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A b s t r a c t .  The ıHall algebra of the projective line is by definition the twisted
semi-derived Ringel-Hall algebra of the category of 1-periodic complexes of
coherent sheaves on the projective line. This ıHall  algebra is shown to realize
the universal q-Onsager algebra (i.e., ıquantum group of split affine A 1  type) in
its Drinfeld type presentation. The ıHall algebra of the Kronecker quiver was
known earlier to realize the same algebra in its Serre type presentation. We
then establish a derived equivalence which induces an isomorphism of these two
ıHall algebras, explaining the isomorphism of the q-Onsager algebra under the
two presentations.
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1. Int roduc t i on

1.1. Bridgeland [7] has realized a whole quantum group via the Hall algebra of 2-
periodic complexes, building on the classic construction of Ringel-Hall algebra of a
quiver which realizes half a quantum group [15, 30, 32].

Recently, two of the authors [26, 29] have developed ıHall algebras of ıquivers to
realize the (universal) quasi-split ıquantum groups of Kac-Moody type. A  universal
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ıquantum group admits a Serre type presentation and contains various central gen-
erators, which replace the parameters in an ıquantum group arising from quantum
symmetric pairs à  la G. Letzter [20, 21]. The ıHall algebras are constructed in the
framework of semi-derived Ringel-Hall algebras of 1-Gorenstein algebras ([29, Ap-
pendix A], [26]), which were generalizations of earlier constructions [7, 14, 23]. In
particular, Bridgeland’s Hall algebras realization of quantum groups can be refor-
mulated as ıHall algebras of ıquivers of diagonal type.

There has been a current realization of the affine quantum groups formulated by
Drinfeld [4, 11, 13], which plays a crucial role on (algebraic and geometric) rep-
resentation theory. Hall algebra of the projective line was studied in a visionary
paper by Kapranov [18] and then extended by Baumann-Kassel [3] to realize the
current half of quantum affine sl2. The Hall algebra of a weighted projective line
was developed in [33] to realize half an affine quantum group of A D E  type, which
were then upgraded to the whole quantum group via Drinfeld double techniques
[9, 12].

According to the ıprogram philosophy [1], ıquantum groups are viewed as a
vast generalization of quantum groups, and various (algebraic, geometric, categori-
cal) constructions on quantum groups should be generalizable to ıquantum groups.
Earlier notable examples of such generalizations include q-Schur duality, (quasi-) R-
matrix, canonical basis, Hall algebras, and quiver varieties.

As a most recent development in the ıprogram, a Drinfeld type (or current)
realization of the (universal) ıquantum group of split affine A D E  type has been
obtained by two of the authors [28]. The (universal) ıquantum group of split affine
A1  type is also known as the (universal) q-Onsager algebra U ı .  The current pre-
sentation in the rank one case was motivated by the construction of root vectors in
[2], where one finds more references on the q-Onsager algebra.

1.2. The goal of this paper is to realize the universal q-Onsager algebra in its current
presentation D r  e ı  via the ıHall algebra of the projective line over a finite field k  =
Fq , denoted by ıH(P1 ). (By ıHall algebra of the projective line, we mean the twisted
semi-derived Ringel-Hall algebra of the category of 1-periodic complexes of
coherent sheaves on the projective line. Both this category and the category of
modules of an ıquiver algebra are weakly 1-Gorenstein exact categories, and so the
general machinery of semi-derived Ringel-Hall algebra in [29, Appendix A] applies.)
We further show that the isomorphism of the universal q-Onsager algebra in two
(Serre vs Drinfeld) presentations is induced from a derived equivalence of the
categories underlying the two (quiver vs P1) ıHall algebra realizations.

1.3. In its current presentation [28], the universal q-Onsager algebra D r U ı  is gen-
erated by B1 , r , Hm ,  for r  � Z, m ≥  1, and two central elements K1 , C , subject to
relations (3.13)–(3.15). The generators H m  can be replaced by another set of
generators Θm, for m ≥  1, and the relations (3.13)–(3.14) can be replaced by
(3.17)–(3.18).

The following is the first main result of this paper. Let v  = q.

Theorem A  (Theorem 4.2, Proposition 6.3). There exists a Q(v)-algebra homo-
morphism Ω : D r U ı

| v = v  −→  ıH(P1 ) which sends, for all r  � Z  and m ≥  1,

K 1  → [K O ] , C  → [Kδ ], B1 , r  → −
q  −  1

[O(r)], Θm → Θm , H m  → H m .

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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The imaginary root vectors Θm (and H m )  are realized via Θm in terms of torsion
sheaves on P1; see (4.1) and (6.9), while the real root vectors B1 , r  are realized via
torsion-free sheaves O(r).

To  show that Ω : D r U ı
| → ıH(P1 ) is a homomorphism, we must verify three

main relations for the q-Onsager algebra, (3.15), (3.17), and (3.18).
The counterpart in ıH(P1 ) of the relation (3.17) asserts the commutativity among

Θm, where Θm are defined in terms of torsion sheaves. It is well known that the
category of torsion sheaves supported on a fixed closed point x  � P1 is equivalent to
the category of finite-dimensional nilpotent representations of the Jordan quiver (i.e.,
the quiver with one vertex and one loop). As we show the ıHall algebra of the
Jordan quiver is commutative, the commutativity of Θm follows.

Recall the Hall algebra of the Jordan quiver is historically the original example of
Hall’s construction; it is isomorphic to the ring of symmetric functions and leads to a
basis given by Hall-Littlewood functions. The ıHall algebra of the Jordan quiver
admits rich combinatorial properties as well, which will be studied in depth in a
separate publication [24].

Various well-known constructions in the Hall algebra of the Jordan quiver are
essentially used in computations of the counterpart of Θm in the Hall algebra of P1 in
[34, Example 4.12]. (This did not appear in [3].) As we do not have the results on
ıHall algebra of the Jordan quiver available to us, our verification of the relation
(3.18) takes a more direct approach which requires some serious computations. In
addition, the relations (3.18) and (3.15) contain terms involving K δ  which do not
arise in the computations [3, 18, 34] of similar identities in Hall algebra of the
projective line; some new homological computations are needed to determine these
K δ  terms.

Finally, we obtain an ıHall algebra realization H m  of the generators H m  in U ı ;  cf.
Proposition 6.3. In contrast to its counterpart in [3] (also cf. [34]), the H m  has a
subtle summand involving Kδ .  While we have a self-contained long proof for the
formula of H m ,  a similar proof is still needed to produce a similar result for ıHall
algebra of the Jordan quiver [24]. On the other hand, appealing to this result loc.
cit. allows us to shorten the proof for H m  considerably, which is the approach we
follow here.

1.4. Beı̆linson [5] constructed a tilting object which induces a derived equivalence
Db(coh(P1)) → Db (repk(QKr )), where repk(QKr) is the category of finite-dimensional
representations of the Kronecker quiver QKr; see (5.4).     We establish a similar
derived equivalence in the setting of 1-periodic complexes (which is again induced
by a tilting object), cf. Proposition 5.9.

As a special case of the main result in [26], there is a realization of the uni-
versal q-Onsager algebra U ı  (in its Serre type presentation) via the ıHall algebra of
the Kronecker quiver ıH(kQK r ),  that is, we have an injective homomorphism ψ :
U | v = v  → ıH(kQK r ).  The aforementioned derived equivalence induces an iso-

morphism of ıHall algebras ı H(kQK r )  � ıH(P1 ), providing a categorification of the
algebra isomorphism U ı  =  D r U ı  of the q-Onsager algebra in two (Serre and Drinfeld
type) presentations. We summarize our second main result as follows.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Theorem B  (Proposition 5.10, Theorem 5.11). We have the following commutative
diagram

ı = D r       ı
| v = v | v = v

ψ

ıH(kQK r ) =

Ω

ıH(P1 ) .

In particular, the homomorphism Ω is injective.

This is similar to the interpretation by Burban-Schiffmann [8] that the Drinfeld-
Beck isomorphism for quantum affine sl2 can be explained via Beilinson’s derived
equivalence when combined with Cramer’s result [10]. A  possible relevance of de-
rived equivalence to the two different presentations of quantum affine sl2 was re-
marked by Kapranov [18] (also cf. [3]).

1.5. This work opens up further research directions. It will be natural to develop
connections between ıHall algebras of weighted projective lines and the ıquantum
groups of split affine A D E  type in Drinfeld type current presentations, and this
will be carried out in [25]. It will also be interesting to study the ıHall algebras of
higher genus curves, in particular, of elliptic curves.

1.6. The paper is organized as follows. In Section 2, we review the category of
coherent sheaves on the projective line and define the corresponding ıHall algebra.
The new Drinfeld type presentation of the universal q-Onsager algebra is summa-
rized in Section 3.

In Section 4, we show that Ω : D r U ı
| v = v       → ıH(P1 ) is a homomorphism in

Theorem A  by verifying the three defining relations of D r U ı  in ıH(P1 ). A  derived
equivalence leading to the isomorphism of ıHall algebras is established and then
Theorem B  is proved in Section 5.     In Section 6, we provide an ıHall algebra
realization H m  of the generators H m .

2. ı H a l l  a l g e b r a  o f  the pro j e c t i v e  l ine

In this section, we review some basic facts on the category coh(P1) of coherent
sheaves of the projective line over a finite field k  (also cf. [3]). We then apply the
machinery of semi-derived Ringel-Hall algebra [23, 26, 29] to formulate the ıHall al-
gebra of coh(P1) (and also the ıHall algebras of the Jordan quiver and the Kronecker
quiver).

2.1. Coherent sheaves on P1. Let k  =  Fq be a finite field of q elements. For a
(not necessarily acyclic) quiver Q, we denote

.  rep (Q) – category of finite-dimensional representations of Q over k,

.  repnil (Q) – subcategory of rep (Q) formed by nilpotent representations of Q.
Note that repk(Q) =  repnil (Q) if Q is acyclic.

For a quiver with relations (Q, I ), let Λ  =  kQ/( I )  be its (not necessarily finite-
dimensional) quiver algebra. We define repk(Q, I ) and repnil (Q, I ) similarly. We
also denote rep(Λ) =  rep (Q, I ) and repnil (Λ) =  repnil (Q, I ). Note that rep(Λ) =
repnil (Λ) if Λ  is finite-dimensional.

The coordinate ring of the projective line P1 over k  is the Z-graded ring S  =
k[X0 , X1 ] with deg(X0 ) =  deg(X1 ) =  1. A  closed point x  of Pk is given by a prime

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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homogeneous ideal of S  generated by an irreducible polynomial in S.  The degree of
x, denoted by deg(x) or dx , is defined to be the degree of the defining irreducible
polynomial associated to x. We denote

.  modZ (S) – category of finitely generated Z-graded S-modules,

.  modZ (S)– subcategory of modZ (S) of finite-dimensional graded S-modules,

.  coh(P1) – category of coherent sheaves on P1,

.  vec(P1) – category of locally free sheaves on P1,

.  tor(P1) – category of torsion sheaves on P1,
.  torx(Pk ) – category of torsion sheaves on Pk supported on a closed point x  � Pk.
We can associate a coherent sheaf M on P1 to any M � mod (S).  This gives rise

to a category equivalence (which goes back to Serre): modZ (S) modZ (S) =  coh(P1).
The category coh(P1) is a finitary hereditary abelian Krull-Schmidt category with
Serre duality of the form

Ext1 (X , Y ) =  D Hom(Y, τ (X )),

where D  =  Homk (−, k) and τ is given by the grading shift with (−2).  This im-
plies the existence of almost split sequences for coh(P1) with the Auslander-Reiten
translation τ .

The pair (tor(P1), vec(P1)) forms a split torsion pair in coh(P1), namely, any
coherent sheaf can be decomposed as a direct sum of a torsion sheaf and a vector
bundle, and there are no nonzero homomorphisms from tor(P1) to vec(P1).

Any indecomposable vector bundle on Pk is a line bundle; more precisely [16],
it is of the form O(n) =  S[n], for n � Z ,  where S[n] is the n-th shift of the trivial
module S,  i.e., S[n]i =  S n + i .  In particular, if n =  0, then O : =  O(0) is the structure
sheaf of Pk. The homomorphism between two line bundles is given by

(2.1) Hom(O(m), O(n)) =  S n − m ,

which then has dimension n −  m +  1 if n ≥  m and 0 otherwise.
The category of torsion sheaves splits into a direct sum of blocks

tor(Pk) =  
M  

torx(Pk ).
x�Pk

The category torx(P1) is equivalent to the category of finite-dimensional modules
over the discrete valuation ring (stalk) Ox at x. Hence, it is equivalent to the
category repnil (QJ) of finite-dimensional nilpotent representations of the Jordan
quiver QJ over the residue field k x  of Ox, where k x  is a finite field extension of k
with [kx  : k] =  dx . Any indecomposable object in torx(P1) is of the form S x of
length n ≥  1, where S  =  S ( 1 )  is simple.

The S ( n )  is uniserial in the sense that all the subobjects of S ( n )  form an increasing
chain

0 S x
u S ( 2 ) u · · · u       S ( n − 1 ) u S ( n ) ,

and all the quotient objects of S ( n )  form a decreasing chain

S ( n ) p
S ( n − 1 )       p · · ·

p
S ( 2 ) p

S x
p

0.

Here u : S ( i − 1 )  → S ( i )  denotes the irreducible injection map and p : S ( i )  → S ( i − 1 )

denotes the irreducible surjection map, respectively.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Assume that a closed point x  is determined by a homogeneous polynomial
f ( X 1 , X 2 )  of degree d. Then S ( n )  is determined by the exact sequence

0 −→  O(−nd) −−−−−−−→  O −→  S ( n )  −→  0.

In particular, we have

(2.2)
Hom(O, S (n) ) =  kn , Hom(S ( m ) , S ( n ) )  =  D  Ext1 (S ( n ) , S ( m ) )  =  kmi n{ m , n } .

For m ≤  n, the extension in Ext1 (S ( n ) , S ( m ) )  is of the following form, for some
0 ≤  a ≤  m:

(2.3) 0 S ( m )  ( p a , u n − m + a ) t      

S ( m − a )  � S ( n + a )  ( u n − m + a , − p a )  
S ( n ) 0.

We denote by N(P1) the set of all functions n  : P1 → N such that n x  =  0 for
only finitely many x  � Pk. We sometimes write n  � N(Pk ) as n  =  (nx )x �P 1      or n  =
(nx ) x .  We define a partial order ≤  on N(P1):

(2.4) n  ≤  m if and only if n x  ≤  mx for all x  � Pk.

For n  � N(P1), we denote the torsion sheaf

(2.5) S n  =  
M  

S ( n x ) ,
x�Pk

whose degree is given by

knk : =  
X  

dx nx .
x�P k

For two distinct closed points x, y � P1, the categories torx(P1) and tory (P1) are
orthogonal in the sense that there are no nontrivial homomorphisms and extensions
between them, that is, Hom(S ( m ) , S ( n ) )  =  0 =  Ext1 (S ( m ) , S ( n ) ) ,  for m, n ≥  1.

Let T =  O�O(1). Then [5] T is a tilting sheaf in coh(P1), whose endomorphism
ring is the quiver algebra kQKr of the Kronecker quiver

QKr : 0  1.

It follows that there is an equivalence between the bounded derived categories

Db(coh(P1)) =  Db (repk (QKr)).

Denote by F  the image in its Grothendieck group K 0 ( A )  of the isoclass of F  in
an abelian category A.  Then, the isomorphism classes O and O(1) form a basis of
K0 (Pk )  : =  K0 (coh(Pk )). Denote by

(2.6) δ : =  O(1) −  O,

then {O, δ } is also a basis. We define two Z-linear functions degree and rank on
K0 (Pk )  such that

deg(O) =  0, deg(δ) =  1, rk(O) =  1, rk(δ) =  0.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Then deg(O(d)) =  d and deg(S (n) ) =  ndx for d � Z  and n >  0; and for any coherent
sheaf F ,  the integer rk(F ) coincides with the geometric rank of F .  Moreover, the
assignment

K0 (P1 ) −→  Z2 , F  → (rk(F ), deg(F ))
is an isomorphism of Z-modules.

The Euler form on K0 (P1 ) is defined and then computed by Riemann-Roch as
follows:

hE , F i  =  dimk Hom(E , F ) −  dimk Ext1 (E , F )

=  rk(E ) rk(F ) +  rk(E ) deg(F ) −  rk(F ) deg(E ).

2.2. Ha l l  algebras. Let E be an essentially small exact category in the sense of
Quillen, linear over a finite field k  =  Fq . Assume that E is Hom-finite and Ext1-
finite. Given objects M , N , L � E, let Ext1 (M , N )L  � Ext1 (M, N ) be the subset
parameterizing extensions whose middle term is isomorphic to L .  The Hall algebra
(or Ringel-Hall algebra) H(E )  is defined to be the Q-vector space with the isoclasses
[M] of objects M of E as a basis and multiplication given by (cf., e.g., [7])

X | Ext1(M, N )L|

[L]�Iso(E )  
| Hom(M, N)|

Remark 2.1. Ringel’s version of Hall algebra [32] uses a different multiplication
formula, but these two versions of Hall algebra are isomorphic by rescaling the
generators by the orders of automorphisms.

Given three objects X , Y , Z ,  the Hall number is defined to be

F X Y  : =  |{L � Z  | L  =  Y and Z / L  =  X }|.

Denote by Aut(X )  the automorphism group of X .  The Riedtman-Peng formula
reads

| Ext1(X, Y )Z | | Aut(Z)|
X Y | Hom(X, Y )| | Aut(X)|| Aut(Y )|

2.3. Category of 1-periodic complexes. Let A  be a hereditary abelian category
which is essentially small with finite-dimensional homomorphism and extension
spaces.

A  1-periodic complex X •  in A  is a pair (X , d)  with X  � A  and a differential
d : X  → X .  A  morphism (X , d)  → (Y, e) is given by a morphism f  : X  → Y in
A  satisfying f  ◦  d =  e ◦  f .  Let C1 (A) be the category of all 1-periodic complexes
in A .  Then C1 (A) is an abelian category. A  1-periodic complex X •  =  (X , d)  is
called acyclic if Ker d =  Im d. We denote by C1,ac (A) the full subcategory of C1 (A)
consisting of acyclic complexes. Denote by H ( X • )  � A  the cohomology group of
X • ,  i.e., H ( X • )  =  Ker d/ Im d, where d is the differential of X • .

The category C1 (A) is Frobenius with respect to the degreewise split exact struc-
ture. The 1-periodic homotopy category K 1 ( A )  is obtained as the stabilization of
C1 (A), and the 1-periodic derived category D 1 (A)  is the localization of the homo-
topy category K 1 ( A )  with respect to quasi-isomorphisms. Both K 1 ( A )  and D 1 (A)
are triangulated categories.

Let C b (A) be the category of bounded complexes over A  and D b (A)  be the
corresponding derived category with the shift functor Σ .  Then there is a covering

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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functor π : C b (A) −→  C1 (A), inducing a covering functor π : D b (A)  −→  D 1 (A)
which is dense (see, e.g., [35, Lemma 5.1]).     The orbit category D b ( A ) /Σ  is a
triangulated category [19], and we have

(2.9) D 1 (A)  '  D b ( A ) /Σ .

For any X  � A ,  denote the stalk complex by

C X  =  (X , 0)

(or just by X  when there is no confusion), and denote by K X  the following acyclic
complex:

K X  : =  ( X  � X , d), where d = 0     Id .

Lemma 2.2 (Also cf. [22]). For any acyclic complex K •  and p ≥  2, we have

(2.10) ExtC 1 ( A ) ( K • , − )  =  0 =  ExtC 1 ( A ) (− , K • ) .

Proof. It is enough to prove ExtC ( A ) ( K • , C X )  =  0 =  ExtC ( A ) ( C X , K • )  for any
X  � A ,  by noting that C1 (A) coincides with the extension closure of C X  ( X  � A) .

Denote by C m ( A)  the category of m-periodic complexes over A  for any m ≥  1.
By the same proof of [23, Proposition 2.3], one can obtain that the analogous result
holds for m-periodic acyclic complexes (m ≥  2).

F ix  m below such that chark - m. There is a covering functor

π� : C m (A)  −→  C1 (A)

which admits a left (and also right) adjoint functor π� : C1 (A) −→  C m (A)  preserving
acyclic complexes. One can prove that (2.10) holds for any acyclic complex K •  �
Im(π�). Since chark - m, the adjunction K •  −→  π�π�(K • ) induces that K •  is a
direct summand of π�π�(K • ). So (2.10) holds for any acyclic complex K • . ¤

Lemma 2.3. For any X • , Y • � C1 (A), we have H ( X • )  =  H (Y •) if and only if
there exist two short exact sequences

0 −→  U• −→  Z •  −→  X •  −→  0, 0 −→  U• −→  Z •  −→  Y • −→  0

with U1 , U2 � C1,ac (A).
Proof. We only need to prove the “only if” part. If H ( X • )  � H (Y •), then X •  =  Y •
in D 1 (A )  by (2.9). The desired exact sequences follow from the definition of
D1 (A). ¤

Let B  be an abelian category. For any B  � B, its Ext-projective dimension
proj. dim B is defined to be the smallest number i  � N such that E x t i + 1 ( B , − )  =  0;
dually one can define its Ext-injective dimension inj. dim B.

Corol lary 2.4. For any K •  � C1 (A) the following are equivalent: (i) proj. dim K• <
∞; (ii) inj. dim K •  <  ∞; (iii) proj. dim K• ≤  1; (iv) inj. dim K •  ≤  1; (v) K •  is
acyclic.

Proof. The proof is the same as that of [26, Corollary 2.12], now with the help of
Lemma 2.2 and Lemma 2.3.                                                                                                      ¤

Remark 2.5. For any hereditary abelian category A ,  it follows from Corollary 2.4
that C1 (A) is a weakly 1-Gorenstein exact category. Therefore the general machin-
ery of semi-derived Ringel-Hall algebras in [29, Appendix A] will be applicable to
C1 (A).
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2.4. ıHal l  algebras. We continue to work with a hereditary abelian category A  as
in Section 2.3. Let H(C1 (A))  be the Ringel-Hall algebra of C1 (A) over Q(v), i.e.,
H(C1 (A))  = [X • ]�I so ( C 1 ( A ) )  Q(v)[X • ], with multiplication defined by

• •
X | Ext1 (M • , N • )L•  | •

[ L • ]�I so (C 1 ( A ) )      
| Hom(M•, N•)|

Following [22, 23, 26, 29], we consider the ideal I  of H(C1 (A))  generated by

(2.11)

{ [ K 1  ] −  [K 2  ] | K 1  , K 2  � C1,ac (A) with Im d K 1      
=  Im d K 2  

}

{[L• ]  −  [K •  � M•] | � exact sequence 0 → K •  → L •  → M• → 0 with K •  acyclic}.

We denote

S  : =  {a[K • ]  � H ( C 1 ( A ) ) / I  | a � Q( v ) × , K •  acyclic},

a multiplicatively closed subset of H ( C 1 ( A ) ) / I  with the identity [0].
With the help of Corollary 2.4 and Remark 2.5, we have the following.

Lemma 2.6 ([29, Proposition A.5]). The multiplicatively closed subset S  is a right
Ore, right reversible subset of H ( C 1 ( A ) ) / I .  Equivalently, there exists the right
localization of H ( C 1 ( A ) ) / I  with respect to S ,  denoted by (H (C 1 (A) )/ I ) [S −1 ] .

The algebra (H (C 1 (A) )/ I ) [S −1 ]  is the semi-derived Ringel-Hall algebra of C1 (A)
in the sense of [23, 29] (also cf. [14]), and will be denoted by S D H(C 1 (A)) .

For any α � K 0 ( A ) ,  there exist X , Y  � A  such that α =  X  −  Y .     Define [ Kα ]
: =  [ K X ]  ¦ [ K Y  ]−1 . This is well-defined, see, e.g., [23, §3.2]. Denote by T ( A )  the
subalgebra of S D H ( C 1 (A) )  generated by all acyclic complexes [K • ].

Lemma 2.7 is well known.

Lemma 2.7. For X , Y � A ,  we have

E xt C 1 ( A ) ( C X , C Y  )  =  Ext A ( X , Y  ) � HomA (X, Y ).

For any K •  � C1,ac (A) and M• � C1 (A), by Corollary 2.4, define

hK• , M • i =  dimk HomC1 (A) (K • , M • ) −  dimk ExtC 1 ( A ) (K • , M • ),

hM • , K• i =  dimk HomC1 (A) (M • , K • ) −  dimk ExtC 1 ( A ) (M • , K • ).

These formulas give rise to well-defined bilinear forms (called Euler forms), again
denoted by h·, ·i, on the Grothendieck groups K0 (C1 , a c (A))  and K0 (C1 (A)).

Denote by h·, ·iA the Euler form of A .  Let res : C1 (A) → A  be the restriction
functor. Then we have the following.

Lemma 2.8. We have
(1) hKX , M • i  =  hX, res(M • )iA , hM • , KX i  =  hres(M • ), X iA , for X  � A ,

M• � C1 (A);
(2) hM •, N • i =  2 hres(M •), res(N •)iA, for M •, N • � C1,ac (A).

Proof. The proof is the same as for [23, Proposition 2.4] and [29, Lemma 4.3], hence
omitted here.                                                                                                                                  ¤

Define
v  : =  

√
q .
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Definit ion 2.9. The ıHall algebra of a hereditary abelian category A,  denoted by
ı H ( A ) ,  is defined to be the twisted semi-derived Ringel-Hall algebra of C1 (A), that is,
the Q(v)-algebra on the same vector space as S D H ( C 1 (A) )  =  (H (C 1 (A) )/ I ) [S −1 ]
equipped with the following modified multiplication (twisted via the restriction
functor res : C1 (A) → A )

(2.12) [M•] � [N • ] =  v h r e s ( M • ) , r e s ( N • ) i A  [M•] ¦ [N • ].

For any complex M• and acyclic complex K • ,  we have

[K • ]  � [M•] =  [K •  � M•] =  [M•] � [K • ].

It follows that [ Kα ]  (α � K 0 ( A ) )  are central in the algebra ı H ( A ) .
The quantum torus T ( A )  is defined to be the subalgebra of ı H ( A )  generated by

[Kα ] ,  for α � K 0 ( A ) .

Proposition 2.10 (cf. [26, 29]). The following hold in ı H ( A ) :

(1) The quantum torus T ( A )  is a central subalgebra of ı H ( A ) .
(2) The algebra T ( A )  is isomorphic to the group algebra of the abelian group

K 0 ( A ) .
(3) ı H ( A )  has an (ıHall) basis given by

{[M ] � [ Kα ]  | [M] � Iso(A), α � K 0 ( A ) } .

Proof. Part (1) has been proved above. The proof of (3) is the same as [26, Theo-
rem 3.6], and hence omitted here. Part (2) follows from (3).                                        ¤

For any f  : X  → Y in A ,  we denote by
³

C f  : =  Y � X ,  0

¶ ´

0 � C1 (A).

Lemma 2.11. For any M• =  (M, d), we have [M•] =  [H (M • )] �[KIm d] in ı H ( A ) .
In particular, for any f  : X  → Y , we have

[ C f  ] =  [Ker f  � Coker f ] � [K I m  f  ].

Proof. By (2.11), if M• is acyclic, then we have [M•] =  [ K I m  d] =  [ K ]. For
general M•, note that M• =  H (M • ) in D1 (A).  By Lemma 2.3, we have the
following two exact sequences

0 −→  U• −→  Z •  −→  H (M • ) −→  0, 0 −→  U• −→  Z •  −→  M• −→  0

with U1 , U2 � C1,ac (A). Similar to [23, Lemma 3.12], we have

Im dU1     
=  Im dZ •  =  Im dU2 

+  Im d.

Then

[M•] =[Z • ]  � [U • ]−1 =  [H (M • )] � [U•] � [U • ]−1

=[H (M • )]  � [K I m  d U 1  
] � [K I m  d U 2  

]−1

=[H (M • )  � K I m  d].

The lemma is proved. ¤

In the remainder of this paper we will study the ıHall algebras of the hereditary
abelian categories A  in Example 2.12, which are intimately related to each other.
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Example 2.12.
(1) A  =  coh(P1).
(2) Let Q be a quiver. Recall the ıquiver algebra Λ ı  associated to a split ıquiver

(Q, Id) from [26, 29] is given by Λ ı  =  kQ � k[ε]/(ε2). Take A  =  repnil (Q).
The category C1(repnil (Q)) can be naturally identified with the category
repnil (Λı ). We shall specialize the quiver to the Jordan quiver QJ in §4.3
and then the Kronecker quiver QKr in Section 5.

The ıHall algebras for the ıquiver algebras in Example 2.12(2) were studied
in depth in [26, 29]. To  study the ıHall algebra for coh(P1), we shall need the
preparatory results in §2.3-§2.4.

3. The q -Onsager a l g e b r a  and i ts  c u r r e n t  presentat ion

In this section, we review the (universal) q-Onsager algebra and its Drinfeld type
presentation from [26].

3.1. T h e  q-Onsager algebra. For n � Z , r  � N, denote by
vn −  v − n n [n][n −  1] . . . [n −  r  +  1]
v −  v −1 r                              [r]!

For A , B  in a Q(v)-algebra, we shall denote [A, B ]v a  =  A B  −  v a B A,  and [A, B ] =
A B  −  B A .

Recall [26,29] (compare [2])  that the (universal) q-Onsager algebra U ı  is a Q(v)-
algebra with unity generated by B0 , B1 , K ± 1 , K ± 1 ,  subject to the following (Serre
type) relations:

(3.1) K i K − 1  =  1, K i  are central, i  =  0, 1;
3 ·  ¸

(3.2) (−1 ) r B 3 − r B j B r  =  −v −1 [2 ] 2 (B i B j  −  B j B i ) K i , if i  =  j .
r = 0

(In [29], ki are used in place of K i ,  and they are related by K i  =  −v2 ki , for
i  =  0, 1. The K i  are directly related to ıHall algebra.) The q-Onsager algebra U ı  is
the ıquantum group of split affine A1  type, a special case of ıquantum groups in
[26, 28].

Let Zα0 � Zα1 be the root lattice of affine sl2. Let δ : =  α0 +  α1. For any
β =  a0α0 +  a1α1, define K β  =  K 0

0  K 1
1  . In particular, we have

K δ  =  K0 K 1 .

(K δ  will often be denoted by C  later on.)
Let † be the involution of the Q(v)-algebra U ı  such that

(3.3) † : B 0  ↔ B1 , K 0  ↔ K1 .

We have the following two automorphisms T0 , T1  [28], which admit an interpreta-
tion in ıHall algebras (see [27] and its forthcoming sequel):

(3.4) T 1 (K 1 )  =  K − 1 , T 1 (K 0 )  =  Kδ K 1 ,

(3.5) T1 (B 1 )  =  K − 1 B 1 ,

(3.6)                 T 1 (B 0 )  =  [2]−1 B 0 B 2  −  v[2]B1 B0 B1 +  v2 B 2 B0     +  B0 K1 ,

(3.7)              T − 1 ( B 0 )  =  [2]−1 B 2 B 0  −  v[2]B1 B0 B1 +  v2 B0 B 2     +  B0 K1 .
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The action of T 0  is obtained from the above formulas by switching indices 0, 1, that
is,

(3.8) T 0  =  † ◦  T 1  ◦†.

For any r, m � Z ,  modifying [2] as in [28], we define

(3.9)

B1 , r  =  († T1 ) − r (B1 ) ,

(3.10)
�−B 1 , m −1 B 0  +  v 2 B0 B1 , m−1  +  (v2 −  1) m − 2  B1 , p B1 , m−p−2 K0 , if m >  0,

´ m  = v − v − 1  ,                                                                                                                 if m =  0,
0, if m <  0.

Note that B1,0 =  B 1  by definition.
For any m � Z ,  we define Θm recursively such that (see [28])

�v −2 Kδ Θm−2  +  Θm −  Kδ Θm−2 , if m >  0,
(3.11) Θm = v − v − 1  , if m =  0,

0, if m <  0.

Note that Θ1 =  Θ1, and Θ2 =  Θ2 −  v −1 Kδ .  As emphasized loc. cit., the definition of
Θm is motivated by the study of ıHall algebra of coherent sheaves of P1 in this
paper.

3.2. A  Drinfeld  typ e presentation of U ı .

Definit ion 3.1 ([28]). Let D r U ı  be the Q(v)-algebra generated by K ± 1 ,  C ± 1 ,  H m
and B1, r ,  where m ≥  1, r  � Z ,  subject to the following relations, for r, s � Z  and m, n
≥  1:

(3.12) K 1 K − 1  =  1 , C C −1  =  1, K 1 , C  are central,

(3.13)                                             [Hm , H n ]  =  0,

(3.14) [Hm , B1 , r ]  =  
[2m]

B1, r + m  −  
[2m]

B1 , r −m C m ,

(3.15)
[B1 , r , B1 , s + 1 ] v − 2  −  v −2 [B1, r +1 , B1, s ]v 2  =  v − 2Θ s − r + 1 C r K 1  −  v − 4Θ s − r − 1 C r + 1 K 1

Here

(3.16)

+  v − 2Θ r − s + 1 C s K 1  −  v − 4Θ r − s −1 C s + 1 K 1 .

1 +  
X

( v  −  v −1 )Θm z m  =  exp
³
(v −  v −1 )  

X  
H m z m

´
.

m ≥ 1 m ≥ 1

The relations (3.13)–(3.14) in the presentation D r U ı  can be replaced by (3.17)–
(3.18) below.

Lemma 3.2 ([28]).
(1) The relation (3.13) (for m, n ≥  1) is equivalent to

(3.17) [Θm, Θn] =  0 (m, n ≥  1).
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(2) The relation (3.14) (for r  � Z, m ≥  1) is equivalent to

(3.18) [Θm , B1,r ] +  [Θm−2 , B1 , r ]C

=  v 2 [Θm−1 , B1 , r + 1 ]v − 4  +  v −2 [Θm−1 , B1 , r −1 ]v 4  C (r  � Z, m ≥  1).

Theorem 3.3 ([28]). Let U ı  be the q-Onsager algebra. Then there is an isomor-
phism of Q(v)-algebras D r U ı  → U ı  such that

B1 , r  → B1, r , Θm → Θm, K 1  → K1 , C  → K δ (r  � Z, m ≥  1).

4. ı H a l l  a l g e b r a  and q -Onsager a l g e b r a

In this section, we establish a homomorphism from the q-Onsager algebra in its
Drinfeld type presentation to the ıHall algebra of the projective line.

4.1. T h e  homomorphism Ω. We shall use a shorthand notation ıH(P1 ) to denote
the ıHall algebra ıH(coh(P1 )), cf. Definition 2.9. Recalling S n  � tor(P1) from (2.5), we
introduce the following elements in ıH(P1 ):

(4.1) b m =  
(q −  1 ) v m −1  

k n k = m

[S n ] , for m ≥  1.

We also set

Θ0 =  
v  −  v − 1  , Θm =  0, �m <  0.

Here is another description of Θm.

Lemma 4.1. For s � Z  and m ≥  1, we have

(4.2) Θm = 2    
 
m − 1

X
[Coker f ].

0 = f : O ( s ) → O ( m + s )

Proof. Without loss of generality, we shall only prove the case for s =  0. Any
nonzero morphism f  : O → O(m) is given by a homogeneous polynomial in S,
which can be decomposed as a product of irreducible polynomials f  = f m x  ,

x�P1

for some m � N(P1) with kmk =  m, where f x  denotes the irreducible polynomial in
S  corresponding to the closed point x. Hence Coker f =  S m .  Moreover, for any
morphism g : O → O(m), we have Coker f =  Coker g if and only if g =  µf  for some
nonzero µ � k. Therefore,

[Coker f ] =  (q −  1) [Sm ].
0 = f : O → O ( m )                                                      k m k = m

This proves the lemma. ¤

The goal of this section is to prove Theorem 4.2.

Theorem 4.2. There exists a Q(v)-algebra homomorphism

(4.3) D r  e ı ı  e 1
v = v

which sends, for all r  � Z  and m ≥  1,

K 1  → [K O ] , C  → [Kδ ], B1 , r  → −
q  −  1

[O(r)], Θm → Θm .
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We shall verify that Relations (3.15), (3.17) and (3.18) are preserved by Ω,
thanks to Lemma 3.2. (Later in Theorem 5.11, we shall strengthen Theorem 4.2 by
showing that Ω is injective.)

4.2. Relation (3.15). The relation (3.15) in ıH(P1 ) is formulated as identities
(4.8)–(4.10) among O(r) in Proposition 4.4 below. To  that end, we shall first
compute the product among O(r) for various r.

Lemma 4.3. For r  � Z  and m � N, the following identities hold in ıH(P1 ):

(4.4) [O(r)] � [O(r)] =  v −1 [O(r ) � O(r)] +  v −1 (q  −  1) [KO ( r ) ] ,

(4.5)          [O(r)] � [O(r +  m +  1)] =  v − ( m + 2 ) [O ( r )  � O(r +  m +  1)]

+  
(q −  1)2 

Θm + 1  � [K O ( r ) ] ,

(4.6) [O(r +  m +  1)] � [O(r)] =  v −m [O (r )  � O(r +  m +  1)]

+ (v 4−1)v 4 a−4−m [O (r  +  a) � O(r +  m +  1 −  a)] 1 ≤ a ≤ b m + 1  c ; a = m + 1

+δm,odd (v2 −  1 )v m −2  O(r +  
m +  1

) � O(r +  
m +  1

) .

Proof. Note that any nonzero morphism f  : O(r) → O(s), for r  ≤  s, is injective.
The identity (4.4) follows since Ext1 (O(r), O(r)) =  0 and dimk Hom(O(r), O(r))

=  1.
Note that Ext1 (O(r), O(r +  m +  1)) =  0, and dimk Hom(O(r), O(r +  m +  1)) =

m +  2. From (2.1) we have the following formula for the Euler form:

(4.7) hO(r), O(s)i =  s −  r  +  1, for r, s � Z .

Now the identity (4.5) is obtained by the following computation using (2.12) and
(4.7):

[O(r)] � [O(r +  m +  1)]

=  v h O ( r ) , O ( r + m + 1 ) i [O (r ) ]  ¦ [O(r +  m +  1)]

=  v m +2 [O(r )] ¦ [O(r +  m +  1)]

=  v − ( m + 2 ) [O ( r )  � O(r +  m +  1)] +  v − ( m + 2 )
X

[ C f  ]
0 = f : O ( r ) → O ( r + m + 1 )

=  v − ( m + 2 ) [O (r )  � O(r +  m +  1)] +  v − ( m + 2 ) [Coker f ] � [ K O ( r ) ]
0 = f : O ( r ) → O ( r + m + 1 )

=  v − ( m + 2 ) [O (r )  � O(r +  m +  1)] +  v −2 (q  −  1)2Θm+1 � [K O ( r ) ] ,

where the last equality uses (4.2).
The computation for (4.6) can be performed in the setting of coh(P1), thanks

to Lemma 2.7 and Hom(O(r +  m +  1), O(r)) =  0. Note the following formula, for
m <  n and 1 ≤  a ≤  b n −m c  (cf. [3]):

¯                                                                 ̄       ½ 
(v4

−  1)v4a−4 ,       if m +  a =  n −  a, O ( m + a ) �O ( n − a )                    (v2 −  1)v4a−4 ,       if m
+  a =  n −  a.
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Hence (4.6) follows since

[O(r +  m +  1)] � [O(r)]

=  v −m [O (r  +  m +  1)] ¦ [O(r)]

=  v −m [O (r )  � O(r +  m +  1)]

+  v − m (v4 −  1)v4a−4 [O(r +  a) � O(r +  m +  1 −  a)]
1 ≤ a ≤ b m + 1  c ; a = m + 1

+  δm,odd(v2 −  1)v m−2
h

O(r +  
m +  1

) � O(r +  
m +  1

)
i
.

The lemma is proved. ¤

Proposition 4.4. For r  � Z  and m ≥  2, we have

(4.8)
[O(r),O(r +  m +  1) ] v − 2  −  v−2 [O(r +  1), O(r +  m)]v 2

=  v −2 ( q  −  1)2Θm+1 � [ K O ( r ) ]  −  v −4 ( q  −  1)2Θm−1 � [K O ( r + 1 ) ] ,

(4.9)
[O(r),O(r +  2) ] v − 2  −  v−2 [O(r +  1), O(r +  1)]v 2

=  v −2 ( q  −  1)2Θ2 � [ K O ( r ) ]  −  v −3 (q  −  1)2 [KO ( r + 1 ) ] ,
(4.10)

[O(r),O(r +  1) ] v − 2  =  v −2 ( q  −  1)2Θ1 � [K O ( r ) ] .

Proof. Let us prove (4.8). By (4.5)–(4.6), we have

[O(r +  1)] � [O(r +  m)] = v − m [ O ( r  +  1) � O(r +  m)] +  
(q −  1)2 

Θm � [K O ( r + 1 ) ] .

On the other hand, we have

O(r +  m) � O(r +  1) =  v −m + 2 [O ( r  +  1) � O(r +  m)]

+ (v4 −  1)v 4 a−2−m [O (r  +  1 +  a) � O(r +  m −  a)]
1 ≤ a ≤ b m − 1  c ; a = m − 1

+  δm,odd(v2 −  1)v m−4 [O(r +  1 +  
m −  1

) � O(r +  1 +  
m −  1

)].
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Using the above formulas and (4.5)–(4.6) again, we prove (4.8) by a direct compu-
tation:

[O(r), O(r +  m +  1) ] v − 2  −  v−2 [O(r +  1), O(r +  m)]v 2

= v − ( m + 2 ) [ O ( r )  � O(r +  m +  1)] +  
(q −  1)2 

Θm + 1  � [ K O ( r ) ]

−  v −m − 2 [O (r )  � O(r +  m +  1)]

− (v4 −  1)v 4 a−6−m [O (r  +  a) � O(r +  m +  1 −  a)]
1 ≤ a ≤ b m + 1  c ; a = m + 1

−  δm,odd(v2 −  1)v m−4 [O(r +  
m +  1

) � O(r +  
m

 
+  1

)]

−  v − ( m + 2 ) [O ( r  +  1) � O(r +  m)]

−  
(q −  1)2 

Θm −1  � [ K O ( r + 1 ) ]  +  v −m + 2 [O ( r  +  1) � O(r +  m)]

+
X

(v4 −  1)v 4 a−2−m [O (r  +  1 +  a) � O(r +  m −  a)]
1 ≤ a ≤ b m − 1  c ; a = m − 1

+  δm,odd(v2 −  1)v m−4 [O(r +  1 +  
m

 
−  1

) � O(r +  1 +  
m

 
−  1

)]

= v − 2 ( q  −  1)2Θm+1 � [ K O ( r ) ]  −  v −4 ( q  −  1)2Θm−1 � [K O ( r + 1 ) ] .

The proofs of the identities (4.9) and (4.10) are entirely similar by use of (4.5)–
(4.6), and will be skipped.                                                                                                         ¤

4.3. Relation (3.17) and Jordan ıquiver. The relation (3.17) in ıH(P1 ) is for-
mulated as the commutativity among Θm in Proposition 4.6 below. As Θm is
defined via torsion sheaves on P1 in (4.1), we shall approach the commutativity by
establishing the commutativity of the ıHall algebra of the Jordan quiver, which is
isomorphic to the ıHall algebra of torx(P1), for any closed point x  � P1.

Let QJ be the Jordan quiver, i.e., the quiver with a single vertex 1 and a single
loop α : 1 → 1. Let Λ ı  be the ıquiver algebra of the ıquiver QJ equipped with
trivial involution [26, 29], and we can identify

Λ ı  =  kQJ /(αε −  εα, ε2),

where QJ denotes the following quiver
(4.11)

µ  I
Then Λ ı  is a commutative k-algebra. Clearly, repnil (Λı )  =  C1(repnil (QJ)), and we
shall identify these two categories below. We can view repnil (QJ) naturally as a full
subcategory of repnil (Λı  ).

Let ı H ( kQ J )  : =  S DH(repni l (Λı  ))  be the semi-derived Ringel-Hall algebra of
Λ ı  , following [26, 29] (also see Section 2). Note that hX, Y i  =  0 for any X , Y �
repnil (QJ). So

[X • ] � [Y •] =  [X • ] ¦ [Y •], �X • , Y • � repnil (Λı ).

We shall study the combinatorial implication of ı H (kQJ )  in depth in [24], and here
we only need the following commutativity property.

Lemma 4.5. The algebra ı H (kQJ )  is commutative.
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Proof. The standard duality functor D  =  Homk (−, k) : repnil (Λı )  → repnil (Λı  )
is a contravariant exact functor. It is well known that D ( X )  =  X  for any X  �

repnil(Q ). Let L , M , X  � repnil(Q ) and N  � repnil (Λı ). We have

(4.12) Ext1 
J  
( L , M ) N  � Ext1 

J  

¡
D ( M ) , D ( L )

¢
D (

N
)  
� Ext1 

J  
(M , L) D ( N ) .

Let S  be the simple kQJ-module. By Proposition 2.10, ı H(kQJ )  has a Hall basis
{ [ X ]  � [ K S ] a  | X  � repnil (QJ), a � Z } .

Claim (?). We have [D (N )] =  [X �K �a ]  if and only if [N ] =  [X �K �a ]  in ıH(kQJ ) .

Let us prove Claim (?). By symmetry it suffices to prove the “if” part. By
Lemma 2.11 and Proposition 2.10, we have H • (N )  =  H • ( X )  =  X ,  and then it
follows from Lemma 2.3 and Corollary 2.4 that there exist the following exact
sequences in repnil (Λı  )

0 → U1 → Z  → N  → 0, 0 → U2 → Z  → X  → 0

with U1, U2 acyclic. In particular, N  =  X  in D1 (repnil (QJ )). Hence, we have
D ( N )  =  D ( X )  =  X  in D1 (repnil (QJ )) since D  preserves acyclic complexes. Whence
it follows from Lemma 2.11 that [D (N )]  =  [ X  � K �a ]  in ı H (kQ J )  by comparing
dimensions. Claim (?) follows.

Let a � N, X  � repnil (QJ). It follows by (4.12) and Claim (?) that there is a
natural bijection

G
ExtΛ

J  
( L , M ) N  ←→

G
ExtΛ

J  
(M , L)N .

[ N ] = [ X �K �a ]�ı H ( k Q J )                                                         [ N ] = [ X �K �a ]�ı H ( k Q J )

It is understood that [N ] runs over Iso repnil (Λı  )  in the bijection above.
By HomΛ J

 (L, M ) =  HomΛ J
 (M, L), we have

X              | ExtΛ ı  (L, M )N |

[N ]�Iso(repn i l (Λ J ) )  
| HomΛı (L, M )|

X | ExtΛ ı  (L, M )N | a
|Hom ı  (L, M )|

a�N , [ X ]

[ N ] = [ X �K �a ]�ı H ( k Q J )

X | ExtΛ ı  (M, L)N | a
|Hom ı  (M, L)|

a�N , [ X ]

[ N ] = [ X �K �a ]�ı H ( k Q J )

=[M ] � [L].

It is understood that [X ]  (and respectively, [N ]) runs over Iso
¡

repnil (QJ)
¢ 

(and
respectively, Iso repnil (Λı  )  )  in the above summations. The lemma is proved.     ¤

Note however that the (twisted) Hall algebra H(C1 (repnil (QJ ))) is not commu-
tative.

Recall there exists an equivalence of categories torx(P1) '  repnil (QJ), for each
x  � P1, inducing an embedding H  C1(repnil (QJ)) → H  C1(coh(P1)) and then an
embedding

ι x  : ı H ( k x Q J )  −→  ıH(P1 ) .
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Denote by ıH(tor(P1 )) the twisted semi-derived Ringel-Hall algebra of C1(tor(P1)).
Then ıH(tor(P1 )) is naturally a subalgebra of ıH(P1 ). Note that Ext1 (X , Y ) =  0 =
Hom(X, Y ) for any X  � torx(P1), Y � tory (P1) with x  =  y � P1. Together with
Lemma 4.5, this implies the commutativity among Θm below (which is Relation
(3.17) in ıH(P1 )).

Proposition 4.6. The algebra ıH(tor(P1 )) is commutative. In particular, we have

[Θm, Θn] =  0, �m, n ≥  1.

4.4. Relation (3.18). Recall q =  v2 . We reformulate the relation (3.18) in ıH(P1 )
(with Θm replaced by Θm, B1 , r  by − q− 1 [O(r )], and v by v )  in Proposition 4.7.

Proposition 4.7. For any m ≥  1 and r  � Z ,  we have

(4.13) Θm, [O(r)] +  Θm−2 , [O(r)] � [Kδ ]

=  v2 Θm−1 , [O(r +  1)] v
− 4  +  v − 2  Θm−1 , [O(r −  1)] v

4  � [Kδ ].
The long proof of Proposition 4.7 will occupy the remainder of this subsection.

We shall compute the products Θm � [O(r)] and [O(r)] � Θm.

4.4.1. The product Θm � [O(r)]. Denote by Ψ(d) the number of irreducible polyno-
mials in one variable of degree d over Fq . It is a basic fact in Galois theory of finite
fields that

(4.14) dΨ(d) =  qn, or equivalently, dx =  q n +  1, for n ≥  1.
d|n                                                                                      x�Pk : dx |n

We first prepare some combinatorial formulas, which will be used in the computa-
tion of Θm � [O(r)] in Proposition 4.11. For a closed point x  � Pk, denote

qx : =  qdx  , v x  : =  v d x  .

Lemma 4.8. For any positive integer a, we have

q n x  −  q n x − 1      =  q2a −  q2a−2 .
k n k = a  n x ≥ 1

Proof. For a variable t, we note

(4.15) 1 +  
a≥1

(q 2a  −  q 2a−2 )ta =  1 +  
1 −  q2t 

=  
1 −  q

t
t
.

On the other hand, we have
´

(4.16) 1 + (q n x  −  q n x −1 )  ta

a ≥ 1  
³  

x , n x : k n k = a  n x ≥ 1
´

= 1 + (1 −  q −1 )q n x  td x n x

x�P1                        n x ≥ 1

Y (1 −  q −1 )qx td x

x�P1                                     
1 −  qx tdx

Y 1 −  tdx 1 −  t ∞  µ  
1 −  td

¶Ψ (d)  

x�P1  
1 −  qx tdx                1 −  qt 

d = 1
1 −  qdtd
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Thanks to (4.15)–(4.16), the lemma follows from (and is indeed equivalent to)
Lemma 4.9 below.                                                                                                                         ¤

Lemma 4.9. The following identity holds:

(4.17)
Y  µ  

1 −  td    
 
¶Ψ (d) 1 −  qt

d = 1
1 −  qdtd                          1 −  q2t

Proof. Using (4.14), we compute

Ã  
∞  µ ¶Ψ ( d ) !

∞

ln d d = Ψ(d) ln(1 −  td) −  ln(1 −  qdtd)
d = 1                                                            d = 1

= Ψ(d)
1 

(q dm −  1)tdm

d≥1 m ≥ 1

=  
X  X

Ψ ( d ) d  · 
1

(q n −  1)tn

n = 1  d|n
µ ¶

=  
n = 1  

n
(q2n −  q n )tn =  ln     

1 −  q2t     
,

where the identity (�) follows by a change of variables n =  dm. The lemma follows.
¤

Lemma 4.10. For 1 ≤  a ≤  m and n  � N(Pk) with knk =  m −  a, we have

X  
¯ Ext1 (Sm , O (r ) ) O ( r + a )�S n

¯  =  q2a −  q2a−2 .
k m k = m

Proof. If ¯ Ext1 (Sm , O (r ) ) O ( r + a )�S  ¯ =  0, then n x  ≤  mx, and so l x  : =  m x − n x  ≥  0,
for all x; cf. (2.4). By the Riedtman-Peng formula (2.8), we have

X  
¯ Ext1 (Sm , O(r ))O ( r + a )�S n

¯
k m k = m

X O ( r + a ) �S n  | Aut(O(r))| · | Aut(Sm)|

k m k = m  
¯ 

S m , O ( r ) | Aut(O(r +  a) � Sn)|
¯

¯{O(r +  a) � S n  ³  S m  | K er f  =  O(r )}¯
k m k = m

| Aut(Sn)| · | Hom(O(r +  a), Sn)|             
¯

¯{O(r +  a) � S n  ³  S m  | K er f  =  O(r )}¯
k m k = m

| Aut(Sn)| · q m − a
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Note that

¯{O(r +  a) � S n  ³  S m  | K er f  � O(r )}¯

=  ¯{(f1 , x , f2 , x )  | f1 , x  : O(r +  a) → S ( m x )  is onto if n x  =  mx,

f2 , x  : S ( n x )  → S ( m x )  is injective, �x � P1}¯

=  ¯{ f1 , x  | f1 , x  : O(r +  a) → S ( m x )  is onto if n x  =  mx, �x � P1}¯

· ¯ { f2 , x  | f2 , x  : S ( n x )  → S ( m x )  is injective, �x � P1}¯

=  ¯{ f1 , x  | f1 , x  : O(r +  a) → S ( m x )  is onto if n x  =  mx, �x � P1}¯ · | Aut(Sn)|.

So by Lemma 4.8, we have
X  

¯ Ext1 (Sm , O(r ) ) O ( r + a )�S n
¯

k m k = m

=  q a − m X  
¯{f1 , x  : O(r +  a) → S ( m x )  | f1 , x  is onto 

i

f n x  =  mx }¯
k m k = m

=  q a − m ¯{f1 , x  : O(r +  a) → S ( m x )  | f1 , x  is onto if n x  =  mx }¯
l x d x = a

x ³ ´
=  q a − m ( q l x + n x  −  q l x + n x − 1 )  · q n x

P  
l x d x = a       l x = 0 l x = 0

=
X

x         
Y  

(q l x  −  q l x −1 )  =  q2a −  q 2a−2 .
P  

l x d x = a  l x = 0
x

The lemma is proved. ¤

Proposition 4.11. For r  � Z  and m ≥  1, we have

(4.18) Θm � [O(r)] =
( v 2  −  1)v 2 m−1  

k m k = m

[O (r )  � S m ]

+      2 m + 2     
 
X X

v4a [O(r +  a) � Sn ].
1 ≤ a ≤ m  k n k = m − a

Proof. Since Sm , O(r )
® 

=  −m  for any m � N(Pk ) with kmk =  m, we have

Θm � [O(r)] =  
(
q −  1

)
v m −1  

k m k = m

[ S m ]  � [O(r)]

=  
(
v2 −  1)v 2 m−1  

k m k = m

[ S m ]  ¦ [O(r)].

For any short exact sequence 0 → O(r) → M → S m  → 0 with kmk =  m, we have

M =  O(r) � S m , or M =  O(r +  a) � Sn ,
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for some n  such that knk =  m −  a and 1 ≤  a ≤  m. It follows that

Θm � [O(r)] =
(
v 2  −  1

)
v 2 m−1  

k m k = m

[O (r )  � S m ]  +  
(v2 −  1)v 2 m−1  

k m k = m  1 ≤ a ≤ r

| Ext1 (Sm , O(r ))O (r +a)�S n |[O(r +  a) � Sn ]
k n k = m − a

=
( v 2  −  1)v 2 m−1  

k m k = m

[O
(
r )  � 

S
m ]  +

 
(v2 −  1)v 2 m−1  

1 ≤ a ≤ r  k n k = m − a

| Ext1 (Sm , O(r ))O ( r + a )�S n | [O(r +  a) � Sn ].
k m k = m

Now the proposition follows from applying Lemma 4.10.                                               ¤

4.4.2. The product [O(r)] � Θm .

Lemma 4.12. For any morphism f  : O(r) → S n ,  there exists a � N(P1) with
a ≤  n  such that

Im f =  Sa , Coker f =  S n − a and K er f  =  O(r −  kak).

Moreover, given a surjective morphism g : O(r) → Im f ,  there exists a unique
morphism f1  : Im f  → S n  such that f  =  f1  ◦  g.

Proof. For a closed point x  in P1, the torsion sheaf S ( n )  is uniserial, and hence its
subsheaf and quotient sheaf are of the form S ( a ) ,  for 0 ≤  a ≤  n. Recall there is no
nonzero homomorphism between torsion sheaves supported on distinct closed
points. Therefore, as a subsheaf of Sn ,  Im f  =  Sa ,  for some a ≤  n. It follows that
Coker f =  S n − a .  Observe that any subsheaf of a line bundle is again a line bundle,
which is determined by its degree. Hence Ker f  =  O(r −  kak). The second statement
follows from the surjectivity of g. ¤

Proposition 4.13. For r  � Z  and m ≥  1, we have

[O(r)] � Θm =
( q  −  1)v 2 m−1  

k m k = m

[O (r )  � S m ]

+      2 m + 2     
 
X X

v4a [O(r −  a) � Sn ]  � [Kaδ ].
1 ≤ a ≤ m  k n k = m − a

Proof. For m � N(P1) with kmk =  m, we have hO(r), Sm i =  m. For any f  �
Hom(O(r), Sm ), we have Im f  =  S l  for some l  ≤  m with klk =  a. Then Ker f  =  O(r
−  a) and Coker f =  S m − l .  Hence

(4.19) [ C f  ] =  [Coker f � Ker f ]  � [K I m  f  ] =  [O(r −  a) � S m − l ]  � [Kaδ ].

By Lemma 4.12, we have

(4.20)
¯
{ f  : O(r) → S m  | Im f  =  S l }

¯  
=  

¯
{f1  : S l  ½  S m }

¯  
=  

Y  ¡
q l x  −  q l x −1 ¢

.
l x = 0
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Thus using (4.19)–(4.20) we have

[O
(
r
)
] � S m  =  v h O (

r

) , S m i  

f �H o m ( O ( r ) , S m )  
| Hom(O(r), Sm)|

=  v − m [O(r −  a) � S m − l ]  � [Kaδ ]
0 ≤ a ≤ m  l ≤ m ; k l k = a  f ; Im f �S l

=  v − m (q l x  −  q l x −1 )[O(r −  a) � S m − l ]  � [Kaδ ].
0 ≤ a ≤ m  l ≤ m ; k l k = a  l x ≥ 1

Therefore, by Lemma 4.8 we have

[O(r)] � Θm

=  
(q −  1

)
v m −1  

k m k = m

[O (r ) ]  � [Sm ]

=
1 

2 m −1       
 
X X X  Y  

(q l x  −  q l x −1 )[O(r −  a) � Sn ]  � [Kaδ ]
0 ≤ a ≤ m  k n k = m − a  k l k = a  l x ≥ 1

=
1 

2 m −1       
 
X X

(q2a −  q 2a−2 )[O(r −  a) � Sn ]  � [Kaδ ]
0 ≤ a ≤ m  k n k = m − a

=  
(q −  1

)
v 2 m−1  

k m k = m

[O (r )  � S m ]

+      2 m + 2     
 
X X

v4a [O(r −  a) � Sn ]  � [Kaδ ].
1 ≤ a ≤ m  k n k = m − a

The proposition is proved. ¤

Now we are ready to prove Proposition 4.7, i.e., the identity (4.13).

Proof of Proposition 4.7. Recall that Θ0 =  1 
− 1       and Θ−1  =  0. A  direct com-

putation using Proposition 4.11 and Proposition 4.13 shows that LHS (4.13) −
RHS (4.13) =  0.                                                                                                                             ¤

5. Der ived equivalence and two  presentations

Let ΛK r  be the ıquiver algebra of the Kronecker ıquiver (QKr , Id); see (5.2). In
this section, we establish a derived equivalence between categories rep(Λ )  and
C1(coh(P1)), inducing an isomorphism of the q-Onsager algebra in the Serre type
and the Drinfeld type presentations. Consequently, the homomorphism Ω from the q-
Onsager algebra to the ıHall algebra of the projective line is injective.

5.1. Reflection functors. Let (Q, %) be a (connected) acyclic ıquiver of rank ≥  2.
We recall the reflection functors for the ıquiver algebra Λ ı  associated to a split
ıquiver (Q, Id) from [27]. For any sink `  � Q0, define the quiver s` (Q) by reversing all
the arrows ending at `. Let Λ0ı =  s Λ ı  be the ıquiver algebra of the split ıquiver
(Q0, Id). The quiver Q0 of s + Λ ı  can be constructed from Q by reversing all the
arrows of Q ending at `. Dually, we can define s − Λ ı  for any source `  by reversing
all the arrows of Q starting from `.
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A  reflection functor associated to a sink `  � Q0 is defined in [27, §3.2]

(5.1) F `      : rep(Λı ) =  rep(Q, I ) −→  rep(s` Λ
ı )  =  rep(Q0, I0).

Dually, a reflection functor F −  associated to a source `  � Q0 is also defined. In
fact, the action of F +  (and F − )  on repk(Q) � rep(Λı ) is the same as that of the
classic B G P  reflection functor.

5.2. T h e  Kronecker  ıquiver. Consider the Kronecker quiver QKr : 0

Denote by A t  the transpose of a matrix A.

Lemma 5.1 (See e.g. [31, Section 3.2]).

α
1 .

β

(1) Indecomposable pre-projective kQKr-modules (up to isomorphisms) are given
by:

P n  =  k n
p r o
n

p r o
n

k n + 1  , �n ≥  0,

where
1     0     · · ·

� 0     1
· · ·

Apro =  �
 

. .
. . .

� 0     0
· · · 0     0     · · ·

0 
� � 

0     0
0 � � 1     0

. 
� and B pro =  � 0    

 
1

1 �
� .      . 0

0     0

· · ·
· · ·
· · ·
. . .
· · ·

0 
�

0 �
0 �. .
� 1

(2) Indecomposable pre-injective kQKr-modules (up to isomorphisms) are given
by:

I n  =  k n + 1
( A p r o ) t

k n  , �n ≥  0.
( B p r o ) t

Let ΛK r  be the ıquiver algebra of the split Kronecker ıquiver (QKr, Id), cf. [26].
Then ΛK r  is isomorphic to the algebra with its quiver QKr and relations as follows:

ε0 ε1

(5.2) 0
ª  α  

- 1
ª

β

ε0 =  0 =  ε1, ε1α =  αε0, ε1β =  βε0.

We can make sense of the ıHall algebra ıH(kQK r );  see Example 2.12. Recall the
universal q-Onsager algebra U ı  from Section 3.1.

Proposition 5.2 ([26, Theorem 9.6]). There exists a Q(v)-algebra monomorphism

(5.3) ψ : U | v = v  −→  ıH(kQK r ),

which sends B i  → q −1 [S i ] , K i  → [ K S i  ], for i  =  0, 1.

Let K0 (kQK r )  =  Z 2  be the Grothendieck group of rep (QKr ). Denote by α i  the
class of S i ,  for i  =  0, 1. For β =  a0α0 +  a1α1 � Z2 , we can define [Kβ ]  : =  [ K S 0  ]a0

�[ K S 1  ]a1  . Let T (Λı
r )  be the quantum torus of ıH(kQK r ),  i.e., the subalgebra
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of ıH(kQK r )  generated by [ K S  ], i  =  0, 1. Then ıH(kQK r )  is free as a left T (Λı  )-
module with a basis given by { [ X ]  | X  � repk(QKr) � rep(Λı  ) } ;  see Proposition
2.10.

Let Q0     
 : =  s+ QK r  =  s−QKr , and let Λ0ı be the split ıquiver algebra of (Q0 , Id).

Let † : QKr  → QKr be the natural isomorphism by exchanging the vertices 0 and
1, which induces an isomorphism † : rep(ΛKr ) → rep(ΛKr). Then we obtain two
functors (cf. (5.1) for F i  ):

S −  : =  † ◦  F −  : rep(ΛKr ) → rep(ΛKr ), S +  : =  † ◦  F +  : rep(ΛKr ) → rep(ΛKr).

We shall describe the actions of S +  and S −  on repk(QKr) � rep(Λı
r ).

For a representation of kQKr , X  =  (V
A

W ), we have the exact sequences

�      
0
�                                                           �      � �

�                                                           �      �

0 → U0     −→  V � V −→  W, V −→  W � W 
(  
−→

0 0 )  
U00 → 0.

Then by [6, Section 1] we have

S + ( X )  =  (U0

C 0

V ) ,
D 0

S − ( X )  =  (W
C 0 0          

U00) .
D 0 0

Let repi
 (QKr ) be the full subcategory of rep (QKr ) consisting of modules without

summands isomorphic to S i ,  for i  =  0, 1. Then S +  : rep1(QKr) → rep0(QKr) is an
equivalence with S −  as its inverse.

The functor F1      (cf. (5.1))  induces an isomorphism Γ1  : ı H(kQK r )  → ıH(kQ0 
r )

by [27, Theorem 4.3]. Similarly, S +  induces an automorphism S +  : ıH(kQK r )  →
ıH(kQ0 

r ). Note that † induces an isomorphism † : ıH(kQ0 
r )  → ıH(kQK r ).  By

definition, it is clear that

S +  =  † ◦  Γ1  : ıH(kQK r )  −→  ıH(kQK r ).

By [27, Proposition 4.4], we have the following result.

Lemma 5.3. The isomorphism S +  : ıH(kQK r )  −→  ıH(kQK r )  sends, for M �
repk(QKr),

S+ ([M ]) =  [S+ (M )], S+ ([S1 ]) =  [ K S 0  ]
−1  � [S0],

S + ( [ K α 1  ]) =  [ K − α 0  ],      S
+ ( [ K α 0  ]) =  [ K α 1 + 2 α 0  ].

Dually, we have Lemma 5.4.

Lemma 5.4. The isomorphism S −  : ıH(kQK r )  −→  ıH(kQK r )  sends, for M �
repk(QKr),

S− ([M ]) =  [S− (M )],

S − ( [ K α 1  ]) =  [ K α 0 + 2 α 1  ],

S− ( [S0 ])  =  [ K S 1  ]
−1  � [S1],

S − ( [ K α 0  ]) =  [ K − α 1  ].

By adapting [27], we have the following commutative diagrams

U | v = v
†T 1

U | v = v

ψ ψ

− 1

U | v = v
1 U | v = v

ψ ψ

ıH(kQK r ) S +
ıH(kQK r ) ıH(kQK r ) S −          

ıH(kQK r ).
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Lemma 5.5. For n ≥  0, we have

ψ (B n δ +α 1  )  =  
q −  1

[Pn ], ψ ( B − ( n + 1 ) δ + α 1  )  =  
q −  1

[In ] � [ K − n δ − α 0  ].

Proof. We have (S− ) n (M ) � rep0(QKr), and for any indecomposable M � rep0(QKr),
we have S − (M ) is the unique kQKr-module (up to isomorphisms) of dimension
†s0(dim M ). In particular, dim(S− )n (S1 ) =  nδ +  α1, so (S − ) n (S 1 )  =  Pn .  Then

ψ (B n δ +α 1  )  =ψ ((T0†)−1 (B1 ))  =  (S− ) nψ (B 1 )

=
q  −  1

(S− )n ([S1 ]) =  
q −  1

[Pn].

We also have

ψ ( B − ( n + 1 ) δ + α 1  )  =ψ ((T0†)n + 1 (B1 ))  =  (S + ) n + 1ψ (B 1 )

=
q  −  1

(S+ )n + 1 ( [S1 ])  =  
q −  1

(S+ )n ([S0 ] � [ K − α 0  ])

=
q  −  1

(S+ )n ([S0 ]) � [ K − n δ − α 0  ] =  
q −  1

[In ] � [ K − n δ − α 0  ].

The lemma is proved. ¤

5.3. A  derived equivalence. Let ıC (kQKr ) be the composition subalgebra of
ıH(kQK r )  generated by [Si ], and [ K S i  ] ( i  =  0, 1).

Lemma 5.6. The composition algebra ıC (kQKr ) contains all the elements [X ] ,
where X  is either an indecomposable pre-injective module or an indecomposable
pre-projective module.

Proof. By Proposition 5.2, we have an algebra isomorphism ψ : U | v = v  → ıC (kQKr )
given by (5.3). Now the lemma follows from Lemma 5.5.                                               ¤

Definit ion 5.7. The composition algebra ıC(P1) is the subalgebra of ıH(P1 ) gener-
ated by the elements [O(n)], Θk , and [ Kα ]  where n � Z, k ≥  1 and α � K0 (P1 ) =  Z2 .

Let T =  O � O(1) and B  =  EndP1 (T ). It is known [5] that T is a tilting object,
and B op =  kQKr . It follows that

(5.4) RHomPk 
(T , −)  : Db(coh(P1)) −→  Db (repk (QKr ))

is a derived equivalence.
Let V be the subcategory of coh(Pk) consisting of M such that HomP1 (T , M ) =  0.

Denote U =  Fac T , the full subcategory of coh(P1) consisting of homomorphic
images of objects in add T . Then (U , V ) is a torsion pair of coh(Pk).

Lemma 5.8. (C1(U ), C1(V )) is a torsion pair of C1(coh(P1)). In particular, any
M � C1(coh(Pk)) admits a short exact sequence of the form

(5.5) 0 −→  M −→  X M  −→  TM  −→  0,

where X M  � C1(U ) and TM  � add KT  .

Proof. We have Hom(U•, V •) =  0 for any U• � C1(U ), V • � C1(V).
For any M• =  (M, d) � C1(coh(P1)), there exists a short exact sequence 0 →

U −→  M −→  V → 0 such that U � U, V � V. Since Hom(U, V ) =  0, we have
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gdf =  0, and then there exists d0 : U → U and d00 : V → V such that df =  f d0 and
gd =  d0

0g. Denote by U• =  (U, d0) and V • =  (V, d00). We have the exact sequence
0 → U• → M• → V • → 0. So (C1(U ), C1(V )) is a torsion pair of C1(coh(P1)).

The proof of the last statement is the same as for [23, Theorem 5.8]. ¤

Proposition 5.9. Let K T       =  K O  � K O ( 1 ) . Then K T      is a tilting object of
Db(C1(coh(P1))) with E n d ( K T  )  =  Λı

r ,  which gives rise to an equivalence:

RHom(K T  , − )  : Db(C1(coh(P1))) −→  Db (rep(Λı
r )).

Proof. Similar to [23, Theorem 5.11], one has that E xt p ( K T  , K T  )  =  0 for p >  0.
We have C1(U ) =  Fa c ( K T  ), and hence (5.5) implies that K T  is a tilting object of
Db(C1(coh(P1))). It is routine to check that E n d ( K T  )  =  Λı

r ,  which will be omitted.
Then the derived equivalence follows from the standard arguments; see [17]. ¤

Proposition 5.10. Let F  =  Hom(KT  , − ) .  Then there exists an isomorphism

z  : ıH(P1 ) −→  ıH(kQK r ),

[M] → [F (TM )]−1  � [F (X M ) ] ,

where X M  � C1(U ) and TM  � add KT  , are defined in the short exact sequence (5.5).

Proof. Follows from [29, Theorem A. 22] with the help of Lemma 5.9.                     ¤

5.4. In ject iv i ty  of Ω. Recall the isomorphism Φ : D r U ı  → U ı  from Theorem 3.3,
the homomorphism Ω : D r U ı

| v = v  → ıH(P1 ) from Theorem 4.2, the monomorphism ψ
: U | v = v  → ıH(kQK r )  from Proposition 5.2, and the isomorphism z  : ıH(P1 ) →
ıH(kQK r )  from Proposition 5.10.

Theorem 5.11. We have the following commutative diagram of algebra homomor-
phisms

U | v = v
Φ − 1

ψ

D r       ı
| v = v

Ω

ıH(kQK r )  z − 1
ıH(P1 ),

where Φ, z  are isomorphisms. In particular, the homomorphism Ω is injective.

Proof. In this proof, we denote G  =  z − 1  : ı H(kQK r )  → ıH(P1 ) for short. Note that
G([S1 ]) =  [O] and G([P0 ]) =  [O(1)]. Then Ω ◦  Φ−1 (B1 )  =  Ω(B0 ) =  q− 1 [O], and

G  ◦  ψ (B1 ) =  
q −  1

G([S1 ]) =  
q −  1

[O] =  Ω ◦  Φ−1 (B1 ).

We have a short exact sequence 0 → S�2 → P0 → S0 → 0, which gives rise to a
short exact sequence

0 −→  K  �2 −→  M• −→  S  −→  0,
1

where ³
µ ¶ ´

M• =  P0 � S�2, 0 0 .

Hence we have [S ] =  [M•] � [ K  �2 ]−1 .
1
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Since HomP1 (O, O(1)) � HomΛKr
 (S1 , P0), there exists a unique h : O�2 → O(1)

such that Hom(T, h) =  f .  Then Hom(KT  , X  )  =  M , where
³ ´

X •  =  O(1) � O�2, 0 0 .

We have z ( [ X • ] )  =  [M•] thanks to X •  � C1(U ). Note that h is surjective, and
Ker h =  O(−1). Then [X • ] =  [O(−1)] �[KO (1) ] =  [O(−1)] �[Kδ+ O ]. Hence we have

G([S0 ]) =  G([M • ] � [ K S �2  ]−1 )  =  [O(−1)] � [ K δ + O ]  � [ K − 2 O]  =  [O(−1)] � [K δ − O ] .

Therefore, we have

Ω ◦  Φ−1 (B0 )  =  Ω ( B 1 , −1 C K − 1 )  =  
q −  1

[O(−1)] � [ K δ − O ]

=  
q −  1

G([S0 ]) =  G  ◦  ψ (B0 ).

Finally, we verify that

Ω ◦  Φ−1 (K 1 )  =  Ω(K1 ) =  [ K O ]  =  G ( [ K S 1  ]) =  G  ◦  ψ (K1 ),

and

Ω ◦  Φ−1 (K0 )  =Ω ( C K − 1 )  =  [Kδ ]  � [ K O ] − 1

= [ K O ( 1 ) ]  � [ K O ] − 2  =  G ( [ K P 0  ] � [ K S 1  ]
−2 )

= G ( [ K S 0  ]) =  G  ◦  ψ (K0 ).

Summarizing, we have proved Ω ◦  Φ−1  =  G  ◦  ψ.
The injectivity of Ω follows by the injectivity of ψ and the commutative diagram.

¤

Corol lary 5.12. The algebra isomorphism z  : ıH(P1 ) → ıH(kQK r )  restricts to an
isomorphism of the composition algebras z  : ıC(P1) → ıC (kQKr ). We have the
following commutative diagram of isomorphisms:

D r  e ı Φ
v = v

Ω

ıC(P1) z

U | v = v

ψ

ıC (kQKr ) .

6. A  H a l l  a l g e b r a  r e a l i z at i o n  o f  im ag inary  r o o t  v e c t o r s

In this section, we provide a Hall algebra interpretation H m  of the generators
H m  in the Drinfeld type presentation of the q-Onsager algebra.

Recall Θm � ıH(P1 ) from (4.1) is the image of Θm under the monomorphism
Ω : D r U ı

| v = v  → ıH(P1 ); cf. Theorem 4.2. In light of (3.16), the elements

H m  : =  Ω(Hm ), for m ≥  1,

must satisfy

(6.1) 1 +  
X

( v  −  v −1 )Θm z m  =  exp
¡
(v −  v − 1 )  

X  
Hm z m ¢

.
m ≥ 1 m ≥ 1
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Lemma 6.1. For m ≥  1 and r  � Z ,  we have

(6.2) [Hm , [O(r)]] =  
[2m]

[O(m +  r)] −  
[2m]

[O(m −  r)] � [Kmδ ].

Proof. Note that the equivalence between (3.14) and (3.18) follows from the identity
(3.16) formally, as shown in [28]. In the same way, the identity (6.2) is equivalent to
(4.13). ¤

We shall describe the elements H m .  Recall that any indecomposable object
in torx(P1), for x  � P1, has the form S ( n )  of length n ≥  1. For any partition
λ  =  (λ1, . . . , λr ), define

S ( λ )  : =  S ( λ 1 )  � · · · � S ( λ r ) .

For any x  � Pk and m ≥  1, we define (compare [24])
( λ )

(6.3) P m , x  : =  
λ ` m  

nx (`(λ)  −  1)
| Aut(S (

λ
) )|

,
[S ( m ) ]

m , x v x  −  v − 1

where
l l

nx (l )  = (1 −  v 2 i )  = (1 −  q i ).
i = 1 i = 1

Introduce the generating functions

(6.4) Px (z )  : = bm , x z m−1 ,
m ≥ 1

(6.5) Θx (z ) :=1 + ( v x  −  v −1 )Θm , x z m  =  1 + [S (m) ]z m .
m ≥ 1                                                                         m ≥ 1

Lemma 6.2 ([24]). We have

(6.6) Θx (z ) =  exp
¡
(vx  −  v − 1 ) Hm , x z m ¢

,
m ≥ 1

where

(6.7)
[m]v m  [m/2]v

m , x x m m , x m,ev m 2  dx δ

Recall Θm from (4.1). Define the generating function

(6.8) Θ(z) =  1 + ( v  −  v−1 )Θm z m .
m ≥ 1

Since the categories torx (Pk ) for x  � Pk are orthogonal, by (4.1) and (6.5) we have

Θ(vz ) =  1 + [Sn ]z m = Θx (zdx  ).
m ≥ 1  k n k = m x�Pk

Now we establish the main result of this section.

Proposition 6.3. For m ≥  1, we have

(6.9) b m =  
X  [m]

dx      
X  

nx (`(λ )  −  1) ¯
[S (λ ) ]  

)  ¯ −  δm,ev 
[m]

[K m  δ].
x,d x |m |λ|= d
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Proof. By (6.6), we have

Θ(vz ) = Θx (zdx  )
x�P1

= exp
¡
(vx  −  v − 1 ) H m , x z m d x  

¢

x�P1 m ≥ 1

= exp
¡

( v x  −  v − 1 ) b m , x z m d
x
 
¢

x�P1 m ≥ 1

= exp
¡

( v x  −  v − 1 ) H
d x  

,x z m ¢

m ≥ 1  x ,d x |m

= exp
¡ X  X  

( v x  −  v − 1 )
¡

v m  [m/dx ]v x  P  m   , x

m ≥ 1  x ,d x |m x

−  δ  m   ,ev v 2  
[m/(2dx )]v x  [ K m  δ ]

¢
zm¢

.
x

Observe from (6.1) that

exp
¡
(v −  v − 1 ) H m z m ¢ 

= 1  + ( v  −  v −1 )Θm z m  =  Θ(z).
m ≥ 1 m ≥ 1

So it suffices to show that
(6.10)

v − m  

x , d x | m

(vx  −  v − 1
) ¡

v m  [m/d
d

]vx b
d 

  , x  −  δ
d 

  , e v v
m  [m/(2dx )]v x  [ K  

2  δ]
¢

=  ( v  −  v − 1 )
³  X  [m]

dx      
X  

nx (`(λ)  −  1) ¯
[S (λ ) ]  

)  ¯ −  δm,ev 
[m]

[K m  δ ]
´
.

x,d x |m |λ|=  m

Recalling P m , x  from (6.3), we have

v − m      
X  

( v x  −  v − 1 ) v m  [m/dx ]v x  P  m   , x
x,
d x

|m x

=  
x,d x |m 

v m  −  v − m  
dx 

λ ` d  
  

nx ( ` (λ)  −  1)
| Aut(S 

] 
))|

=  ( v  −  v − 1 )  
X  [m]

dx      
X  

nx (`(λ)  −  1) ¯
[S (λ ) ]  

)  ¯ .
x ,d x |m |λ|=  m

Moreover, using (4.14), we compute

v − m      
X  

( v x  −  v −1 )δ  m   , e v v
m  [m/(2dx )]v x  [ K m  δ]

x,d x |m x

=  
X  

δ
d 

  , e v v −  2  
v  2      −  v −  2  

d x [ K  
2  δ] =  δm,ev 

1 −  v − m       X  
d x [ K  

2  δ]
x,d x |m x ,d x | m

=  δm,ev 
1 −  v − m  

(1 +  q 2  ) [ K  
2  δ] =  ( v  −  v−1 )δm , e v  

[m]
[K 

2  δ].
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So (6.10) holds. We are done. ¤
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