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Abstract
We establish automorphisms with closed formulas on quasi-split ıquantum groups
of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are
carried out in the framework of ıHall algebras and reflection functors, thanks to the
ıHall algebra realization of ıquantum groups in our previous work. Several quantum
binomial identities arising along the way are established.
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1 Introduction

1.1 Background

Among the fundamental structures of Drinfeld–Jimbo quantum groups is the existence
of braid group symmetries [28, 29]; also see [15, 20] for different formulations. The
formulas for the actions of these automorphisms are intimately related to Lusztig’s
higher order Serre relations [30]. Reflection functors on Hall algebras can be used
to construct braid group symmetries for quantum groups; see [34, 35, 37, 39]. Braid
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group actions have played a fundamental role in the constructions of PBW bases and
canonical bases, and they also have applications in geometric representation theory
and categorification.

A Satake diagram

(I = I◦ ∪ I•, τ )

consists of a bicolored partition of the Dynkin diagram I = I◦ ∪ I• and a (possibly
trivial) diagram involution τ subject to some compatibility conditions. Associated to
a Satake diagram, a quantum symmetric pair (U,Uı ) [18, 19] consists of a Drinfeld-
Jimbo quantum group U and its coideal subalgebra Uı ; we shall refer to Uı as an
ıquantum group and further callUı quasi-split if I• = ∅. On the other hand, a universal
ıquantum group˜Uı [27] is a coideal subalgebra of the Drinfeld double quantum group
˜U, and the ıquantum group Uı with parameters à la Letzter is recovered by a central
reduction of ˜Uı .

For (mostly) quasi-split ıquantum groups of finite type with distinguished param-
eters, Kolb and Pellegrini [17] constructed automorphisms Ti of Uı for i ∈ I◦ and
show they satisfy the braid group relations associated to the restricted Weyl group of
the symmetric pair; the formulas and the proofs therein relied essentially on computer
computations. In type AI, the braid group action of Uı was noted earlier indepen-
dently in [6, 32]; see [11] for a recent progress. It was shown in [2] that Lusztig’s
braid group action Ti , for i ∈ I•, preserves Uı of arbitrary Kac-Moody type. A nat-
ural and challenging question since then has been to establish these symmetries with
closed formulas for their actions on generators of Uı in a conceptual way and in great
generalities (such as Kac-Moody type and/or beyond quasi-split type).

The ıProgram [1] aims at generalizing fundamental (algebraic, geometric, and
categorical) constructions for quantum groups to ıquantum groups. In case of (quasi-
split) quantum symmetric pairs of diagonal type,we recover constructions for quantum
groups. In the framework of semi-derived Hall algebras [13, 22, 23] (generalizing [5,
14, 33] and [36, 38]), the authors have developed an ıHall algebra realization for
the quasi-split universal ıquantum groups ˜Uı , first for finite type in [27] and then
for symmetric Kac-Moody type in [24]. In [26], we have used reflection functors to
provide a conceptual realization of the braid group symmetries on a class of quasi-split
universal ıquantum groups ˜Uı of finite type, and subsequently on the corresponding
Uı , which agree with [17] for distinguished parameters.

The reflection functors are formulated in the Hall basis and have the advantage
that the resulting maps on ˜Uı are automatically algebra automorphisms; however, the
reflection functor approach provides very little clue on the closed formulas for the cor-
responding automorphisms on (ı-)quantum groups in terms of Chevalley generators.
Therefore, a complementary approach is needed.

In [7] joint with X. Chen, the authors obtained a Serre presentation for quasi-split
ıquantum groups Uı of arbitrary Kac-Moody type (cf. [16]), building on earlier work
of Letzter [19] and others. Similarly, a universal ıquantum group ˜Uı admits a Serre
presentation (see Proposition 6.3) with Chevalley generators Bi and˜ki , for i ∈ I [24]:

˜Uı = 〈

Bi ,˜ki (i ∈ I)|relations (6.15)–(6.19)
〉

. (1.1)
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Chen and the authors established in [8] the Serre-Lusztig (i.e., higher order Serre)
relations between Bi , Bj in ˜Uı for i = τ i , generalizing Lusztig’s construction in [30,
Chapter 7]. Based on the expectation that the close relations between braid group
actions and Serre-Lusztig relations in quantum groups carry over to the setting of
ıquantum groups, we made a conjecture in [8, Conjecture 6.5] on closed formulas for
automorphisms T′

i,e,T
′′
i,e, for i = τ i and e ∈ {±1}. Recently, we established in [9]

the Serre-Lusztig relations between Bi , Bj in ˜Uı for i �= τ i ; in addition, we made a
conjecture in [9, Conjecture 3.7] on closed formulas for automorphisms T′

i,e,T
′′
i,e, for

i �= τ i , though the relations with Serre-Lusztig relations were not as direct as in the
earlier cases.

1.2 The goal

Recall Lusztig has constructed 4 variants of braid group symmetries denoted by T ′
i,e

and T ′′
i,e, for i ∈ I and e ∈ {±1}, on the quantum group U [30, Chapter 37]. One can

further transform from one variant to another by twisting with various well-known
involutions and anti-involutions.

In this paper, we work with quasi-split ıquantum groups ˜Uı and Uı of arbitrary
symmetric Kac-Moody type, where a mild condition that the Cartan integers c j,τ j for
all j ∈ I are even is further imposed due to a use of the ıHall algebra technique. We fix
a set Iτ of representatives of τ -orbits on I, and let Iτ denote the subset of i ∈ Iτ whose
τ -orbit is of finite type. By definition, the restricted Weyl group W τ is the τ -fixed
point subgroup of W . According to [31, Appendix], W τ is a Coxeter group generated
by si defined in (6.3), for i ∈ Iτ .

We shall establish 4 versions of automorphisms on ˜Uı ,

T′
i,e, T′′

i,e, for i ∈ Iτ , e ∈ {±1}

with closed formulas on the Chevalley generators in (1.1); the T′
i,e and T

′′
i,e are related

to each other via a bar involution ψı and an anti-involution σı on ˜Uı . Our results
have confirmed substantially in the setting of quasi-split ıquantum groups [8, Conjec-
ture 6.5] in case i = τ i and [9, Conjecture 3.7] in case i �= τ i .

1.3 Themain results

The formulas for the automorphisms T′′
i,e are given in terms of the ıdivided powers

B(r)
i,p (6.12)–(6.13) (for i = τ i) and standard divided powers (6.14) B(r)

i (for i �= τ i).
The ıdivided powers arose from the theory of ıcanonical basis and they depend on a
parity p ∈ Z2 (cf. [1, 4, 7]). �

Theorem A (Theorems 6.8, 6.10) For i ∈ Īτ and e ∈ {±1}, there are automorphisms
T′′
i,e on ˜U

ı such that
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(1) (i = τ i) : T′′
i,e(

˜k j ) = (−v1+e
˜ki )−ci j˜k j , and

T′′
i,e(Bi ) = (−v1+e

˜ki )
−1Bi ,

T′′
i,e(Bj ) =

∑

r+s=−ci j

(−1)rver B(r)
i,p B j B

(s)
i,ci j+p

+
∑

u≥1

∑

r+s+2u=−ci j
r=p

(−1)r+uver+eu B(r)
i,p B j B

(s)
i,ci j+p(v

˜ki )
u, for j �= i;

(2) (i �= τ i) : T′′
i,e(

˜k j ) =˜k
−ci j
i

˜k
−cτ i, j
τ i

˜k j ,

T′′
i,1(B j ) =

{

−˜k−1
i Bτ i , if j = i

−Bi˜k
−1
τ i , if j = τ i,

T′′
i,−1(B j ) =

{

−˜k−1
τ i Bτ i , if j = i

−Bi˜k
−1
i , if j = τ i,

and for j �= i, τ i ,

T′′
i,1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+svr−s+(−ci j−r−s−u)u

× B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i
˜kuτ i ,

T′′
i,−1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+sv−(r−s+(−ci j−r−s−u)u)

× B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i
˜kui .

The closed formulas for the other automorphisms T′
i,e of ˜Uı can be found in

Theorem 6.11.

�

Theorem B (Theorem 6.12)We have T′
i,e = (T′′

i,−e)
−1, for any i ∈ Īτ and e = {±1}.

Note that the leading terms (i.e., the u = 0 summands) in the formulas for the
symmetriesT′

i,e,T
′′
i,e acting on Bj (for j �= i, j �= τ i) in˜Uı are precisely the formulas

for the symmetries T ′
i,e, T

′′
i,e on Fj (and also E j in case i �= τ i) in U; see [30, 37.1.3].

Theorem A in the special case of universal affine ıquantum group of split rank
one (i.e, universal q-Onsager algebra) has already found applications in [25]; compare
with the braid group action on the q-Onsager algebra in [3]. For ıquivers of diagonal
type, the ıquantum group is the Drinfeld double˜U, and we reformulate Theorem A as
Propositions 6.20–6.21 on the automorphisms on ˜U; they descend to automorphisms
on U upon the identification ˜K ′

i = ˜K−1
i , providing a new ıHall algebra approach for

some main formulas in [30, Chapter 37]; compare [35, 39].
The automorphisms T′

i,e,T
′′
i,e on ˜Uı descend to automorphisms on an ıquantum

group Uı associated with distinguished parameters.
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It remains a fundamental problem to formulate and establish conceptually in full
generality the braid group actions on ıquantum groups of arbitrary (not necessarily
quasi-split) finite type and on their modules. This shall require completely different
new ideas.

In the process of proving Theorem A, we are led to the following v-binomial
identitieswhich are of independent interest; for an additional novel v-binomial identity
see Proposition 4.4. We refer to (3.1) for notation [2k]!!.
Theorem C (Propositions 4.2–4.3, Theorem 4.5) The following identities hold, for
d ≥ 1:

∑

k,m,n∈N

k+m+n=d

εn
v(n+1

2 )−2km+2k

[n]![2k]!![2m]!! =
∑

t,k,m,n∈N

t+k+m+n=d

εn
vt

2−2dt+t+2nt+(n+1
2 )−2km−2m

[n]![2k]!![2m]!! (v − v−1)t

=
{

0, if ε = −1,
2vd (v+v−1)(v2+v−2)···(vd−1+v1−d )

[d]! , if ε = 1.

The v-binomial identities in Theorem C are closed related to some v-binomial
identities arising from the ıHall algebra realization of ıquantum groups of Kac-Moody
type in [24].

1.4 Our approach

Lusztig formulated and established the braid group actions on both the algebra U
and on its integrable highest weight modules, with the actions on the module level
established first; cf. [30, §5.2, Chapter 37]. In the ıquantum group setting, we do not
have the braid group action on the module level available for now, and so we cannot
follow Lusztig’s approach. Instead, we shall resort to ıHall algebras and reflection
functors, and accordingly, most constructions and computations in this paper will be
carried out in the setting of ıHall algebras.

Our strategy is to verify the closed formulas for the action of reflection functors �i ,
for i ∈ Iτ . Via the algebra isomorphism from˜Uı to the composition ıHall algebra (see
Theorem 6.4 and Corollary 6.7), we transfer the isomorphism �i of ıHall algebras
to an automorphism T′′

i,1 of the ıquantum group ˜Uı . The detailed study of reflection
functors can be of interest in its own.

The formulas for T′′
i,e and T′

i,e are very different and so are the proofs, depending
on whether or not i = τ i .

Let us explain in some detail the proof for the formula forT′′
i,1(Bj ) in TheoremA(1)

for i = τ i .We shall aim at establishing the closed formulas for the reflection functor�i

in the ıHall algebra corresponding to T′′
i,1(Bj ); see Theorem 3.2. To that end, we shall

compute the ıHall algebra version of theRHSof the formula forT′′
i,1(Bj ) inTheoremA

in the ıHall basis, starting with an expansion formula of the ıdivided powers in the
ıHall basis established in [24]. This (mostly) homological algebra computation in a
rank 2 ıHall algebra is challenging and tedious. By a comparison with the definition of
the reflection functor �i , we then need to show that all except the leading summand in
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the ıHall basis vanishes. After several steps of combinatorial reduction, we reduce the
desired vanishing properties to a combinatorial identity, which is then derived from
the v-binomial identities in Theorem C.

While the strategy for the proof of Theorem A(2) in case i �= τ i is similar, the
details are all different and separated from the case i = τ i ; we shall prove its ıHall
algebra counterpart (see Theorem 5.1), and this requires new homological algebra
computations and combinatorial reductions in Sect. 5. This explains in part the length
of the paper.

Recall the counterpart of Theorem B holds for the corresponding braid group sym-
metries on quantum groups, and the proof in [30, Chapter 37] relies essentially on
the braid group actions on the module level. We present a conceptual simple proof of
Theorem B in the framework of ıHall algebras.

1.5 The organization

This paper is organized as follows. In Sect. 2, we review the basics on ıHall algebras,
modulated graphs for ıquivers, and reflection functors.

In Sect. 3, we establish the reflection functor counterpart of Theorem A for i =
τ i , by reducing it to a v-binomial identity. This novel identity is then derived from
Theorem C which is established in Sect. 4. We also relegate to Appendix B the detail
for a proof of a second half of ıSerre relations (which is very similar to the one of the
first half of ıSerre relations given in this section).

In Sect. 5, we establish the reflection functor counterpart of Theorem A for i �= τ i .
The long proof of Proposition 5.3 is given in Appendix A.

In Sect. 6, we review ıquantum groups and their ıHall algebra realizations. Then we
reformulate in terms of ˜Uı the formulas for the reflection functors on ıHall algebras
obtained in the previous sections. We also prove Theorem B.

2 ıQuivers and ıHall algebras

In this section, we review and set up notations for ıquivers, ıHall algebras, and the
reflection functors on ıquiver algebras, following [24, 26, 27] (also cf. [22, 23]).

2.1 Notations

For an additive category A and M ∈ A, we denote
� add M – subcategory ofA whose objects are the direct summands of finite direct

sums of copies of M ,
� FacM– the full subcategory of A of epimorphic images of objects in add M ,
� Iso(A) – set of the isoclasses of objects in A,
� [M] – the isoclass of M .
For an exact category A and M ∈ A, we denote
� K0(A) – the Grothendieck group of A,
� ̂M – the class of M in K0(A).
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Let k be a field. For a quiver algebra A = kQ/I (not necessarily finite-dimensional),
we always identify left A-modules with representations of Q satisfying relations in I .
A representation V = (Vi , V (α))i∈Q0,α∈Q1 of A is called nilpotent if for each oriented
cycle αm · · ·α1 at a vertex i , the k-linear map V (αm) · · · V (α1) : Vi → Vi is nilpotent.
We denote

� mod(A) – category of finite-dimensional nilpotent A-modules,
� proj.dimAM – projective dimension of an A-module M ,
� inj.dimAM – injective dimension of M ,
� D = Homk(−, k) – the standard duality.

2.2 The ıquiver algebras

We recall the ıquiver algebras from [24, §2]; see also [27, §2].
Let k be a field. Let Q = (Q0, Q1) be a quiver (not necessarily acyclic). Let ni j

be the number of edges connecting vertices i and j . Throughout the paper, we shall
identify

I = Q0.

An involution of Q is defined to be an automorphism τ of the quiver Q such that
τ 2 = Id. In particular, we allow the trivial involution Id : Q → Q. An involution
τ of Q induces an involution of the path algebra kQ, again denoted by τ . A quiver
together with a specified involution τ , (Q, τ ), will be called an ıquiver.

Let R1 denote the truncated polynomial algebra k[ε]/(ε2). Let R2 denote the radical

square zero of the path algebra of 1
ε

1′
ε′

, i.e., ε′ε = 0 = εε′. Define a k-algebra

� = kQ ⊗k R2. (2.1)

Associated to the quiver Q, the double framed quiver Q	 is the quiver such that

• the vertex set of Q	 consists of 2 copies of the vertex set Q0, {i, i ′|i ∈ Q0};
• the arrow set of Q	 is

{α : i → j, α′ : i ′ → j ′|(α : i → j) ∈ Q1} ∪ {εi : i → i ′, ε′i : i ′ → i |i ∈ Q0}.

Note Q	 admits a natural involution, swap. The involution τ of a quiver Q induces
an involution τ 	 of Q	 which is basically the composition of swap and τ (on the two
copies of subquivers Q and Q′ of Q	). The algebra � can be realized in terms of the
quiver Q	 and a certain ideal I 	 so that � ∼= kQ	

/

I 	.
By definition, τ 	 on Q	 preserves I 	 and hence induces an involution τ 	 on the

algebra �. The ıquiver algebra of (Q, τ ) is the fixed point subalgebra of � under τ 	,

�ı = {x ∈ �|τ 	(x) = x}. (2.2)
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The algebra �ı can be described in terms of a certain quiver Q and its ideal I so that
�ı ∼= kQ/I ; see [27, Proposition 2.6]. We recall Q and I as follows:

(i) Q is constructed from Q by adding a loop εi at the vertex i ∈ Q0 if i = τ i , and
adding an arrow εi : i → τ i for each i ∈ Q0 if i �= τ i ;

(ii) I is generated by

(1) (Nilpotent relations) εiετ i for any i ∈ I;
(2) (Commutative relations) εiα − τ(α)ε j for any arrow α : j → i in Q1.

Moreover, it follows by [24, Proposition 2.2] that �ı is a 1-Gorenstein algebra.
By [27, Corollary 2.12], kQ is naturally a subalgebra and also a quotient algebra

of �ı . Viewing kQ as a subalgebra of �ı , we have a restriction functor

res : mod(�ı ) −→ mod(kQ).

Viewing kQ as a quotient algebra of �ı , we obtain a pullback functor

ι : mod(kQ) −→ mod(�ı ). (2.3)

Hence a simple module Si (i ∈ Q0) of kQ is naturally a simple �ı -module.
For each i ∈ Q0, define a k-algebra (which can be viewed as a subalgebra of �ı )

Hi :=
⎧

⎨

⎩

k[εi ]/(ε2i ) if i = τ i,

k( i
εi

τ i
ετ i

)/(εiετ i , ετ iεi ) if τ i �= i .
(2.4)

Note that Hi = Hτ i for any i ∈ Q0. Choose one representative for each τ -orbit on I,
and let

Iτ = {the chosen representatives of τ -orbits in I}. (2.5)

Define the following subalgebra of �ı :

H =
⊕

i∈Iτ

Hi . (2.6)

Note that H is a radical square zero selfinjective algebra. Denote by

resH : mod(�ı ) −→ mod(H) (2.7)

the natural restriction functor. On the other hand, as H is a quotient algebra of �ı (cf.
[27, proof of Proposition 2.15]), every H-module can be viewed as a �ı -module.
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Recall the algebra Hi for i ∈ Iτ from (2.4). For i ∈ Q0 = I, define the indecom-
posable module over Hi (if i ∈ Iτ ) or over Hτ i (if i /∈ Iτ )

Ki =

⎧

⎪

⎨

⎪

⎩

k[εi ]/(ε2i ), if i = τ i;
k

1
k

0
on the quiver i

εi
τ i

ετ i
, if i �= τ i .

(2.8)

Then Ki , for i ∈ Q0, can be viewed as a �ı -module and will be called a generalized
simple �ı -module.

Let P<∞(�ı ) be the subcategory of mod(�ı ) formed by modules of finite pro-
jective dimensions. Let P≤d(�ı ) be the subcategory of mod(�ı ) which consists
of �ı -modules of projective dimension less than or equal to d, for d ∈ N. Then
P<∞(�ı ) = P≤1(�ı ), and Ki ∈ P<∞(�ı ) for any i ∈ I; see [24, Lemma 2.3].

Following [27], we can define the Euler forms 〈K , M〉 = 〈K , M〉�ı and 〈M, K 〉 =
〈M, K 〉�ı for any K ∈ P≤1(�ı ), M ∈ mod(�ı ). These forms descend to bilinear
Euler forms on the Grothendieck groups:

〈·, ·〉 : K0(P≤1(�ı )) × K0(mod(�ı )) −→ Z,

〈·, ·〉 : K0(mod(�ı )) × K0(P≤1(�ı )) −→ Z,

such that

〈̂K , ̂M〉 = 〈K , M〉, 〈̂M, ̂K 〉 = 〈M, K 〉, ∀ K ∈ P≤1(�ı ), M ∈ mod(�ı ).

(2.9)

Denote by 〈·, ·〉Q the Euler form of kQ. Denote by Si the simple kQ-module
(respectively, �ı -module) corresponding to vertex i ∈ Q0 (respectively, i ∈ Q0).
These 2 Euler forms are related via the restriction functor res : mod(�ı ) → mod(kQ)

as follows.

Lemma 2.1 ([24, Lemma 3.1]) We have

(1) 〈K , M〉 = 〈resH(K ), M〉, 〈M, K 〉 = 〈M, resH(K )〉, ∀M ∈ mod(�ı ), K ∈
P≤1(�ı );

(2) 〈Ki , M〉 = 〈Si , res(M)〉Q, 〈M, Ki 〉 = 〈res(M), Sτ i 〉Q, ∀i ∈ Q0, M ∈ mod(�ı );
(3) 〈M, N 〉 = 1

2 〈res(M), res(N )〉Q, ∀M, N ∈ P≤1(�ı ).

An oriented cycle c of Q is calledminimal if c does not contain any proper oriented
cycle c′. For anyminimal cycle of lengthm, we call it anm-cycle for short. In particular,
1-cycles are called loops. An ıquiver (Q, τ ) is called virtually acyclic if it satisfies the
conditions (A1)–(A2):

(A1) Q does not have any minimal m-cycles for m �= 2;
(A2) For any i, j ∈ Q0, if τ i �= j , then the full minimal subquiver of Q containing

i, j is acyclic.

In the remaining of the paper, we always assume that ıquivers (Q, τ ) are virtually
acyclic.
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2.3 Modulated graphs for ıquivers

In this subsection,we study representations ofmodulated graphs associated to virtually
acyclic ıquivers, slightly generalizing [27, §2.5] to the generality of [24]. We then
formulate the BGP type reflection functors for ıquivers (not necessarily acyclic). See
[10, 12, 21] for more details about representations of modulated graphs.
2.3.1. Let (Q, τ ) be a virtually acyclic ıquiver, and �ı = kQ/I with (Q, I ) being
defined in [24, Proposition 2.6]. For each i ∈ Q0, define a k-algebra

Hi :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k[εi ]/(ε2i ) if i = τ i,

k( i

εi

ri τ iri
ετ i

)/(εi ετ i , ετ i εi , α j ετ i − εiβ j , β j εi − ετ iα j |1 ≤ j ≤ r) if τ i �= i,

(2.10)

with ni,τ i = 2ri . Here and below, 1 m 2 means there are m arrows from 1 to 2.
Define the following subalgebra of �ı :

H =
⊕

i∈Iτ

Hi . (2.11)

Define

� := �(Q) = {(i, j) ∈ Q0 × Q0|∃(α : i → j) ∈ Q1, τ i �= j}. (2.12)

Then� represents the orientation of Q. Since (Q, τ ) is virtually acyclic, if (i, j) ∈ �,
then ( j, i) /∈ �. We also use �(i,−) to denote the subset { j ∈ Q0|∃(α : i → j) ∈
Q1}, and �(−, i) is defined similarly.

For any (i, j) ∈ �, we define

jHi := H j Spank{α, τα|(α : i → j) ∈ Q1 or (α : i → τ j) ∈ Q1}Hi . (2.13)

Note that jHi = τ jHτ i = jHτ i = τ jHi for any (i, j) ∈ �.
Hence jHi is an H j -Hi -bimodule, which is free as a left H j -module (and respec-

tively, right Hi -module), with a basis jLi (and respectively, jRi ) defined in the
following; cf. [27, (2.12), (2.13)].

jLi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{α|(α : i → j) ∈ Q1} if i = τ i, τ j = j,
{α + τα|(α : i → j) ∈ Q1} if i = τ i, τ j �= j,
{α, τα|(α : i → j) ∈ Q1} if i �= τ i, τ j = j,

{α + τα|(α : i → j) or (α : i → τ j) ∈ Q1} if i �= τ i, τ j �= j;
(2.14)

jRi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{α|(α : i → j) ∈ Q1} if i = τ i, τ j = j,
{α, τα|(α : i → j) ∈ Q1} if i = τ i, τ j �= j,
{α + τα|(α : i → j) ∈ Q1} if i �= τ i, τ j = j,

{α + τα|(α : i → j) or (α : i → τ j) ∈ Q1} if i �= τ i, τ j �= j .

(2.15)
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2.3.2. We denote

� := {(i, j) ∈ Iτ × Iτ |(i, j) ∈ � or (i, τ j) ∈ �}. (2.16)

Recall that Iτ is a (fixed) subset of Q0 formed by the representatives of all τ -orbits.
The tuple (Hi , jHi ) := (Hi , jHi )i∈Iτ ,(i, j)∈� is called a modulation of (Q, τ ) and is
denoted by M(Q, τ ).

A representation (Ni , N ji ) := (Ni , N ji )i∈Iτ ,(i, j)∈� of M(Q, τ ) is defined by

assigning to each i ∈ Iτ a finite-dimensional Hi -module Ni and to each (i, j) ∈ �

an H j -morphism N ji : jHi ⊗Hi
Ni → N j . A morphism f : L → N between rep-

resentations L = (Li , L ji ) and N = (Ni , N ji ) of M(Q, τ ) is a tuple f = ( fi )i∈Iτ

of Hi -morphisms fi : Li → Ni such that the following diagram is commutative for
each (i, j) ∈ �:

jHi ⊗Hi
Li

1⊗ fi

Li j

jHi ⊗Hi
Ni

Ni j

L j
f j

N j

Proposition 2.2 The categories rep(M(Q, τ )) and rep(Q, I ) are isomorphic.

Proof The proof is the same as [27, Proposition 2.16], hence omitted here. 
�

2.3.3. The materials in this subsection are inspired by [12, 26] and will be used in §2.4
to define reflection functors for ıquivers.

Let Q∗ be the quiver constructed from Q by reversing all the arrows α : i → j
such that τ i �= j . For any i, j ∈ I such that τ i �= j , we have (i, j) ∈ � if and only if
( j, i) ∈ �∗ := �(Q∗). For any α : i → j in Q such that τ i �= j , denote by α̃ : j → i
the corresponding arrow in Q∗. Then τ induces an involution τ ∗ of Q∗. Clearly,
τ ∗i = τ i for any vertex i ∈ Q0. Then similarly we can define �∗ = kQ∗ ⊗k R2, and
an involution τ ∗	 for �∗, and its τ ∗	-fixed point subalgebra (�∗)ı . Note that H is also
a subalgebra of (�∗)ı .

It is worth noting that Iτ is also a subset of representatives of τ ∗-orbits. In this way,
one can define �

∗
(cf. (2.16) for �).

For any ( j, i) ∈ �∗, we can define iH j as follows:

iH j := Hi Spank {̃α, τ ∗α̃|(̃α : j → i) ∈ Q∗
1 or (̃α : j → τ ∗i) ∈ Q∗

1}H j ;

Recall from (2.14)–(2.15) the basis iL j (and respectively, iR j ) for iH j as a left
Hi -module (and respectively, right H j -module). Let jL∗

i and jR∗
i be the dual bases of

Hom
H j

( jHi , H j ) andHomHi
( jHi , Hi ), respectively. Denote by b∗ the corresponding

dual basis vector for any b ∈ jLi or b ∈ jRi .
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Since iH j and Hom
H j

( jHi , H j ) are right free H j -modules with bases given by

iR j and jL∗
i respectively, there is a right H j -module isomorphism

ρ : iH j −→ Hom
H j

( jHi , H j )

such that ρ(˜b) = b∗ for any b ∈ jLi . It is then routine to check that ρ is actually an
Hi -H j -bimodule isomorphism.

Similarly, there is an Hi -H j -bimodule isomorphism

λ : iH j −→ Hom
Hi

( jHi , Hi ).

These two isomorphisms satisfy that ρ(iR j ) = jL∗
i and λ(iL j ) = jR∗

i . We sometimes
identify the spaces Hom

H j
( jHi , H j ), iH j and Hom

Hi
( jHi , Hi ) via ρ and λ.

If N j is an H j -module, then we have a natural isomorphism of Hi -modules

Hom
H j

( jHi , N j ) −→ iH j ⊗H j
N j

defined by

f �→
∑

b∈ jLi

b∗ ⊗ f (b).

Furthermore, for anyHi -module Li , there is a natural isomorphism of k-vector spaces:

Hom
H j

( jHi ⊗Hi
Li , N j ) −→ Hom

Hi
(Li ,HomH j

( jHi , N j )).

Composing the two maps above, we obtain the following.

Lemma 2.3 (cf. [26, Lemma 3.2]) There exists a canonical k-linear isomorphism

ad j i = ad j i (Li , N j ) :Hom
H j

( jHi ⊗Hi
Li , N j ) −→ Hom

Hi
(Li , iH j ⊗H j

N j )

ad j i : f �→ (

f ∨ : l �→
∑

b∈ jLi

b∗ ⊗ f (b ⊗ l)
)

.

The inverse ad−1
j i is given by ad−1

j i (g) = (

g∨ : h⊗ l �→ ∑

b∈ jLi
b∗(h)(g(l))b

)

, where

the elements (g(l))b ∈ N j are uniquely determined by g(l) = ∑

b∈ jLi
b∗ ⊗ (g(l))b.

2.4 Reflection functors

In this subsection, we shall introduce the reflection functors in the setting of ıquivers.
Let (Q, τ ) be a virtually acyclic ıquiver. Without loss of generality, we assume Q

to be connected and of rank ≥ 2. Recall � = �(Q) is the orientation of Q. For any
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sink � ∈ Q0, define the quiver s�(Q) by reversing all the arrows ending to �. Note that
in this case, we have n�,τ� = 0. By definition, � is a sink of Q if and only if τ� is a
sink of Q. Define the quiver

Q′ = s�Q =
{

s�(Q) if τ� = �,

s�sτ�(Q) if τ� �= �.
(2.17)

Note that s�sτ�(Q) = sτ�s�(Q). Then τ also induces an involution τ on the quiver
Q′. In this way, we can define �′ = kQ′ ⊗k R2 with an involution τ 	, and denote
the τ 	-fixed point subalgebra by �′ı = s��ı . Note that s��ı = sτ��

ı for any sink
� ∈ Q0. The quiver Q′ of s��ı can be constructed from Q by reversing all the arrows
ending to � and τ�. Denote by �′ := �(Q′) the orientation of Q′.

We shall define a reflection functor associated to a sink � ∈ Q0 (compare [12])

F+
� : mod(�ı ) := rep(Q, I ) −→ mod(s��ı ) := rep(Q′, I ′), (2.18)

in (2.20) below. Using Proposition 2.2, we identify the category rep(Q, I ) with
rep(M(Q, τ )), and respectively, rep(Q′, I ′) with rep(M(Q′, τ )).

Without loss of generality, we assume that the sink � ∈ Iτ . Let L = (Li , L ji ) ∈
rep(M(Q, τ )). Then L ji : jHi ⊗Hi

Li → L j is a H j -morphism for any (i, j) ∈ �.
Denote by

L�,in := (L�i )i :
⊕

i∈�(−,�)

�Hi ⊗Hi
Li −→ L�.

Let N� := ker(L�,in). Note that H� = H� is finite-dimensional by our assumption.
We have dim N� < ∞. By definition, there exists an exact sequence

0 −→ N� −→
⊕

i∈�(−,�)

�Hi ⊗Hi
Li

L�,in−−→ L�. (2.19)

Denote by (N∨
i�)i the inclusion map N� → ⊕

i∈�(−,�) �Hi ⊗Hi
Li .

For any L ∈ rep(M(Q, τ )), define

F+
� (L) = (Nr , Nrs) ∈ rep(M(Q′, τ )), (2.20)

where

Nr :=
{

Lr if r �= �,

N� if r = �,
Nrs :=

{

Lrs if (s, r) ∈ � with r �= �,

(N∨
r�)

∨ if (s, r) ∈ �
∗
and s = �.

Here (N∨
r�)

∨ = ad−1
r� (N∨

r�); see Lemma 2.3.
Dually, associated to any source � ∈ Q0, we have a reflection functor

F−
� : mod(�ı ) −→ mod(s��ı ). (2.21)



Braid group symmetries on quasi-split ıquantum groups… Page 15 of 64 84

The above constructions are obviously functorial; cf. [26, §3.2]. It is straightforward
to show that F+

� is left exact, and F−
� is right exact. Both functors are covariant, k-linear

and additive.

2.5 Torsion pairs

Let � ∈ Q be a sink. For any A ∈ {�ı , s��ı }, and any j ∈ Q0 let

TA
j := {X ∈ mod(A)|HomA(X , S j ⊕ Sτ j ) = 0},

SA
j := {X ∈ mod(A)|HomA(S j ⊕ Sτ j , X) = 0}.

For anyM ∈ mod(A), we denote by sub j (M) the largest submoduleU ofM supported
at j and τ j ; by fac j (M) the largest quotient module M/V of M supported at j and
τ j .

Proposition 2.4 For any sink vertex � ∈ Q the following hold:

(1) The pair (F−
� , F+

� ) is a pair of adjoint functors, i.e., there is a functorial isomor-
phism

Hom�ı (F−
� (M), N ) ∼= Homs��ı (M, F+

� (N )).

(2) The adjunction morphisms Id → F+
� F−

� and F−
� F+

� → Id can be inserted in
functorial short exact sequences

0 −→ sub� −→ Id −→ F+
�
F−
�

−→ 0, 0 −→ F−
�
F+
�

−→ Id −→ fac� −→ 0.

Proof The proof is the same as [12, Proposition 9.1]. For the sake of completeness,
we give the proof here.

For (1), it is enough to construct a pair ofmutual inverses betweenHom�ı (F−
� (M), N )

and Homs��ı (M, F+
� (N )), which are functorial in M and N . The construction is as

follows.
Let Q′ = s�(Q) and M = (Mr , Mrs) ∈ rep(M(Q′, τ )). Let N = (Nr , Nrs) ∈

repM(Q, τ ). Denote by (Ur ,Urs) := F−
� (M) ∈ rep(M(Q, τ )), and by (Vr , Vrs) :=

F+
� (N ) ∈ rep(M(Q′, τ )). In particular, Ur = Mr and Vr = Nr if r �= �. For any
f = ( fr )r∈Iτ

: M → F+
� (N ), where fr : Mr → Vr , by definition, we have the

following commutative diagram with exact rows:

M�

(M∨
i�)i

f�

⊕

i∈�(−,�) �Hi ⊗Hi
Mi

(U�i )i

(Id⊗ fi )i

U�

g�

0

0 V�

(V∨
i� )i ⊕

i∈�(−,�) �Hi ⊗Hi
Ni

(N�i )i
N�
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Then there exists a unique morphism g� : U� → N� such that the above diagram
commutes. Define g := (gr )r∈Iτ

such that

gr =
{

fr if r �= �,

g� if r = �.

Clearly, g : F−
� (M) = U → N is a morphism of representations.

Conversely, for any g : F−
� (M) → N , one can construct a morphism f : M →

F+
� (N ). The above constructions are naturally functorial in M and N , and then (1)

follows.
For (2), we only prove the second one. For any N = (Nr , Nrs) ∈ repM(Q, τ ),

by definition, it is obvious that the adjunction αN : F−
� F+

� (N ) → N is injective, and
Coker(αN ) = Coker(N�,in) which is supported at � and τ(�). Since � is a sink, we
have Coker(N�,in) ∼= fac�(N ), and then obtain the desired short exact sequence

0 −→ F−
� F+

� (N )
αN−→ N −→ fac�(N ) −→ 0.

The proposition is proved. 
�
We have the following corollaries of Proposition 2.4.

Corollary 2.5 We have the following equivalence of subcategories:

F+
� : T�ı

�

�−→ Ss��ı

� , (2.22)

with its inverse given by F−
� .

Corollary 2.6 (1) For M, N ∈ T�ı

� , F+
� induces an isomorphism

Ext1�ı (M, N ) ∼= Ext1s��ı (F+
� (M), F+

� (N )). (2.23)

(2) For M, N ∈ Ss��ı

� , F−
� induces an isomorphism

Ext1s��ı (M, N ) ∼= Ext1�ı (F−
� (M), F−

� (N )). (2.24)

Let T := T�ı

� , and let F be the extension closed subcategory of mod(�ı ) generated
by S� and Sτ�.

Lemma 2.7 (a) (T,F) is a torsion pair in mod(�ı );
(b) For any M ∈ mod(�ı ), there exists a short exact sequence

0 −→ M −→ T 0
M −→ T 1

M −→ 0

with T 0
M , T 1

M ∈ T and T 1
M ∈ P≤1(�ı ).
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Proof (a) First, Hom�ı (T,F) = 0. For any M ∈ mod(�ı ), let tM be the maximal
submodule of M such that its top topM satisfies (e� + eτ�) topM = 0. Since � (also
τ�) is a sink, we have M/tM concentrated at the full subquiver formed by � and τ�,
and then it is a natural H�-module. So M/tM ∈ F. It follows an exact sequence
0 → tM → M → M/tM → 0. So (T,F) is a torsion pair in mod(�ı ).

(b) First, we prove it for anyM ∈ F. Note thatF = add{S�, Sτ�, K�, Kτ�}. Without
loss of generality, we assume M is indecomposable.

Case (1) M = S�, Sτ�. We only prove for M = S�. As � is a sink, there exist
at least one arrow α : j → � in Q0. So there exists a string module X with its

string �
α←− j

ε j−→ τ j . Then X , K j ∈ T, and there exists a short exact sequence
0 → S� → X → K j → 0.

Case (2) M = K�, Kτ�. We only prove for M = K�. We have the following exact
sequence 0 → Sτ� → K� → S� → 0. Since proj. dimK j ≤ 1, and by Case (1), we
have the following commutative diagram

Sτ� K� S�

Sτ� Y X

K j K j

Consider the short exact sequence in the second row.Note that τ induces an equivalence
τ of mod(�ı ). From Case (1), we obtain an exact sequence 0 → Sτ� → τ(X) →
Kτ j → 0 with τ(X), Kτ j ∈ T. Then we have the pushout diagram

Sτ� Y X

τ(X) W X

Kτ j Kτ j

Since T is closed under extensions, we have W ∈ T by X , τ (X) ∈ T. Combining
these two diagrams, we have the exact sequences 0 → K� → W → U → 0 and
0 → Kτ j → U → K j → 0. Hence, U ∈ T ∩ P≤1(�ı ).

Next, for general M , we have the exact sequence 0 → tM → M → M/tM → 0
with tM ∈ T, M/tM ∈ F. From the above, we obtain an exact sequence 0 →
M/tM → W → T 1

M → 0 with W , T 1
M ∈ T and T 1

M ∈ P≤1(�ı ). By a similar
argument as above, from these exact sequences one obtains the desired resolution.
0 → M → T 0

M → T 1
M → 0. 
�
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LetY = Ss��ı

� , andX be the extension closed subcategory of mod(s��ı ) generated
by S�, Sτ�. Note that s��ı is a 1-Gorenstein algebra. Dually, we have the following
lemma.

Lemma 2.8 We have the following.

(a) (X,Y) is a torsion pair in mod(s��ı );
(b) for any M ∈ mod(s��ı ), there exists a short exact sequence

0 −→ Y 1
M −→ Y 0

M −→ M −→ 0

with Y 0
M ,Y 1

M ∈ Y and Y 1
M ∈ P≤1(s��ı ).

We have a Z-linear isomorphism dim : K0(mod(kQ)) → Z
I, which sends an iso-

class to its dimension vector. By identifying i ∈ I with a simple root αi and thus Z
I

with the root lattice (of a Kac-Moody algebra g), we have simple reflection si acting
on Z

I; see §6.1 for more detail. Then we denote

si =
{

si , if i = τ i
si sτ i , if i �= τ i .

Lemma 2.9 Let (Q, τ ) be an ıquiver with a sink �. Let L ∈ mod(kQ) ⊆ mod(�ı ) be
an indecomposable module. Then either F+

� (L) = 0 (equivalently L ∼= S� or Sτ�) or
F+

� (L) is indecomposable with dimF+
� (L) = s�(dimL).

Proof Consider an indecomposable module L = (Li , L ji ) ∈ M(Q, τ ). If L ∼= S� or
Sτ�, by definition of F+

� , we have F+
� (L) = 0.

Otherwise, we have L ∈ T. As F+
� : T → Y is an equivalence (see (2.22)), we have

Ends��ı (F+
� (L)) ∼= End�ı (L)which is a local algebra since L is indecomposable. So

F+
� (L) is also indecomposable.
Let F+

� (L) = (Ni , N ji ) ∈ M(Q, τ ). Since L is indecomposable and � is a sink,
it follows that the morphism L�,in in (2.19) is surjective, and then (2.19) becomes a
short exact sequence. We have

dimk(e�N�) =
∑

(α:i→�)∈Q1

dimk(ei Li ) − dimk(e�L�),

dimk(eτ�N�) =
∑

(α:i→τ�)∈Q1

dimk(eτ i Li ) − dimk(eτ�L�).

Since Ni = Li for i �= �, from the above, we conclude that dimF+
� (L) = s�(dimL).


�

Dual results also hold for F−
� and for any source � of Q. �
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2.6 ıHall algebras

In this subsection we consider k = Fq , and set

v = √
q.

Generalizing [23], the first author defined a (twisted) semi-derived Hall algebra
of a 1-Gorenstein algebra [22]. The ıHall algebra ˜H(kQ, τ ) for ıquiver (Q, τ ) is by
definition the twisted semi-derived Hall algebra for the module category of the ıquiver
algebra �ı [24, 27]. We recall it here briefly.

Let H(�ı ) be the Ringel-Hall algebra of �ı , i.e.,

H(�ı ) =
⊕

[M]∈Iso(mod(�ı ))

Q(v)[M],

with the multiplication defined by (see [5])

[M] � [N ] =
∑

[M]∈Iso(mod(�ı ))

|Ext1(M, N )L |
|Hom(M, N )| [L].

For any three objects X ,Y , Z , let

FZ
XY = ∣

∣{L ⊆ Z , L ∼= Y and Z/L ∼= X}∣∣

=
∣

∣Ext1(X , Y )Z |
|Hom(X ,Y )

∣

∣

· |Aut(Z)|
|Aut(X)||Aut(Y )| (Riedtman-Peng formula). (2.25)

Define I to be the two-sided ideal of H(�ı ) generated by

{[K ] − [K ′]| resH(K ) ∼= resH(K ′), K , K ′ ∈ P<∞(�ı )}
⋃

{[L] − [K ⊕ M]|∃ exact sequence 0 −→ K −→ L −→ M −→ 0, K ∈ P<∞(�ı )}.
(2.26)

Consider the following multiplicatively closed subset S of H(�ı )/I :

S = {a[K ] ∈ H(�ı )/I |a ∈ Q(v)×, K ∈ P<∞(�ı )}. (2.27)

The semi-derived Hall algebra of �ı [22] is defined to be the localization

SDH(�ı ) := (H(�ı )/I )[S−1].

Let 〈·, ·〉Q be the Euler form of Q. We define the ıHall algebra (i.e., a twisted semi-
derived Hall algebra) ˜H(kQ, τ ) [27, §4.4] to be the Q(v)-algebra on the same vector
space as SDH(�ı ) but with twisted multiplication given by

[M] ∗ [N ] = v〈res(M),res(N )〉Q [M] � [N ]. (2.28)
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2.7 Symmetries of ıHall algebras

We shall formulate the reflection functor associated to a sink � ∈ Q0, which induces

an ıHall algebra isomorphism �� : ˜H(kQ, τ )
∼=→ ˜H(ks�Q, τ ).

Let (Q, τ ) be an ıquiver. We assume Q to be connected and of rank ≥ 2. Let � be
a sink in Q. Recall Q′ = s�Q from (2.17). As in §2.4, τ induces an involution of Q′
which is also denoted by τ . Let s��ı denote the ıquiver algebra associated to (Q′, τ ).
Recall Lemma 2.7. Similar to the proof of [27, TheoremA.22], we have the following.

Lemma 2.10 Let � be a sink of Q. Then we have an isomorphism of algebras:

�� : SDH(�ı )
∼=−→ SDH(s��ı )

[M] �→ q−〈TM ,M〉[F+
� (TM )]−1 � [F+

� (XM )], (2.29)

where M ∈ mod(�ı ) and XM , TM ∈ T (TM ∈ P≤1(�ı )) fit into a short exact sequence
0 → M → XM → TM → 0.

Proof By a similar proof to [27, Theorem A.22], �� is well defined and is an algebra
morphism.

On the other hand, by Lemma 2.8, we obtain a morphism �−
� : SDH(s��ı ) →

SDH(�ı ), whichmaps N �→ q−〈UN ,N 〉[F−
� (UN )]−1�[F−

� (YN )], where N ,YN ,UN ∈
Y (andUN ∈ P≤1(s�(�ı ))) fit into a short exact sequence 0 → UN → YN → N → 0.

Since F+
� : T −→ Y is an equivalence with F−

� as its inverse, we have

�−
� ◦ ��([M]) = q−〈TM ,M〉[TM ]−1 � [XM ] = [M],

�� ◦ �−
� ([N ]) = q−〈UN ,N 〉[UN ]−1 � [YN ] = [N ]

for any M ∈ mod(�ı ), N ∈ mod(s��ı ). It follows that �� and �−
� are inverses to

each other. 
�
It is well known that the Cartan matrix C for Q is the matrix of the symmetric

bilinear form (·, ·)Q defined by

(x, y)Q := 〈x, y〉Q + 〈y, x〉Q

for any x, y ∈ K0(mod(kQ)). Here 〈·, ·〉Q is the Euler form of kQ. Recall v = √
q .

Theorem 2.11 The isomorphism �� in (2.29) induces the following isomorphism of
ıHall algebras:

�� : ˜H(kQ, τ )
∼=−→ ˜H(ks�Q, τ ),

[M] �→ v〈res(TM ),res(M)〉Qq−〈TM ,M〉[F+
� (TM )]−1 ∗ [F+

� (XM )].
(2.30)
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Proof Similar to [26, Lemma 4.2], the Euler forms match, and then the result follows
by Lemma 2.10 (to which we refer for notations). 
�

For any i ∈ I, denote by Si (respectively, S′i ) the simple �ı -module (respec-
tively, s��ı -module), denote by Ki (respectively, K

′
i ) the generalized simple �ı

(respectively, s��ı -module). We similarly define Kα, K
′
β for α ∈ K0(mod(kQ)),

β ∈ K0(mod(k(s�Q))) in the (twisted) semi-derived Hall algebras (where � is a sink
of Q).

Recall the root lattice Z
I = Zα1 ⊕ · · · ⊕ Zαn , and we have an isomorphism of

abelian groups Z
I → K0(mod(kQ)), αi �→ ̂Si . This isomorphism induces the action

of the reflection si on K0(mod(kQ)). Thus for α ∈ K0(mod(kQ)) and i ∈ I, we can
make sense [Ksiα] ∈ ˜H(kQ, τ ). Similarly, we have [K′

siα] ∈ ˜H(ks�Q, τ ). �

Proposition 2.12 ([26, Proposition 4.4]) Let (Q, τ ) be an ıquiver, and � ∈ Q0 be a

sink. Then the isomorphism �� : ˜H(kQ, τ )
∼=−→ ˜H(ks�Q, τ ) sends

��([M]) = [F+
� (M)], ∀M ∈ T, (2.31)

��([S�]) =
{

v[K′
�]−1 ∗ [S′τ�], if τ� �= �,

[K′
�]−1 ∗ [S′τ�], if τ� = �,

(2.32)

��([Sτ�]) = v[K′
τ�]−1 ∗ [S′�], if τ� �= �, (2.33)

��([Kα]) = [K′
s�α], ∀α ∈ K0(mod(kQ)). (2.34)

Similarly, one can give the formulas of �−
� : ˜H(kQ, τ )

∼=−→ ˜H(ks�Q, τ ) for any
source � of an ıquiver (Q, τ ).

Remark 2.13 Similar to [35, 39], for a sink � ∈ I, there exists a Fourier transform
(which is an algebra isomorphism) FT� : ˜H(ks�Q, τ ) → ˜H(kQ, τ ), which maps
[S′j ] �→ [S j ], [K′

j ] �→ [K j ] for each j ∈ I; compare Theorem 6.4. The composition

of �� with FT� gives us an automorphism FT� ◦ �� : ˜H(kQ, τ ) → ˜H(kQ, τ ).

3 Formula for a reflection functor 0i (i = �i)

In this section, we establish a closed formula for the action of the reflection functor
�i with i = τ i .
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3.1 ıDivided powers

Let v be an indeterminate. Define the quantum integers, quantum (double) factorials,
and quantum binomial coefficients, for r ∈ N and m ∈ Z,

[m] = [m]v = vm − v−m

v − v−1 , [r ]! = [r ]!v =
r
∏

i=1

[i]v,

[2r ]!! = [2r ]!!v =
r
∏

i=1

[2i]v,
[

m
r

]

= [m][m − 1] . . . [m − r + 1]
[r ]! .

(3.1)

We often need to specialize them by substituting v with v = √
q below.

For a �ı -module M , we shall write

[lM] = [M ⊕ · · · ⊕ M
︸ ︷︷ ︸

l

], [M]l = [M] ∗ · · · ∗ [M]
︸ ︷︷ ︸

l

.

Let Z2 = {0, 1}. Following [24], we define the ıdivided power of [Si ] in ˜H(kQ, τ )

as follows:

[Si ](m)

1̄
:= 1

[m]!v

{

[Si ]∏k
j=1([Si ]2 + v−1(v2 − 1)2[2 j − 1]2v[Ki ]) if m = 2k + 1,

∏k
j=1([Si ]2 + v−1(v2 − 1)2[2 j − 1]2v[Ki ]) if m = 2k;

(3.2)

[Si ](m)

0̄
:= 1

[m]!v

{

[Si ]∏k
j=1([Si ]2 + v−1(v2 − 1)2[2 j]2v[Ki ]) if m = 2k + 1,

∏k
j=1([Si ]2 + v−1(v2 − 1)2[2 j − 2]2v[Ki ]) if m = 2k.

(3.3)

We recall the expansion formula of the ıdivided powers in terms of an ıHall basis.
See (3.1) for notation [2k]!!v .
Lemma 3.1 ([24, Propositions 6.4–6.5]). For any m ∈ N, p ∈ Z2, we have

[Si ](m)
p =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑�m2  
k=0

vk(k−1)−(
m−2k

2 )

[m−2k]!v[2k]!!v (v − v−1)k[(m − 2k)Si ] ∗ [Ki ]k, if m = p;

∑�m2  
k=0

vk(k+1)−(
m−2k

2 )

[m−2k]!v[2k]!!v (v − v−1)k[(m − 2k)Si ] ∗ [Ki ]k, if m �= p.

(3.4)

3.2 Formulas of 0i for i = �i

Below is the first main result of this paper.
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Theorem 3.2 Let (Q, τ ) be an ıquiver. For any sink i ∈ Q0 such that i = τ i �= j , we
have

�i ([S j ]) =
∑

r+s=−ci j

(−1)rvr (1− v2)ci j [S′i ](r)p ∗ [S′j ] ∗ [S′i ](s)ci j+p

+ (−1)p
∑

t≥1

∑

r+s+2t=−ci j
r=p

vr (1− v2)ci j+2t [S′i ](r)p ∗ [S′j ] ∗ [S′i ](s)ci j+p ∗ [K′
i ]t .

(3.5)

The proof of Theorem3.2will occupy the remainder of this section andAppendixA.
Let a = −ci j . Then (3.5) is equivalent to the following formulas (3.6)–(3.7) (where
the 2 cases for p = 0, 1 are separated):

�i ([S j ]) =
∑

r+s=a

(−1)rvr (1− v2)−a[S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a

+
∑

t≥1

∑

r+s+2t=a
2|r

vr (1− v2)−a+2t [S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a ∗ [K′

i ]t , (3.6)

�i ([S j ]) =
∑

r+s=a

(−1)rvr (1− v2)−a[S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

−
∑

t≥1

∑

r+s+2t=a
2�r

vr (1− v2)−a+2t [S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

∗ [K′
i ]t . (3.7)

The proof of (3.6) for j = τ j will be given in §3.4–§3.7 and Sect. 4, while a similar
proof of (3.7) for j = τ j can be found in Appendix B. This proves Theorem 3.2 for
j = τ j .
We then explain how Theorem 3.2 for j �= τ j is reduced to the case for j = τ j .

3.3 Reduction for the formula (3.6) with �j = j

For the case τ j = j , it is enough to consider the rank 2 ıquiver Qwith trivial involution
τ = Id, as shown in the left figure of (3.8). Here a = −ci j . Then the quiver Q′ of
si�ı is shown in the right figure of (3.8).

Q = i� a j
� �

εi ε j

Q′ = i a� j
� �

εi ε j

(3.8)

For any kQ′-module M with dimension vector n̂S′i + ̂S′j , it can be decomposed to
be (S′i )⊕uM ⊕ N with N indecomposable. We denote

Ik = {[M] ∈ Iso(mod(kQ′))|∃N ⊆ M s.t. N ∼= S′j , M/N ∼= (S′i )⊕k},
(3.9)
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p(a, r , s, t) = −s(a + t) + 2ra + (uM − t + 2s − r)(t − r) + (s − r)2

+
(

s − r

2

)

+ (t − r)2 +
(

t − r

2

)

+ r(s + t) −
(

r + 1

2

)

+ 1.

(3.10)

Lemma 3.3 ([24, Proposition 7.3]) For any s, t ∈ N, we have

[sS′i ] ∗ [S′j ] ∗ [t S′i ]

=
min{s,t}
∑

r=0

∑

[M]∈Is+t−2r

vp(a,r ,s,t)(v − v−1)s+t−r+1 [s]!v[t]!v
[r ]!v

[

uM
t − r

]

v

[M]
|Aut(M)| ∗ [K′

i ]r .

(3.11)

To prove (3.6), we shall compute the RHS of (3.6) in the rank 2 ıquiver algebra
associated to (3.8) above, with the help of Lemmas 3.1 and 3.3.

3.4 Computation of [S′
i](r)0̄

∗ [S′
j] ∗ [S′

i](s)a

Let us first compute [S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a , depending on the parity of r .

3.4.1 r is even

For any s ≥ 0 such that r + s + 2t = a with t ≥ 0, we have by Lemma 3.1 (noting
s = a) and Lemma 3.3 that

[S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a =

r
2
∑

k=0

vk(k−1)−(r−2k
2

)

· (v − v−1)k

[r − 2k]!v[2k]!!v
[(r − 2k)S′i ] ∗ [K′

i ]k ∗ [S′j ]∗

×
� s2  
∑

m=0

vm(m−1)−(s−2m
2

)

· (v − v−1)m

[s − 2m]!v[2m]!!v
[(s − 2m)S′i ] ∗ [K′

i ]m

=
r
2
∑

k=0

� s2  
∑

m=0

vk(k−1)+m(m−1)−(r−2k
2

)−(s−2m
2

)

· (v − v−1)k+m

[r − 2k]v ![s − 2m]v ![2k]!!v [2m]!!v
× [(r − 2k)S′i ] ∗ [S′j ] ∗ [(s − 2m)S′i ] ∗ [K′

i ]k+m

=
r
2
∑

k=0

� s2  
∑

m=0

min{r−2k,s−2m}
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vk(k−1)+m(m−1)−(r−2k
2

)−(s−2m
2

)

[r − 2k]v ![s − 2m]v ![2k]!!v [2m]!!v

× vp(a,n,r−2k,s−2m)(v − v−1)r+s−k−m−n+1 [r − 2k]!v[s − 2m]!v
[n]!v

×
[

uM
s − 2m − n

]

v

[M]
|Aut(M)| ∗ [K′

i ]n+k+m .
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This can be simplified to be

[S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a =

r
2
∑

k=0

� s2  
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vZ(a,r ,s,k,m,n)(v − v−1)r+s−k−m−n+1

[n]!v[2k]!!v [2m]!!v

[

uM
s − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)|

where

Z(a, r , s, k,m, n) = k(k − 1) + m(m − 1) −
(

r − 2k

2

)

−
(

s − 2m

2

)

+ p(a, n, r − 2k, s − 2m),

(3.12)

and

p(a, n, r − 2k, s − 2m)

= −(r − 2k)(a + s − 2n) + 2an + (uM − s + 2m + 2r − 4k − n)(s − 2m − n)

+ (r − 2k − n)2 +
(

r − 2k − n

2

)

+ (s − 2m − n)2 +
(

s − 2m − n

2

)

+ n(r + s − 2m − 2k) −
(

n + 1

2

)

+ 1.

3.4.2 r is odd

For any s ≥ 0 such that r + s + 2t = a with t ≥ 0, we have by Lemma 3.1 (noting
s �= a) and Lemma 3.3

[S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a =

� r2  
∑

k=0

vk(k+1)−(r−2k
2 ) · (v − v−1)k

[r − 2k]v![2k]!!v
[(r − 2k)S′i ] ∗ [K′

i ]k ∗ [S′j ]∗

×
� s2  
∑

m=0

vm(m+1)−(s−2m
2 ) · (v − v−1)m

[s − 2m]!v[2m]!!v
[(s − 2m)S′i ] ∗ [K′

i ]m

=
� r2  
∑

k=0

� s2  
∑

m=0

min{r−2k,s−2m}
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vk(k+1)+m(m+1)−(r−2k
2 )−(s−2m

2 )

[r − 2k]v![s − 2m]v![2k]!!v [2m]!!v

× vp(a,n,r−2k,s−2m)(v − v−1)r+s−k−m−n+1 [r − 2k]!v[s − 2m]!v
[n]!v

×
[

uM
s − 2m − n

]

v

[M]
|Aut(M)| ∗ [K′

i ]n+k+m .
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This can be simplified to be

[S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a =

� r2  
∑

k=0

� s
2  

∑

m=0

r−2k
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vZ(a,r ,s,k,m,n)+2k+2m(v − v−1)r+s−k−m−n+1

[n]!v[2k]!!v[2m]!!v

[

uM

s − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)| .

3.5 Computation of RHS (3.6)

Summing up the computations of [S′i ](r)0̄
∗ [S′j ] ∗ [S′i ](s)a in §3.4, we obtain

RHS (3.6) =
a
∑

r=0,2|r

r
2
∑

k=0

� a−r
2  
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−r ,k,m,n)−a

[n]!v[2k]!!v [2m]!!v

[

uM
a − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)|

−
a
∑

r=0,2�r

� r2  
∑

k=0

� a−r
2  
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−r ,k,m,n)+2k+2m−a

[n]!v[2k]!!v [2m]!!v

[

uM
a − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)|

+
∑

t≥1

a−2t
∑

r=0,2|r

r
2
∑

k=0

� a−r
2  −t
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2t−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−2t−r ,k,m,n)−a+2t

[n]!v[2k]!!v [2m]!!v

[

uM
a − 2t − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m+t

|Aut(M)| . (3.13)

Fix

d = t + k + m + n

and fix [M] ∈ Ia−2d . For uM = 0 = d, M is indecomposable which is isomorphic to
F+
i (S j ) by Lemma 2.9. In this case, the coefficient of [M] of the RHS of (3.13) is 1

by noting that |Aut(M)| = q − 1 in this case. By (2.31), we have reduced the proof

of (3.6) to proving the coefficient of
[M]∗[K′

i ]d|Aut(M)| of the RHS of (3.13) is 0, for any given
[M] ∈ Ia−2d such that not both d and uM are 0.

We have 0 ≤ n = d − k − m − t ≤ r − 2k. Set u = uM , and

A(a, d, u) :=
∑

t≥0

a−2t
∑

r=0,2|r

r
2
∑

k=0

� a−r
2  −t
∑

m=0

δ{0 ≤ n ≤ r − 2k}

× vr+Z(a,r ,a−2t−r ,k,m,n)−a+2t (v − v−1)−k−m−n+1

[n]!v[2k]!!v [2m]!!v

[

u
a − 2t − r − 2m − n

]

v
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−
a
∑

r=0,2�r

� r2  
∑

k=0

� a−r
2  
∑

m=0

δ{0 ≤ n ≤ r − 2k}

× vr+Z(a,r ,a−r ,k,m,n)+2k+2m−a(v − v−1)−k−m−n+1

[n]!v[2k]!!v [2m]!!v

[

u
a − r − 2m − n

]

v
, (3.14)

where Z(·, ·, ·, ·, ·, ·) is given in (3.12); also see (3.10) for p(·, ·, ·, ·). Here δ{X} = 1
if the statement X holds and = 0 if X is false.

Then the coefficient of
[M]∗[K′

i ]d|Aut(M)| of the RHS of (3.13) is (−1)a A(a, d, uM ). Sum-
marizing, we have reached the following reduction toward the proof of (3.6).

Proposition 3.4 The identity (3.6) is equivalent to the following identity

A(a, d, u) = 0, (3.15)

for non-negative integers a, d, u subject to the constraints:

0 ≤ d ≤ a

2
, 0 ≤ u ≤ a − 2d, d and u not both zero. (3.16)

3.6 Reduction for the identity (3.15)

We shall denote the 2 summands in A = A(a, d, u) in (3.14) as A0, A1, and thus

A = A0 − A1.

We shall denote

w = r − 2k − n. (3.17)

Set

d = k + m + n + t (3.18)

in the A0 side, and d = k + m + n in the A1 side. Then

a − 2t − r − 2m − n = a − 2d − w

in the A0 side, and

a − r − 2m − n = a − 2d − w

in the A1 side. (Below we focus on the A0 side, and the corresponding formulas for
A1 side can be obtained by setting t = 0.) Note that

p(a, n, r − 2k, a − 2t − r − 2m)
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= −(r − 2k)(2a − 2t − r − 2n)

+2an + (u − a + 2t + 3r + 2m − 4k − n)(a − 2t − r − 2m − n)

+ (r − 2k − n)2 +
(

r − 2k − n

2

)

+ (a − 2t − r − 2m − n)2 +
(

a − 2t − r − 2m − n

2

)

+ n(a − 2t − 2m − 2k) −
(

n + 1

2

)

+ 1.

One can write p(a, n, r − 2k, a− 2t − r − 2m) = p(a, n, n+w, a− 2d −w+ n) =
p′ + p′′, where p′ depends on n, while p′′ does not. Then one can show that

p′ = an +
(

n

2

)

,

which is independent of t . Note

Z := Z(a, r , a − 2t − r , k,m, n) = k(k − 1) + m(m − 1) −
(

r − 2k

2

)

−
(

a − 2t − r − 2m

2

)

+ p(a, n, r − 2k, a − 2t − r − 2m). (3.19)

We rewrite Z in (3.19) as Z = Z1 + Z2, where Z2 depends only on a, d, w but do
not depend on k,m, n, t . One can show that on the A0 side

Z1 = 2

(

t + n + 1

2

)

−
(

n

2

)

− 2dt − 2km, (3.20)

and thus on the A1 side, Z1 = 2
(n+1

2

)− (n
2

)− 2km.

Will the above preparations, we return to (3.14). Noting r = w+n+2k, we rewrite

r + Z+ 2t = x1 + x2,

where x2 depends only on a, d, w, and

x1 = t2 − 2dt + t + 2nt +
(

n + 1

2

)

− 2km − 2m. (3.21)

Setting t = 0 in (3.21), we obtain on the A1 side that

r + Z+ 2k + 2m = x ′1 + x2,

where

x ′1 =
(

n + 1

2

)

− 2km + 2k. (3.22)
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Note r = 2k + n + w ≡ n + w (mod 2). Therefore, proving the identity (3.15) for

d > 0 amounts to showing that the coefficients of

[

u
a − 2d − w

]

v
from (3.14) are 0,

for d > 0 (and fixed u, a, w); that is, for d > 0,

∑

w+n even
t+k+m+n=d

vt
2−2dt+t+2nt+(n+1

2 )−2km−2m

[n]!v[2k]!!v [2m]!!v
(v − v−1)t −

∑

w+n odd
k+m+n=d

v(
n+1
2 )−2km+2k

[n]!v[2k]!!v [2m]!!v
= 0.

(3.23)

It is understood here and below that all t, k,m, n in the summations above are in N.
Summarizing, we have obtained the following reduction toward the proof of (3.15).

Proposition 3.5 The identity (3.15) that A(a, d, u) = 0, for d > 0, is equivalent to
the v-binomial identity (3.23).

We shall prove the identity (3.23) in Sect. 4.

3.7 The identity (3.15) for d = 0

By (3.16), we must have u > 0 when d = 0.
In this case, we have k = m = n = t = 0, and a direct computation shows that

the power z can be simplified to be z = au − uw + 1, and thus r + z − a + 2t =
r + z− a+ 2k + 2m = au+ 1− a+ (1− u)w. Recall A(a, 0, u) from (3.14). Then,
for 0 < u ≤ a, we have

A(a, 0, u) = vau+1−a(v − v−1)
∑

w≥0

(−1)wv(1−u)w

[

u
a − w

]

v

(i)= (−1)av(v − v−1)

u
∑

x=0

(−1)xv(u−1)x
[

u
x

]

v

(i i)= 0, (3.24)

where we have changed variables x = a−w in the identity (i) and replaced the upper

bound of the summation for x from a to u (thanks to u ≤ a and

[

u
x

]

v
= 0 for x > u);

the v-binomial identity (4.12) (with z = −1) was used in (ii) above.

3.8 Proof of Theorem 3.2

The identity (3.15) follows now by combining the identity (3.23) for d > 0 (which is
proved in Sect. 4) and the identity (3.24), thanks to Proposition 3.5. Then by Propo-
sition 3.4, the formula (3.6) follows.

The formula (3.7) is proved similarly by a reduction to an analogous identity (B.3);
see Appendix B.

For the case τ j = j , the formula (3.5) follows from (3.6)–(3.7).
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For the case τ j �= j , it is enough to consider a general rank 2 ıquiver (Q, τ ) such
that i = τ i and τ j �= j , as shown in the left figure of (3.25) below. Then the ıquiver
Q′ of si�ı is shown in the right figure of (3.25).

j τ j

Q =
�
��

a
�

�

r �
� r

�
��

a
�
�

i

	




ε j

ετ j

εi

�

j τ j

Q′ =
�

�
a

�
��

r �
� r

�
�
a
�
�


i

	




ε j

ετ j

εi

�

(3.25)

By the same argument as in [24, Proposition 9.4], the computations involved in
proving the formula (3.5) with j �= τ j are the same as for the ıquiver in (3.8) with
j = τ j .
The proof for (3.5) and thus Theorem 3.2 is completed (modulo the proof of the

identity (3.23), which will be given in Sect. 4).

4 Several quantum binomial identities

In this section, we shall prove the identity (3.23), by establishing several additional
v-binomial identities (which seem to be new). We shall switch notations from v to a
general parameter v in this section.

4.1 Reformulating (3.23)

With v replaced by v, we shall denote the first (and respectively, second) summand in
(3.23) as Dw̄ (and respectively, Cw̄), for w̄ ∈ {0, 1} with w ≡ w̄ (mod 2). That is,

D0 =
∑

n even
t+k+m+n=d

vt
2−2dt+t+2nt+(n+1

2 )−2km−2m

[n]!v[2k]!!v[2m]!!v
(v − v−1)t , (4.1)

C0 =
∑

n odd
k+m+n=d

v(n+1
2 )−2km+2k

[n]!v[2k]!!v[2m]!!v
, (4.2)

D1 =
∑

n odd
t+k+m+n=d

vt
2−2dt+t+2nt+(n+1

2 )−2km−2m

[n]!v[2k]!!v[2m]!!v
(v − v−1)t , (4.3)

C1 =
∑

n even
k+m+n=d

v(n+1
2 )−2km+2k

[n]!v[2k]!!v[2m]!!v
. (4.4)
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Proving the identity (3.23) amounts to showing that

D0 − C0 = 0, D1 − C1 = 0. (4.5)

4.2 Identities for D0 − D1 and C0 − C1

To establish (4.5), we shall prove new v-binomial identities which lead to the stronger
statement that D0 = D1 = C0 = C1 in Theorem 4.5.

Since an identity involving summations over n with a fixed parity (such as Di ,Ci )
seems hard to prove directly, our strategy is to proceed by proving identities regarding
the combinations D0 ± D1 or C0 ± C1.

By definition we have

D0 ± D1 =
∑

t+k+m+n=d

(±1)n
vt

2−2dt+t+2nt+(n+1
2 )−2km−2m

[n]!v[2k]!!v[2m]!!v
(v − v−1)t , (4.6)

C1 ± C0 =
∑

k+m+n=d

(±1)n
v(n+1

2 )v−2km+2k

[n]!v[2k]!!v[2m]!!v
. (4.7)

Lemma 4.1 ([24, Lemmas 8.2, 8.3]) For p ≥ 0 and d ≥ 1, the following identities
hold:

[p]!v
∑

k,m∈N

k+m=p

v−2km+2m

[2k]!!v [2m]!!v
= v

p(3−p)
2 , (4.8)

∑

k,m,r∈N

k+m+r=d

(−1)r
v(r+1

2 )−2(k−1)m

[r ]!v[2k]!!v [2m]!!v
= 0. (4.9)

In the notation of C0,C1, the second formula in Lemma 4.1 can read as

C1 − C0 = 0. (4.10)

Proposition 4.2 For d ≥ 1, the identity D0 − D1 = 0 holds; that is,

∑

t,k,m,n∈N

t+k+m+n=d

(−1)n
vt

2−2dt+t+2nt+(n+1
2 )−2km−2m

[n]![2k]!![2m]!! (v − v−1)t = 0. (4.11)

Proof Recall the following standard v-binomial identity [30, 1.3.1(c)]:

d
∑

n=0

vn(d−1)
[

d
n

]

zn =
d−1
∏

j=0

(1+ v2 j z). (4.12)
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By (4.8) (with k,m switched), we have

∑

k,m∈N

k+m=p

v−2km+2k

[2k]!![2m]!! = v
p(3−p)

2

[p]! . (4.13)

For any fixed t with 0 ≤ t ≤ d, using the identity (4.13), we compute

∑

k,m,n∈N

k+m+n=d−t

(±1)n
vt

2−2dt+t+2nt+(n+1
2 )−2km−2m

[n]![2k]!![2m]!!

=
∑

p,n∈N

p+n=d−t

(±1)n
vt

2−2dt+t+2nt+(n+1
2 )− p(p+1)

2

[n]![p]!

= v(1−d)t− (d−t)(d+t+1)
2

[d − t]!
d−t
∑

n=0

vn(d−t−1)
[

d − t
n

]

(±v2t+2)n

(∗)= v(1−d)t− (d−t)(d+t+1)
2

[d − t]!
d
∏

j=t+1

(1± v2 j )

= v(1−d)t

[d − t]!
d
∏

j=t+1

(v− j ± v j ), (4.14)

where the second last equality (∗) follows by (4.12) with z = ±v2t+2.
Using now the minus sign version of (4.14), we compute

∑

t,k,m,n∈N

t+k+m+n=d

(−1)n
vt

2−2dt+t+2nt+(n+1
2 )−2km−2m

[n]![2k]!![2m]!! (v − v−1)t

=
d
∑

t=0

(−1)d−t v(1−d)t

[d − t]!
d
∏

j=t+1

(v j − v− j )(v − v−1)t

=
d
∑

t=0

(−1)tv(1−d)t
[

d
t

]

· (−1)d(v − v−1)d = 0,

where for the last equality we have used (4.12) with z = −1 (and a switch v ↔ v−1).

�



Braid group symmetries on quasi-split ıquantum groups… Page 33 of 64 84

4.3 Identities for D1 + D0 and C1 + C0

We shall also prove the following v-binomial identities for C1 +C0 and D0 + D1; cf.
(4.6)–(4.7).

Proposition 4.3 For d ≥ 1, the following identities hold:

∑

k,m,n∈N

k+m+n=d

v(n+1
2 )−2km+2k

[n]![2k]!![2m]!! = 2vd(v + v−1)(v2 + v−2) · · · (vd−1 + v1−d)

[d]! , (4.15)

∑

t,k,m,n∈N

t+k+m+n=d

vt
2−2dt+t+2nt+(n+1

2 )−2km−2m

[n]![2k]!![2m]!! (v − v−1)t

= 2vd(v + v−1)(v2 + v−2) · · · (vd−1 + v1−d)

[d]! . (4.16)

In particular, the identity D0 + D1 = C0 + C1 holds.

Proof Using the identity (4.13), we obtain

∑

k,m,n∈N

k+m+n=d

v(n+1
2 )−2km+2k

[n]![2k]!![2m]!! =
∑

n+p=d

v(n+1
2 )v

p(3−p)
2

1

[n]![p]!

= vd−(d2)
1

[d]!
d
∑

n=0

vn(d−1)
[

d
n

]

= vd−(d2)
d−1
∏

j=0

(1+ v2 j ),

where the last equality follows by (4.12) with z = 1. This proves the identity (4.15).
Summing the plus sign version of the identity (4.14) over 0 ≤ t ≤ d, we have

reduced the proof of (4.16) to the following identity:

d
∑

t=0

v(1−d)t (vt+1 + v−t−1)(vt+2 + v−t−2) · · · (vd + v−d)

[d − t]! (v − v−1)t

= 2vd(v + v−1)(v2 + v−2) · · · (vd−1 + v1−d)

[d]! . (4.17)

The identity (4.17) does not seem to be easy to prove directly; it follows as a special
case when k = d of a more general identity in Proposition 4.4 below (by a change of
variable t = d − s). 
�
Proposition 4.4 Let d ≥ 1. Then the following identity holds, for 0 ≤ k ≤ d:

k
∑

s=0

v(1−d)(d−s)(vd−s+1 + vs−d−1)(vd−s+2 + vs−d−2) · · · (vd + v−d)

[s]! (v − v−1)d−s
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= vd(k+1−d)(v − v−1)d−k (vd−k + vk−d)(vd−k+1 + vk−d−1) · · · (vd−1 + v1−d)

[k]! .

(4.18)

Proof We prove by induction on k. The base case for k = 0 is clear. By the inductive
assumption, we have

LHS(4.18) = vd(k−d)(v − v−1)d−k+1 (vd−k+1 + vk−1−d )(vd−k+2 + vk−d−2) · · · (vd−1 + v1−d )

[k − 1]!
+ v(1−d)(d−k)(vd−k+1 + vk−d−1)(vd−k+2 + vk−d−2) · · · (vd + v−d )

[k]! (v − v−1)d−k

= vd(k−d)(v − v−1)d−k (vd−k+1 + vk−1−d )(vd−k+2 + vk−d−2) · · · (vd−1 + v1−d )

[k]!
×
(

vk − v−k + vd−k (vd + v−d )
)

= RHS(4.18).

The proposition is proved. 
�

Recall D0,C0, D1,C1 from (4.1)–(4.4).

Theorem 4.5 For d ≥ 1, we have

C0 = C1 = D0 = D1 = vd(v + v−1)(v2 + v−2) · · · (vd−1 + v1−d)

[d]! .

Proof Follows by Propositions 4.2–4.3 and the identity (4.10). 
�

The identities (4.5) and then (3.23) follow from Theorem 4.5.

5 Formula for a reflection functor 0i (i �= �i)

In this section, we establish a closed formula for the action of the reflection functor
�i with i �= τ i .

5.1 Formulas of 0i for i �= �i

For any m ∈ N and i ∈ I such that i �= τ i , we define

[Si ](m) := [Si ]m
[m]!v

. (5.1)

We also set [Si ](m) = 0, for m < 0. The main result of this section is the following.
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Theorem 5.1 Let (Q, τ ) be an ıquiver. For any sink i ∈ Q0 such that ci,τ i = 0 and
j �= i, τ i , we have

�i ([S j ]) =
−max(ci j ,cτ i, j )

∑

u=0

−ci j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+sv−r−s+(r−s)u(v − v−1)ci j+cτ i, j+2u

× [S′i ](−ci j−r−u) ∗ [S′τ i ](−cτ i, j−s−u) ∗ [S′j ] ∗ [S′τ i ](s) ∗ [S′i ](r) ∗ [K′
τ i ]u .
(5.2)

It follows by the assumption ci,τ i = 0 that i �= τ i .

Remark 5.2 In case ci,τ i ∈ 2Z−≤1, the rank one ı-subquiver corresponding to {i, τ i}
is not of finite type, and the reflection functor �i is not defined. This is consistent with
the structure of the relative Weyl group W τ in (6.1)–(6.3) and Lemma 6.1 below.

The proof of Theorem 5.1 will occupy the remainder of this section. The proof of
(5.2) for j �= τ j will be given in Sects. 5.2–5.4. We then explain in Sect. 5.5 how
Theorem 5.1 for j = τ j reduces to the case for j �= τ j .

5.2 Summands of RHS (5.2)

Assume τ j �= j . In this case, the proof of Theorem 5.1 reduces to the consideration
of the rank 2 ıquiver (Q, τ ) as shown in the left figure of (5.3). The quiver Q′ of si�ı

(where Q′ = si Q) is shown in the right figure of (5.3). Here a = −ci j = −cτ i,τ j ,
b = −c j,τ i = −ci,τ j , and −cτ j,τ j = 2r .

i
εi

τ i
ετ i

Q =

j

a b

ε j

r τ j

b a

r

ετ j

i

a

εi

b

τ i
ετ i

abQ′ =

j

ε j

r τ jr

ετ j

(5.3)

The computations in this subsection will be performed in ˜H(ksi Q, τ ). We denote

I′k,l = {[M] ∈ Iso(mod(kQ′))|∃N ⊆ M s.t. N ∼= S j , M/N ∼= S⊕k
i ⊕ S⊕l

τ i },
(5.4)

p′(t, d,m, n) = (m − d)2 +
(

m − d

2

)

+ (n − d)2 +
(

n − d

2

)

+ d(m + n − d) +
(

d

2

)

+ (t − (n − d))(n − d), (5.5)
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w(m1,m2, n1, n2, d, e, t1, t3)

= ci j (m1 − 2d) + cτ i, j (n1 − 2e) − m1m2 − n1n2
+ 2(n1 − e)(n2 − d) + (e − d)(m1 + m2 − n1 − n2)

+ 2(m1 − d)(m2 − e) + p′(t3, d,m1, n2) + p′(t1, e, n1,m2) + 1.
(5.6)

For any [M] ∈ Iso(mod(kQ′))with dimension vectorm̂S′i +n̂S′τ i + ̂S′j , there exists
a unique indecomposable kQ′-module N such that M ∼= N ⊕ (S′i )⊕t M1 ⊕ (S′τ i )⊕t M3 for
some unique t M1 , t M3 ∈ N.

Proposition 5.3 For any m1,m2, n1, n2 ∈ N, we have

[(S′i )⊕m1 ⊕ (S′τ i )⊕n1 ] ∗ [S′j ] ∗ [(S′i )⊕m2 ⊕ (S′τ i )⊕n2 ]

=
min(n1,m2)

∑

e=0

min(n2,m1)
∑

d=0

∑

[M]∈I′m1+m2−d−e,n1+n2−d−e

vw(m1,m2,n1,n2,d,e,t M1 ,t M3 )

× (v − v−1)m1+m2+n1+n2−d−e+1 [m1]!v[n2]!v
[d]!v

[m2]!v[n1]!v
[e]!v

×
[

t M3
n2 − d

]

v

[

t M1
m2 − e

]

v

[M]
|Aut(M)| ∗ [Ki ]d ∗ [Kτ i ]e. (5.7)

The proof of Proposition 5.3 is long and can be found in Appendix A.

Lemma 5.4 We have

[(S′i )⊕(−ci j−u−r)] ∗ [(S′τ i )⊕(−cτ i, j−u−s)] ∗ [S′j ] ∗ [(S′τ i )⊕s ] ∗ [(S′i )⊕r ]

=
min(−ci j−u−r ,−cτ i, j−u−s)

∑

y=0

min(r ,s)
∑

x=0

min(−cτ i, j−u−s−y,r−x)
∑

e=0

min(s−x,−ci j−u−r−y)
∑

d=0

∑

[M]∈I′−ci j−u−y−x−d−e,−cτ i, j−u−y−x−d−e

(v − v−1)−ci j−cτ i, j−2u−x−y−d−e+1v(r−s)(x−y)+x(r+s−x)+y(−ci j−cτ i, j−2u−r−s−y)+(x2)+(y2)

× vw(−ci j−u−r−y,r−x,−cτ i, j−u−s−y,s−x,d,e,t M1 ,t M3 )

[

t M3
s − x − d

]

v

[

t M1
r − x − e

]

v

× [r ]!v[s]!v[−cτ i, j − u − s]!v[−ci j − u − r ]!v
[d]!v[e]!v[x]!v[y]!v

[M]
|Aut(M)| ∗ [Ki ]d+y ∗ [Kτ i ]e+x . (5.8)

Proof First, the following formula holds by a direct computation (cf. (A.9)):

[(S′τ i )⊕s] ∗ [(S′i )⊕r ] =
min(s,r)
∑

x=0

vx(r−s)vx(r+s−x)+(x2)(v − v−1)x
[

r
x

]

v

[

s
x

]

v
[x]!v
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× [(S′i )⊕(r−x) ⊕ (S′τ i )⊕(s−x)] ∗ [K⊕x
τ i ].

Hence, we also have

[(S′i )⊕(−ci j−u−r)] ∗ [(S′τ i )⊕(−cτ i, j−u−s)]

=
min(−ci j−u−r ,−cτ i, j−u−s)

∑

y=0

vy(ci j−cτ i, j+r−s)vy(−ci j−cτ i, j−2u−r−s−y)+(y2)(v − v−1)y
[−ci j − u − r

y

]

v

×
[−cτ i, j − u − s

y

]

v
[y]!v[(S′i )⊕(−ci j−u−r−y) ⊕ (S′τ i )⊕(−cτ i, j−u−s−y)] ∗ [K⊕y

i ].

Therefore we obtain that

[(S′i )⊕(−ci j−u−r)] ∗ [(S′τ i )⊕(−cτ i, j−u−s)] ∗ [S′j ] ∗ [(S′τ i )⊕s ] ∗ [(S′i )⊕r ]

=
min(−ci j−u−r ,−cτ i, j−u−s)

∑

y=0

min(r ,s)
∑

x=0

vx(r−s)+y(ci j−cτ i, j+r−s)vx(r+s−x)+y(−ci j−cτ i, j−2u−r−s−y)+(x2)+(y2)

× (v − v−1)x+y
[

r
x

]

v

[

s
x

]

v
[x]!v

[−ci j − u − r
y

]

v

[−cτ i, j − u − s
y

]

v
[y]!v

[(S′i )⊕(−ci j−u−r−y) ⊕ (S′τ i )⊕(−cτ i, j−u−s−y)] ∗ [K⊕y
i ] ∗ [S′j ] ∗ [(S′i )⊕(r−x) ⊕ (S′τ i )⊕(s−x)] ∗ [K⊕x

τ i ]

=
min(−ci j−u−r ,−cτ i, j−u−s)

∑

y=0

min(r ,s)
∑

x=0

v(r−s)(x−y)vx(r+s−x)+y(−ci j−cτ i, j−2u−r−s−y)+(x2)+(y2)

× (v − v−1)x+y
[

r
x

]

v

[

s
x

]

v
[x]!v

[−ci j − u − r
y

]

v

[−cτ i, j − u − s
y

]

v
[y]!v

[(S′i )⊕(−ci j−u−r−y) ⊕ (S′τ i )⊕(−cτ i, j−u−s−y)] ∗ [S′j ] ∗ [(S′i )⊕(r−x) ⊕ (S′τ i )⊕(s−x)] ∗ [K⊕y
i ] ∗ [K⊕x

τ i ].

The lemma now follows from the above computation and applying (5.7). 
�

5.3 Reduction of the formula (5.2)

Recall I′k,l from (5.4), p′(·, ·, ·, ·) from (5.5) and the function w from (5.6). Then

[S′i ](l) :=
[S′i ]∗l
[l]!v

= v−
l(l−1)

2
[(S′i )⊕l ]
[l]!v

.

Using (5.8), we compute

RHS(5.2) =
−max(ci j ,cτ i, j )

∑

u=0

−ci j−u
∑

r=0

−cτ i, j−u
∑

s=0

min(−ci j−u−r ,−cτ i, j−u−s)
∑

y=0

min(r ,s)
∑

x=0

min(−cτ i, j−u−s−y,r−x)
∑

e=0

min(s−x,−ci j−u−r−y)
∑

d=0

∑

[M]∈I′−ci j−u−y−x−d−e,−cτ i, j−u−y−x−d−e
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(−1)r+sv(r−s)u−r−sv−(r2)−(s2)−(−ci j−u−r)−(
−cτ i, j−u−s

2 )

× v(r−s)(x−y)+x(r+s−x)+y(−ci j−cτ i, j−2u−r−s−y)+(x2)+(y2)(v − v−1)−x−y−d−e+1

× vw(−ci j−u−r−y,r−x,−cτ i, j−u−s−y,s−x,d,e,t M1 ,t M3 )

[

t M3
s − x − d

]

v

[

t M1
r − x − e

]

v

× 1

[d]!v[e]!v[x]!v[y]!v
[M]

|Aut(M)| ∗ [K1]d+y ∗ [K3]e+x+u . (5.9)

Introduce

C( f , g, t1, t3)

:=
min(a,b)
∑

u=0

a−u
∑

r=0

b−u
∑

s=0

min(a−u−r ,b−u−s)
∑

y=0

min(r ,s)
∑

x=0

δ(0 ≤ g − y ≤ min(a − u − r − y, s − x))δ(0 ≤ f − x − u ≤ min(b − u − s − y, r − x))

(−1)r+sv−(r2)−(s2)−(a−u−r)−(b−u−s
2 )v(r−s)(x−y+u)−r−s+x(r+s−x)+y(a+b−2u−r−s−y)+(x2)+(

y
2)

× vw(a−u−r−y,r−x,b−u−s−y,s−x,g−y, f−x−u,t1,t3)(v − v−1)− f−g+u+1

×
[

t3
s − x − g + y

]

v

[

t1
r − f + u

]

v
· 1

[g]!v[ f − u]!v

[

g
y

]

v

[

f − u
x

]

v
,

where f , g, t1, t3 are subject to the constraints

0 ≤ f , g ≤ min(a, b), 0 ≤ t1 ≤ a − f − g, 0 ≤ t3 ≤ b − f − g. (5.10)

Recall a = −ci j , b = −cτ i, j . For fixed M (i.e., fixed t M1 , t M3 ) and fixed f :=
e+ x + u, g := d + y, the coefficient of [M]

|Aut(M)| ∗ [K1]g ∗ [K3] f in the sum (5.9) is

C( f , g, t M1 , t M3 ). Note e = f − x − u, and d = g − y.
Claim. The δ functions in C( f , g, t1, t3) are all equal to 1.

Let us prove the Claim. Since the product of v-binomials above is 0 whenever
s − x − g + y < 0 or r − u − f < 0 or g − y < 0 or f − x − u < 0, δ(g − y ≤
min(a − u − r − y, s − x)) can be replaced by δ(g − y ≤ a − u − r − y) while
δ( f −x−u ≤ min(b−u−s−y, r−x)) can be replaced by δ( f −x−u ≤ b−u−s−y).

But if g − y > a − u − r − y, or equivalently, a − f − g < r − f + u, then it
follows by (5.10) that t1 ≤ a − f − g < r − f + u and the v-binomial product in
C( f , g, t1, t3) is 0. So δ(g − y ≤ min(a − u − r − y, s − x)) is removable from the
above summations unconditionally.

Similarly, if f − x−u > b−u− s− y, or equivalently, b− f −g < s− x−g+ y,
then it follows by (5.10) that t3 ≤ b − f − g < s − x − g + y and the v-binomial
product in C( f , g, t1, t3) is 0. So δ( f − x − u ≤ b− u− s− y) is removable as well.
The Claim is proved.

Denote

T ( f , g, t1, t3) =
min(a,b)
∑

u=0

a−u
∑

r=0

b−u
∑

s=0

min(a−u−r ,b−u−s)
∑

y=0

min(r ,s)
∑

x=0

(−1)r+s(v − v−1)u
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× v2( f r+gs)− 1
2 u(u+1)+u( f−x+t1)−x(2g+ f+t3)+y(g+t3)+t3s−s+t1r−r

×
[

t3
s − x − g + y

]

v

[

t1
r − f + u

]

v

1

[g]!v[ f − u]!v

[

g
y

]

v

[

f − u
x

]

v
.

(5.11)

Recall the function w defined in (5.6). By a direct computation of the v-powers in
C( f , g, t1, t3) above, we can rewrite

C( f , g, t1, t3) = v−(a+b)( f+g)+4 f g+ 1
2 f (3 f+1)+ 1

2 g(3g+1)−t1 f−t3g+1
(v − v−1)− f−g+1T ( f , g, t1, t3).

(5.12)

Fix [M] ∈ I′a− f−g,b− f−g . For f = g = t1 = t3 = 0, M is indecomposable

which is isomorphic to F+
i (S′j ) by Lemma 2.9. In this case, the coefficient of [M] of

RHS(5.2) is equal to (q − 1)C(0, 0, 0, 0) = T (0, 0, 0, 0) by (5.12) and noting that
|Aut(M)| = q − 1. Summarizing, we have reached the following reduction toward
the proof of (5.2).

Proposition 5.5 The formula (5.2) is equivalent to the identities

T (0, 0, 0, 0) = 1, and T ( f , g, t1, t3) = 0,

for non-negative integers f , g, t1, t3 subject to the following constraints:

f , g ≤ min(a, b), t1 ≤ a − f − g, t3 ≤ b − f − g, and not all f , g, t1, t3 are zero. (5.13)

5.4 Proof of the identities (5.14)

This subsection is devoted to the proof of the following.

Proposition 5.6 The following identity holds:

T ( f , g, t1, t3) = 0, (5.14)

for non-negative integers f , g, t1, t3 satisfying the conditions (5.13). Moreover, we
have T (0, 0, 0, 0) = 1.

Below we shall replace v by the free variable v. We shall change variables

s3 = s − x + y − g, r1 = r + u − f .

In other words, we have s = s3 + x − y + g, and r = r1 − u + f . We can rewrite the
sign in (5.11) as

(−1)r+s = (−1)g+ f (−1)u+x (−1)r1(−1)s3(−1)y . (5.15)



84 Page 40 of 64 M. Lu, W. Wang

We rewrite the v-power in (5.11) as

2( f r + gs) − 1

2
u(u + 1) + u( f − x + t1) − x(2g + f + t3) + y(g + t3) + t3s − s + t1r − r

= (2 f 2 + 2g2 + gt3 − g + f t1 − f ) + P,

where

P = u(1− f ) − 1

2
u(u + 1) − ( f + u + 1)x

+ (2 f + t1 − 1)r1 + (2g + t3 − 1)s3 + (1− g)y. (5.16)

Looking closely, we see y runs from 0 to g freely in (5.11). By pulling out the parts
relevant to y in (5.11), we obtain the following factor of (5.11):

g
∑

y=0

(−1)yv(1−g)y
[

g
y

]

=
{

1, if g = 0,

0, if g > 0.

Hence the identity (5.14) holds when g > 0.
From now on, we shall assume g = 0. We observe the summation over s3 is taken

freely from 0 to t3 in (5.11). By pulling out the parts relevant to s3 in (5.11) and using
(5.15)–(5.16), we obtain the following factor of (5.11):

t3
∑

s3=0

(−1)s3v(t3−1)s3

[

t3
s3

]

=
t3−1
∏

a=0

(1− v2a) =
{

1, if t3 = 0,

0, if t3 > 0.

Hence the identity (5.14) holds when t3 > 0.
Now we shall assume t3 = g = 0. We observe the summation over r1 is taken

freely from 0 to t1 in (5.11). By pulling out the parts relevant to r1 in (5.11) and using
(5.15)–(5.16), we obtain the following factor of (5.11)

t1
∑

r1=0

(−1)r1v2 f r1v(t1−1)r1

[

t1
r1

]

=
t1−1
∏

a=0

(1− v2a+2 f ), (5.17)

which follows by (4.12) with z = −v2 f ; the RHS of (5.17) is 0 if f = 0 (and in
this case we must have t1 > 0 since not all f , g, t1, t3 are zero by (5.13)). Hence the
identity (5.14) holds when f = 0.

Now we shall assume t3 = g = 0 and f > 0. By pulling out the remaining double
summations over u, x (where we first sum over x freely from 0 to f − u) in (5.11)
and using (5.15)–(5.16), we obtain the following factor of (5.11):

f
∑

u=0

f−u
∑

x=0

(−1)u+xvu(1− f )− 1
2 u(u+1)−( f+u+1)x 1

[x]![ f − u − x]! (v − v−1)u
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=
f

∑

u=0

(−1)uvu(1− f )− 1
2 u(u+1)(v − v−1)u

f−u
∑

x=0

(−1)xv−( f+u+1)x 1

[x]![ f − u − x]!

=
f

∑

u=0

(−1)uvu(1− f )− 1
2 u(u+1) (v − v−1)u

[ f − u]!
f−u
∑

x=0

(−1)xv−2 f xv( f−u−1)x
[

f − u
x

]

(∗)=
f

∑

u=0

(−1)uvu(1− f )− 1
2 u(u+1) (v − v−1)u

[ f − u]!
f−u−1
∏

a=0

(1− v2a−2 f )

(∗∗)=
f

∑

u=0

(−1)uvu(1− f )
[

f
u

]

· v− 1
2 f ( f+1)(v − v−1) f = 0.

The identity (∗) above follows by (4.12) with z = −v2 f , and the equality (∗∗) follows
from

f−u−1
∏

a=0

(1− v2a−2 f ) = v− 1
2 f ( f+1)+ 1

2 u(u+1)(v − v−1) f−u · [ f ][ f − 1] · · · [u + 1].

This completes the proof of the identity (5.14). In addition, we read off from the
above proof that T (0, 0, 0, 0) = 1. Proposition 5.6 is proved.

5.5 Proof of Theorem 5.1

For the case j �= τ j , the formula (5.2) (or Theorem 5.1) follows by Proposition 5.5
and Proposition 5.6.

For the remaining case j = τ j , the proof of Theorem 5.1 is reduced to the consid-
eration of the rank 2 ıquiver (Q, τ ) as shown in the left figure of (5.18). The quiver
Q′ of si�ı (associated to Q′ = si Q) is shown in the right figure of (5.18). Here
a = −ci j = −cτ i, j .

i τ i

Q =
�

�
a

�
��

�
�
a
�
�


j

��
εi

ετ i

ε j

�

i τ i

Q′ =
�
��

a
�

�

�
��

a
�
�

j

��
εi

ετ i

ε j

�

(5.18)

By the same argument as in [24, Proposition 9.4], the computations involved in proving
(5.2) with j = τ j are the same as for the ıquiver in the diagram (5.3) for j �= τ j and
b = a.
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6 Symmetries of ıquantum groups

6.1 Quantum groups

Let Q be a quiver (without loops) with vertex set Q0 = I. Recall that ni j is the
number of edges connecting vertices i and j . Let C = (ci j )i, j∈I be the symmetric
generalized Cartan matrix of the underlying graph of Q, defined by ci j = 2δi j − ni j .
Let g be the corresponding Kac-Moody Lie algebra, with the Chevalley involution
denoted by ω. Let αi (i ∈ I) be the simple roots of g, and denote the root lattice
by Z

I := Zα1 ⊕ · · · ⊕ Zαn . The simple reflection si : Z
I → Z

I is defined to be
si (α j ) = α j − ci jαi , for i, j ∈ I. Denote the Weyl group by W = 〈si |i ∈ I〉.

Let τ be an involution of Q, which induces an involution on g again denoted by τ .
We shall define the restricted Weyl group associated to the quasi-split symmetric pair
(g, gωτ ) to be the following subgroup W τ of W :

W τ = {w ∈ W |τw = wτ } (6.1)

where τ is regarded as an automorphism of Aut(C). In finite type, it is well known
that the restricted Weyl group defined this way coincides with the one arising from
real groups (cf., e.g., [17]).

Recall the subset Iτ of I from (2.5), and define

Iτ := {i ∈ Iτ |ci,τ i = 0 or 2}. (6.2)

In our setting, Iτ consists of exactly those i ∈ Iτ such that the τ -orbit of i is of finite
type. Note that Iτ = Iτ if (Q, τ ) is acyclic. We denote by si , for i ∈ Iτ , the following
element of order 2 in the Weyl group W

si =
{

si , if i = τ i
si sτ i , if i �= τ i .

(6.3)

Lemma 6.1 ([31, Appendix]) The restricted Weyl group W τ can be identified with a
Coxeter group with si (i ∈ Iτ ) as its generators.

Let v be an indeterminant. Write [A, B] = AB − BA. Then ˜U = ˜Uv(g) is defined
to be theQ(v)-algebra generated by Ei , Fi , ˜Ki , ˜K ′

i , i ∈ I, where ˜Ki , ˜K ′
i are invertible,

subject to the following relations:

[Ei , Fj ] = δi j
˜Ki − ˜K ′

i

v − v−1 , [˜Ki , ˜K j ] = [˜Ki , ˜K
′
j ] = [˜K ′

i ,
˜K ′
j ] = 0, (6.4)

˜Ki E j = vci j E j ˜Ki , ˜Ki Fj = v−ci j Fj ˜Ki , (6.5)

˜K ′
i E j = v−ci j E j ˜K

′
i ,

˜K ′
i Fj = vci j Fj ˜K

′
i , (6.6)
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and the quantum Serre relations, for i �= j ∈ I,

1−ci j
∑

r=0

(−1)r
[

1− ci j
r

]

Er
i E j E

1−ci j−r
i = 0, (6.7)

1−ci j
∑

r=0

(−1)r
[

1− ci j
r

]

Fr
i Fj F

1−ci j−r
i = 0. (6.8)

Note that ˜Ki ˜K ′
i are central in ˜U for all i . The comultiplication � : ˜U → ˜U ⊗ ˜U is

given by

�(Ei ) = Ei ⊗ 1+ ˜Ki ⊗ Ei , �(Fi ) = 1⊗ Fi + Fi ⊗ ˜K ′
i ,

�(˜Ki ) = ˜Ki ⊗ ˜Ki , �(˜K ′
i ) = ˜K ′

i ⊗ ˜K ′
i .

(6.9)

Analogously as for ˜U, the quantum group U is defined to be the Q(v)-algebra
generated by Ei , Fi , Ki , K

−1
i , i ∈ I, subject to the relations modified from (6.4)–

(6.8) with ˜Ki and ˜K ′
i replaced by Ki and K−1

i , respectively. The comultiplication �

is obtained by modifying (6.9) with ˜Ki and ˜K ′
i replaced by Ki and K−1

i , respectively
(cf. [30]; beware that our Ki has a different meaning from Ki ∈ U therein.)

6.2 ıQuantum groups

For a (generalized) Cartan matrix C = (ci j ), let Aut(C) be the group of all permu-
tations τ of the set I such that ci j = cτ i,τ j . An element τ ∈ Aut(C) is called an
involution if τ 2 = Id.

Let τ be an involution inAut(C).We define˜Uı = ˜U′
v(g

θ ) to be theQ(v)-subalgebra
of ˜U generated by

Bi = Fi + Eτ i ˜K
′
i ,

˜ki = ˜Ki ˜K
′
τ i , ∀i ∈ I. (6.10)

Let˜Uı0 be the Q(v)-subalgebra of˜Uı generated by˜ki , for i ∈ I. By [27, Lemma 6.1],
the elements˜ki (for i = τ i) and˜ki˜kτ i (for i �= τ i) are central in ˜Uı .

Let ς = (ςi ) ∈ (Q(v)×)I be such that ςi = ςτ i for all i . Let Uı := Uı
ς be the

Q(v)-subalgebra of U generated by

Bi = Fi + ςi Eτ i K
−1
i , k j = K j K

−1
τ j , ∀i ∈ I, j ∈ I\Iτ .

It is known [16, 18] that Uı is a right coideal subalgebra of U in the sense that
� : Uı → Uı ⊗ U; and (U,Uı ) is called a quantum symmetric pair (QSP for short),
as they specialize at v = 1 to (U (g),U (gωτ )).

The algebras Uı
ς , for ς ∈ (Q(v)×)I, are obtained from ˜Uı by central reductions.



84 Page 44 of 64 M. Lu, W. Wang

Proposition 6.2 ([27, Proposition6.2]) (1) ThealgebraUı is isomorphic to the quotient
of ˜Uı by the ideal generated by

˜ki − ςi (for i = τ i), ˜ki˜kτ i − ςiςτ i (for i �= τ i). (6.11)

The isomorphism is given by sending Bi �→ Bi , k j �→ ς−1
τ j
˜k j , k

−1
j �→ ς−1

j
˜kτ j ,∀i ∈

I, j ∈ I\Iτ .
(2) The algebra˜Uı is a right coideal subalgebra of˜U; that is, (˜U,˜Uı ) forms a QSP.

We shall refer to ˜Uı and Uı as (quasi-split) ı quantum groups; they are called split
if τ = Id.

For i ∈ I with τ i = i , generalizing the constructions in [1, 4], we define the ı
divided powers of Bi to be (see also [8])

B(m)

i,1̄
= 1

[m]!
{

Bi
∏k

s=1(B
2
i − v˜ki [2s − 1]2) if m = 2k + 1,

∏k
s=1(B

2
i − v˜ki [2s − 1]2) if m = 2k; (6.12)

B(m)

i,0̄
= 1

[m]!
{

Bi
∏k

s=1(B
2
i − v˜ki [2s]2) if m = 2k + 1,

∏k
s=1(B

2
i − v˜ki [2s − 2]2) if m = 2k.

(6.13)

On the other hand, for i ∈ I with i �= τ i , we define the divided powers as in the
quantum group setting: for m ∈ N,

B(m)
i = Bm

i

[m]! . (6.14)

We have the following Serre presentation of ˜Uı , with pi ∈ Z2 fixed for each i ∈ I.

Proposition 6.3 ([24, Theorem 4.2]; also cf. [19]). TheQ(v)-algebra˜Uı has a presen-
tation with generators Bi ,˜ki (i ∈ I) and the relations (6.15)–(6.19) below: for � ∈ I,
and i �= j ∈ I,

˜ki˜k� =˜k�
˜ki , ˜ki B� = vcτ i,�−ci� B�

˜ki , (6.15)
Bi B j − Bj Bi = 0, if ci j = 0 and τ i �= j, (6.16)
1−ci j
∑

n=0

(−1)n B(n)
i B j B

(1−ci j−n)

i = 0, if j �= i �= τ i, (6.17)

1−ci,τ i
∑

n=0

(−1)n+ci,τ i B(n)
i Bτ i B

(1−ci,τ i−n)

i

= 1

v − v−1

(

vci,τ i (v−2; v−2)−ci,τ i B
(−ci,τ i )
i

˜ki − (v2; v2)−ci,τ i B
(−ci,τ i )
i

˜kτ i

)

, if τ i �= i, (6.18)

1−ci j
∑

n=0

(−1)n B(n)
i,pi

B j B
(1−ci j−n)

i,ci j+pi
= 0, if i = τ i . (6.19)
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6.3 ıQuantum groups and ıHall algebras

Recall Iτ from (2.5). Let ς = (ςi ) ∈ (Q(v)×)I be such that ςi = ςτ i for each i ∈ I

which satisfies ci,τ i = 0. The reduced Hall algebra associated to (Q, τ ) (or reduced
ıHall algebra), denoted by ˜Hred(kQ, τ ), is defined to be the quotient Q(v)-algebra of
˜H(kQ, τ ) by the ideal generated by the central elements

[Ki ] + qςi (∀i ∈ I with i = τ i), and [Ki ] ∗ [Kτ i ] − vci,τ i ςiςτ i (∀i ∈ I with i �= τ i). (6.20)

Theorem 6.4 ([24, Proposition 7.5, Theorem 7.7]) Let (Q, τ ) be a virtually acyclic
ıquiver. Then there exists a Q(v)-algebra monomorphism

˜� : ˜Uı|v=v −→ ˜H(kQ, τ ), (6.21)

which sends

Bi �→ −1

q − 1
[Si ], if i ∈ Iτ , ˜k j �→ −q−1[K j ], if τ j = j; (6.22)

Bi �→ v
q − 1

[Si ], if i /∈ Iτ , ˜k j �→ v
−c j,τ j

2 [K j ], if τ j �= j . (6.23)

Moreover, it induces an embedding � : Uı|v=v
�−→ ˜Hred(kQ, τ ), which sends Bi as

in (6.22)–(6.23) and k j �→ ς−1
τ j v

−c j,τ j
2 [K j ], for j ∈ I\Iτ .

Recall [Si ](m)
p , for i = τ i , defined in (3.2)–(3.3) and [Si ](m), for i �= τ i , defined in

(5.1). For any m ∈ N, the map ˜� in Theorem 6.4 sends the ıdivided powers B(m)
i,p in

(6.12)–(6.13) for i = τ i (cf. [24, Lemma 6.3]) and the divided powers B(m)
i in (6.14)

for i �= τ i to

˜�(B(m)
i,p ) = [Si ](m)

p

(1− v2)m
for p ∈ Z2, if i = τ i, (6.24)

˜�(B(m)
i ) =

⎧

⎨

⎩

[Si ](m)

(1−v2)m for i ∈ Iτ

vm [Si ](m)

(v2−1)m
for i /∈ Iτ ,

if i �= τ i . (6.25)

Let C˜H(kQ, τ ) be the Q(v)-subalgebra (called the composition algebra) of
˜H(kQ, τ ) generated by [Si ] and [Ki ]±1, for i ∈ I.

Corollary 6.5 ([24, Corollary 9.9]) Let (Q, τ ) be a virtually acyclic ıquiver. Then there

exists an algebra isomorphism: ˜� : ˜Uı|v=v

∼=−→ C˜H(kQ, τ ) given by (6.22)–(6.23).
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Corollary 6.6 For any sink i ∈ Q0, the isomorphism �i : ˜H(kQ, τ )
∼=→ ˜H(ks�Q, τ )

in (2.11) restricts to an isomorphism

�i : C˜H(kQ, τ )
∼=−→ C˜H(ksi Q, τ ).

Following Ringel, we define a generic composition subalgebra C˜H(Q, τ ) below.
Let K be an infinite set of (nonisomorphic) finite fields, and let us choose for each
k ∈ K an element vk ∈ C such that v2k = |k|. Consider the direct product C˜H(Q, τ ) :=
∏

k∈K C˜H(kQ, τ ). We view C˜H(Q, τ ) as a Q(v)-module by mapping v to (vk)k . As
in [14, 33], we have the following consequence of Corollary 6.5.

Corollary 6.7 ([24, Corollary 9.10]) Let (Q, τ ) be a virtually acyclic ıquiver. Then
we have the following algebra isomorphism ˜� : ˜Uı −→ C˜H(Q, τ ) defined by

B j �→
( −1

|k| − 1
[S j ]

)

k
, if j ∈ Iτ , ˜ki �→

(

− |k|−1[Ki ]
)

k
, if i = τ i;

Bj �→
( vk
|k| − 1

[S j ]
)

k
, if j /∈ Iτ , ˜ki �→

(

v
−ci,τ i

2
k [Ki ]

)

k
, if i �= τ i .

As in Corollary 6.6, for any sink i ∈ Q0, the isomorphism �i : C˜H(kQ, τ )
∼=→

C˜H(ksi Q, τ ) induces an isomorphism

�i : C˜H(Q, τ )
∼=−→ C˜H(si Q, τ ). (6.26)

6.4 Symmetries of ıquantum groups

Let i be a sink of an ıquiver (Q, τ ). Similar to the isomorphism ˜�Q in (6.21), there
exists an algebra isomorphism ˜�Q′ : ˜Uı|v=v → ˜H(ksi Q, τ ).

Recall Iτ from (6.2). we define algebra automorphisms

T′′
i,1 ∈ Aut(˜Uı ), for i ∈ Iτ ,

by Corollary 6.7 such that the following diagram commutes:

˜Uı
T′′
i,1

˜�Q

˜Uı

˜�Q′

C˜H(Q, τ )
�i C˜H(si Q, τ )

(6.27)
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In other words, specializing at v = v we have the following commutative diagram:

˜Uı|v=v

T′′
i,1

˜�Q

˜Uı|v=v

˜�Q′

C˜H(kQ, τ )
�i C˜H(ksi Q, τ )

(6.28)

Theorem 6.8 We have a Q(v)-algebra automorphism T′′
i,1 of ˜U

ı , for i ∈ Īτ , such that

(1) (i = τ i) : T′′
i,1(

˜k j ) = (−v2˜ki )−ci j˜k j , and

T′′
i,1(Bi ) = (−v2˜ki )

−1Bi ,

T′′
i,1(Bj ) =

∑

r+s=−ci j

(−1)rvr B(r)
i,p B j B

(s)
i,ci j+p

+
∑

u≥1

∑

r+s+2u=−ci j
r=p

(−1)rvr B(r)
i,p B j B

(s)
i,ci j+p(−v2˜ki )

u, for j �= i;

(2) (i �= τ i) : T′′
i,1(

˜k j ) =˜k
−ci j
i

˜k
−cτ i, j
τ i

˜k j ,

T′′
i,1(Bj ) =

{

−˜k−1
i Bτ i , if j = i

−Bi˜k
−1
τ i , if j = τ i,

and for j �= i, τ i ,

T′′
i,1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+svr−s+(−ci j−r−s−u)u

× B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i
˜kuτ i .

Proof By Theorem 6.4, Corollary 6.7, and the commutative diagram (6.27), we can
transfer the automorphism�i and its properties (see Proposition 2.12) on ıHall algebra
to an automorphism T′′

i,1 on ˜Uı . The formulas for T′′
i,1 then follow by (6.24)–(6.25)

and the formulas for �i in Theorem 3.2 (for i = τ i) and Theorem 5.1 (for i �= τ i),
respectively. 
�

6.5 (Anti-)involutions on ˜Uı

For quantum groups U, different variants of braid group symmetries are related to
each other via twisting by involutions and anti-involutions on U [30, 37.2.4]. We now
formulate analogous (anti-)involutions in the ıquantum group setting. The following
lemma follows by inspection of the defining relations for ˜Uı in Proposition 6.3; cf.
[9].
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Lemma 6.9 (a) There exists a Q-algebra involution ψı : ˜Uı → ˜Uı (called a bar
involution) such that

ψı (v) = v−1, ψı (˜ki ) = vci,τ i˜kτ i , ψı (Bi ) = Bi , ∀i ∈ I.

(b) There exists a Q(v)-algebra anti-involution σı : ˜Uı → ˜Uı such that

σı (Bi ) = Bi , σı (˜ki ) =˜kτ i , ∀i ∈ I. (6.29)

It follows by definition that

σıψı = ψıσı . (6.30)

6.6 Automorphisms T′
i,e, T

′′
i,e on ˜Uı

We shall present 3 more variants of the automorphism T′′
i,1 in Theorem 6.8.

Theorem 6.10 For i ∈ Īτ and e ∈ {±1}, there are automorphisms T′′
i,e on ˜Uı such

that

ψıT′′
i,eψı = T′′

i,−e. (6.31)

Moreover,

(1) (τ i = i) : T′′
i,e(

˜k j ) = (−v1+e
˜ki )−ci j˜k j , and

T′′
i,e(Bi ) = (−v1+e

˜ki )
−1Bi ,

T′′
i,e(Bj ) =

∑

r+s=−ci j

(−1)rver B(r)
i,p B j B

(s)
i,ci j+p

+
∑

u≥1

∑

r+s+2u=−ci j
r=p

(−1)r+uver+eu B(r)
i,p B j B

(s)
i,ci j+p(v

˜ki )
u, for j �= i;

(2) (i �= τ i) : T′′
i,e(

˜k j ) =˜k
−ci j
i

˜k
−cτ i, j
τ i

˜k j ,

T′′
i,1(Bj ) =

{

−˜k−1
i Bτ i , if j = i

−Bi˜k
−1
τ i , if j = τ i,

T′′
i,−1(Bj ) =

{

−˜k−1
τ i Bτ i , if j = i

−Bi˜k
−1
i , if j = τ i,

and for j �= i, τ i ,

T′′
i,1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+svr−s+(−ci j−r−s−u)u

× B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i
˜kuτ i ,
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T′′
i,−1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+sv−(r−s+(−ci j−r−s−u)u)

× B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i
˜kui .

Proof The formulas for T′′
i,1 follows by Theorem 6.8. The map T′′

i,−1 defined in (6.31)

as the ψı -conjugate of T′′
i,1 is clearly an automorphism of ˜Uı . Then the formulas

for T′′
i,−1 can be verified readily by definition using formulas in Theorem 6.8 and

Lemma 6.9. 
�
Theorem 6.11 For i ∈ Īτ and e ∈ {±1}, there are automorphisms T′

i,e on ˜Uı such
that

T′
i,e = σıT′′

i,−eσı , ψıT′
i,eψı = T′

i,−e. (6.32)Moreover,

(1) (τ i = i) : T′
i,e(

˜k j ) = (−v1−e
˜ki )−ci j˜k j , and

T′
i,e(Bi ) = (−v1−e

˜ki )
−1Bi ,

T′
i,e(Bj ) =

∑

r+s=−ci j

(−1)rv−er B(s)
i,ci j+p B j B

(r)
i,p

+
∑

u≥1

∑

r+s+2u=−ci j
r=p

(−1)r+uv−er−eu B(s)
i,ci j+p B j B

(r)
i,p(v

˜ki )
u, for j �= i .

(2) (i �= τ i) : T′
i,e(

˜k j ) =˜k
−ci j
i

˜k
−cτ i, j
τ i

˜k j , and

T′
i,−1(Bj ) =

{

−Bτ i˜k
−1
τ i , if j = i

−˜k−1
i Bi , if j = τ i,

T′
i,1(Bj ) =

{

−Bτ i˜k
−1
i , if j = i

−˜k−1
τ i Bi , if j = τ i,

and for j �= i, τ i ,

T′
i,−1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+svr−s+(−ci j−r−s−u)u

×˜kui B
(−ci j−r−u)

i B(s)
τ i B j B

(−cτ i, j−u−s)
τ i B(r)

i ,

T′
i,1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+sv−(r−s+(−ci j−r−s−u)u)

×˜kuτ i B
(−ci j−r−u)

i B(s)
τ i B j B

(−cτ i, j−u−s)
τ i B(r)

i .

Proof The map T′
i,e defined in (6.32) as the σı -conjugate of T′′

i,−e is clearly an auto-

morphism of ˜Uı . The formulas for T′
i,e acting on the generators of ˜U

ı can be verified
readily by definition using formulas in Lemma 6.9 and Theorem 6.10. The second
formula in (6.32) follows from the first formula, (6.30) and (6.31). 
�
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Theorem 6.12 We have T′
i,e = (T′′

i,−e)
−1, for any i ∈ Īτ and e = {±1}.

Proof It suffices to prove for e = −1 by (6.32). Given an ıquiver (Q, τ ) such that

i is a sink, we have two isomorphisms, �i : ˜H(kQ, τ )
∼=→ ˜H(ksi Q, τ ) and �−

i :
˜H(ksi Q, τ )

∼=→ ˜H(kQ, τ ), which are inverses to each other; see Lemma 2.10 and its
proof.

By the same arguments as in §3–§5, one can obtain the explicit actions of �−
i . In

particular, similar to §6.4, we have the following commutative diagram:

˜Uı
T′
i,−1

˜�Q′

˜Uı

˜�Q

C˜H(si Q, τ )
�−
i C˜H(Q, τ )

(6.33)

Combining with (6.27), we conclude that T′
i,−1 and T′′

i,1 are inverses to each other.
�
Remark 6.13 The results in Theorems 6.10–6.11 verify substantially [8, Conjec-
ture 6.5] in case i = τ i and [9, Conjecture 3.7] in case i �= τ i , for quasi-split
ıquantum groups˜Uı associated to symmetric generalized Cartanmatrices with all ci,τ i
even. Actually, the notations T′

i,e and T′′
i,e used in Theorems 6.10–6.11 are swapped

from the corresponding notations T′′
i,e and T′

i,e used in [8, Conjecture 6.5] for the
following reason. The leading terms (i.e., the u = 0 summands) in the formulas for
the symmetries T′

i,e,T
′′
i,e acting on Bj (for j �= i = τ i) in Theorems 6.10–6.11 are

precisely the formulas for Lusztig’s symmetries T ′
i,e, T

′′
i,e on Fj ; hence this is most

compatible with the view that Fj (not E j ) is a leading term for Bj .
The formulas for the automorphisms T′

i,e, T
′′
i,e remain valid for quasi-split sym-

metrizableKac-Moody type, when v is replaced by vi = v
i ·i
2 in the formulas above and

also in the ıdivided powers. They can be verified in the framework of ıHall algebras
associated to valued ıquivers (which are to be developed).

Remark 6.14 The operators T′′
i,e, for i ∈ Īτ , are expected to satisfy the braid relations

of the restricted Weyl group W τ defined in (6.1) (extending the suggestion in [17]
for finite type). For ˜Uı of rank 2, the only nontrivial braid relation appears in finite
type, and hence it holds by [26]. If one can show that T′′

i,e acts on module level in a

way compatible with its action on ˜Uı , then the braid relation follows from the rank
2 results. Other than that, for various simply-laced locally finite Kac-Moody types
(including all affine types), the braid relations hold thanks again to the computations
in [26].

6.7 Symmetries of Uı

Set ς� = (ς�,i )i∈I, where

ς�,i = −v−2 if i = τ i, ς�,i = v
−ci,τ i

2 if i �= τ i . (6.34)
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We call the parameters ς� distinguished, for the corresponding ıquantum groups ˜Uı

and Uı .
We shall use the index ς� to indicate the algebras under consideration are associ-

ated to the distinguished parameters ς�. Let�ı be the ıquiver algebra associated to an
ıquiver (Q, τ ). Recall the reduced ıHall algebra ˜Hred(kQ, τ ) with a general param-
eter ς ; cf. (6.20). If follows that the reduced ıHall algebra ˜Hred(kQ, τ )ς� with the
distinguished parameter ς� is the quotient algebra of ˜H(kQ, τ ) by the ideal generated
by

[Ki ] − 1 (i ∈ I with i = τ i), and [Ki ] ∗ [Kτ i ] − 1 (i ∈ I with i �= τ i). (6.35)

Proposition 6.15 ([26, Proposition 7.1].) For any sink i ∈ Q0, the isomorphism �i

induces an isomorphism of algebras �̄i : ˜Hred(kQ, τ )ς�
∼=−→ ˜Hred(ksi Q, τ )ς� .

Recall from Theorem 6.4 that the isomorphism �Q : Uı
ς�|v=v → ˜Hred(kQ, τ )ς�

sends

Bj �→ −1

q − 1
[S j ], for j ∈ Iτ ; Bj �→ v

q − 1
[S j ], for j ∈ I \ Iτ ;

k j �→ [K j ], for j ∈ I \ Iτ .

Similarly, there exists an isomorphismof algebras�Q′ : Uı
ς�|v=v −→ ˜Hred(ksi Q, τ )ς�

(where the [S j ], [K j ] above are replaced by [S′j ], [K′
j ]).

Using the same argument of [26, Proposition 7.2], we obtain the following.

Proposition 6.16 Let (Q, τ ) be an ıquiver. Then T′′
i,1 : ˜Uı

ς� → ˜Uı
ς� in (6.27) induces

an automorphism T′′
i,1 on Uı

ς� , for each i ∈ Īτ . Moreover, for any sink i in Q0, we
have the following commutative diagram of isomorphisms:

Uı
ς�|v=v

T′′
i,1

�Q

Uı
ς�|v=v

�Q′

C˜Hred(kQ, τ )ς�
�̄i C˜Hred(ksi Q, τ )ς�

The explicit formulas for T′′
i,1 : Uı

ς� → Uı
ς� are given as follows:

(1) (i = τ i) : T′′
i,1(k j ) = k j , and

T′′
i,1(Bi ) = Bi ,

T′′
i,1(Bj ) =

∑

r+s=−ci j

(−1)rvr B(r)
i,p B j B

(s)
i,ci j+p

+
∑

u≥1

∑

r+s+2u=−ci j
r=p

(−1)rvr B(r)
i,p B j B

(s)
i,ci j+p, for j �= i;
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(2) (i �= τ i) : T′′
i,1(k j ) = k

ci j−cτ i, j
τ i k j , and

T′′
i,1(Bj ) =

{

−kτ i Bτ i , if j = i,

−Bik
−1
τ i , if j = τ i,

and for j �= i, τ i ,

T′′
i,1(Bj ) =

−max(ci j ,cτ i, j )
∑

u=0

−ci, j−u
∑

r=0

−cτ i, j−u
∑

s=0

(−1)r+sv

(

r−s+(−ci j−r−s−u)u
)

B(r)
i B

(−cτ i, j−u−s)
τ i B j B

(s)
τ i B

(−ci j−r−u)

i kuτ i .

Below we write Uı = Uı
ς to indicate its dependence on a parameter ς . It is well

known that the Q(v)-algebras Uı
ς (up to some field extension) are isomorphic for

different choices of parameters ς [19]; see Lemma 6.17 below.
Consider a field extension of Q(v)

F = Q(v)(ai |i ∈ I ), where ai =
√

ς�,i

ςi
(i ∈ I). (6.36)

Denote by

FUı
ς = F ⊗Q(v) Uı

ς (6.37)

the F-algebra obtained by a base change. By a direct computation a rescaling auto-
morphism on FU induces an isomorphism in the lemma below.

Lemma 6.17 ([26, Lemma 8.6]) There exists an isomorphism of F-algebras

φu : FUı
ς� −→ FUı

ς

Bi �→ ai Bi , k j �→ k j , (∀i ∈ I, j ∈ I\Iτ ).

Below we shall denote by T�,i : Uı
ς� → Uı

ς� the isomorphism T′′
i,1 : Uı

ς� → Uı
ς�

obtained in Proposition 6.16. Let (Q, τ ) be an ıquiver. We now define a braid group
action T′′

i,1 on FUı from the T�,i on Uı
ς� via a conjugation by the isomorphism φu:

T′′
i,1 = φuT�,iφ

−1
u . (6.38)

Proposition 6.18 Let (Q, τ ) be an ıquiver. Then there is an automorphism T′′
i,1 on

FUı
ς , for each i ∈ Īτ .

Remark 6.19 By using the same argument, one can construct automorphisms T′′
i,−1,

T′
i,±1 for the ıquantum group Uı

ς with general parameters ς by considering different
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distinguished parameters. In fact, for T′′
i,1, T

′
i,−1, the distinguished parameters are as

shown in (6.34); for T′′
i,−1, T

′
i,1, the distinguished parameters are chosen to be

ς�,i = −1 if i = τ i, ς�,i = v
−ci,τ i

2 if i �= τ i .

However, the relation (6.31) no longer holds in the setting ofUı . In fact, there are some
strong constraints on the parameters ς (different from the distinguished parameters in
(6.34)) for the existence of the bar involution ψı on Uı ; see [7, Proposition 3.7].

6.8 Symmetries of the Drinfeld double ˜U

Recall that the Drinfeld double ˜U is the universal ıquantum group of diagonal type;
see [27, Lemma 8.3]. Below we shall write down explicitly the automorphisms of the
Drinfeld double ˜U following Theorems 6.10–6.11, for the convenience of the reader.

There exists a Q(v)-algebra anti-involution σ : ˜U → ˜U such that

σ(Ei ) = Ei , σ (Fi ) = Fi , σ (˜Ki ) = ˜K ′
i , ∀i ∈ I.

There exists a Q-algebra automorphism ψ : ˜U → ˜U (called bar involution) such
that

ψ(v) = v−1, ψ(˜Ki ) = ˜K ′
i , ψ(Ei ) = Ei , ψ(Fi ) = Fi , ∀i ∈ I.

Proposition 6.20 For i ∈ I and e ∈ {±1}, there are automorphisms T′′
i,e on ˜U such

that

ψT′′
i,eψ = T′′

i,−e.

Moreover, we have

T′′
i,e(

˜K j ) = ˜K
−ci j
i

˜K j , T′′
i,e(

˜K ′
j ) = (˜K ′

i )
−ci j

˜K ′
j ,

T′′
i,1(Fi ) = −˜K−1

i Ei , T′′
i,1(Ei ) = −Fi (˜K

′
i )

−1,

T′′
i,−1(Fi ) = −(˜K ′

i )
−1Ei , T′′

i,−1(Ei ) = −Fi ˜K
−1
i ,

T′′
i,−e(Fj ) =

−ci, j
∑

r=0

(−1)rv−er F (r)
i Fj F

(−ci j−r)
i ,

T′′
i,−e(E j ) =

−ci, j
∑

r=0

(−1)rver E
(−cτ i, j−r)
i E j E

(r)
i , for j �= i .

Proposition 6.21 For i ∈ I and e ∈ {±1}, there are automorphisms T′
i,e on ˜U such

that

σT′
i,eσ = T′′

i,−e, ψT′
i,eψ = T′

i,−e.
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Moreover, we have

T′
i,e(

˜K j ) = ˜K
−ci j
i

˜K j , T′
i,e(

˜K ′
j ) = (˜K ′

i )
−ci j

˜K ′
j ,

T′
i,−1(Fi ) = −Ei (˜K

′
i )

−1, T′
i,−1(Ei ) = −˜K−1

i Fi ,

T′
i,1(Fi ) = −Ei ˜K

−1
i , T′

i,1(Ei ) = −(˜K ′
i )

−1Fi ,

T′
i,e(Fj ) =

−ci, j
∑

r=0

(−1)rv−er F
(−ci j−r)
i Fj F

(r)
i ,

T′
i,e(E j ) =

−ci, j
∑

r=0

(−1)rver E (r)
i E j E

(−ci j−r)
i , for j �= i .

Remark 6.22 The actions of T′
i,e,T

′′
i,e on ˜U factor through the quotient U =

˜U
/

(˜K ′
i
˜Ki − 1|i ∈ I) to the corresponding automorphisms on U, and the formulas

in Propositions 6.20–6.21 are then reduced to Lusztig’s formulas [30, §37.1.3] upon
the identification ˜K ′

i = ˜K−1
i .
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Appendix A: Proof of Proposition 5.3

This appendix is devoted to a proof of Proposition 5.3, which concerns about the
computation of [(S′i )⊕m1 ⊕ (S′τ i )⊕n1] ∗ [S′j ] ∗ [(S′i )⊕m2 ⊕ (S′τ i )⊕n2 ].

A.1 The setup

By definition, we have

[S⊕m1
i ⊕ S

⊕n1
τ i ] ∗ [S j ] ∗ [S⊕m2

i ⊕ S
⊕n2
τ i ] = [S⊕m1

i ⊕ S
⊕n1
τ i ] ∗ [S j ⊕ S

⊕m2
i ⊕ S

⊕n2
τ i ]

= vci j m1+cτ i, j n1−m1m2−n1n2
∑

[L]∈Iso(mod(�ı ))

∣

∣Ext1�ı (S
⊕m1
i ⊕ S

⊕n1
τ i , S j ⊕ S

⊕m2
i ⊕ S

⊕n2
τ i )L

∣

∣ · [L].

For any [L] ∈ Iso(mod(�ı )) such that

∣

∣Ext1�ı (S⊕m1
i ⊕ S⊕n1

τ i , S j ⊕ S⊕m2
i ⊕ S⊕n2

τ i )L
∣

∣ �= 0, (A.1)

there exist a unique [M] ∈ Iso(mod(kQ)) and d, e ∈ N such that [L] = [M ⊕K
⊕d
i ⊕

K
⊕e
τ i ] in ˜H(kQ, τ ). In this case, M admits the following exact sequence

0 −→ S j ⊕ S⊕(m2−e)
i ⊕ S⊕(n2−d)

τ i −→ M −→ S⊕(m1−d)
i ⊕ S⊕(n1−e)

τ i −→ 0.
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Fix [M] ∈ Iso(mod(kQ)), 0 ≤ d ≤ min(n2,m1) and 0 ≤ e ≤ min(n1,m2). Then

there exists a unique indecomposable kQ-module N such thatM ∼= N⊕S
⊕t M1
i ⊕S

⊕t M3
τ i

for some unique t M1 , t M3 . Denote by

CM := {[ξ ] ∈ Ext1�ı (S⊕m1
i ⊕ S⊕n1

τ i , S j ⊕ S⊕m2
i ⊕ S⊕n2

τ i )L |L admits

a short exact sequence 0 → M → L → K
⊕d
i ⊕ K

⊕e
τ i → 0}.

In this way, we have

[S⊕m1
i ⊕ S

⊕n1
τ i ] ∗ [S j ] ∗ [S⊕m2

i ⊕ S
⊕n2
τ i ]

=
min(n1,m2)

∑

e=0

min(n2,m1)
∑

d=0

∑

[M]∈I′m1+m2−d−e,n1+n2−d−e

vci j m1+cτ i, j n1−m1m2−n1n2 |CM | · [M ⊕ K
⊕d
i ⊕ K

⊕e
τ i ]

=
min(n1,m2)

∑

e=0

min(n2,m1)
∑

d=0

∑

[M]∈I′m1+m2−d−e,n1+n2−d−e

vci j m1+cτ i, j n1−m1m2−n1n2+(e−d)(m1+m2−n1−n2)|CM |

× [M] ∗ [Ki ]d ∗ [Kτ i ]e . (A.2)

A.2 Computation of |CM|

We shall compute |CM |. Let Q′ and Q′′ be the full subquivers of Q formed by the
vertices i, j and the vertices τ i, j respectively. Then we have two restriction functors
resi j : mod(kQ) → mod(kQ′) and resτ i, j : mod(kQ) → mod(kQ′′). Set

M1 := resi j (M), N1 := resi j (N ), M2 := resτ i, j (M), N2 := resτ i, j (N ).

(A.3)

Denote by

C1 := {[ξ ] ∈ Ext1�ı (S⊕m1
i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i )L1 |L1 admits a short

exact sequence 0 → M1 → L1 → K
⊕d
i ⊕ S⊕e

i ⊕ S⊕(n2−d)
τ i → 0},

C2 := {[ξ ] ∈ Ext1�ı (S⊕n1
τ i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i )L2 |L2 admits a short

exact sequence 0 → M2 → L2 → K
⊕e
τ i ⊕ S⊕d

τ i ⊕ S⊕(m2−e)
i → 0}.

Lemma A.1 Retain the notations as above. Then |CM | = |C1| · |C2|.
Proof Applying Hom�ı (−, S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i ) to the split short exact sequence

0 −→ S⊕m1
i −→ S⊕m1

i ⊕ S⊕n1
τ i −→ S⊕n1

τ i −→ 0, (A.4)

we have the following short exact sequence

0 −→ Ext1(S⊕n1
τ i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i )

β−→ Ext1(S⊕m1
i ⊕ S⊕n1

τ i , S j ⊕ S⊕m2
i ⊕ S⊕n2

τ i )
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α−→ Ext1(S⊕m1
i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i ) −→ 0. (A.5)

Then α(CM ) = C1, and thus, CM = ⊔

[ξ ]∈C1(α|CM )−1([ξ ]).
Since (A.4) is split, we have the following exact sequence

0 −→ Ext1(S⊕m1
i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i )

δ−→ Ext1(S⊕m1
i ⊕ S⊕n1

τ i , S j ⊕ S⊕m2
i ⊕ S⊕n2

τ i )

γ−→ Ext1(S⊕n1
τ i , S j ⊕ S⊕m2

i ⊕ S⊕n2
τ i ) −→ 0 (A.6)

such that γ ◦ β = Id and α ◦ δ = Id. For any [η1], [η2] ∈ CM such that α([η1]) =
α([η2]) = [ξ ], if γ ([η1]) = γ ([η2]), then there exists a unique [ξ ′] ∈ Ext1(S⊕m1

i , S j⊕
S⊕m2
i ⊕ S⊕n2

τ i ) such that δ([ξ ′]) = [η1] − [η2]. It follows that [ξ ′] = α ◦ δ([ξ ′]) =
α([η1]) − α([η2]) = [0]. So δ([ξ ′]) = 0 and [η1] = [η2]. Therefore, we obtain that
γ |(α|CM )−1([ξ ]) is injective for any [ξ ] ∈ C1.

By the above calculations,

CM =
⊔

[ξ ]∈C1
Cξ , where Cξ = γ (α|CM )−1([ξ ]). (A.7)

One can show that Cξ = C2, which is independent of [ξ ] ∈ C1. Therefore, |CM | =
|C1| · |C2|. 
�

A.3 Computation of |C1| and |C2|

It remains to compute |C1| and |C2|.
Lemma A.2 Retain the notations as above. Then

|C1| =q
−ci j d

∣

∣Ext1kQ (S
⊕(m1−d)

i , S j )
N1⊕S

⊕(tM1 +e−m2)

i

∣

∣ · ∣∣Ext1
�ı (S

⊕m1
i , S

⊕n2
τ i )

K
⊕d
i ⊕S

⊕(m1−d)

i ⊕S
⊕(n2−d)

τ i

∣

∣,

|C2| =q
−cτ i, j e

∣

∣Ext1kQ (S
⊕(n1−e)
τ i , S j )

N2⊕S
⊕(tM3 +d−n2)

τ i

∣

∣ · ∣∣Ext1
�ı (S

⊕n1
τ i , S

⊕m2
i )

K
⊕e
τ i ⊕S

⊕(m2−e)
i ⊕S

⊕(n1−e)
τ i

∣

∣.

Proof The 2 formulas are equivalent, and we only prove the first one. Let M ′
1 :=

N1 ⊕ S
⊕(t M1 −m2)

i , and

C′1 := {[ξ ] ∈ Ext1�ı (S⊕m1
i , S j ⊕ S⊕n2

τ i )L ′
1
|L ′

1 admits a short

exact sequence 0 → M ′
1 → L ′

1 → K
⊕d
i ⊕ S⊕e

i ⊕ S⊕(n2−d)
τ i → 0}.

Consider the ıquiver algebra with its quiver as in the right figure of (3.8) (the number
of arrows from i to j is a = −ci j ), which is denoted by s�ı to avoid confusions.
Then any si�ı -module L = (Lk, Lα, Lεk ) supported at i, τ i and j with Lα = 0 for
any α : τ i → j can be viewed as a s�ı -module G(L), that is, G(L)i := Li ⊕ Lτ i ,
G(L) j := L j . Let

C′′1 := {[ξ ] ∈ Ext1s�ı (S⊕m1
i , S j ⊕ S⊕n2

i )L ′′
1
|L ′′

1 admits a short
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exact sequence 0 → G(M ′
1) → L ′′

1 → K
⊕d
i ⊕ S⊕(n2−d+e)

i → 0}.

Then |C′1| = |C′′1|. By applying [24, Proposition 3.10] to compute [S⊕m1
i ]�[S j ⊕S⊕n2

i ]
in SDH(s�ı ), one obtains that

|C′′1 | =q
−ci j d

∣

∣Ext1kQs (S
⊕(m1−d)

i , S j )
G(N1)⊕S

⊕(tM1 +e−m2)

i

∣

∣ · ∣∣Ext1s�ı (S
⊕m1
i , S

⊕n2
i )

K
⊕d
i ⊕S

⊕(m1+n1−2d)

i

∣

∣.

Here Qs is the quiver i −ci j j . Clearly, we have

∣

∣Ext1kQs (S
⊕(m1−d)
i , S j )

G(N1)⊕S
⊕(tM1 +e−m2)

i

∣

∣ = ∣

∣Ext1kQ(S
⊕(m1−d)
i , S j )

N1⊕S
⊕(tM1 +e−m2)

i

∣

∣,

∣

∣Ext1s�ı (S
⊕m1
i , S

⊕n2
i )

K
⊕d
i ⊕S

⊕(m1+n1−2d)

i

∣

∣ = ∣

∣Ext1�ı (S
⊕m1
i , S

⊕n2
τ i )

K
⊕d
i ⊕S

⊕(m1−d)

i ⊕S
⊕(n2−d)

τ i

∣

∣,

and then the desired formula follows. 
�
Recall the notation N1, N2 from (A.3).

Lemma A.3 Retain the notations as above. Then

∣

∣Ext1kQ(S⊕(m1−d)
i ⊕ S⊕(n1−e)

τ i , S j )
N⊕S

⊕(tM1 +e−m2)

i ⊕S
⊕(tM3 +d−n2)

τ i

∣

∣

= ∣

∣Ext1kQ(S⊕(m1−d)
i , S j )

N1⊕S
⊕(tM1 +e−m2)

i

∣

∣ · ∣∣Ext1kQ(S⊕(n1−e)
τ i , S j )

N2⊕S
⊕(tM3 +d−n2)

τ i

∣

∣.

Proof Note that N , N1 and N2 are indecomposable. Then the orders of their automor-
phism groups are q − 1. A direct computation shows that

F
N⊕S

⊕(tM1 +e−m2)

i ⊕S
⊕(tM3 +d−n2)

τ i

S
⊕(m1−d)

i ⊕S
⊕(m1−e)
τ i ,S j

= 1 = F
N1⊕S

⊕(tM1 +e−m2)

i

S
⊕(m1−d)

i ,S j
= F

N2⊕S
⊕(tM3 +d−n2)

τ i

S
⊕(m1−e)
τ i ,S j

,

if they are nonzero.
We have

(q − 1)|Aut(N ⊕ S
⊕(t M1 +e−m2)

i ⊕ S
⊕(t M3 +d−n2)
τ i )|

= |Aut(N1 ⊕ S
⊕(t M1 +e−m2)

i )| · |Aut(N2 ⊕ S
⊕(t M3 +d−n2)
τ i )|.

Using the Riedtman-Peng formula, we have

∣

∣Ext1kQ(S⊕(m1−d)
i ⊕ S⊕(m1−e)

τ i , S j )
N⊕S

⊕(tM1 +e−m2)

i ⊕S
⊕(tM3 +d−n2)

τ i

∣

∣

=
∣

∣Aut(S⊕(m1−d)
i ⊕ S⊕(m1−e)

τ i )
∣

∣ · |Aut(S j )|
∣

∣Aut(N ⊕ S
⊕(t M1 +e−m2)

i ⊕ S
⊕(t M3 +d−n2)
τ i )

∣

∣
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=
∣

∣Aut(S⊕(m1−d)
i )

∣

∣ · ∣∣Aut(S⊕(m1−e)
τ i )

∣

∣ · |Aut(S j )|2
∣

∣Aut(N1 ⊕ S
⊕(t M1 +e−m2)

i )
∣

∣ · ∣∣Aut(N2 ⊕ S
⊕(t M3 +d−n2)
τ i )

∣

∣

= ∣

∣Ext1kQ(S⊕(m1−d)
i , S j )

N1⊕S
⊕(tM1 +e−m2)

i

∣

∣ · ∣∣Ext1kQ(S⊕(m1−e)
τ i , S j )

N2⊕S
⊕(tM3 +d−n2)

τ i

∣

∣.

The lemma is proved. 
�

A.4 The proof

Now we can complete the proof of Proposition 5.3. By Lemma A.3 we have

∣

∣Ext1kQ(S⊕(m1−d)
i ⊕ S⊕(n1−e)

τ i , S j ⊕ S⊕(m2−e)
i ⊕ S⊕(n2−d)

τ i )M
∣

∣

= ∣

∣Ext1kQ(S⊕(m1−d)
i ⊕ S⊕(n1−e)

τ i , S j )
N⊕S

⊕(tM1 +e−m2)

i ⊕S
⊕(tM3 +d−n2)

τ i

∣

∣

= ∣

∣Ext1kQ(S⊕(m1−d)
i , S j )

N1⊕S
⊕(tM1 +e−m2)

i

∣

∣ · ∣∣Ext1kQ(S⊕(n1−e)
τ i , S j )

N2⊕S
⊕(tM3 +d−n2)

τ i

∣

∣.

Together with Lemmas A.1 and A.2, we have

|CM | = q−ci j d−cτ i, j e
∣

∣Ext1kQ(S
⊕(m1−d)
i ⊕ S

⊕(n1−e)
τ i , S j ⊕ S

⊕(m2−e)
i ⊕ S

⊕(n2−d)
τ i )M

∣

∣

· ∣∣Ext1�ı (S
⊕m1
i , S

⊕n2
τ i )

K
⊕d
i ⊕S

⊕(m1−d)

i ⊕S
⊕(n2−d)

τ i

∣

∣ · ∣∣Ext1�ı (S
⊕n1
τ i , S

⊕m2
i )

K
⊕e
τ i ⊕S

⊕(m2−e)
i ⊕S

⊕(n1−e)
τ i

∣

∣.

(A.8)

By a standard computation (see e.g. [33]), we have

FM

S
⊕(m1−d)

i ⊕S
⊕(n1−e)
τ i ,S j⊕S

⊕(m2−e)
i ⊕S

⊕(n2−d)

τ i

= v(t M1 −(m2−e))(m2−e)
[

t M1
m2 − e

]

v
· v(t M3 −(n2−d))(n2−d)

[

t M3
n2 − d

]

v
.

Using (2.25), one can obtain that

∣

∣Ext1kQ (S
⊕(m1−d)

i ⊕ S
⊕(n1−e)
τ i , S j ⊕ S

⊕(m2−e)
i ⊕ S

⊕(n2−d)

τ i )M
∣

∣

=
m1−d−1

∏

i=0

(qm1−d − qi )

n1−e−1
∏

i=0

(qn1−e − qi )

m2−e−1
∏

i=0

(qm2−e − qi )

n2−d−1
∏

i=0

(qn2−d − qi )

× v2(m1−d)(m2−e)+2(n1−e)(n2−d)v(tM1 −(m2−e))(m2−e)+(tM3 −(n2−d))(n2−d)

×
[

tM1
m2 − e

]

v

[

tM3
n2 − d

]

v

(q − 1)

|Aut(M)|

= v(m1−d)2+(m1−d
2

)+(n1−e)2+(n1−e
2

)+(m2−e)2+(m2−e
2

)+(n2−d)2+(n2−d
2

)

× v2(m1−d)(m2−e)+2(n1−e)(n2−d)v(tM1 −(m2−e))(m2−e)+(tM3 −(n2−d))(n2−d)
(v − v−1)m1+m2+n1+n2−2d−2e

× [m1 − d]!v[n1 − e]!v[m2 − e]!v[n2 − d]!v
[

tM1
m2 − e

]

v

[

tM3
n2 − d

]

v

(q − 1)

|Aut(M)| .
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Furthermore, we have

∣

∣Ext1�ı (S⊕m1
i , S⊕n2

τ i )
K

⊕d
i ⊕S

⊕(m1−d)

i ⊕S
⊕(n2−d)

τ i

∣

∣

=
∏d−1

i=0 (qm1 − qi )
∏d−1

i=0 (qn2 − qi )
∏d−1

i=0 (qd − qi )

= vd(m1+n2−d)+(d2)(v − v−1)d
[

m1
d

]

v

[

n2
d

]

v
[d]!v, (A.9)

and

∣

∣Ext1�ı (S
⊕n1
τ i , S

⊕m2
i )

K
⊕e
τ i ⊕S

⊕(m2−e)
i ⊕S

⊕(n1−e)
τ i

∣

∣ = ve(n1+m2−e)+(e2)(v − v−1)e
[

m2
e

]

v

[

n1
e

]

v
[e]!v.

Plugging into (A.8), we have

|CM | = v−2ci j d−2cτ i, j ev(m1−d)2+(m1−d
2 )+(n1−e)2+(n1−e

2 )+(m2−e)2+(m2−e
2 )+(n2−d)2+(n2−d

2 )

× vd(m1+n2−d)+(d2)+e(n1+m2−e)+(e2)v2(m1−d)(m2−e)+2(n1−e)(n2−d)

× v(t M1 −(m2−e))(m2−e)+(t M3 −(n2−d))(n2−d)(v − v−1)m1+m2+n1+n2−d−e

× [m1]!v[m2]!v[n1]!v[n2]!v
[d]!v[e]!v

[

t M1
m2 − e

]

v

[

t M3
n2 − d

]

v

(q − 1)

|Aut(M)|
= v−2ci j d−2cτ i, j ev2(m1−d)(m2−e)+2(n1−e)(n2−d)(v − v−1)m1+m2+n1+n2−d−e

× vp′(t M3 ,d,m1,n2) [m1]!v[n2]!v
[d]!v

[

t M3
n2 − d

]

v
vp′(t M1 ,e,n1,m2)

[m2]!v[n1]!v
[e]!v

[

t M1
m2 − e

]

v

(q − 1)

|Aut(M)| .

The desired formula (5.7) follows from the above formula and (A.2). This completes
the proof of Proposition 5.3.

Appendix B: Proof of the formula (3.7)

In this appendix, we provide the details for the proof of the formula (3.7).

B.1 Computation of [S′
i](r)1̄

∗ [S′
j] ∗ [S′

i](s)1+a

Let us first compute [S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

, depending on the parity of r .



84 Page 60 of 64 M. Lu, W. Wang

B.1.1 r is even

For any s ≥ 0 such that r + s + 2t = a with t ≥ 0, we have by Lemma 3.1 and
Lemma 3.3

[S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

=
r
2

∑

k=0

vk(k+1)−(r−2k
2 ) · (v − v−1)k

[r − 2k]!v[2k]!!v
[(r − 2k)S′i ] ∗ [K′

i ]k ∗ [S′j ]

∗
� s
2  

∑

m=0

vm(m+1)−(s−2m
2 ) · (v − v−1)m

[s − 2m]!v[2m]!!v
[(s − 2m)S′i ] ∗ [K′

i ]m

=
r
2

∑

k=0

� s
2  

∑

m=0

vk(k+1)+m(m+1)−(r−2k
2 )−(s−2m

2 ) · (v − v−1)k+m

[r − 2k]!v[s − 2m]!v[2k]!!v [2m]!!v
× [(r − 2k)S′i ] ∗ [S′j ] ∗ [(s − 2m)S′i ] ∗ [K′

i ]k+m

=
r
2

∑

k=0

� s
2  

∑

m=0

min{r−2k,s−2m}
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vk(k+1)+m(m+1)−(r−2k
2 )−(s−2m

2 )

[r − 2k]!v[s − 2m]!v[2k]!!v [2m]!!v

× vp(a,n,r−2k,s−2m)(v − v−1)r+s−k−m−n+1 [r − 2k]!v[s − 2m]!v
[n]!v

×
[

uM

s − 2m − n

]

v

[M]
|Aut(M)| ∗ [K′

i ]n+k+m .

This can be simplified to be

[S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1̄

=
r
2

∑

k=0

� s
2  

∑

m=0

r−2k
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vZ(a,r,s,k,m,n)+2k+2m (v − v−1)r+s−k−m−n+1

[n]!v[2k]!!v [2m]!!v

×
[

uM

s − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)| .

B.1.2 r is even

For any s ≥ 0 such that r + s + 2t = a with t ≥ 0, we have by Lemma 3.1 and
Lemma 3.3

[S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

=
� r
2  

∑

k=0

vk(k−1)−(r−2k
2 ) · (v − v−1)k

[r − 2k]!v[2k]!!v
[(r − 2k)S′i ] ∗ [K′

i ]k ∗ [S′j ]

∗
� s
2  

∑

m=0

vm(m−1)−(s−2m
2 ) · (v − v−1)m

[s − 2m]!v[2m]!!v
[(s − 2m)S′i ] ∗ [K′

i ]m

=
� r
2  

∑

k=0

� s
2  

∑

m=0

min{r−2k,s−2m}
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vk(k−1)+m(m−1)−(r−2k
2 )−(s−2m

2 )

[r − 2k]!v[s − 2m]!v[2k]!!v [2m]!!v

× vp(a,n,r−2k,s−2m)(v − v−1)r+s−k−m−n+1 [r − 2k]!v[s − 2m]!v
[n]!v
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×
[

uM

s − 2m − n

]

v

[M]
|Aut(M)| ∗ [K′

i ]n+k+m .

This can be simplified to be

[S′i ](r)1̄
∗ [S′j ] ∗ [S′i ](s)1+a

=
� r2  
∑

k=0

� s
2  

∑

m=0

r−2k
∑

n=0

∑

[M]∈Ir+s−2k−2m−2n

vZ(a,r ,s,k,m,n)(v − v−1)r+s−k−m−n+1

[n]!v[2k]!!v[2m]!!v

[

uM

s − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)| .

B.2 Reduction for (3.7)

Summing up the above two cases, we obtain

RHS(3.7) =
a
∑

r=0,2|r

r
2
∑

k=0

� a−r
2  
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−r ,k,m,n)+2k+2m−a

[n]!v[2k]!!v [2m]!!v

[

uM
a − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)|

−
a
∑

r=0,2�r

� r2  
∑

k=0

� a−r
2  
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−r ,k,m,n)−a

[n]!v[2k]!!v [2m]!!v

[

uM
a − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m

|Aut(M)|

−
∑

t≥1

a−2t
∑

r=0,2�r

� r2  
∑

k=0

� a−r
2  −t
∑

m=0

r−2k
∑

n=0

∑

[M]∈Ia−2t−2k−2m−2n

(−1)a(v − v−1)−k−m−n+1

× vr+Z(a,r ,a−2t−r ,k,m,n)−a+2t

[n]!v[2k]!!v [2m]!!v

[

uM
a − 2t − r − 2m − n

]

v

[M] ∗ [K′
i ]n+k+m+t

|Aut(M)| . (B.1)

Fix

d = t + k + m + n.

We have reduced the proof of (3.7) to proving the coefficient of
[M]∗[K′

i ]d|Aut(M)| of the
RHS of (B.1) is 0 for any given [M] ∈ Ia−2d if not both d and uM are zeros.

Set u = uM , and set

A′(a, d, u) =
∑

t≥0

a−2t
∑

r=0,2�r

� r2  
∑

k=0

� a−r
2  −t
∑

m=0

δ{0 ≤ n ≤ r − 2k}

× vr+Z(a,r ,a−2t−r ,k,m,n)−a+2t (v − v−1)−k−m−n+1

[n]!v[2k]!!v [2m]!!v

[

u
a − 2t − r − 2m − n

]

v
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−
a
∑

r=0,2|r

r
2
∑

k=0

� a−r
2  
∑

m=0

δ{0 ≤ n ≤ r − 2k}

× vr+Z(a,r ,a−r ,k,m,n)+2k+2m−a(v − v−1)−k−m−n+1

[n]!v[2k]!!v [2m]!!v

[

u
a − r − 2m − n

]

v
.

(B.2)

See (3.12) for Z(·, ·, ·, ·, ·, ·) and also see (3.10) for p(·, ·, ·, ·).
Then the coefficient of

[M]∗[K′
i ]d|Aut(M)| of the RHS of (B.1) is (−1)a A′(a, d, uM ). Sum-

marizing, we have established the following (which is the counterpart of Proposition
3.4).

Proposition B.1 The formula (3.7) is equivalent to the following identity

A′(a, d, u) = 0, (B.3)

for non-negative integers a, d, u subject to the constraints:

0 ≤ d ≤ a

2
, 0 ≤ u ≤ a − 2d, d and u not both zero. (B.4)

B.3 Reduction for the identity (B.3)

We shall denote the 2 summands in A′ = A′(a, d, u) in (B.2) as A′
0, A

′
1, and thus

A′ = A′
0 − A′

1.

Compare with (3.14). We also denote

w = r − 2k − n. (B.5)

Set

d = k + m + n + t (B.6)

in the A′
0 side, and d = k + m + n in the A′

1 side. Using the same argument as in
§3.6, for d > 0, we see that the identity (B.3) for d > 0 is equivalent to the following
identity

∑

w+n odd
t+k+m+n=d

vt
2−2dt+t+2nt+(n+1

2 )−2km−2m

[n]!v[2k]!!v [2m]!!v
(v − v−1)t −

∑

w+n even
k+m+n=d

v(
n+1
2 )−2km+2k

[n]!v[2k]!!v [2m]!!v
= 0.

(B.7)

The identity (B.7) is clearly equivalent to the identity (3.23) (by switching the parity
of w), which was established in Sect. 4.
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The identity (B.3) for d = 0 holds exactly in the same way as for (3.24) (up to an
irrelevant overall sign). Therefore, the identity (B.3) is fully established, and then the
formula (3.7) follows by Proposition B.1.
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