C;(A) = A be the restriction
functor. Then we have the following.

Lemma 2.8. We have
(1) hKyx, M*®i = hX,res(M*®)in, hM?*,Kyi = hres(M?*), Xin, for X A,
M* @ C1(A);
(2) hM*,N®i= Zhres(M*), res(N*)ia, for M*,N* B C1,ac(A).

Proof. The proof is the same as for [23, Proposition 2.4] and [29, Lemma 4.3], hence
omitted here. Jof

Define
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Definition 2.9. The 1Hall algebra of a hereditary abelian category A, denoted by
"H(A), is defined to be the twisted semi-derived Ringel-Hall algebra of C;(A), thatis,

the Q(v)-algebra on the same vector space as SDH(C1(A)) = (H(C1(A))/1)[S™ 1]
equipped with the following modified multiplication (twisted via the restriction
functor res : C1(A) > A)

(2.12) M@ [N"] = yhres(MTresNTiappv ]t N,
For any complex M*® and acyclic complex K*, we have
[K*IB[M®]= [K°BM ]= [M°]B[K"].
It follows that [Ky] (a B Kg(A)) are central in the algebra 'H§A).
The quantum torus F(A) is defined to be the subalgebra of ' H(A) generated by
[Kg], fora @B Kg(A).
Proposition 2.10 (cf. [26,29]). The following hold in '"H{A):

(1) The quantum torus B(A) is a central subalgebra of 'H{A).

(2) The algebra B(A) is isomorphic to the group algebra of the abelian group
Ko (A).

(3) "H¥(A) has an (1Hall) basis given by

{IM]B[Ka] [[M]BIso(A), a B Ko (A)}.

Proof. Part (1) has been proved above. The proof of (3) is the same as [26, Theo-
rem 3.6], and hence omitted here. Part (2) follows from (3). Jof

Forany f : X =Y in A, we denote by

’ p-0 f
Cs := Y RX, 0 0 B C1(A).

Lemma 2.11. For any M* = (M, d), we have [M*] = [H(M *)]B[K/m 4] in "H{A).
In particular, for any f : X = Y, we have

[C¢]= [Kerf BCokerf]B[Kmsl.

Proof. By (2.11), if M* is acyclic, then we have [M*®] = [K|mg4] = [Kﬁin d]. For
general M*, note that M* B H(M*) in D;(A). By Lemma 2.3, we have the
following two exact sequences

0->U;->Z°->H(M")->0, 0->U;-—>Z°->M"->0
with U7, Us B Cq,ac(A). Similar to [23, Lemma 3.12], we have

IMdy: = Indz. = Indy; + Ifhd.

Then
M*]=[z°]B[U; ] = [H(M*")]B[U;]B (U]
=IH(M )] B [Kima,, 1B [Kima,, 17"
=[H(M*®) BK m -
The lemma is proved. oS

In the remainder of this paper we will study the iHall algebras of the hereditary
abelian categories A in Example 2.12, which are intimately related to each other.
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Example 2.12.
(1) A = coh(P}).
(2) Let Q be a quiver. Recall the iquiver algebra A' associated to a split iquiver
(Q, Id) from [26,29] is given by A' = kQ B k[e]/(e?). Take A = rep™'(Q).
The category Cl(repk"”(Q)) can be naturally identified with the category
rep™!(A'). We shall specialize the quiver to the Jordan quiver Q, in §4.3
and then the Kronecker quiver Qg, in Section 5.

The 1Hall algebras for the iquiver algebras in Example 2.12(2) were studied
in depth in [26,29]. To study the 1Hall algebra for coh(P}(), we shall need the
preparatory results in §2.3-§2.4.

3. The g-Onsager algebra and its current presentation

In this section, we review the (universal) g-Onsager algebra and its Drinfeld type
presentation from [26].

3.1. The g-Onsager algebra. For nBZ, r @ N, denote by
vh -y " n° _Inlln-1]...[n-r+ 1]
e [T
For A, B in a Q(v)-algebra, we shall denote [A, B],. = AB - v®BA, and [A, B] =
AB - BA.

Recall [26,29] (compare [2]) that the (universal) g-Onsager algebra 8' is a Q(v)-

algebra with unity generated by Bg, B4, Kgl, Kil, subject to the following (Serre
type) relations:

[n] =

(3.1) KikK7t =1, K; are central, i=01;
X3 '3;

(3.2) (-1)" ; B2 "B;B = -v '[2]?(B;B; - B;B;)K;, ifi=].
r=0

(In [29], R, are used in place of K;, and they are related by K; = -v2?R;, for
i=0,1. The K; are directly related to 1Hall algebra.) The g-Onsager algebra U €is
the 1quantum group of split affine A; type, a special case of iquantum groups in

[26, 28].
Let Zag B Za; be the root lattice of affine sl,. Let 6 := ag+ a;. For any
B = apap+ aiay, define Kg = KG°K{*. In particular, we have

K5 = KoKl.

(Ks will often be denoted by C later on.)
Let t be the involution of the Q(v)-algebra &' such that

(33) t: BO HBl, Ko @Kl-

We have the following two automorphisms Ty, T, [28], which admit an interpreta-
tion in 1Hall algebras (see [27] and its forthcoming sequel):

(3.4) T1(K1) = K35, T1(Ko) = KsKq,

(3.5) T1(B1) = K'By,

(3.6) T1(Bo) = [2]'1!BOB% - v[2]B1BoB; + szfBoc+ BoK1,
(3.7) T, (Bo) = [2]‘1'B'§BO - v[2]B1BgB1 + V2BoBJ + BoKj.
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The action of T is obtained from the above formulas by switching indices 0, 1, that
is,

(38) To = to Tl ot,
For any r, m B Z, modifying [2] as in [28], we define
(3.9)
Bi,r= (TT1)"(B1),
(3.10) i i P, .
B Bim-1Bo+ VZBoBim-1+ (v2- 1) p=0 B1,pB1,m-p-2Ko, ifm>0,
Om = @ %r ifm=0,
0, if m< 0.

Note that B1,0 = B1 by definition.
For any m @ Z, we define @, recursively such that (see [28])
, ,
AV 2KsOm-2 + Om - KsOp-2, if m> 0,
ifm= 0,
if m< 0.

(311) Om =

5 V-V T’
0,

Note that ©; = ©4, and ©, = O, - v 1Ks. As emphasized loc. cit., the definition of
O, is motivated by the study of IHall algebra of coherent sheaves of Pt in this
paper.

3.2. A Drinfeld type presentation of §'.

Definition 3.1 ([28]). Let °"©' be the Q(v)-algebra generated by K;*, C**, Hp,
and By, wherem2 1, r @Z, subject to the following relations, forr,s@Z andm, n
> 1.

(3.12) KiK' =1,cCt =1, Ky, C are central,

(3.13) [Hm, Hal = 0,
[2m] [2m]

(3-14) [Hm, Bl,r] = — B1,r+m - — Bl,r—mCm:
m m

(3.15)

V20, 4+1C"Ky - v 1O, 1CTTIKy

+ Vv 20,.41C°Ky - v?O,_ 1 C* K.

-2
[Bl,r' Bl,s+1]v-2 -V [Bl,r+1: Bl,s]vZ

Here 3

X X
(3.16) 1+ (v-vhHenz"=-exp (v-v')  Hpz™.

m21 m21

The relations (3.13)—(3.14) in the presentation °" @' can be replaced by (3.17)-
(3.18) below.

Lemma 3.2 ([28]).
(1) The relation (3.13) (for m,n > 1) is equivalent to

(3.17) [Om, Onl= 0 (m,nz 1).
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(2) The relation (3.14) (for r @Z, m > 1) is equivalent to
(3~18) [em; B1,r] + [em—Zr B1,r]C

= Vz[em—ll Bl,r+1]v*4 + V_Z[Om—ll Bl,r—l]v4c (r BZ mz2 1)-

Theorem 3.3 ([28]). Let &' be the g-Onsager algebra. Then there is an isomor-
phism of Q(v)-algebras °'@' > &' such that

Bl,r - B]_,r, Om éem, K1 - Ky, C > K5 (rZ,m > 1)

4. 1Hall algebra and g-Onsager algebra

In this section, we establish a homomorphism from the g-Onsager algebra in its
Drinfeld type presentation to the iHall algebra of the projective line.

4.1. The homomorphism Q. We shall use a shorthand notation 'H?(Pﬁ) to denote
the iHall algebra 'H?coh(Plk)), cf. Definition 2.9. Recalling S, Btor(P!) from (2.5), we
introduce the following elements in 'H(P¥®): K
1 X
(41) ém = W [Sn]: for m> 1.
knk=m

We also set

1
©0= — 1 ém= 0, @m< 0.
V-V

Here is another description of @m.
Lemma 4.1. For s@Z and m 2> 1, we have
1 X
(42) Qm = 3 wm-1 [COkerf].
(- 1)% 0=f:0(s)>0(m+s)
Proof. Without loss of generality, we shall only prove the case for s = 0. Any
nonzero morphism f : O = O(m) is given by a homogeneous polynom&al in S,

which can be decomposed as a product of irreducible polynomials f = o,
xPlk

for some m N(Pll) with kmk = m, where f, denotes the irreducible polynomial in
S corresponding to the closed point x. Hence Cokerf Sm. Moreover, for any
morphism g : O = O(m), we have Coker f B Cokerg if and only if g = pf for some
nonzero W B k. Therefore,

X
[Cokerf] = (qg- 1) [Sm].
0=f:0->0(m) kmk=m

This proves the lemma. H
The goal of this section is to prove Theorem 4.2.

Theorem 4.2. There exists a Q(v)-algebra homomorphism

(4.3) q. 8-> Py

which sends, for all r @Z and m > 1,

=v

1
q-1

Ki = [Kol, C =>I[Ksl, Bir—=>- [O(r)], Om = On.
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We shall verify that Relations (3.15), (3.17) and (3.18) are preserved by Q,
thanks to Lemma 3.2. (Later in Theorem 5.11, we shall strengthen Theorem 4.2 by
showing that Q is injective.)

4.2. Relation (3.15). The relation (3.15) in 'H?(Pﬁ) is formulated as identities
(4.8)—(4.10) among O(r) in Proposition 4.4 below. To that end, we shall first
compute the product among O(r) for various r.

Lemma 4.3. For r @Z and m & N, the following identities hold in 'HFPl)(:

(4.4) [O(N]1B[O(r)] = v O(r)BO(r)]+ v *(q - 1)[Ko(r],
(4.5) [O(N)]B[O(r+ m+ 1)] = v (M2 [O(r)BO(r+ m+ 1)]
(- 1)?
+ 7©m+1 [KO(r)]:

v2
(4.6) [O(r+ m+ 1)]E[O(r)] = v ™[O(r) BO(r + m+ 1)]
+ (vi-1)v** "M [O(r + a)BO(r+ m+ 1- a)] 1sasbmtlc;a=mel

m+ 1
+6m,oddz(vz - 1Z)Vm_2ho(r +

)BO(r + r%)i.

Proof. Note that any nonzero morphism f : O(r) = O(s), for r < s, is injective.
The identity (4.4) follows since Ext(O(r), O(r)) = 0 and dim Hom(O(r), O(r))
= 1.
Note that Ext1(O(r), O(r+ m+ 1)) = 0, and dim¢Hom(O(r), O(r + m+ 1)) =
m+ 2. From (2.1) we have the following formula for the Euler form:

(4.7) hO(r),O(s)i= s-r+ 1, forr,s@Z.

Now the identity (4.5) is obtained by the following computation using (2.12) and

(4.7):

[O(n)]Ba[O(r+ m+ 1)]

— VhO(r),O(r+m+1)i[O(r)] : [O(r+ m+ 1)]

= v™2[0(r)] ! [O(r + m+ 1)]

X

= v (M2[O(r)BO(r+ m+ 1))+ v (m*2) [Ct]
O:f:O(r))?O(r+m+1)

= v (M2 [0(r)BO(r+ m+ 1)]+ v-(m*2) [Coker f]1@[Ko(r)]
0=f:0(r)>0(r+m+1)

= v ™20 (r)BO(r+ m+ 1)+ v (g = 1)*One1 B[Ko(n],

where the last equality uses (4.2).

The computation for (4.6) can be performed in the setting of coh(P}(), thanks

to Lemma 2.7 and Hom(O(r + m+ 1), O(r)) = 0. Note the following formula, for

m< nand 1< a< b”‘zmc (cf. [3]):

R - Y
B} _ (v
EXE}(/Q"“(Q),'O(WH+ a= n- a, 0(m+a)B0(n-a) (vZ - 1)v*4,  ifm

+a= n- a.
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Hence (4.6) follows since

[O(r+ m+ 1)]B[O(r)]
= v "[O(r+ m+ 1)] | [O(r)]
v "[O(r)BO(r+ m+ 1)]
X

+ oy (v* - 1)v* 4O(r+ a)BO(r+ m+ 1- a)]

m+1

lsasb%c;a=

S

m+ 1 m+1i

)BO(r+ o)

+ 8mogd(VvZ - 1)v™ 2 O(r +

The lemma is proved. o4

Proposition 4.4. For r @Z and m > 2, we have

(4.8)
[O(r),O(r+ m+ 1)]y-2 = v 2[O(r + 1), O(r + m)l\2
= v2(q- 1)2Bm1 BlKo(] - V(g - 1)?Bm-1 B[Ko(rs1)],
(4.9)
[O(r),O(r + 2)]y-2 = v 2[O(r + 1),O(r + 1)]y2
= v 2(q- 120,8[Ko(r)] - v 3(q - 1)%[Ko(re1)l,
(4.10)
[O(r),O(r + 1)]y-2 = v'2(q - 1)2G1 B[Ko()].

Proof. Let us prove (4.8). By (4.5)—(4.6), we have

[O(r + 1)]B[O(r + m)] =v""[O(r + 1)BO(r + m)] + (%m[Ko(r+l,].

On the other hand, we have

O(r+ mBO(r+ 1)= v -™2[O(r+ 1)BO(r + m)]
X
+ (v = 1)v*2"M[O(r+ 1+ a)BO(r+ m- a)]

m-1
2

lsasbmz’lc;a=

1)O(r+ 1+ r%]_

+ Bmodd(vVi— LV A[O(r+ 1+
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Using the above formulas and (4.5)—(4.6) again, we prove (4.8) by a direct compu-
tation:

[O(r),O(r+ m+ 1)]y-2 = v 2[O(r + 1), O(r + m)l\2
_ 2
=v (M2 [O(r)BO(r+ m+ 1)] + (%mﬂlko(r)]
v
- v " ?[O(r) BO(r+ m+ 1)]
X

- (v¥ = 1)v* " MO(r+ a)BO(r+ m+ 1- a)]
l1<ash ™rlc;a= 1t

m+ 1

= 8m,odalv’ = V" HO(r + )BO(r + n%]
_ V‘(m+2)[o(r+ 1)BO(r + m)]

(q_ 1)29 -m+2
— b0 [Ko(re1)] + Vv [O(r+ 1)BO(r+ m)]

+ (v¥ - 1)v*2""[O(r+ 1+ a)BO(r+ m- a)]

m
+ 8modd(VZ - 1)V AO(r+ 1+

JEO(r+ 1+ r%]

=v72(q - 1)*®me1 B[Ko(r)] = v H(q - 1)2® -1 BlKo(re1)]-

The proofs of the identities (4.9) and (4.10) are entirely similar by use of (4.5)—
(4.6), and will be skipped. Jof

4.3. Relation (3.17) and Jordan 1quiver. The relation (3.17) in 'I-F(Plk) is for-
mulated as the commutativity among ®.,, in Proposition 4.6 below. As B is
defined via torsion sheaves on PI} in (4.1), we shall approach the commutativity by
establishing the commutativity of the 1Hall algebra of the Jordan quiver, which is
isomorphic to the 1Hall algebra of torx(Pt), for any closed point x & P2,

Let Q, be the Jordan quiver, i.e., the quiver with a single vertex 1 and a single
loop a : 1 > 1. Let A] be the iquiver algebra of the iquiver Q, equipped with
trivial involution [26,29], and we can identify

Ay = kQ,/(ae - ea, €?),
where Q; denotes the following quiver
(4.11) =. oD f) c
QJ . <_ﬁ/ 1i\_ .
2

Then A} is a commutative k-algebra. Clearly, rep””(/\;) Cl(reg{‘”(QJ)), and we
shall identify these two categories below. We can view reg(””(QJ) naturally as a full
subcategory of rep””(Aj).

Let '#(kQy) := SDH{rep""'(A})) be the semi-derived Ringel-Hall algebra of
A}, following [26,29] (also see Section 2). Note that hX,Yi = 0 for any X, Y
rep™(Qy). So

[XT1E[Y 1= [X"]LIY"], BX",Y " @rep™(A).

We shall study the combinatorial implication of 'H{kQ,) in depth in [24], and here
we only need the following commutativity property.

Lemma 4.5. The algebra '"H(kQ;) is commutative.
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Proof. The standard duality functor D = Homy(-, k) : rep™'(A}) > rep™'(A))
is a contravariant exact functor. It is well known that D(X) B X for any X
rep;"(QJ). Let L, M, X rep';"(QJ) and N rep""(A'). We have

i ¢
(4.12) Exth, (L, M)y ZExt’,, D(M), D(L) D(N) Clext (M, L)p(n)-

Let S be the simple kQ;-module. By Proposition 2.10, 'H{kQ,) has a Hall basis
{[X]B[Ks]? |X Brepl'(Q),aBZ}.

Claim (?). We have [D(N)] = [XBK"2] if and only if [N] = [XBK"?]in 'H(k&Q,).

Let us prove Claim (?). By symmetry it suffices to prove the “if” part. By

Lemma 2.11 and Proposition 2.10, we have H*(N) H®(X) = X, and then it
follows from Lemma 2.3 and Corollary 2.4 that there exist the following exact

sequences in rep““(/\J')
0>U;>Z >N >0, 0>U,>Z >X =0

with Up, U, acyclic. In particular, N B X in D;(rep”'(Q,)). Hence, we have
D(N) & D(X)E X inDy(rep™(Qy)) since D preserves acyclic complexes. Whence
it follows from Lemma 2.11 that [D(N)] = [X Ka] in '(kQ;) by comparing
dimensions. Claim (?) follows.

Let a@ N, X rep"k“(QJ). It follows by (4.12) and Claim (?) that there is a
natural bijection

G . G
Exth, (L, M)y &5 Exth, (M, L)y
[N]=[XBK"3]@ H(RQ,) IN]=[XBK"? 1@ H (k)

. ‘ ¢
It is understood that [N] runs over Iso ! rep”"(Aj) in the bijection above.
By Homy, (L, M) g Homy, (M, L), we have
X | Extkj.(L, M)y |
| Homy (L, M) |

(L1B[M]
[N]@BIso(repnil(A,)))

X | Exth (L, M)y |
= m[xl B[Ks]®

alN,[X]
[N]=[XBK"3]E H(RQ))

X | Exth (M, | a
?|
= [Hom, (v, O X1 B1Ks]
alN,[X] ]

[N]=[xBK®I]E H(RQ,))
=[M]&[L].

i ) ¢
It is understood that [X] (and respectively, [N]) runs over Iso repl?"(QJ) (and
respectively, IsoI rep””(/\J') ) in the above summations. The lemma is proved. X

Note however that the (twisted) Hall algebra I-E(Cl(repL‘”(QJ))) is not commu-
tative.
Recall there exists an equwalence of categories torx( k) repl?"(cQJ for each
X [ P1 inducing an embedding He Cl(rep”"(QJ)) - He Cl(coh(P )) and then an
embeddlng
< H(kcQy) - 'H(PY) .
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Denote by'H?(tor(Pﬁ)) the twisted semi-derived Ringel-Hall algebra of Cl(tor(P}()).
Then 'H{tor(P})) is naturally a subalgebra of 'H{P%). Note that Ext'(X,Y )= 0=
Hom(X,Y) for any X @ tor,(P%),Y B tor,(P%) with x = y @ P, Together with
Lemma 4.5, this implies the commutativity among ®,, below (which is Relation
(3.17) in 'Ha(Plk)).

Proposition 4.6. The algebra 'I-?(tor(Pﬁ)) is commutative. In particular, we have

[ém, @n] =0, Bm,n > 1.

4.4. Relation (3.18). Recall g = v2. We reformulate the relation (3.18) in 'I-ﬂPlk)
(with ©,, replaced by ©,,, Bi,r by —qfll [O(r)], and v by v) in Proposition 4.7.
Proposition 4.7. For any m2 1 and r @Z, we have

£ o £ X
(4.13) On, [O(N] + On5, [0(r)] B[Ks]

£ H f H
=v2 8, 1, [O(r+ 1], + v 2 8, 1, [0~ 1)1, BIKs].
The long proof of Proposition 4.7 will occupy the remainder of this subsection.

We shall compute the products 8, [O(r)] and [O(r)] B O,,.

4.4.1. The product ®,, B [O(r)]. Denote by W(d) the number of irreducible polyno-
mials in one variable of degree d over F,. It is a basic fact in Galois theory of finite
fields that

X X
(4.14) dW(d) = q", or equivalently, dy=q"+ 1, fornx> 1.

d|n kal:dxln
We first prepare some combinatorial formulas, which will be used in the computa-
tion of ®,, B[O(r)] in Proposition 4.11. For a closed point x Pl denote

O := 0%, vei= v
Lemma 4.8. For any)z)ositive integer a, we have
Y anx_ qn,<—1¢= q2a_ an—Z
X X *
knk=anx>1
Proof. For a variable t, we note
X 2t- t 1-t
(4.15) 1+ (g2 - q¥* 9)t° = 1+ a =

1- g2t 1- g2t

az1

On the other hand, we have

X Y ‘
(4.16) 1+ (g - g7t t°
a1 3 X,ny:knk=any=1
X
= 1+ (1= g t)gr e
xBEP1 ny21
k 1
Y “1 (1- g7 aut®
B * 1- qxtd"

xPlk

v 1- gtdx  1- gt

k

Y o1- % 1-t YH

— qdtd
xBP1 d=1 1- 9%
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Thanks to (4.15)—(4.16), the lemma follows from (and is indeed equivalent to)
Lemma 4.9 below. H

Lemma 4.9. The following identity holds:

v H @ v

1-qt
4.17 — = —
(4.17) 4oy 1-qdtd 1- g2t

Proof. Using (4.14), we compute

|
v Twia)’

In w(d)i In(1- t%) - In(1- thd)¢

d.d
d=1 1-qg°t

X 1
W(d) a(q“m—l)tdm

d=1 m21

X° X 1
= W(d)d - —(q" - 1)t
n=1 d|n n
2} 1
X -
=7 Lo g = n 170'; )
hoy D 1- g°t

where the identity (R) follows by a change of variables n = dm. The lemma follows.
Iof

Lemma 4.10. For 1< a< m and n B N(P¥ with knk = m - a, we have
_ Eth(Sm: o(r))o(r+a)5n_ = an - an—Z_
kmk=m

Proof. If Ext!(Sm, O(r))o(r+a)ms n_ = 0,thenny, £ my,andsoly := m,—-n, =2 0,
for all x; cf. (2.4). By the Riedtman-Peng formula (2.8), we have

X Z 2
Eth(Sm/ O(r))o(r+a)sn
kmk=m
_ X f Olr+a)ms, | Aut(O(r))| - | Aut(Sm)|
Sm,0(r) | Aut(O(r+ a)@S,)]|
kmk=m _ B
P - f -
{O(r+ a)BS, ® S, |Kerf £0(r)}
_ kmk=m
B 1 Aut(Sy)| - | Hom(O(r + a), S| ]
P - f -
{O(r+ a)BS,® Sm |Kerf B O(r)}
kmk=m

| Aut(Sn)| -qm-2
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Note that

N f -
{O(r+ a)BS,* Sy |Kerf Lo(r)}
= {(f1,x, f2,x) [f1x : O(r+ a) >S{™) is onto if ny, = m,,

) fa S > sIma s injective, Bx B P1}

{fix [f1:O(r+ a) > s{m) is onto if ny = m,, Bx B P}
A{fax 1f2x :S)((“*) > S)((m*) is injective, Bx B P}

_{fl,x [f1x:O(r+ a) > Sf(m*) is onto if ny = m,, Bx Plk}_ - | Aut(S,)].

So by Lemma 4.8, we have

X - T
Eth(Smr o(r))O(Ha)Sn
kmk=m B i _
= qa—m X :
{f1x:0(r+ a) > stm) |f1x isonto fn, = m,}
kmk=m _ _
= g2 m {f1x :O(r+ a) >S{™) |f , is onto if ny = my}
Pl dy=a
x Yy y
— a-m Iy +ny Iy+ny-1 Ny
=4t (a, a, ) a,
. lxdy=a  1,=0 I,=0
X Y | Iy-1 2a 2a-2
- (@ -a*")=9"-q
Ixdx=alx=0
The lemma is proved. Jof

Proposition 4.11. For r@Z and m > 1, we have

1
(vZ <= 1)v2m-1T [O(r) BSm]
kmk=m
X X
% vi[O(r+ a)@S,].
v

(4.18) 0, 2[0(r)] =

l1<as<mknk=m-a
®
Proof. Since Sy, O(r) = -m for any m B N(P, with kmk = m, we have

b

Om B[O(r)] = [Sm]B[O(r)]
kmer'n

1

- e [saliiO0L
kmk=m

For any short exact sequence 0 > O(r) > M = S, = 0 with kmk = m, we have

ME O(r)BSm, orME O(r+ a)a@s,,
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for some n such that knk = m- aand 1< a< m. It follows that

: X 1 X X

v2 - 1 y2m-1 [O(r) BSm] + (V2 _ 1)V2m—1
kmk=m kmk=m 1<asr

I Eth(Sm: O(r))O(Ha)Sn I [O(r + a) Sn]

b
Om B[O(r)] =

knk=m-a
1 X 1 X X
vz < 1)vzm-T O )8 ml* Gz qyyamt

V2 = 1)y2m-1
(3 ) kmk=m ( S l<asrknk=m-a

X
| Ext*(Sm, O(r))o(rea)ms, | [O(r+ a)BS,].
kmk=m
Now the proposition follows from applying Lemma 4.10. o4

4.4.2. The product [O(r)] B O,.

Lemma 4.12. For any morphism f : O(r) = Sn, there exists a N(Plk) with
a < n such that

Imf¥S,, Cokerf¥ S,_, and Kerf¥ O(r- kak).

Moreover, given a surjective morphism g : O(r) = Imf, there exists a unique
morphism f; : Imf > S, such that f = f; o g.

Proof. For a closed point x in PI}, the torsion sheaf S)En) is uniserial, and hence its
subsheaf and quotient sheaf are of the form S(ax), for 0 £ a < n. Recall there isno
nonzero homomorphism between torsion sheaves supported on distinct closed
points. Therefore, as a subsheaf of S,, Imf = S,, for some a < n. It follows that
Cokerf = S,[B,. Observe that any subsheaf of a line bundle is again a line bundle,
which is determined by its degree. Hence Ker f = O(r - K&k). The second statement
follows from the surjectivity of g. H

Proposition 4.13. For r@Z and m > 1, we have

X
[O(r)]ém =(q_1% [O(r)BSn]
kmk=m
[2] X X 4a
t e v?@[O(r- a)@S,] B[Kas].

v l1<as<mknk=m-a

Proof. For m N(Pi) with kmk = m, we have hO(r),Sni = m. For any f
Hom(O(r), Sm), we have Im f =S, for some | <€ m with klk = a. Then Ker f = Ofr
- a) and Cokerf = S&.,. Hence

(4.19) [Cs]= [CokerfRKerf]lB[Kims]l= [O(r- a)BSnH-] B[Kss].
By Lemma 4.12, we have
: Tl Y ¢
(4.20) {f:O(r) >Sm |ImfEB S} = {f,:5 % S} = ae - gt
I,=0
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Thus using (4.19)—(4.20) we have

: X [Cs]
[Or]BSy, = v"O0)Sni
() fBHOm(0(r).5m) | Hom(O(r), Sm) |
roX X X
=v' " [O(r- a)BSm-i] B[Kas]
OSXaSmISm,'ka=af;Ime|
=y " (g - a2 1)[O(r - a)BSm-1] B[Kqsl.

O<as<m l<m;klk=alx>1

Therefore, by Lemma 4.8 we have

[O(r)] 2O,
oy X
T (g- 1 vm-1 [O(r)] B[Sm]
kmk=m
1 X X X Y (q -1)[0( 85,1 2 (Ko ]
= m- qXX _ qxx r- a B N B ,
(q_ 1)\/2 1Osa$m knk=m-a klk=a Ix21 5
1 X X
T g- I T (922 - q%*72)[O(r - a)BS,] B[Kqs]

O<a<mknk=m-a

oy X
= (q- 1 v2m-1 [O(r)BSm]

kmk=m
21 X X o ame 1o
— v*[O(r- a)@S,] B [Kas].
v 1<a<mknk=m-a
The proposition is proved. of

Now we are ready to prove Proposition 4.7, i.e., the identity (4.13).

Proof of Proposition 4.7. Recall that ®; = —L, and lB_, = 0. A direct com-

putation using Proposition 4.11 and Proposition 4.13 shows that LHS (4.13) -
RHS (4.13) = 0. o

5. Derived equivalence and two presentations

Let Agr be the iquiver algebra of the Kronecker iquiver (Q,, Id); see (5.2). In
this section, we establish a derived equivalence between categories rep(A, ) and
Cl(coh(PI})), inducing an isomorphism of the g-Onsager algebra in the Serre type
and the Drinfeld type presentations. Consequently, the homomorphism Q from the g-
Onsager algebra to the iHall algebra of the projective line is injective.

5.1. Reflection functors. Let (Q, %) be a (connected) acyclic iquiver of rank > 2.
We recall the reflection functors for the iquiver algebra A' associated to a split
Iquiver (Q, Id) from [27]. For any sink * B Qg, define the quiver s:(Q) by reversing all
the arrows ending at *. Let A = s A' ble the iquiver algebra of the split iquiver
(Q°% 1d). The quiver Q° of sTA' can be constructed from Q by reversing all the
arrows of Q ending at . Dually, we can define s”A' for any source ° by reversing
all the arrows of Q starting from .
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A reflection functor associated to a sink * B Qg is defined in [27, §3.2]

de

(5.1) F*oirep(N) € def

Trep(Q,T) - rep(stA') & rep(Q, Io)-
Dually, a reflection functor F~ associated to a source *~ B Qq is also defined. In

fact, the action of F* (and F.) on rep,(Q) @ rep(A') is the same as that of the
classic BGP reflection functor.

a

1.

5.2. The Kronecker i1quiver. Consider the Kronecker quiver Qg : 0

B
Denote by At the transpose of a matrix A.

Lemma 5.1 (See e.g. [31, Section 3.2]).
(1) Indecomposable pre-projective kQy,-modules (up to isomorphisms) are given

by:
Apro
Pn= k" —_— kn+t , Bnz0,
Bnro
where
10 0 00 0
0 1 0 10 0
. ? and 8P o 1 0
?| ?| ?| Cl. e
; " ?
A?]I’O = e 1
0 0 .0
00 00
(2) Indecoyposable pre-injective kQg,-modules (up to isomorphisms) are given
by:
T aproyt (ggnro )t
I, = kn+t " k", Bnx 0.
(Bpro)t

Let Ayr be the 1quiver algebra of the split Kronecker iquiver (Qg,, Id), cf. [26].
Then Agr is isomorphic to the algebra with its quiver Qy, and relations as follows:

€0 €1
o (2
(5.2) Q‘“’ =
B

2 _ — 2 — —
gg= 0= €7, &0= ag, €p= Beo.

We can make sense of the iHall algebra '"H{kQk:); see Example 2.12. Recall the
universal g-Onsager algebra &' from Section 3.1.

Proposition 5.2 ([26, Theorem 9.6]). There exists a Q(v)-algebra monomorphism
(5.3) §:8,., —> 'WkQy),
which sends B; = q'Tl[Si], Ki 2> [Ks,], fori=0,1.

Let Ko(kQgr) = Z2 be the Grothendieck group of rep (Q«). Denote by a;the
class of S;, fori = 0,1. For B = agag+ a;a; B Z%, we can define [Kg] :=[Ks,]%
@[Ks,]?:. Let T (A';) Be the quantum torus of 'H(kQx,)¢ i.e., the subalgebra
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of 'H(kQy,) generated by [Ks ], i = 0,1. Then '"H{kQ.) is free as a left B(A!)-
module with a basis given by {[X] | X & repy(Qkr) @ rep(A')}; see Proposition
2.10.

Let Q}, := §"Qgr = § Qr, and let A’ be the split iquiver algebra of (Q7 , Id).
Let T : Qkr —> Qg be the natural isomorphism by exchanging the vertices 0 and
1, which induces an isomorphism t : rep(Ag,) = rep(Ay,). Then we obtain two
functors (cf. (5.1) for F;*):

ST i=toFJ irep(Ag) > rep(Ag), S* :=toFS rep(Ak) = rep(Ay,).
We shall describe the actions of S* and S~ on rep,(Qx) B rep(A'y).

For a representation of kQy,, X = (V W), we have the exact sequences

@™

0

C é\

D¢ (AB) B (¢ 8%

0>U%° > vav “2'w, V -—> waw == 'u®->o.
Then by [6, Section 1] we have
CO COO
S*(X) = (U, V), ST(X)= (W u®)

o e D

Let repli((QKr) be the full subcategory of rep, (Qy,) consisting of modules without
summands isomorphic to S;, fori = 0,1. Then S* : reg(l(QK,) -> reg(o(QK,) is an
equivalence with S~ as its inverse.

The functor F} (cf. (5.1)) induces an isomorphism '; : 'H(kQy,) = 'H(kQ5,)
by [27, Theorem 4.3]. Similarly, S* induces an automorphism S* : "H(kQ,)
'H(kQ%,). Note that * induces an isomorphism t : 'H{kQY%) 'HkQy). By
definition, it is clear that

S* = tory :'H(kQy,) -> 'H(kQg).
By [27, Proposition 4.4], we have the following result.
Lemma 5.3. The isomorphism S* : '"H{kQx:) '"HkQkr) sends, for M
repk(Qx:),
S*(IM]) = [S*(M)],  S*([S1]) = [Ks, 17" B[So],
S+([Ka1])= [K-OtO], S+([Ka0])= [Ku1+2u0]-
Dually, we have Lemma 5.4.
Lemma 5.4. The isomorphism S~ : '"H{kQ,) "H{kQg,) sends, for M
repd(Qxr),
ST(IM1]) = [ST(M)], S™([Sol) = [Ks,17* B[S4],
S_([Kul]) = [Koto+2a1]: S_([cho]) = [K—(11]'
By adapting [27], we have the following commutative diagrams

-1

T, Tyt
Bloew e ©f -y ——— @],
U|v=V
8 ]
] ®
He(kQy) —— 'H(kQyr) 'He(kQy,) —— 'H(kQ;).
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Lemma 5.5. For n> 0, we have
-1 -1
@(Bnéﬂxl): m[Pn]z lF(B—(n+1)§+ctl)= m[ln][K—né—ao]-

Proof. We have (S7)"(M) rep?((QKr), and for any indecomposable M repok(QKr),
we have S™(M) is the unique kQg.-module (up to isomorphisms) of dimension
tsg(dim M). In particular, dim(S™)"(S1) = n6+ a4, so (S7)"(S1) £ P,. Then

B (Bns+a,) =U(Tot) (B1)) = (S7)"UAB1)

e -1
—Ss =

Pal.
] (Pn]

We also have
®(B_(n+1)5+a,) =U(ToT)""(B1)) = (S*)"*'8(B1)

= (SIS = (S ([S0] B K-, ]

-1 q-

1

= L (S ([S0]) BIK 5 o] = —[In] B[K ns s
qg-1 q- 1

The lemma is proved. H

5.3. A derived equivalence. Let '®kQg,) be the composition subalgebra of
'"M(kQyr) generated by [Si], and [Ks,] (i = 0O, 1).

Lemma 5.6. The composition algebra '®kQg,) contains all the elements [X],
where X is either an indecomposable pre-injective module or an indeco,posable
pre-projective mod,le.

Proof. By Proposition 5.2, we have an algebra isomorphism (g: Ug' ., '@(kQxr)
given by (5.3). Now the lemma follows from Lemma 5.5. ot

Definition 5.7. The composition algebra '@(PI}) is the subalgebra of'H?(Pi) gener-
ated by the elements [O(n)],kOy, and [K,] wheren@Z, k > 1and a B Ko(PL) B Z2.

Let T = OBO(1) and B = Endp:(T). It is known [5] that T is a tilting object,
and B°P B kQy,. It follows that
(5.4) RHomp (T, =) : D®(coh(Py)) - D°(repy(Qir))

is a derived equivalence.
Let V be the subcategory of coh(PX) consisting of M such that Hompk1 (T, M) = 0.

Denote U = FacT, the full subcategory of coh(Pkl) consisting of homomorphic
images of objects in add T. Then (U, V) is a torsion pair of coh(PY).

Lemma 5.8. (C1(U), C1(V)) is a torsion pair of C1(coh(P|})). In particular, any
M B Cq(coh(P9) admits a short exact sequence of the form

(5.5) 0> M->Xm > Tm—>0,
where Xy BCy(U) and Ty Badd K.

Proof. We have Hom(U*®,V *°) = 0 forany U* B Cy(U), V° & Cy(V).
For any M*® = (M, d) Cl(coh(Plk)), there exists a short exact sequence 0 -

U f% M 3 V > 0 such that U U, V B V. Since Hom(U,V) = 0, we have
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gdf = 0, and then there exists d: U > U and d®:V > V such that df = fd° and
gd = d%g. Denote by U® = (U,d°) and V* = (V,d®). We have the exact sequence
0>U">M*>V"->0.50 (C1(U),C1(V)) is a torsion pair of C;(coh(Pk)).

The proof of the last statement is the same as for [23, Theorem 5.8]. of

Proposition 5.9. Let K1 = Kg Ko(1). Then Ky is a tilting object of
Db(Cl(coh(PE))) with End(K7) B N\, which gives rise to an equivalence:
RHom(Kr, -) : D?(Cy(coh(PL))) -= D(rep(Al)).

Proof. Similar to [23, Theorem 5.11], one has that ExtP(K;, Kt) = 0 for p > 0.
We have C,1(U) = Fac(Ky), and hence (5.5) implies that K1 is a tilting object of

D®(Cy(coh(P}))). It is routine to check that End (K1) 2 A, which will be omitted.
Then the derived equivalence follows from the standard arguments; see [17]. of

Proposition 5.10. Let F = Hom(Ky, -). Then there exists an isomorphism
z 'H(PL) -> 'HkQy,),
[M] > [F(Tm)]™ BIF (Xm)],
where Xy B C1(U) and Ty, @ add Ky, are defined in the short exact sequence (5.5).

Proof. Follows from [29, Theorem A. 22] with the help of Lemma 5.9. H

5.4. Injectivity of Q. Recall the isomorphism ® : °'8' > B8' from Theorem 3.3,
the homomorphism Q : °"8 |,_, - 'HEP?) from Theorem 4.2, the monomorphism {
€U €L, > 'H&Qg,) from Proposition 5.2, and the isomorphism z : 'H?(Pt) -
'"H(kQ,) from Proposition 5.10.

Theorem 5.11. We have the following commutative diagram of algebra homomor-
phisms

-1
@fv=VLDr@I

|v=v
] Q
'He(kQy,) ——— 'H(PL),

where @, z are isomorphisms. In particular, the homomorphism Q is injective.

Proof. In this proof, we denote G = z~* : 'H{kQy,) = 'H{P}) for short. Note that
G([S1]) = [O] and G([Po]) = [O(1)]. Then Q° ®~*(B1) = Q(Bo) = =4[O], and
-1 -

G §(B1) = q- 1G([51])= .

11w]=o°®”«mL

We have a short exact sequence 0 = S7° < Py $5, > 0, which gives rise to a
short exact sequence

0-> K n-> M ->5 ->0,
1
where M ,
M* = 3P Bs” o "
ok 17 0 0
Hence we have [S,] = [M'][Kszz]‘l.
1
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Since Homp:(O, O(1)) 2 Homy,,(S1, Po), there exists a unique h : O™ = O(1)
k
such that Hom(T, h) = f. Then Hom(Kt, X *) = M *, where
3 ,
1

" 0
0
We have z([X*]) = [M*] thanks to X* B C1(U). Note that h is surjective, and
Kerh B O(-1). Then [X"] = [O(-1)]8[Ko(1)] = [O(-1)]B[Ks, ). Hence we have

X°= 0(1)B0%,

o

G([So]) = G(IM*1B[Kgs217) = [O(-1)] B (K od BIK_,08 = [O(-1)] B[Kg_ .
Therefore, we have

-1
g-1

760]) = G * B(o).

Q> ®(Bo)

Q(B;,-1CK7Y) =

[0(-1)] B[Ks- o]

Finally, we verify that
Qe 071 (K1) = Q(K1) = [Kol = G([Ks,]) = G ° (K1),
and
Qe 07! (Ko) =Q(CK3') = [Ks]B[Ko]™*
=[Ko(1)] B[Ko]™? = G([Kp,]B[Ks,]™?)
=G([Ks,]) = G ° §(Ko).
Summarizing, we have proved Q- @1 = G @

The injectivity of Q follows by the injectivity of § and the commutative diagram.
X

Corollary 5.12. The algebra isomorphism z : 'H(Pl)k%'H(leQKr) restricts to an
isomorphism of the composition algebras z : 'C(e!i‘l)K - 'cékQyr). We have the
following commutative diagram of isomorphisms:

DI’GI o} @|I .

bv=v

Q @

z

'&P}) —— '®kQ) -

6. A Hall algebra realization of imaginary root vectors

In this section, we provide a Hall algebra interpretation H3, of the generators
Hm in the Drinfeld type presentation of the g-Onsager algebra.

Recall ®,, 'H¢PY) from (4.1) is the image of ®,, under the monomorphism
Q:°re'|,., > 'HB(P}(); cf. Theorem 4.2. In light of (3.16), the elements

HPm = Q(Hp), form2> 1,
must satisfy
X i X ¢
(6.1) 1+ (v -vHd,hz™=exp (v- vl .z .
m21 m21
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Lemma 6.1. For m2> 1 and r @Z, we have

2m) o (m + 1)y - 12T
m m

(6.2) [, [O(N)]] = [O(m = )] B [Kms].

Proof. Note that the equivalence between (3.14) and (3.18) follows from the identity
(3.16) formally, as shown in [28]. In the same way, the identity (6.2) is equivalent to
(4.13). H

We shall describe the elements Hp,. Recall that any indecomposable object

in tory(P1), for x @ P, has the form S(:) of length n > 1. For any partition
A= (A,..., ), define

s = sthlg...gsit,

For any x B Pland m > 1, we define (compare [24])

X (N) [S(m)]
(63 M= n (- b e
A m | Aut(S, ') Vx 7 Vy
where
Yl Yl
()= (1-vi)= (1- q).
i=1 i=1
Introduce the generating functions
X
(6.4) B (z):= B,z
m21
X X
(6.5) O,(z) =1+  (ve- v )Opn,z™ =1+ [S{™]z™.
m21 m21

Lemma 6.2 ([24]). We have

i X ¢
(6.6) 0.(z) = exp (vi- v ') MWn,z",
m21
where
[m] o [m/2]
(6.7) I'le,x = V)r('n m"x I:bm,x - 6m,evi2 7\I)([Km7dx5]-
Recall ®,, from (4.1). Define the generating function
X
(6.8) O(z)= 1+ (v-viH)d,z™.
m21

Since the categories tor,(P¢) for x @ P,lare orthogonal, by (4.1) and (6.5) we have
X X

Y
O(vz)= 1+ [Sp]z™ = b, (z%).

m21 knk=m >(Pk1

Now we establish the main result of this section.

Proposition 6.3. For m2 1, we have

X [m], X \ [sM] [m]
(6.9) |'l?m = dx Ny (" (A) - 1)-—)7x — 6m,ev [Kms]
x,dy[m M A= g Aut(siM) ’
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Proof. By (6.6), we have

Y
O(vz) = 0,(z%)
><P1k
Y i X ¢
= exp (vx - V;l) I'Ipm,xzmdx
xPlk m>1
i X X ¢
i
= exp (vi - vil)  Hmez™
xP1k m>1
i X X ¢
= exp (v - v;l)fb%,xzm
m21x,dy|m
i X X i d
=exp (vy - v;l) valex
dx
m21 x,dy|m m/dx
2d ¢ ¢
- SL’eVV%M[Kgﬁl z™m .
dx m/dx 2
Observe from (6.1) that
i _1, X ¢ X -
exp (v-v™t) W,z" =1+ (v-v1)®,z™ = ©6(z).
m21 m21
So it suffices to show that
(6.10)
X N tmpd, o /2w €
A (P A Y S R T Y S LS
X,dyx|m
X m X siM m
= (v - V_l) [ ]dx ny("(A) - 1)%— 6m,ev[ ][Krzr',,s] .
xdelm M= Aut(Sx) m
Recalling Fbm,X from (6.3), we have
X
yom (vy - V—1)memm7,x
X |m X m/dx dx
dx
X ym - y-m X . 5(7\)]
SR L A RPN L W
X,dy | m m A d%’ | AUt(Sx )l
(A)
_ [m] X ‘ I NS
= (v-vt) dx nx("(A) - 1) - :
ﬁ)ﬁ
xdxlm M= Aut(sM)
Moreover, using (4.14), we compute
X m [m/(2d
v'm (v - V;l)aLlevv;M[Kﬁé]
dy 2
x,dy | m m/dx
X mVZT -vTT 1-vm X
= 8p,evV 7 —————dx[Kysl= dmev——— dx[K 5]
x m m .
X,dy | m x,dy | &

1-v™ M m _ m
= Brrer (14 qT) Kl = (v = v )Bmer T (K.
m m
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So (6.10) holds. We are done. oS
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