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Abstract

We establish automorphisms with closed formulas on quasi-split zquantum groups
of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are
carried out in the framework of 1Hall algebras and reflection functors, thanks to the
1Hall algebra realization of :quantum groups in our previous work. Several quantum
binomial identities arising along the way are established.
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1 Introduction
1.1 Background

Among the fundamental structures of Drinfeld—Jimbo quantum groups is the existence
of braid group symmetries [28, 29]; also see [15, 20] for different formulations. The
formulas for the actions of these automorphisms are intimately related to Lusztig’s
higher order Serre relations [30]. Reflection functors on Hall algebras can be used
to construct braid group symmetries for quantum groups; see [34, 35, 37, 39]. Braid
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group actions have played a fundamental role in the constructions of PBW bases and
canonical bases, and they also have applications in geometric representation theory
and categorification.

A Satake diagram

(I=1 UL, 7)

consists of a bicolored partition of the Dynkin diagram I = I, U I, and a (possibly
trivial) diagram involution 7 subject to some compatibility conditions. Associated to
a Satake diagram, a quantum symmetric pair (U, U*) [18, 19] consists of a Drinfeld-
Jimbo quantum group U and its coideal subalgebra U'; we shall refer to U' as an
tquantum group and further call U’ quasi-splitif I, = ). On the other hand, a universal
rquantum group U’ [27] is a coideal subalgebra of the Drinfeld double quantum group
U, and the :quantum group U* with parameters a la Letzter is recovered by a central
reduction of U.

For (mostly) quasi-split zquantum groups of finite type with distinguished param-
eters, Kolb and Pellegrini [17] constructed automorphisms T; of U* for i € I, and
show they satisfy the braid group relations associated to the restricted Weyl group of
the symmetric pair; the formulas and the proofs therein relied essentially on computer
computations. In type Al, the braid group action of U' was noted earlier indepen-
dently in [6, 32]; see [11] for a recent progress. It was shown in [2] that Lusztig’s
braid group action T;, for i € I,, preserves U’ of arbitrary Kac-Moody type. A nat-
ural and challenging question since then has been to establish these symmetries with
closed formulas for their actions on generators of U’ in a conceptual way and in great
generalities (such as Kac-Moody type and/or beyond quasi-split type).

The :Program [1] aims at generalizing fundamental (algebraic, geometric, and
categorical) constructions for quantum groups to ;quantum groups. In case of (quasi-
split) quantum symmetric pairs of diagonal type, we recover constructions for quantum
groups. In the framework of semi-derived Hall algebras [13, 22, 23] (generalizing [5,
14, 33] and [36, 38]), the authors have developed an :Hall algebra realization for
the quasi-split universal :quantum groups U, first for finite type in [27] and then
for symmetric Kac-Moody type in [24]. In [26], we have used reflection functors to
provide a conceptual realization of the braid group symmetries on a class of quasi-split
universal :quantum groups U’ of finite type, and subsequently on the corresponding
U’, which agree with [17] for distinguished parameters.

The reflection functors are formulated in the Hall basis and have the advantage
that the resulting maps on U’ are automatically algebra automorphisms; however, the
reflection functor approach provides very little clue on the closed formulas for the cor-
responding automorphisms on (z-)quantum groups in terms of Chevalley generators.
Therefore, a complementary approach is needed.

In [7] joint with X. Chen, the authors obtained a Serre presentation for quasi-split
rquantum groups U’ of arbitrary Kac-Moody type (cf. [16]), building on earlier work
of Letzter [19] and others. Similarly, a universal :quantum group U’ admits a Serre
presentation (see Proposition 6.3) with Chevalley generators B; and ki, fori € 1[24]:

U' = (B, k; (i € Dlrelations (6.15)~(6.19)). (1.1)
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Chen and the authors established in [8] the Serre-Lusztig (i.e., higher order Serre)
relations between B;, B; in U’ for i = i, generalizing Lusztig’s construction in [30,
Chapter 7]. Based on the expectation that the close relations between braid group
actions and Serre-Lusztig relations in quantum groups carry over to the setting of
rquantum groups, we made a conjecture in [8, Conjecture 6.5] on closed formulas for
automorphisms T;’e, T;’ .- fori = i and e € {£1}. Recently, we established in [9]
the Serre-Lusztig relations between B;, B; in U for i # ti; in addition, we made a
conjecture in [9, Conjecture 3.7] on closed formulas for automorphisms T;,e’ T;/ o for
i # ti, though the relations with Serre-Lusztig relations were not as direct as in the

earlier cases.

1.2 The goal

Recall Lusztig has constructed 4 variants of braid group symmetries denoted by Tl’ .
and Ti/”e, fori € T and e € {£1}, on the quantum group U [30, Chapter 37]. One can
further transform from one variant to another by twisting with various well-known
involutions and anti-involutions. ~

In this paper, we work with quasi-split tquantum groups U’ and U* of arbitrary
symmetric Kac-Moody type, where a mild condition that the Cartan integers c; . ; for
all j € [ are even is further imposed due to a use of the : Hall algebra technique. We fix
a set I; of representatives of t-orbits on I, and let I, denote the subset of i € I, whose
T-orbit is of finite type. By definition, the restricted Weyl group W7 is the t-fixed
point subgroup of W. According to [31, Appendix], W7 is a Coxeter group generated
by s; defined in (6.3), for i € I,. B

We shall establish 4 versions of automorphisms on U’,

T, , T/, foriel,, ec{£l}

ie’ ie’

with closed formulas on the Chevalley generators in (1.1); the T; , and T} , are related

to each other via a bar involution v, and an anti-involution o, on U'. Our results
have confirmed substantially in the setting of quasi-split zquantum groups [8, Conjec-
ture 6.5] in case i = ti and [9, Conjecture 3.7] in case i # ti.

1.3 The main results

The formulas for the automorphisms T/, are given in terms of the :divided powers

Bi(% (6.12)—(6.13) (for i = ti) and standard divided powers (6.14) Bl.(r) (fori # ti).
The :divided powers arose from the theory of rcanonical basis and they depend on a
parity p € Z (cf. [1,4,7]). O

TheorenlA (Theorems 6.8, 6.10) For i € I, and e € {£1}, there are automorphisms
T;’ , on'U' such that
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(1) (i =7i): T/ (kj) = (—v'*k;)~Cik;, and

T// (B) — (_v1+e']€")le
// (r) (Y)
Te@Bp= Y VBB,
r+s=—cij
+Y0 > Dt BBEL k), for j # s
u>1 r+st2u=—clj

r=p

(2) G #£7i): T, k) =k &k k;,

and for j #1i, ti,

—max(cij,Cri,j) —Ci j—U —Crj j—U

T//I(B )_ Z Z Z (_1)V+Svr—s+(—cij—r—s—u)u

XB(r)B( Cri,j—U— S)B B(S‘)B( Cij—r— u)ku

Ti’

—max(cij,Cri,j) —Ci j—U —Crj j—U

T;/,_l(Bj) — Z Z Z (_l)r—i-sv—(r—s—i—(—c,-j—r—s—u)u)
u=0 =0 =0
(r) p(—Cri j—u—s) (s) p(—cij—r—u)3
x B;"B_; ! B;B,/B; / kl'-‘.

The closed formulas for the other automorphisms T, , of U’ can be found in
Theorem 6.11.
]

Theorem B (Theorem 6.12) We have T;’e = (T;i_e)_l,for anyi €I, and e = {+1).

Note that the leading terms (i.e., the u = 0 summands) in the formulas for the
symmetries Tl o T;/ . actingon Bj (for j # i, j # ti)in U’ are precisely the formulas
for the symmetries Ti”e, Tif/e on F; (and also E; in case i # ti)in U; see [30, 37.1.3].

Theorem A in the special case of universal affine rquantum group of split rank
one (i.e, universal g-Onsager algebra) has already found applications in [25]; compare
with the braid group action on the g-Onsager algebra in [3]. For :quivers of diagonal
type, the tquantum group is the Drinfeld double U, and we reformulate Theorem A as
Propositions 6.20-6.21 on the automorphlsms on U; they descend to automorphisms
on U upon the identification K; K/ = pr0V1d1ng a new 1Hall algebra approach for
some main formulas in [30, Chapter 3~7] compare [35, 39].

The automorphisms T; ,, Tf’ . on U’ descend to automorphisms on an :quantum
group U* associated with distinguished parameters.
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It remains a fundamental problem to formulate and establish conceptually in full
generality the braid group actions on rquantum groups of arbitrary (not necessarily
quasi-split) finite type and on their modules. This shall require completely different
new ideas.

In the process of proving Theorem A, we are led to the following v-binomial
identities which are of independent interest; for an additional novel v-binomial identity
see Proposition 4.4. We refer to (3.1) for notation [2k]".

Theorem C (Propositions 4.2-4.3, Theorem 4.5) The following identities hold, for
d=>1:

v(Hl) —2km+2k vf2—2dt+t+2nt+("erl)—ka—Zm |
T2k 2 e" v—v )
kXQN [T 12K [2m]* theN [n]'[2k]"[2m]" ( )
ktmtn=d t+k+m-+n=d

0, ife=
= d -1 2 -2 d—1 1—d
20w+ H +[1:”! ) 4v ) ife =1.

The v-binomial identities in Theorem C are closed related to some v-binomial
identities arising from the  Hall algebra realization of  quantum groups of Kac-Moody
type in [24].

1.4 Our approach

Lusztig formulated and established the braid group actions on both the algebra U
and on its integrable highest weight modules, with the actions on the module level
established first; cf. [30, §5.2, Chapter 37]. In the 1quantum group setting, we do not
have the braid group action on the module level available for now, and so we cannot
follow Lusztig’s approach. Instead, we shall resort to :Hall algebras and reflection
functors, and accordingly, most constructions and computations in this paper will be
carried out in the setting of 1Hall algebras.

Our strategy is to verify the closed formulas for the action of reflection functors I';,
fori e I,. Via the algebra isomorphism from U’ to the composition :Hall algebra (see
Theorem 6.4 and Corollary 6.7), we transfer the isomorphism I'; of :Hall algebras
to an automorphism T:’ | of the zquantum group U'. The detailed study of reflection
functors can be of interest in its own.

The formulas for T} , and T; , are very different and so are the proofs, depending
on whether or not i = 7i.

Let us explain in some detail the proof for the formula for T/ ! 1 (Bj) in Theorem A(1)
fori = ti. We shall aim at establishing the closed formulas for the reflection functor I';
in the :Hall algebra corresponding to T '1(Bj); see Theorem 3.2. To that end, we shall
compute the 1 Hall algebra version of the RHS of the formula for T/, (B;)in Theorem A
in the :Hall basis, starting with an expansion formula of the tlelded powers in the
1Hall basis established in [24]. This (mostly) homological algebra computation in a
rank 2 1Hall algebra is challenging and tedious. By a comparison with the definition of
the reflection functor I';, we then need to show that all except the leading summand in

W Birkhauser



Braid group symmetries on quasi-split zquantum groups... Page7of 64 84

the 1Hall basis vanishes. After several steps of combinatorial reduction, we reduce the
desired vanishing properties to a combinatorial identity, which is then derived from
the v-binomial identities in Theorem C.

While the strategy for the proof of Theorem A(2) in case i # ti is similar, the
details are all different and separated from the case i = 7i; we shall prove its :Hall
algebra counterpart (see Theorem 5.1), and this requires new homological algebra
computations and combinatorial reductions in Sect. 5. This explains in part the length
of the paper.

Recall the counterpart of Theorem B holds for the corresponding braid group sym-
metries on quantum groups, and the proof in [30, Chapter 37] relies essentially on
the braid group actions on the module level. We present a conceptual simple proof of
Theorem B in the framework of 1Hall algebras.

1.5 The organization

This paper is organized as follows. In Sect. 2, we review the basics on 1Hall algebras,
modulated graphs for :quivers, and reflection functors.

In Sect. 3, we establish the reflection functor counterpart of Theorem A for i =
Ti, by reducing it to a v-binomial identity. This novel identity is then derived from
Theorem C which is established in Sect. 4. We also relegate to Appendix B the detail
for a proof of a second half of : Serre relations (which is very similar to the one of the
first half of 1 Serre relations given in this section).

In Sect. 5, we establish the reflection functor counterpart of Theorem A for i # ti.
The long proof of Proposition 5.3 is given in Appendix A.

In Sect. 6, we review 1quantum groups and their : Hall algebra realizations. Then we
reformulate in terms of U’ the formulas for the reflection functors on :Hall algebras
obtained in the previous sections. We also prove Theorem B.

2 :Quivers and :Hall algebras

In this section, we review and set up notations for rquivers, :Hall algebras, and the
reflection functors on zquiver algebras, following [24, 26, 27] (also cf. [22, 23]).

2.1 Notations

For an additive category .4 and M € A, we denote

>add M — subcategory of .4 whose objects are the direct summands of finite direct
sums of copies of M,

> Fac M- the full subcategory of A of epimorphic images of objects in add M,

> Iso(A) — set of the isoclasses of objects in A4,

> [M] — the isoclass of M.

For an exact category A and M € A, we denote

> Ko(A) — the Grothendieck group of A,

> M — the class of M in Ko(A).

) Birkhauser
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Letk be afield. For aquiver algebra A = kQ /I (notnecessarily finite-dimensional),
we always identify left A-modules with representations of Q satisfying relations in /.
Arepresentation V = (V;, V(@))ieg,,«c0; of A s called nilpotent if for each oriented
cycle oy, - - - o0p ata vertex i, the k-linear map V (o) - - - V(20q) 1 V; — V; is nilpotent.
We denote

> mod(A) — category of finite-dimensional nilpotent A-modules,

> proj.dim 4 M — projective dimension of an A-module M,

> inj.dim 4 M — injective dimension of M,

> D = Homy (—, k) — the standard duality.

2.2 The :quiver algebras

We recall the 1quiver algebras from [24, §2]; see also [27, §2].

Let k be a field. Let O = (Qp, Q1) be a quiver (not necessarily acyclic). Let n;;
be the number of edges connecting vertices i and j. Throughout the paper, we shall
identify

I= Q.

An involution of Q is defined to be an automorphism t of the quiver Q such that
2 =1d. In particular, we allow the trivial involution Id : Q — (. An involution
T of O induces an involution of the path algebra kQ, again denoted by t. A quiver
together with a specified involution 7, (Q, t), will be called an 1 quiver.

Let R denote the truncated polynomial algebra k[e]/ (&2). Let R, denote the radical

square zero of the path algebra of 1 é 1’ ,ie., &'e =0 = g&’. Define a k-algebra

g/

A =kQ @ Ra. 2.1)

Associated to the quiver Q, the double framed quiver QF is the quiver such that

e the vertex set of Q" consists of 2 copies of the vertex set Qo, {i,i'li € Qo};
e the arrow set of Q% is

{a:i—j,od i = jla:i—>j)e Ul i—>i ¢

2i’ —ili € Qo).
Note Q" admits a natural involution, swap. The involution 7 of a quiver Q induces
an involution 7% of QO which is basically the composition of swap and 7 (on the two
copies of subquivers Q and Q' of Q). The algebra A can be realized in terms of the
quiver O and a certain ideal 7 so that A = kQ*/I*.

By definition, % on QF preserves I* and hence induces an involution 7% on the
algebra A. The iquiver algebra of (Q, 7) is the fixed point subalgebra of A under 7%,

A= {x € Alrf(x) = x). (2.2)

W Birkhauser
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The algebra A" can be described in terms of a certain quiver 0 and its ideal 7 so that
A = kQ/I; see [27, Proposition 2.6]. We recall Q and [ as follows:

(i) Q is constructed from Q by adding a loop &; at the vertex i € Qg if i = i, and

adding an arrow ¢; : i — ti foreachi € Qo if i # ti;
(i1) I is generated by

(1) (Nilpotent relations) ¢;&,; for any i € I
(2) (Commutative relations) ;o — t(a)e; for any arrow o : j — i in Q1.

Moreover, it follows by [24, Proposition 2.2] that A’ is a 1-Gorenstein algebra.
By [27, Corollary 2.12], kQ is naturally a subalgebra and also a quotient algebra
of A’. Viewing kQ as a subalgebra of A', we have a restriction functor

res : mod(A') — mod(k Q).
Viewing k Q as a quotient algebra of A’, we obtain a pullback functor
t : mod(kQ) —> mod(A"). 2.3)

Hence a simple module S;(i € Q) of kQ is naturally a simple A’-module.
For each i € Qy, define a k-algebra (which can be viewed as a subalgebra of A*)

k[ei1/(e?) ifi =i,

L e— &
H; - k(i =—=1i)/(¢i€i, eri€;) ifTi #1i.
Eri

(2.4)

Note that H; = Hl;; for any i € Q¢. Choose one representative for each t-orbit on I,
and let

I, = {the chosen representatives of t-orbits in I}. 2.5)

Define the following subalgebra of A':

H = @Hi. (2.6)

iel;
Note that H is a radical square zero selfinjective algebra. Denote by
resy : mod(A') —> mod(H) 2.7

the natural restriction functor. On the other hand, as H is a quotient algebra of A’ (cf.
[27, proof of Proposition 2.15]), every H-module can be viewed as a A*-module.

) Birkhauser
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Recall the algebra H; for i € I; from (2.4). Fori € Qo = I, define the indecom-
posable module over H; (if i € I;) or over Hy; (ifi ¢ ;)

klei1/(e?), ifi =1i;
K; = 1 & (2.8)

k —k onthequiver i —= i, ifi # 7i.
0 Eri

Tl

Then K;, fori € Qg, can be viewed as a A'-module and will be called a generalized
simple A'-module.

Let P<°(A') be the subcategory of mod(A') formed by modules of finite pro-
jective dimensions. Let Pfd(A’) be the subcategory of mod(A') which consists
of A'-modules of projective dimension less than or equal to d, for d € N. Then
P<®(A") = P<I(AY), and K; € P=°(A!) for any i € I; see [24, Lemma 2.3].

Following [27], we can define the Euler forms (K, M) = (K, M)a: and (M, K) =
(M, K)o for any K € P='(A"), M € mod(A"). These forms descend to bilinear
Euler forms on the Grothendieck groups:

() : Ko(P='(A") x Ko(mod(A')) —> Z,
() : Ko(mod(A")) x Ko(P=!(A") — Z,

such that

(K, M)=(K,M), (M,K)=(M,K), VKeP(A"), Mecmod(A").
(2.9)

Denote by (-, -)o the Euler form of kQ. Denote by S; the simple kQ-module
(respectively, A’-module) corresponding to vertex i € Qq (respectively, i € Q).
These 2 Euler forms are related via the restriction functor res : mod(A’) — mod(kQ)
as follows.

Lemma 2.1 ([24, Lemma 3.1]) We have

(1) (K, M) = (resgp(K), M), (M,K) = (M,resg(K)), YM € mod(A'), K €
P=l(AY);

(2) (Ki, M) = (S;, res(M)) o, (M, K;) = (res(M), S;i) g, Vi € Qo, M € mod(A');

(3) (M, N) = %(res(M), res(N)) g, YM, N € P<I(A").

An oriented cycle ¢ of Q is called minimal if ¢ does not contain any proper oriented
cycle ¢’. For any minimal cycle of length m, we call it an m-cycle for short. In particular,
1-cycles are called loops. An 1quiver (Q, ) is called virtually acyclic if it satisfies the
conditions (A1)—-(A2):

(A1) Q does not have any minimal m-cycles for m # 2;
(A2) Forany i, j € Qq, if ti # j, then the full minimal subquiver of Q containing
i, j is acyclic.
In the remaining of the paper, we always assume that 1quivers (Q, t) are virtually
acyclic.

W Birkhauser
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2.3 Modulated graphs for :quivers

In this subsection, we study representations of modulated graphs associated to virtually
acyclic tquivers, slightly generalizing [27, §2.5] to the generality of [24]. We then
formulate the BGP type reflection functors for zquivers (not necessarily acyclic). See
[10, 12, 21] for more details about representations of modulated graphs.

2.3.1. Let (Q, 1) be a virtually acyclic :quiver, and A' = kQ/I with (Q, I) being
defined in [24, Proposition 2.6]. For each i € Qy, define a k-algebra

kleil/(e7) ifi =i,
&
ﬁi = :r_: . . . . .
k(i i wi )/(siegi, evisir ajeri — & Bj, Bjgi — eriaj|l < j <r) ifti #1,
~—
Eri
(2.10)

with n; ;; = 2r;. Here and below, 1 —m— 2 means there are m arrows from 1 to 2.
Define the following subalgebra of A':

E:@E. 2.11)

iel;
Define
Q:=Q(0)={G,j) € Qox QolAa:i— j)e O1,ti #j} (2.12)

Then Q represents the orientation of Q. Since (Q, 7) is virtually acyclic, if (i, j) € €,
then (j,i) ¢ Q2. We also use (i, —) to denote the subset {j € Qo|I(x : i — j) €
01}, and Q(—, i) is defined similarly.

For any (i, j) € €2, we define

jH; == H; Spany{e, ta|(a :i — j) € Qror(a:i — 7j) e Q1}H;. (2.13)

Note that jﬁ,’ = fjﬁn' = jﬁri = rjﬁ,‘ for any (i, j) € Q.

Hence ;Hj is an H;-H;-bimodule, which is free as a left H ;-module (and respec-
tively, right ﬁi-module), with a basis ;L; (and respectively, ;R;) defined in the
following; cf. [27, (2.12), (2.13)].

{al(@:i— j)e Q1) ifi=ti,1j=j,
o {o +ral(e:i — j)e 01} ifi =vti,tj #J,
jti = jo, tal(@ i — j) € 01) iti ki, 214
{a+talf(@:i— jlor(a:i —tj)e Q1) ifi #ti,tj #J;
{a|(@:i— j)e 01} ifi =ti,tj=],
o {o, (i — j) e O1} ifi =i, tj #J,
iR = @+ral@:i— j) e 0) ifigricj—j, o)
fo+taj(w:i— jlor(a:i —>1tj)e Q1) ifi #ti,tj #j.
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2.3.2. We denote
Q:={G,j)el; xI;|(i,j) € Qor (i, 7)) € Q). (2.16)

Recall that I is a (fixed) subset of Q¢ formed by the representatives of all z-orbits.
The tuple (H,, H ) = (]HI,, H ) (.j)eq is called a modulation of (Q, t) and is
denoted by ./\/l(Q 7).

A representation (N;, Nj;) = (N, N.ii)iellf,(i,j)eﬁ of M(Q, 7) is defined by
assigning to each i € I; a finite-dimensional H;-module N; and to each (i, e
an ﬁj-morphism Nji - jﬁi ®g, Ni = Nj. A morphism f : L — N between rep-
resentations L = (L;, Lj;) and N = (N;, Nj;) of M(Q, t) isatuple f = (fi)ier,
of H;-morphisms f; : L; — N; such that the following diagram is commutative for
each (i, j) €

iely,

Proposition 2.2 The categories rep(M(Q, ©)) and rep(Q, 1) are isomorphic.
Proof The proof is the same as [27, Proposition 2.16], hence omitted here. O

2.3.3. The materials in this subsection are inspired by [12, 26] and will be used in §2.4
to define reflection functors for rquivers.

Let Q* be the quiver constructed from Q by reversing all the arrows « : i — j
such that ti # j. Forany i, j € I such that ti # j, we have (i, j) € Q if and only if
(j,i) € Q*:=Q(Q*).Foranya : i — jin Qsuchthatti # j,denotebya : j — i
the corresponding arrow in Q*. Then t induces an involution ¥ of Q*. Clearly,
t*i = ti for any vertex i € Q. Then similarly we can define A* = kQ* ® R», and
an involution 7** for A*, and its 7**-fixed point subalgebra (A*)". Note that H is also
a subalgebra of (A*)".

It is worth noting that I; is also a subset of representatives of 7*-orbits. In this way,
one can define Q" (cf. (2.16) for Q).

For any (j, i) € Q*, we can define iﬁj as follows:

iﬁj := H; Span, {&, T*G|(@: j — i) € QFor (@: j — t%i) € QT}EJ-;
Recall from (2.14)—(2.15) the basis ;L; (and respectively, ;R;) for ,ﬁ j as a left
H;-module (and respectively, right H ;-module). Let ;L7 and ;R} be the dual bases of

HomIHI ( ]H,, H; ;) and HomH ( ]H,, ]HI ), respectlvely Denote by b* the corresponding
dual bas1s vector for any b € ;L; orb € jR;.
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Since ;H; and Homg; ( ;H;, H;) are right free H,;-modules with bases given by

iR; and ;L7 respectively, there is a right H j-module isomorphism
P iﬁj —> Homﬁj(jﬁi,ﬁj)
such that ,0(5) = b* for any b € ;L;. It is then routine to check that p is actually an
H;-H j-bimodule isomorphism.
Similarly, there is an H;-H j-bimodule isomorphism
A iﬁj — Homﬁi (jﬁj,ﬁi).

These two isomorphisms satisfy that p(;R;) = ;L] and A(;L;) = ;R;. We sometimes
identify the spaces Homﬁj ( jﬁi, H i)s iﬁ j and Homﬁi ( jﬁi, ﬁi) via p and A.

If Njisan H j-module, then we have a natural isomorphism of H;-modules
Homﬁj (jﬁia Nj) — iﬁj ®ﬁj Nj
defined by

fe ) b e fb).

be L,
Furthermore, for any H;-module L;, there is a natural isomorphism of k-vector spaces:
Homg (;H; ®g, Li. Nj) — Homg, (L;, Homg (;Hi. N))).
Composing the two maps above, we obtain the following.
Lemma 2.3 (cf. [26, Lemma 3.2]) There exists a canonical k-linear isomorphism
ad;ji = ad;;(L;, N;) : Homg (jH: ®g, Li, Nj) — Homg (L;, ;H, ®s, Nj)
adji :f = (fY:l—> Y b*® f(bD).

bEle‘

The inverse ad;.1 is given by adﬁl @ =" hel— ZbEjLi b*(h)(g(l))b), where
the elements (g(1)), € N; are uniquely determined by g(l) = Zbej L b* ® (g))p.

2.4 Reflection functors
In this subsection, we shall introduce the reflection functors in the setting of quivers.
Let (Q, t) be a virtually acyclic :quiver. Without loss of generality, we assume Q

to be connected and of rank > 2. Recall Q = Q(Q) is the orientation of Q. For any
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sink £ € Qop, define the quiver s, (Q) by reversing all the arrows ending to £. Note that
in this case, we have ny ;; = 0. By definition, £ is a sink of Q if and only if 7€ is a
sink of Q. Define the quiver

se(Q) ifte=¢,

sesee(Q) if Tl # £, 2.17)

Q/=S4Q={

Note that sgs;¢(Q) = s¢s¢(Q). Then 7 also induces an involution T on the quiver
Q’. In this way, we can define A’ = kQ' ®; R, with an involution 7%, and denote
the v¥-fixed point subalgebra by A” = s¢A’. Note that s; A’ = s;¢A’ for any sink
¢ € Qg. The quiver Q' of s;A* can be constructed from Q by reversing all the arrows
ending to £ and 7£. Denote by Q' := Q(Q’) the orientation of Q.

We shall define a reflection functor associated to a sink £ € Q¢ (compare [12])

F,;r :mod(A") :=rep(Q,T) — mod(s;A") :=rep(Q’, I'), (2.18)

in (2.20) below. Using Proposition 2.2, we identify the category rep(Q, 1) with
rep(M(Q, 7)), and respectively, rep(@ 1) with rep(/\/l(Q/ 7)).

Without loss of generality, we assume that the sink £ € I;.Let L = (Li, Lj;) €
rep(M(Q, 7). Then Lj; : H O, L;i — Ljis al; j-morphism for any (i, j) € Q.
Denote by

Lein:=(Le)i : @ oHi®g Li — Le.
i€Q(-.0)

Let N¢ := ker(Ly in). Note that H, = My is finite-dimensional by our assumption.
We have dim N; < oo. By definition, there exists an exact sequence

lm

0— Ny —> @ (H; ®g, Li —> Ly. (2.19)
ieQ(—,0)

Denote by (N, %)l the inclusion map Ny — @zesz( 0 JH; ®H
For any L € rep(M(Q, 1)), define

F;F(L) = (Ny, Nyy) € tep(M(Q', 1)), (2.20)
where

N, — L, ifr #1¢, N - L,y if (s, r)eﬁwithr;ék
TN ifr =, P WYY if(s,r) € @ and s = €.

Here (N)Y = adrz (N,); see Lemma 2.3.
Dually, associated to any source £ € Qg, we have a reflection functor

F, :mod(A') — mod(s¢A"). (2.21)
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The above constructions are obviously functorial; cf. [26, §3.2]. It is straightforward
to show that F Zr isleftexact,and F,” isright exact. Both functors are covariant, k-linear
and additive.

2.5 Torsion pairs

Let £ € Q be asink. For any A € {A’, s¢A'}, and any j € Qg let

T]‘.‘ := {X € mod(A)|Homs(X, S; & S;;) = 0},
s;‘ := {X € mod(A)|Hom(S; & S, X) = 0}.

Forany M € mod(A), we denote by sub ; (M) the largest submodule U of M supported
at j and 7 j; by fac; (M) the largest quotient module M/V of M supported at j and

T].
Proposition 2.4 For any sink vertex £ € Q the following hold:

(1) The pair (F, , FZ‘) is a pair of adjoint functors, i.e., there is a functorial isomor-
phism

Hom: (F; (M), N) = Homg, p: (M, F,(N)).

(2) The adjunction morphisms Id — FZ‘F , and F,/ Fe+ — Id can be inserted in
functorial short exact sequences

0—>subg—>1d—>Fe+F[—>0, 0—>F[F2'—>Id—>face—>0.

Proof The proof is the same as [12, Proposition 9.1]. For the sake of completeness,
we give the proof here.

For (1), itis enough to construct a pair of mutual inverses between Hom: (F, (M), N)
and Homg, ot (M, F ZF(N )), which are functorial in M and N. The construction is as
follows.

Let Q' = s¢(Q) and M = (M, M) € rep(M(Q’, t)). Let N = (N;, Ny5) €
rep M(Q, 7). Denote by (Uy, Uys) := F, (M) € rep(M(Q, 7)), and by (V;, Vyy) :=
FZ“(N) € rep(M(Q’, t)). In particular, U, = M, and V, = N, if r # £. For any
f=Urer, : M — FZ'(N), where f, : M, — V., by definition, we have the
following commutative diagram with exact rows:

(M;))i — (Uei)i
My Do, o Hi ®p, M Ue 0
fe J/(Id ®fi)i 8¢
V)i — (Nei)i v
0 VZ @ieﬁ(_’g) ZHi ®ﬁ’. Ni > N€
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Then there exists a unique morphism g; : Uy — N, such that the above diagram
commutes. Define g := (g,),¢1, such that

_[hitr £
8=\ g ifr =t

Clearly, g : F, (M) = U — N is a morphism of representations.

Conversely, for any g : F, (M) — N, one can construct a morphism f : M —
F ; (N). The above constructions are naturally functorial in M and N, and then (1)
follows.

For (2), we only prove the second one. For any N = (N, N,g) € rep M(Q, 1),
by definition, it is obvious that the adjunction oy : F, FZ“ (N) — N is injective, and
Coker(ay) = Coker(Ny in) which is supported at £ and t(£). Since £ is a sink, we
have Coker (N in) = facg(N), and then obtain the desired short exact sequence

0 —> F, F, (N) 2% N — face(N) —> 0.

The proposition is proved. O
We have the following corollaries of Proposition 2.4.

Corollary 2.5 We have the following equivalence of subcategories:
Fr.T = s, (2.22)
with its inverse given by F, .
Corollary 2.6 (1) For M, N € Té\', FZr induces an isomorphism
Exth, (M, N) = Exty, . (F;/ (M), F}F (N)). (2.23)
(2) For M, N € SZ‘AZ, F, induces an isomorphism
Exty, o (M, N) = Exty, (F; (M), F; (N)). (2.24)

Let7:= ’Z'z\l , and let F be the extension closed subcategory of mod(A'’) generated
by S¢ and S.

Lemma 2.7 (a) (7, F) is a torsion pair in mod(A");
(b) Forany M € mod(A"), there exists a short exact sequence

0— M — Ty — T}y — 0
with TSy, Ty € Tand T}, € P<1(AY).
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Proof (a) First, Homp: (7, ) = 0. For any M € mod(A'), let tM be the maximal
submodule of M such that its top top M satisfies (e; + e;¢) top M = 0. Since £ (also
t{) is a sink, we have M /t M concentrated at the full subquiver formed by £ and 7¢,
and then it is a natural H,-module. So M/tM € F. It follows an exact sequence
0—>tM —> M — M/tM — 0. So (7, F) is a torsion pair in mod(A").

(b) First, we prove it for any M € F. Note that F = add{S¢, S;¢, K¢, K ¢}. Without
loss of generality, we assume M is indecomposable.

Case (1) M = Sy, S;¢. We only prove for M = Sy. As £ is a sink, there exist
at least one arrow o : j — £ in Q. So there exists a string module X with its

string ¢ Vil j i> 7j. Then X,K; € 7, and there exists a short exact sequence
0—-S8%—->X—-K;—0.

Case (2) M = Ky, K;¢. We only prove for M = K,. We have the following exact
sequence 0 — S;¢ — Ky — S¢ — 0. Since proj. dimK; < 1, and by Case (1), we
have the following commutative diagram

Sep —Kg —— S

]

St ——=Y X
J

K, ——

Consider the short exact sequence in the second row. Note that T induces an equivalence
7 of mod(A'). From Case (1), we obtain an exact sequence 0 — S;y — 7(X) —
K;; — 0 with 7(X), K;; € 7. Then we have the pushout diagram

Sze Y X

|

X)) —W——>X

|

K:;j K

Since 7 is closed under extensions, we have W € 7 by X, 7(X) € 7. Combining
these two diagrams, we have the exact sequences 0 - K, - W — U — 0 and
0—K;; - U— K; - 0.Hence, U € TN P=LAY).

Next, for general M, we have the exact sequence 0 - tM — M — M/tM — 0
with tM € 7, M/tM € F. From the above, we obtain an exact sequence 0 —
M/tM — W — T\ — 0 with W, T}, € Tand T); € P<'(A"). By a similar
argument as above, from these exact sequences one obtains the desired resolution.
0_>M_>T181_>T111/1_>0' O
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Lety = SZ‘ZA’ , and X’ be the extension closed subcategory of mod(s;A") generated
by S¢, S;¢. Note that s, A" is a 1-Gorenstein algebra. Dually, we have the following
lemma.

Lemma 2.8 We have the following.

(a) (X,)) is a torsion pair in mod(sgA");
(b) forany M € mod(sgA"), there exists a short exact sequence

O—>Y1%,1—>Y1?,1—>M—>0

with Y3, Yy, € Yand Y}, € P=l(s¢A").

We have a Z-linear isomorphism dim: Ky(mod(kQ)) — ZH, which sends an iso-
class to its dimension vector. By identifying i € I with a simple root «; and thus i
with the root lattice (of a Kac-Moody algebra g), we have simple reflection s; acting
on ZH; see §6.1 for more detail. Then we denote

Si, ifi =7i
S = g .
SiSei, ifi # ti.

Lemma 2.9 Let (Q, t) be an iquiver with a sink £. Let L € mod(kQ) C mod(A') be
an indecomposable module. Then either Fzr (L) = 0 (equivalently L = Sy or S¢¢) or

F[L (L) is indecomposable with di_mFZ' (L) = s¢(dimL).

Proof Consider an indecomposable module L = (L;, Lj;) € M(Q, 7). If L = §; or
Ste, by definition of F;", we have FZ'(L) =0.

Otherwise, we have L € 7. As F Zr : 7— Yis an equivalence (see (2.22)), we have
Endg, A: (F, 2‘ (L)) = End: (L) which is a local algebra since L is indecomposable. So
F;F (L) is also indecomposable.

Let FL,+(L) = (N;, Nj;) € M(Q, 7). Since L is indecomposable and £ is a sink,
it follows that the morphism L, i, in (2.19) is surjective, and then (2.19) becomes a
short exact sequence. We have

dimg(eeNe) = ) dimy(e;L;) — dimy(eeLo),
(a:i—>0)eQ

dimg(ereNe) = Y dimg(er; L) — dimy (eceLe).
(:i—>10)eQ

Since N; = L; fori # £, from the above, we conclude that di_mFZ' (L) = s¢(dimL).
O

Dual results also hold for F,” and for any source £ of Q. [J
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2.6 tHall algebras

In this subsection we consider k = [, and set

vV=.9.

Generalizing [23], the first author defined a (t\gisted) semi-derived Hall algebra
of a 1-Gorenstein algebra [22]. The :Hall algebra H(kQ, t) for iquiver (Q, 7) is by
definition the twisted semi-derived Hall algebra for the module category of the :quiver
algebra A' [24, 27]. We recall it here briefly.

Let H(A") be the Ringel-Hall algebra of A’, i.e.,

HAY= P QwiM],

[M]elso(mod(A’))

with the multiplication defined by (see [5])

Z |Ext! (M, N) |

[M]o[N]= | Hom(M, N)|

[L].

[M]elso(mod(At))
For any three objects X, Y, Z, let
Ffy=[{LSZ L=Yand Z/L = X}|

B |Ext! (X, Y)z| _ | Aut(Z)|
"~ |Hom(X,Y)| [Aut(X)[|Aut(Y)]

(Riedtman-Peng formula). (2.25)

Define I to be the two-sided ideal of H(A") generated by

{([K]—=[K']|resp(K) = resg(K'), K, K' € P<*(A"} U

{[L] — [K @ M]|3 exact sequence 0 —> K —> L — M — 0, K € P=®°(A")}.
(2.26)

Consider the following multiplicatively closed subset S of H(A")/I:
S={a[K]l € H(A")/Ila € Q(v)*, K € P=(A"}. (2.27)
The semi-derived Hall algebra of A’ [22] is defined to be the localization
SDH(A") := (H(A")/DIS™ 1.
Let (-, -) ¢ be the Euler form of Q. We define the :Hall algebra (i.e., a twisted semi-
derived Hall algebra) H(kQ, 7) [27, §4.4] to be the Q(v)-algebra on the same vector

space as SDH(A') but with twisted multiplication given by

[M] % [N] = viestDresMio ) o [N]. (2.28)
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2.7 Symmetries of :Hall algebras

We shall formulate the reflection functor associated to a sink £ € Qg, which induces

an Hall algebra isomorphism Ty : H(kQ, 1) > H(ks¢Q, 7).

Let (Q, t) be an iquiver. We assume Q to be connected and of rank > 2. Let £ be
asink in Q. Recall Q' = s,Q from (2.17). As in §2.4, T induces an involution of Q’
which is also denoted by 7. Let sy A’ denote the :quiver algebra associated to (Q’, 7).
Recall Lemma 2.7. Similar to the proof of [27, Theorem A.22], we have the following.

Lemma 2.10 Let £ be a sink of Q. Then we have an isomorphism of algebras:

Ty : SDH(A') —> SDH(s¢A")
(M1 g~ TMIERTNT™ o [FF (X1, (2.29)

where M € mod(A") and Xy, Ty € T(Tyr € P='(A")) fitinto a short exact sequence
0> M — Xy — Ty — 0.

Proof By a similar proof to [27, Theorem A.22], I'y is well defined and is an algebra
morphism.

On the other hand, by Lemma 2.8, we obtain a morphism r,: SDH(s¢A') —
SDH(A"),whichmaps N > ¢~ \UN-N[F7(Uy)7 o[F; (Yy)],where N, Yy, Uy €
Y(and Uy € 7951(s((A’)))ﬁtintoashortexactsequenceO — Uy - Yy —> N—0.

Since F Z’ : T—> Yis an equivalence with F , asits inverse, we have

T, oTe(M]) = ¢~ M7y 17 o [X ] = [M],
ool (IND = ¢ MUy o [Yy] = [N]

for any M € mod(A'), N € mod(s¢A"). It follows that I'; and ', are inverses to
each other. O

It is well known that the Cartan matrix C for Q is the matrix of the symmetric
bilinear form (-, -) o defined by

(x, )0 == {(x,y)0 + (¥, x)0
for any x, y € Ko(mod(kQ)). Here (-, ) is the Euler form of kQ. Recall v = ,/g.

Theorem 2.11 The isomorphism Ty in (2.29) induces the following isomorphism of
1Hall algebras:

re Hik, 1) = Hikse 0, 0),
[M] — v(res(TM)‘res(M))Qqf(TM,M)[F£+(TM)]71 *[FZ_(XM)]
(2.30)
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Proof Similar to [26, Lemma 4.2], the Euler forms match, and then the result follows
by Lemma 2.10 (to which we refer for notations). O

For any i € I, denote by S; (respectively, S;) the simple A'-module (respec-
tively, s¢A'-module), denote by K; (respectively, K}) the generalized simple A’
(respectively, s¢A’-module). We similarly define K, K;g for ¢ € Ko(mod(kQ)),
B € Ko(mod(k(syQ))) in the (twisted) semi-derived Hall algebras (where £ is a sink
of Q).

Recall the root lattice Z! = Zay @ --- & Zay, and we have an isomorphism of
abelian groups 7' > Ko(mod(kQ)), a; S’: This isomorphism induces the action
of the reflection s; on Ko(mod(k Q)). Thus for @ € Ko(mod(kQ)) and i € I, we can
make sense [Ky, o] € H(kQ, 7). Similarly, we have [K;ia] e HksQ, ).

Proposition 2.12 ([26, Proposition 4.4]) Let (Q, t) be an 1quiver, and £ € Qg be a
sink. Then the isomorphism I'y : 7T[(k 0.,7) > ﬂ(ksz 0, 1) sends

To(IMD) = [Ff(M)], VM €T, 2.31)
| VIKT R S, ifte # ¢,

Ce([Se]) = { (K, [S;;]’ ezt (2.32)

Te([Seel) = VIKL 171 % [S)1,  ifte # ¢, (2.33)

I'y([Ky)) = [K;w], Ya € Ko(mod(kQ)). (2.34)

Similarly, one can give the formulas of I', : ﬂ(kQ, T) =4 ﬂ(ksz 0, 1) for any
source £ of an iquiver (Q, 7).

Remark 2.13 Similar to [35, 39], for a sink~£ € I, there exiits a Fourier transform
(which is an algebra isomorphism) FT, : H(ks,;Q,t) — H(kQ, t), which maps
[S}] = [S;], [K’j] > [K;] for each j € I; compare Theorem 6.4. The composition
of I'y with FT, gives us an automorphism FTy o [y : ’F{(kQ, T) —> 7T((kQ, 7).

3 Formula for a reflection functor I'; (i = 7i)

In this section, we establish a closed formula for the action of the reflection functor
I'; withi = 7i.
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3.1 :Divided powers

Let v be an indeterminate. Define the quantum integers, quantum (double) factorials,
and quantum binomial coefficients, for» € Nand m € Z,

i=1

m [m]m —1]...[m —r + 1]
[2r1"* = [2r]" —]_[[21],,, [r}z = :

3.1

We often need to specialize them by substituting v with v = /g below.
For a A'-module M, we shall write

IM=[M&---®M], [M=[M]x--x[M].
N — N—
1 !

Let Z> = {0, 1}. Following [24], we define the :divided power of [S;] in H(kQ, T)
as follows:

S]]_[J LIS+ v v = D22j — 12[K;]) if m =2k + 1,

B = Tl | T 08P +v 102 = 22 — LRI ifm = 2k
(3.2)
0 = L LISy US4 v 1o2 = D2R2JRIKD) ifm = 26+ 1,
0T [mly | T2y (S + v o2 = 122 — 22[K:D) if m = 2k.
(3.3)

We recall the expansion formula of the :divided powers in terms of an 1 Hall basis.
See (3.1) for notation [2k]!‘f.

Lemma 3.1 ([24, Propositions 6.4—6.5]). For anym € N, p € Z,, we have

5] ykoD—("3%) —1\k ko i
k=0 oy Y T V) o =208 (K1, if m o= P
[Si15" =

|2 ] GREED=("57)

20 gy Vv o = 2081+ K1, if o D

3.4)

3.2 Formulas of I’ fori = 7i

Below is the first main result of this paper.
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Theorem 3.2 Let (Q, t) be an 1quiver. For any sink i € Q¢ such thati = ti # j, we
have

Y VA IS (S]] # 1SS

r+s=—cij

HEDPY S Y VA=V TSI (S]] (S0 o+ K

t>1 rts+2t=—c;j
r=p
(3.5)

The proof of Theorem 3.2 will occupy the remainder of this section and Appendix A.
Leta = —c;j. Then (3.5) is equivalent to the following formulas (3.6)—(3.7) (where
the 2 cases for p = 0, 1 are separated):

LS = Y (=D'V (1= v) TS 5 (S]] % [S]1
r+s=a

+30 3T VA=V (S 151 # [KY . (3.6)

t>1 r+s+2t=a
2|r

ASih =D =1V (1 =¥ S w815 [0
r+s=a

=0 Y VA=D1 SV KT 37)

t>1 r+s+2t=a
24r

The proof of (3.6) for j = 7 j will be given in §3.4-§3.7 and Sect. 4, while a similar
proof of (3.7) for j = v j can be found in Appendix B. This proves Theorem 3.2 for

j=1j.
We then explain how Theorem 3.2 for j # tj is reduced to the case for j = 7.

3.3 Reduction for the formula (3.6) with 7j = j

Forthe case tj = j,itis enough to consider the rank 2 rquiver Q with trivial involution
T = Id, as shown in the left figure of (3.8). Here a = —c;;. Then the quiver Q' of
s; A' is shown in the right figure of (3.8).

& &j &i €j
0= Qkaf(} 0 = Qﬁaé(} (3.8)

For any k Q’-module M with dimension vector ng':/ + 3‘; , it can be decomposed to
be (Slf y®un @ N with N indecomposable. We denote

Ti = {[M] € Iso(mod(kQ"))|AN € M st. N = S, M/N = (5))®},
(3.9)
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p(a,r,s,t)=—s(a—i—t)—i—2ra+(uM—t—i—Zs—r)(t—r)—i—(s—r)2

+(S;r>+(t—r)2+<t;r>+r(s+t)—<r;1>+1.

(3.10)
Lemma 3.3 ([24, Proposition 7.3]) For any s, t € N, we have
[s S]] [S/-] * [1S]]
I
mmXS: Z Vp(a,r,s,t)(v —l)v—i-t —r41 [S]v[t]v |:”M :| [M] " [K{]r
— 1 °
=0 [MIEZ,yio iy L= rdy TAun)
(3.11)

To prove (3.6), we shall compute the RHS of (3.6) in the rank 2 quiver algebra
associated to (3.8) above, with the help of Lemmas 3.1 and 3.3.

3.4 Computation of [S;]((_)') # [S]] = [S;](Es)

Let us first compute [S’](r) * [S/] * [S/](S) depending on the parity of r.

3.4.1 ris even

For any s > O such that » + s + 2t = a with ¢t > 0, we have by Lemma 3.1 (noting
s = a) and Lemma 3.3 that

,
2 k(k—l)—(r_ZZk) =1k
r) / 7(5) v S(v=vTh) / 7k /
IS % (851 % [S]12 = [(r = 2k)S;1 % [K; 1" * [S'; 1%
ro E) [r — 2Ky [241 o
s .—2
LZJ vm(m—l)—(v zm) ~(V7V_l)'"

X : . [(s — 2m) S]] = [K; ™
0 [s —2mly[2m]y

[ Uy (52
2 L2 kDm0 T (v =yl

Yo [r — 2kly![s — 2mly![2k1¥[2m]Y

x [(r — 2k)S[] % [5}] *[(s — 2m) S]] * [K;]Hm
L5 min{r—2k,s—2m) l=Dtmm—1)— (") (™)

PR

Il
Il MN\*‘-

. ! !
MIET, e am gy 17 2K lls = 2mIV KR [2m

! |
x Vp((l,n,r—Zk,s—Zm)(v _ v—l)r+s—k—m—n+] [r— 2k]AV[S - Zm]'v

[l

« [ upm :| [M] % [K/_]nJrker'
s=2m—n], |Aut(M)]| !
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This can be simplified to be

LLL

zj r—2k

2
CERITINTIEES 3D SO D>

k=0m=0 n=0 [MI€Z, 45— 2k—2m—2n
vZ(a,r,s,k,m,n) (v — v—l)r+s—k—m—n+l |: Uy ] [M] [K;]n+k+m
(1 (261 12m ]y v o lAut@n)

s —2m—n

where

r—2k s —2m
Z(a,r,s,k,m,n):k(k—1)+m(m—1)—< ) )—( ) >+p(a,n,r—2k,s—2m),
(3.12)

and

pla,n,r —2k,s —2m)
=—(r—=2k)(a+s—2n)+2an~+ (upy —s +2m+2r — 4k — n)(s — 2m — n)

5 r—2k—n 9 s—2m—n
+ @ —2k—n)"+ ) + (s —2m—n)"+ )

1
+n(r+s—2m—2k)—<n; )+1.

3.4.2 risodd

For any s > O such that » + s + 2t = a with ¢ > 0, we have by Lemma 3.1 (noting
s # a) and Lemma 3.3

5 r—2k
L] VEERAD=(37) Ly —y=1yk

74(r) / 7(s) _ _ / 71k ’
[Si] * [Sj] * [Si]j = Z - Zk]v![Zk]!v! [(r 2k)Sl] * [Kl] * [SJ]>1<

0

k=0
13) m(m+l)—(372m) -1
% 2 ) (v—vyHm
x 3 — [(s — 2m) S]] * [K[ "
0 [s = 2m]y[2m]y
5] 13 min{r—2k,s—2m} Vk(k+l)+m(m+1)_(’—22’6)_(»?—22'")

=2 ”;) > [r — 2kly![s — 2mly'[2k1§[2m1§

[MIEL s 2k—2m—2n

| |
x vp(a,n.r72k,sf2m)(v _ vfl)r+x7k7m7n+l [r— Zk]i/[s - 2m]'v
[l

X[ up ] [M] & [ rHkm
s—=2m—n], |Aut(M)| !
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This can be simplified to be

L5l 5] r—2k

CIRTINTTCED ) 3) DS

k=0m=0 n=0 [M]€Z, +5—2k—2m—2n
VZ(a,r,s,k,m,n)+2k+2m (V _ v—l)r+s—k—m—n+l ny [M] * [K;]n—i-k-i-m
[n], [2k13 [2m]} | Aut(M)|

s—2m—n
v

3.5 Computation of RHS (3.6)

() -

Summing up the computations of [S’ ](r) * [S’] * [S Iz in §3.4, we obtain

a—r

a 1r—2k

7 195
RHS (3.6) = Z Z Z Z Z (—1)f(y — y~ly—k=m=n+1

r=0,2|r k=0 m=0 n=0 [M1€Z,_2%_2m—2n
Z - - +k+
vt B namnkmm [ Uy ] [M] [
(14 (2K 13 [2m]§ [ Aut(M)|

a L%J L%Jr—ﬂc

)BDIDIDS > (— 1) (v — y— 1y —k=m=n+1

r=0,2fr k=0 m=0 n=0 [M1€Zy_ox—2m—2n

—r—2m—
a m—n],

Vr+Z(u,r,a—r,k.m,n)+2k+2m—u |: Y ] [M] * [K;]n+k+m
1y [2k14 [2m]Y | Aut(M)]

a—2 5 LSt ok

+Z Z Z Z Z Z (—l)a(v_v—l)—k—m—n—H

t>1r=0.2rk=0 m=0 n=0 [M€Zy_2/—2k—2m—2n

a—r—2m—n
v

X

Vr+Z(a,r,a—2t—r,k,m,n)—a+2t |: Uy ] [M]*[K;]n+k+m+t (3 13)

[ [2K I 2m a=2—r=am=nly o JAuM)]

Fix
d=t+k+m+n

and fix [M] € Z,_24. For up; = 0 = d, M is indecomposable which is isomorphic to
Fl.+(Sj) by Lemma 2.9. In this case, the coefficient of [M] of the RHS of (3.13) is 1
by noting that | Aut(M)| = g — 1 in this case. By (2.31), we have reduced the proof

/d
of (3.6) to proving the coefficient of % of the RHS of (3.13) is O, for any given
[M] € Z,_24 such that not both d and u s are O

Wehave 0 <n=d—-—k—m—1t <r —2k.Setu = uy, and

r a*
a-2t 3 L55-1-t

Aladuy:=Y" Y > > s0<n=<r-2k

t>0r=0,2|r k=0 m=0
y vr+Z(a,r',a72t7r,k,m,n)fu+21(v _Vfl)fkfmfnJrl [ u :|

[n1y[2K1y [2m]y

a—2t—r—2m—n v
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a L3ll%"

!
-y > s0<n<r—2k)

r=0,2fr k=0 m=0

X

vr+Z(a,r,afr,k,m,n)+2k+2m7a (v — vfl)fkfmfnﬁ»l
|:a —r—2m—

u n} (3.14)

[n1y 2Ky [2m]y

if the statement X holds and = 0 if X is false.

/1d
Then the coefficient of [xoh- of the RHS of (3.13) is (~1)*A(a. d. upy). Sum-

marizing, we have reached the following reduction toward the proof of (3.6).

Proposition 3.4 The identity (3.6) is equivalent to the following identity
A(a,d,u) =0, (3.15)
for non-negative integers a, d, u subject to the constraints:

0<d<-, 0<u<a-2d, dandunotboth zero. (3.16)

N

3.6 Reduction for the identity (3.15)

We shall denote the 2 summands in A = A(a, d, u) in (3.14) as Ag, A1, and thus

A=A)— A
We shall denote
w=r—2k—n. (3.17)
Set
d=k+m+n+t (3.18)

in the Ag side, and d = k + m + n in the Ay side. Then
a—2t—r—-2m—n=a-—2d—w
in the A side, and
a—r—2m—n=a—-2d—w

in the A; side. (Below we focus on the Ag side, and the corresponding formulas for
Aj side can be obtained by setting t = 0.) Note that

pla,n,r —2k,a —2t —r —2m)
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=—(r —2k)(2a — 2t —r —2n)
+2an+ (u—a+2t+3r+2m—4k —n)(a —2t —r —2m —n)
— 2k —

2

P r
+(r—2k—n)"+ 5

—2t—r—2m—
n>+(a72t7r72m7n)2+<a roam n>

1
+n(a—2t—2m—2k)—<n; >+1.

One can write p(a,n,r —2k,a —2t —r —2m) = p(a,n,n+w,a—2d —w+n) =
p’ + p”, where p’ depends on n, while p” does not. Then one can show that

/ + n
=an ,
p 2

which is independent of 7. Note

r—2k a—2t—r—2m
Z:=2Z(a,r,a—2t—r,k,m,n)=ktk—1)4+m@m—1) — ) — )

+pla,n,r—2k,a—2t —r—2m). (3.19)

We rewrite Z in (3.19) as Z = Z| + Z,, where Z; depends only on a, d, w but do
not depend on k, m, n, t. One can show that on the A side

|
2z = z(t +’;+ ) _ (’;) —2dt — 2km, (3.20)

and thus on the A; side, Z| = 2(’”2'1) — (;) — 2km.
Will the above preparations, we return to (3.14). Noting r = w +n + 2k, we rewrite

r+Z+42t=x1+x,
where x> depends only on a, d, w, and

1
x1:t2—2dt+t+2nt+(n; )—2km—2m. (3.21)

Setting t = 0 in (3.21), we obtain on the A side that
r+ Z+2k+2m = x|+ x2,

where

1
x| = <" er ) — 2km + 2k. (3.22)
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Note r = 2k +n+ w = n 4+ w (mod 2). Therefore, proving the identity (3.15) for

d > 0 amounts to showing that the coefficients of a_ ZMd B wi| from (3.14) are 0,
A\
for d > 0 (and fixed u, a, w); that is, for d > 0,
Z 12— 2di+t42nt 4" —2km—2m " Z ('3 —2km-+2k .
(v—v - )
= [}y (26 [2m 1Y W= 2K [2m]
t+k+m+n=d k+m+n=d

(3.23)

It is understood here and below that all ¢, k, m, n in the summations above are in N.
Summarizing, we have obtained the following reduction toward the proof of (3.15).

Proposition 3.5 The identity (3.15) that A(a,d,u) = 0, for d > 0, is equivalent to
the v-binomial identity (3.23).

We shall prove the identity (3.23) in Sect. 4.

3.7 The identity (3.15) ford = 0

By (3.16), we must have u > 0 when d = 0.

In this case, we have k = m = n =t = 0, and a direct computation shows that
the power z can be simplified tobe z = au —uw + 1, and thus r + z —a + 2t =
r+z—a+2k+2m=au+1—a+ (1 —u)w.Recall A(a, 0, u) from (3.14). Then,
for 0 < u < a, we have

_ yautl—a ., -1 _1ywy(l-ww u
Ala,0,u) = v v=v )Y (=D"v [a }

—w
w>0 v

M) - ul i)

W qya s | 1y u—Dx u’

= (=D —v )Y (=1)'v [x] =0, (3.24)

x=0 v

where we have changed variables x = @ — w in the identity (i) and replaced the upper
bound of the summation for x from a to u (thanks to u < a and Z =0forx > u),
the v-binomial identity (4.12) (with z = —1) was used in (ii) above.v

3.8 Proof of Theorem 3.2

The identity (3.15) follows now by combining the identity (3.23) for d > 0 (which is
proved in Sect. 4) and the identity (3.24), thanks to Proposition 3.5. Then by Propo-
sition 3.4, the formula (3.6) follows.

The formula (3.7) is proved similarly by a reduction to an analogous identity (B.3);
see Appendix B.

For the case 7j = j, the formula (3.5) follows from (3.6)—(3.7).
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For the case tj # j, it is enough to consider a general rank 2 :quiver (Q, t) such
that i = ti and tj # j, as shown in the left figure of (3.25) below. Then the :quiver

Q' of s; A' is shown in the right figure of (3.25).

Ej i
.] ‘(L/ T.] .] V‘Cr_/ 7”]
£rj Y
0= / 0 \ (3.25)

By the same argument as in [24, Proposition 9.4], the computations involved in
proving the formula (3.5) with j # 7j are the same as for the :quiver in (3.8) with
j=r1tj.

The proof for (3.5) and thus Theorem 3.2 is completed (modulo the proof of the
identity (3.23), which will be given in Sect. 4).

4 Several quantum binomial identities
In this section, we shall prove the identity (3.23), by establishing several additional

v-binomial identities (which seem to be new). We shall switch notations from v to a
general parameter v in this section.

4.1 Reformulating (3.23)

With v replaced by v, we shall denote the first (and respectively, second) summand in
(3.23) as Dy, (and respectively, Cy), for w € {0, 1} with w = w (mod 2). That is,

o2 —2d it 42n14 ("5 = 2km—2m

= =1yt
o= Z [n],[2k15[2m]!} w—v), 4.1)
t+k+m+n=d
o (5D —2km+2k
R PR e “2)

n odd
k+m+-n=d

2 =2dt+t+2n1+ ("3 ) ~2km—2m

— v ~ L
e Xd;i B 43)
t+k+m-+n=d
("3 —2km+2k
v
“= Z [n]} [2KT{T2m 1 (4.4)

n even

k+m+n=d
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Proving the identity (3.23) amounts to showing that

Dy —Cyp =0, D —C;=0. 4.5)

4.2 Identities for Do — D7 and Cp — C;

To establish (4.5), we shall prove new v-binomial identities which lead to the stronger
statement that Do = D = Co = C; in Theorem 4.5.

Since an identity involving summations over n with a fixed parity (such as D;, C;)
seems hard to prove directly, our strategy is to proceed by proving identities regarding
the combinations Dy &= D or Co & Cj.

By definition we have

2= 2d 4+ 2nt4 ("5 ~2km—2m 1
Do+ Dy = (£1)" w—v), (46)
N Ty T

o ('3 y—2km+2k

k+m-+n=d

A.7)

Lemma 4.1 ([24, Lemmas 8.2, 8.3]) For p > 0 and d > 1, the following identities
hold:

U72km+2m

! pG=p)
' ST =V 48
k+m=p
o (3 =26k=1m
) ) 49)
k,m,reN [r]v[zk]v[zm]u
k+m+r=d

In the notation of Cy, Cy, the second formula in Lemma 4.1 can read as
Ci1—Cy=0. (4.10)
Proposition 4.2 For d > 1, the identity Do — D1 = 0 holds; that is,
2=2dr+t+2n1+("3 ") ~2km—2m

—1y? Iy
Z v [n]'[2k]"[2m]" w—v) =0. (4.11)

t,k,m,neN
t+k+m+n=d

Proof Recall the following standard v-binomial identity [30, 1.3.1(c)]:

d d d—1 _
Z @D M = ]_[(1 +0v%7). 4.12)
n=0 j=0
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By (4.8) (with k, m switched), we have

G-p)
p—2km+2k POZD

Z k" 2m]" ~ [pl
k+m=p

(4.13)

For any fixed ¢ with 0 < ¢ < d, using the identity (4.13), we compute

2 =2dt+1+2nt+("T") ~2km—2m

Z (:I:l)n u ! " "
[ 2k 2]

k,m,neN

k+m+n=d—t

2 +1y_ pptD)
ptP2di2ne+ (") - BE

+1)"
Z =D [n1'[p]

p,neN
p+n=d—t

(l—d)l— d-t)(d+t+1) J—¢
v 2 -1 |d—t
— i ' Zvn(d t—1) |: ] ] (:I:v2f+2)n
[d —1] =
d-n@d+t+1)
(l—d)t—lzit d

2j
T H(liv )

=t+1

(i)l)

p(1=d d
=T [] @ +v). (4.14)

j=t+1

where the second last equality () follows by (4.12) with z = +o2+2,

Using now the minus sign version of (4.14), we compute

2 =2dt+1+2nt+ ("3 ~2km—2m

> =n? w—vy
(T 2k 2]

t.k.m,neN
t+k+m+n=d

_Z( l)dt
t=0
d

Z l)tv(l—d)t [Ctl’} . (—l)d(v _ v—l)d — 0

t=0

(-dy 4
o o [T @ ==y

Jj=t+1

where for the last equality we have used (4.12) with z = —1 (and a switch v < v ).
O
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4.3 Identities for D1 4+ Dg and C; + Cp

We shall also prove the following v-binomial identities for C; + Co and Do + Dy; cf.
4.6)—(4.7).

Proposition 4.3 For d > 1, the following identities hold:

Z v(ngl)—ka-i-Zk B zvd(v + v—l)(UZ + v—Z) . (vd—l + vl—d)

[n]'[2k1"[2m]" [d]! . (4.15)

k,m,neN
k+m+n=d

2= 2dt+ 4+ 2ni4 ("5 = 2km—2m

. k;;eN [n]'[2k]" [2m]"
t+kAm-n=d
_ 20w+ v H2 v T 019

[d]!

(-l

(4.16)

In particular, the identity Do + D1 = Co + C1 holds.
Proof Using the identity (4.13), we obtain

o ('3 —2km+2k

_ (n+l) rB-p) 1
> s 2 VT T

k,m,neN n+p:d
k+m+n=d

d d—1
= vdﬁ(g)ﬁ Z @b |:Z:| — 4= 1_[(1 +v2),
n=0 j=0

where the last equality follows by (4.12) with z = 1. This proves the identity (4.15).
Summing the plus sign version of the identity (4.14) over 0 < ¢ < d, we have
reduced the proof of (4.16) to the following identity:

d pU=Dt (1 Ly =1=ly (142 4 =1=2) . (pd 4 yy=d) i
2 [d—1]! w=v")
t=0
204 Her o) ) @17
[d]! ' '

The identity (4.17) does not seem to be easy to prove directly; it follows as a special
case when k = d of a more general identity in Proposition 4.4 below (by a change of
variable t = d — s). m]

Proposition 4.4 Let d > 1. Then the following identity holds, for 0 <k < d.:

v(l—d)(d—s)(vd—s—i-l + vs—d—l)(vd—s-l—Z + vs—d—2) . (Ud + U_d)

k
., —I\d—s
Z Bl v—v"")

s=0
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_ vd(k-i—l—d)(v B v—l)d—k (vd—k + Uk—d)(vd—k—H + vk—d—l) L. (Ud—l + vl—d) ‘
[k]!
(4.18)

Proof We prove by induction on k. The base case for k = 0 is clear. By the inductive
assumption, we have

A=kl yh—l=dy(d=k+2 4 yk=d=2) . (yd=1 | y1=d)
[k —1]!
W= A=) (pd—k+1 | h=d=1)qd=k+2 4 k=d=2y . (yd 4 =d)
[k]!
A=kt 4 ph=l=dy(d—k+2 4 k=d=2) . qd=1 4 1-d)
[k]!

LHS(4.18) = pd%=d) y _ y=1yd—k+1 (v

(v —p~1yd—k

= =) _ =1yd—k ¥

X (vk —v Kk pdhd 4 U_d))
= RHS(4.18).

The proposition is proved. O

Recall Dy, Cg, D1, C; from (4.1)—(4.4).

Theorem 4.5 Ford > 1, we have

d —Iy(2 4 =2y . (nd—1 1-d
C0=C1=D0=D1=U(v+v Y4+ v79) (v +v ).

[d]!
Proof Follows by Propositions 4.2-4.3 and the identity (4.10). O

The identities (4.5) and then (3.23) follow from Theorem 4.5.

5 Formula for a reflection functor I'; (i # 7i)

In this section, we establish a closed formula for the action of the reflection functor
I; withi # ti.

5.1 Formulas of I'; fori # 7i

Forany m € Nand i € [ such thati # ti, we define

[Si]™

[ml},

[$:1) = (5.1)

We also set [S;]1? = 0, for m < 0. The main result of this section is the following.
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Theorem 5.1 Let (Q, ©) be an 1quiver. For any sink i € Qg such that ¢; ;; = 0 and
Jj # 1, ti, we have

—max(cij,Cri,j) —Cij—U —Crj j—U

Fl([Sj]) — Z Z Z (_1)r+sv—r—s+(r—s)u (V _ V_l)cij+cri'j+2”
u=0 r=0 s=0

x [ s [87,17 e 57 e [87] 4 [87,19) 5 [S]17) 5 [K, 14
(5.2)

It follows by the assumption ¢; ;; = 0 thati # 7i.

Remark 5.2 In case c; r; € 2Z_<, the rank one 1-subquiver corresponding to {7, i}
is not of finite type, and the reflection functor I'; is not defined. This is consistent with
the structure of the relative Weyl group W7 in (6.1)-(6.3) and Lemma 6.1 below.

The proof of Theorem 5.1 will occupy the remainder of this section. The proof of
(5.2) for j # tj will be given in Sects. 5.2-5.4. We then explain in Sect. 5.5 how
Theorem 5.1 for j = tj reduces to the case for j # 7.

5.2 Summands of RHS (5.2)

Assume tj # j. In this case, the proof of Theorem 5.1 reduces to the consideration
of the rank 2 :quiver (Q, t) as shown in the left figure of (5.3). The quiver 0 of 5; A
(where Q" = s; Q) is shown in the right figure of (5.3). Here a = —c¢;j = —czi <,
b= —Cj,ri = —Ci,tj, and —Crjrj = 2r.

5.3)
The computations in this subsection will be performed in ’Fl(ks,- 0, 7). We denote

T, ; = {[M] € Iso(mod(kQ)|3N C M s.t. N = §;, M/N = s @ 5/},
(5.4)

et = =ar (") v ar (1)
+dm+n—d)+ <621) +t—-—n—-d)n—d), (5.5
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w(my,my,ni,na,d, e, ty,t3)

= cjj(my — 2d) + ¢ j(n) — 2e) —mymy — niny
+2(n1 —e)(na —d) + (e —d)(my +my —nj; —ny)
+2(my —d)(ma —e) + p'(13.d,my, n2) + p'(t1, e, n1, my) + 1.

(5.6)
For any [M] € Iso(mod(k Q")) with dimension vector mS’:’ + ngz + 57,'» there exists
a unique indecomposable k Q’-module N such that M = N & (S; o' g (S;i)@’éw for
some unique th, té” e N.
Proposition 5.3 For any m{, my, n1, ny € N, we have
[(SHE™ @ (Sp)®"1 1+ [S71# [(SHE™ @ (8;,)™]

min(n,my) min(na,mj)

_ V—l)m1+m2+n1+nz—d—e+l

M M
2 ywni,ma.ni,ng,d,e.t”15")

[M]efm | tmy—d—e,ny+ny—d—e

[m11%[n2]} [maly [l

o [l el
téu tfw i| ﬂ 1d e
X [nz _dl [mz —e|, TAuM)] o [K; 17 s [Kei 1% (5.7)

The proof of Proposition 5.3 is long and can be found in Appendix A.
Lemma 5.4 We have

[(SHEOIT s [(Sy) ST T I 871 % [(S) ® 1 [(SH®]

min(—c;j—u—r,—cr; j—U—>s) min(r,s) Min(—c; j—u—s—y,r—x)

- 2 2 2

y=0 x=0 e=0

min(s—x,—¢;j—uU—r-—y)
d=0 (MIeT’ .
ij

71)70,7 7cr;yj72u7x7y7dfe+lV(r75)(xfy)+x(r+s7x)+y(fc,-j —cri j—2u—r—s—y)+(3)+3)

M M
w(—cij—u—r—y,r—x,—cgi j—u—s—y.s—x.d.e.tM 1}) 13 h
s—x—d yLlr—x—e],

x bbby ZuZ shizey zu il WML gy gairy g gets, (5.8)
[dTylely X Y]y | Aut(M)|

—u—y—x—d—e.—cﬂ-vj—u—y—x—d—e
v—v

XV

Proof First, the following formula holds by a direct computation (cf. (A.9)):
min(s,r)
— — X -1 r N !
[(S;i)éBs] % [(SZ{)EBr] _ 2(:) yrr—s) yx(r+s ©+G3) (v — vy [x]v I:x:|v [x],
xX=
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X [(S{)GB(V*X) o) (S;i)GB(S*X)] % [K?IX]
Hence, we also have

[(SHE I [(Sp) &™)

min(—c;j—u—r,—cgj j—u—s)

Y i =i jFr=s)yy(=cij=eri j=2u=r=s=y)+(;) (y _ y=1)y [_Cij —u-= r:|
y v

y=0

x [“'“‘-" N ‘e s] YRISHEC ™) @ (87,) B eris === [P,
v
Therefore we obtain that

(S E = [(Sy) et I s [S7] % [(Sy) ]+ [(S) ']

min(—c;j —u—r,—cr; j—u—s) min(r,s)
— Z Z vx(r—s)+_\'(£,i —t,,‘,,‘+r—s)vx(r+x—x)+y(—c,'j —Czij —2u—r—s—y)+()2()+(%)

y=0 x=0

I R r N I —c,-j—u—r —C”',j—u—S ’!
o ] LS s o

[(SHEU @ (8,) P I (K 851 % (D0 @ (8,00 (K]

min(—c;j —u—r,—cz; j—u—s) min(r,s)

— Z Z v(r—s)(x—y)vx(r+s—x)+y(—c‘i,—crz‘,—214—’—-?—)')‘*'(3)‘*'(;)

y=0 x=0

v [ [ s [ o] o o
X v X v y v y v

(ST @ (8, )T TSI s (7] %[BT @ ()P TV T  [KP ] [KE',
The lemma now follows from the above computation and applying (5.7). O

5.3 Reduction of the formula (5.2)

Recall 11,1 from (5.4), p’(-, -, -, -) from (5.5) and the function w from (5.6). Then

(S oo [(SDP]

s BT
s T

Using (5.8), we compute

—max(cjj,Cri,j) —Cij—U —Cri,j—U MIN(—Cjj—u—r,—Cej, j—U—5) min(r,s)

RHS(5.2) = > > > >
u=0 r=0 y=0

x=0
min(—c¢; j—u—s—y,r—x) min(s—x,—c;j —u—r—y)

2 2

e=0 d=0 [MeT_.

—cij

s=0

7u7)'7x7dfe.7c“~1j7ufyfxfdfe
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(1) rsr=sy = () =G) =T =(T )

=D @=Y)Fx(rts—x)+y(=cij—cri j=2u—r—=s=y)+()+() (v — V—l)—x—y—d—f"'l

M M
o yW(cij—u=r—yr—x,—czj j—u—s—y.s—x.d.er.r}) I3 51
s—x—dvr—x—ev

1 M
» : : ‘ : [M] % [K]]d+y * [K3]e+x+u‘ (5.9
[dIylely[x 5[y ]y | Aut(M)]
Introduce
C(f,g 1,13)

min(a,b) a—u b—u min(a—u—r,b—u—s) min(r,s)

P 2IPIP SIS 2

=0 r=0s5=0 y=0 x=0
0<g—y<mn@a—-u—-r—y,s—x)O0<f—x—u<mnb—-—u—s—y,r—ux))
(7l)r_HV_(;)_G)_(a_u_r)—(h_g_s)v(rfs)(x7y+u)7r7s+x(r+s7x)+y(a+b72u7r737y)+(§)+(~;)

« yWa—u—r—yr—x.b—u—s—ys—x,g=y, f—x—u.t| ,t3)(v _ V—l)—f—g+u+1

o] RN B I N
s—x—g+yl lr=Fruly rehir—ul L x 1

where f, g, t1, t3 are subject to the constraints
0<f,g<min(a,b), 0<t1<a—-f—-¢g 0<3<b—-f—g. (5.10)

Recall a = —cjj, b = —cy; ;. For fixed M (i.e., fixed tf”, t3M) and fixed f =
e+x+u,g:=d+y,the coefficient of =~ |Aut(M)| % [K;18 % [K3]/ in the sum 5.9)is
C(f,g,t1 B My Notee = f —x —u,andd = g — y.

Claim. The 6 functions in C(f, g, #1, t3) are all equal to 1.

Let us prove the Claim. Since the product of v-binomials above is 0 whenever
s—x—g+y<Oorr—u—f<Qorg—y<Oorf—x—u<0,8(g—y=<
min(a —u —r — y,s — x)) can be replaced by §(g — y < a —u —r — y) while
0(f—x—u <min(b—u—s—y,r—x))canbereplacedby §(f —x—u < b—u—s—y).

Butifg—y >a—u—r — y,orequivalently,a — f — g <r — f 4+ u, then it
follows by (5.10) that 1y < a — f — g < r — f + u and the v-binomial product in
C(f,g,t1,13)i1s0.S08(g — y <min(a —u —r — y, s — x)) is removable from the
above summations unconditionally.

Similarly,if f —x —u > b—u—s—y,orequivalently, b— f —g <s—x—g+y,
then it follows by (5.10) thatt3 < b — f — g < s —x — g + y and the v-binomial
productin C(f, g,t1,13)is0.So6(f —x —u < b —u —s — y) is removable as well.
The Claim is proved.

Denote

min(a,b) a—u b—u min(a—u—r,b—u—s) min(r,s)

T(f,gh.6)= ) Z Yo =y
x=0

u=0 r=0s=0
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¢ y2UTHES) = JuCuADAUCf —x+0) =X Qg+ [+13)+3 (g+13)+135—s+117—r

o S S e N
s—x—g+y|, Lr—frul (gl —ull lyly L * 1,
(5.11)

Recall the function w defined in (5.6). By a direct computation of the v-powers in
C(f, g, 11, t3) above, we can rewrite

C(f. gt 13) = @D+ +4fg+3 FBF+D+58CBg+D—11 f—138+1 v =v T8 ety 1),
(5.12)

Fix [M] € I;_f_g,b_f_g. For f = g = 11 = t3 = 0, M is indecomposable
which is isomorphic to Fl.+(S;.) by Lemma 2.9. In this case, the coefficient of [M] of
RHS(5.2) is equal to (¢ — 1)C(0,0,0,0) = T(0, 0,0, 0) by (5.12) and noting that

| Aut(M)| = g — 1. Summarizing, we have reached the following reduction toward
the proof of (5.2).

Proposition 5.5 The formula (5.2) is equivalent to the identities
r©0,0,0,00=1, and T(f,g 11,13) =0,
for non-negative integers f, g, t1, t3 subject to the following constraints:

f.g <min(a,b), 1 <a—f—g, 3<b—f—g, andnotdll f,g,1,13are zero. (5.13)

5.4 Proof of the identities (5.14)

This subsection is devoted to the proof of the following.

Proposition 5.6 The following identity holds:
T(f,g t,t3) =0, (5.14)

for non-negative integers f, g, t1, t3 satisfying the conditions (5.13). Moreover, we
have T(0,0,0,0) = 1.

Below we shall replace v by the free variable v. We shall change variables
s3=s—x+y—g, r1=r+u—f.

In other words, we have s = s3 +x —y 4+ g,andr = r; —u + f. We can rewrite the
signin (5.11) as

(=)™ = (= DEH (=D (=) (=) (= 1)’ (5.15)
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We rewrite the v-power in (5.11) as

1
2(fr+gS)—§u(u+1)+u(f—X+t1)—x(2g+f+t3)+y(g+t3)+t3s—s+t1r—r

=Qf +28" +gt3—g+ fti — f)+ P,

where

P:u(l—f)—%u(u+l)—(f+u+1)x
+Qf+H—Drn+Qg+t—Ds3+(1—g)y. (5.16)

Looking closely, we see y runs from O to g freely in (5.11). By pulling out the parts
relevant to y in (5.11), we obtain the following factor of (5.11):

g :
D o (=1rpimey |:g] _ L ifg=0,
ot ]~ Jo.

if g > 0.

Hence the identity (5.14) holds when g > 0.

From now on, we shall assume g = 0. We observe the summation over s3 is taken
freely from O to #3 in (5.11). By pulling out the parts relevant to s3 in (5.11) and using
(5.15)—(5.16), we obtain the following factor of (5.11):

13 t3—1 .
1, ifrz=0
E —1)$3yB—Ds3 |:t3i| 1 —2y= 1" )
b7 o = [Ta=v=1y if13 > 0.

53=0 a=0

Hence the identity (5.14) holds when 73 > 0.

Now we shall assume 3 = g = 0. We observe the summation over r| is taken
freely from O to #; in (5.11). By pulling out the parts relevant to 71 in (5.11) and using
(5.15)—(5.16), we obtain the following factor of (5.11)

t t1—1
i:(_l)rl p2fr i =Dr1 [n} _ h(l . v2a+2f)’ (5.17)
ri=0 n a=0
which follows by (4.12) with z = —v2/; the RHS of (5.17) is 0 if f = 0 (and in
this case we must have #; > 0 since not all f, g, #1, t3 are zero by (5.13)). Hence the
identity (5.14) holds when f = 0.

Now we shall assume t3 = g = 0 and f > 0. By pulling out the remaining double
summations over u, x (where we first sum over x freely from O to f — u) in (5.11)
and using (5.15)—(5.16), we obtain the following factor of (5.11):

S fu

Z Z(_l)”+xvu(1—f —%u(u+l)—(f+u+l)x 1 (v — U_l)u
u=0 x=0 X1 f —u—x]
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! fu
1

— Z( 1)14 u(l—f)— 2u(u+1)(v 71)14 Z(_l)xv*(f+u+1)x—

~ = XN f —u—x]!

f u
ZZ( 1y f)—u(u+1)(v[f—l) Z( 1)*p= 23y (f—u=Dx [f;u}

u=0

f —1\u f u—1

(%) u,u(l—=H)=tu@+n W —V )" (v—v ) v2a—2f
®) MZ( v T H (1- )

(1= [ﬂ Uy o,

The identity («) above follows by (4.12) with z = —v2/ and the equality () follows
from

f—u—1
1—[ (1 _U2a72f)_v SF(FHD+L u(u+1)(v *1)f LA =10 [+ 1

This completes the proof of the identity (5.14). In addition, we read off from the
above proof that 7'(0, 0, 0, 0) = 1. Proposition 5.6 is proved.

5.5 Proof of Theorem 5.1

For the case j # tj, the formula (5.2) (or Theorem 5.1) follows by Proposition 5.5
and Proposition 5.6.

For the remaining case j = 7 j, the proof of Theorem 5.1 is reduced to the consid-
eration of the rank 2 :quiver (Q, t) as shown in the left figure of (5.18). The quiver
Q' of s; A" (associated to Q' = s; Q) is shown in the right figure of (5.18). Here
a = —Cjj = —Cqgj,j-

i ~—7Ti i <7n

0= \ : / 0 = \ / (5.18)
| \/
) )

&j &j

By the same argument as in [24, Proposition 9.4], the computations involved in proving
(5.2) with j = tj are the same as for the 1quiver in the diagram (5.3) for j # tj and
b=a.
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6 Symmetries of zquantum groups
6.1 Quantum groups

Let Q be a quiver (without loops) with vertex set Q¢ = I. Recall that n;; is the
number of edges connecting vertices i and j. Let C = (c¢;;);, jer be the symmetric
generalized Cartan matrix of the underlying graph of Q, defined by ¢;; = 26;; — n;;.
Let g be the corresponding Kac-Moody Lie algebra, with the Chevalley involution
denoted by w. Let «; (i € I) be the simple roots of g, and denote the root lattice
by Z' .= Za) ® -+ ® Zay,. The simple reflection s; : 7' — 7' is defined to be
si(aj) = aj —cjja;, fori, j € I. Denote the Weyl group by W = (s;]i € I).

Let 7 be an involution of Q, which induces an involution on g again denoted by t.
We shall define the restricted Weyl group associated to the quasi-split symmetric pair
(g, g“7) to be the following subgroup W* of W:

W' ={we Wjtw = wt} 6.1)

where t is regarded as an automorphism of Aut(C). In finite type, it is well known
that the restricted Weyl group defined this way coincides with the one arising from
real groups (cf., e.g., [17]).

Recall the subset II; of I from (2.5), and define

I :={i €I;|¢c; i =0or2}. (6.2)

In our setting, ﬁ_r consists of exactly those i € [; such that the r-orbit of i is of finite
type. Note that I, = I if (Q, ) is acyclic. We denote by s;, fori € I, the following
element of order 2 in the Weyl group W

i:{si, ifi =i ©63)

SiSti, if i 75 Ti.

Lemma 6.1 ([31, Appendix]) The restricted Weyl group W* can be identified with a
Coxeter group with s; (i € 1) as its generators.

Let v be an indeterminant. Write [A, B] = AB — BA. Then U = U, (g) is defined
to be the Q(v)-algebra generated by E;, F;, K;, K/,i € I, where K;, K are invertible,
subject to the following relations:

Ei _El/ e =5 ~Ta~7
[Ei,Fj]Z(sijm, [Ki, Kjl=[Ki, K;]=[K;, K;] =0, (6.4)
EiEj = UcijE.jk‘,', E,’Fj = vfc,-ijEi’ (6.5)
E{Ej:l)_c"jEjI?i,, E;szvci-/Fjg;, (66)
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and the quantum Serre relations, fori # j € I,

l—L‘,‘j

Sy [1 _rCij] EE;E; 7 =0, 6.7)
r=0

17(:,'1' 1

> [ . ] FEF T =0, (68)
r=0

Note that K; K [ are central in U for all i. The comultiplication A : U—->UUis
given by

AE)=E ®1+K ®E., AF)=1®F +F ®K], ©9)
AK) =K ® K. AK]))=K|®K]|. '

Analogously as for U, the quantum group U is defined to be the Q(v)-algebra
generated by E;, F;, K;, K;~ 1, i € I, subject to the relations modified from (6.4)—
(6.8) with K; and Kl/ replaced by K; and Kl._l, respectively. The comultiplication A
is obtained by modifying (6.9) with K ; and K ! replaced by K; and K l._l, respectively
(cf. [30]; beware that our K; has a different meaning from K; € U therein.)

6.2 1Quantum groups

For a (generalized) Cartan matrix C = (c¢;;), let Aut(C) be the group of all permu-
tations 7 of the set I such that ¢;; = c¢; ;. An element T € Aut(C) is called an
involution if v = Id. ~ ~

Let 7 be aninvolution in Aut(C). We define U' = U, (g?) to be the Q(v)-subalgebra
of U generated by

~ ~

Bi=F 4+ E;K/, k=KK.,, Viel (6.10)
Let U0 be theNQ(v)-subalgebra o~f§’ generated by E, fori € I. Ey [27, Lemma 6.1],
the elements k; (for i = ti) and k;k;; (for i # ti) are central in U*.

Let ¢ = (¢) € (Q)*)! be such that ¢; = ¢;; for all i. Let U' := U’g be the
Q(v)-subalgebra of U generated by

Bi = Fi + GE K, kj= K,-K;jl, viel,jel\l.
It is known [16, 18] that U’ is a right coideal subalgebra of U in the sense that
AU — U ®U;and (U, U') is called a quantum symmetric pair (QSP for short),
as they specialize at v = 1 to (U (g), U (g*")). ~
The algebras UL, for ¢ € (Q(v)*)!, are obtained from U’ by central reductions.
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Proposition 6.2 ([27, Proposition 6.2]) (1) The algebra U is isomorphic to the quotient
of U' by the ideal generated by

~

ki — i (fori =ti), ik — Gicri (fori # ti). (6.11)

~

The isomorphism is given by sending B; — B;, kj — g;jlzj, kj_1 — gj_lk,j, Vi e
I, j e \L. ~ ~ o
(2) The algebra U' is a right coideal subalgebra of U, that is, (U, U") forms a QSP.

We shall refer to U' and U' as (quasi-split) 1 quantum groups; they are called split
if t =1d.

For i € I with ti = i, generalizing the constructions in [1, 4], we define the :
divided powers of B; to be (see also [8])

1 TT¢ 2 _vki[2s — 11P) if m =
B_(nf) _ B; Els:l(fz Bkl [2s 12] ) lf'm 2k +1, (6.12)
iT Tl | TTL (B2 = vkil2s — 112)  ifm = 2k;
1 TTE (B2 — vki[25]%) ifm =
gm — L B;{]_[SZIZ(Bl - vk;[25] 2) 1f¢ 2k + 1, 6.13)
0,0 [m]! ([ [T5=1 (B — vki[2s —217)  if m = 2k.

On the other hand, for i € I with i # ti, we define the divided powers as in the
quantum group setting: form € N,

B"
(m) i
B: = . 6.14

We have the following Serre presentation of U', with P; € Z, fixed foreachi € L.

Proposition 6.3 ([24, Theorem 4.2]; also cf. [19]). The Q(v)-algebra U' has a presen-
tation with generators B;, ki (i € 1) and the relations (6.15)—(6.19) below: for € € 1,
andi # j €1,

kike = keki, ki Be = verit =4 Boks, (6.15)
B,’Bj*B_/'B,'=0, ifc,-j=0andri7éj, (616)
1—c;j

DD BB BT =0, i #i A (6.17)
n=0
1—c¢i <

Z (=1)rHeii BII(II)B‘”_BI.(lf‘\iAri*n)

n=0

1 N e e I
- - (ucfvn(u—z;u—%_%.gf i — (0% %), B ("”)k,,-), ifti £i,  (6.18)
vV—VU ! !
1—cij
(1—cijj—n) pe .
3 (4)”3}%3,-31.5‘%” =0, ifi=ri. (6.19)

n=0
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6.3 1Quantum groups and :Hall algebras

Recall I, from (2.5). Let ¢ = (¢;) € (Q(v)*)! be such that ¢; = ¢;; foreachi € I
which satisfies ¢; ; = 0. Thve reduced Hall algebra associated to (Q, T) (or reduced
tHall algebra), denoted by Heq(k Q, 7), is defined to be the quotient Q(v)-algebra of
ﬁ(kQ, 7) by the ideal generated by the central elements

[K;14+qc; (Vi e Iwithi = ti), and [K;]* [Ky;] = viticicy (Vi € Iwithi # i). (6.20)

Theorem 6.4 ([24, Proposition 7.5, Theorem 7.7]) Let (Q, t) be a virtually acyclic
1quiver. Then there exists a Q(v)-algebra monomorphism

.U, Fko. ), (6.21)
which sends
-1 . ~ 1 e
B; — qu[Sl], lfl el,, k] = —q [K]]a lf'L'] =7 (6.22)
B > qVTl[sg, ifi¢l, kv UK iftj#j (623

Moreover, it induces an embedding WV : UIU:V = ﬂred(kQ, T), which sends B; as

in (6.22)~(6.23) and k; > ¢ v K 1, for j € \IL.

Recall [Si]%"), fori = 7i, defined in (3.2)—(3.3) and [S;]"™, for i # ti, defined in

(5.1). For any m € N, the map W in Theorem 6.4 sends the divided powers Bi(f'%) in
(6.12)~(6.13) for i = ti (cf. [24, Lemma 6.3]) and the divided powers B in (6.14)

fori # ti to

. ISYY _ L
\IJ(Bl,P) = m fOI'p € ZQ, ifi = T, (624)
L5117 fori e II;

\T](Bl(m)) — (1—v2)m

mis; (m) .
Wy fori ¢ I,

ifi # i, (6.25)

_ Let C?Tl(kQ,r) be the Q(v)-subalgebra (called the composition algebra) of
H(kQ, T) generated by [S;] and [K;1*!, fori € L.

Corollary 6.5 ([24, Corollary 9.9]) Let (Q, t) be a virtually acyclic iquiver. Then there
exists an algebra isomorphism: T fjfu:v = C?T{(kQ, T) given by (6.22)—(6.23).
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Corollary 6.6 For any sink i € Qy, the isomorphism T'; : 7Tl(k 0,1) 3 'ﬁ(ksz 0,7)
in (2.11) restricts to an isomorphism

ik3

T : CH(kQ, 1) —> CH(ks; O, 7).

Following Ringel, we define a generic composition subalgebra Cﬁ(Q, 7) below.
Let K be an infinite set of (nonisomorphic) finite fields, and let us choose for each
k € Kanelement v € C such that V]% = |k|. Consider the direct product CH(Q, t) :=
[Thex C?T[(kQ, 7). We view Cﬁ(Q, 7) as a Q(v)-module by mapping v to (vg)k. As
in [14, 33], we have the following consequence of Corollary 6.5.

Corollary 6.7 ([24, Corollary 9.10]) Let (Q, 7) be a virtually acyclic 1quiver. Then
we have the following algebra isomorphism ¥V : U — CH(Q, t) defined by

! if j p -1 s .
Bj — (|k| — 1[Sj]>k, ifjel, ki — (— 14 [KJ)k, ifi =ti;

By (glsil), 7 €l Ko (w7 i), i

_As in Corollary 6.6, for any sink i € Qo, the isomorphism I'; : C?T[(kQ, T) 3
CH(ks; Q, 7) induces an isomorphism

1R

T; : CH(Q, ) —> CH(s; 0, 7). (6.26)
6.4 Symmetries of :quantum groups
Let i be a sink of an iquiver (Q, D). Similar to the isomorphism \TIQ in (6.21), there

exists an algebra isomorphism Wy : U — H(ks; Q, 7).
Recall L from (6.2). we define algebra automorphisms

1
[lv=v

T/, € Auwt(U'),  fori eI,

by Corollary 6.7 such that the following diagram commutes:

U 6.27)

W

CH(0, T) — > CH(s: 0. 7)
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In other words, specializing at v = v we have the following commutative diagram:

(6.28)

CH(kQ, 1) #Cﬂ(ks,-Q, 7)

Theorem 6.8 We have a Q(v)-algebra automorphism T;’,l offjl,fori e I, such that
(1) G =7i): T/, (k) = (—v’k;)“ik;, and

T/ (B) = (—v’k) ' B,

T/, (B)= Y (~D'vBOBBY .,
r+s=—cij
+> Y DVBOBBLL (k) forj # i
u>1 r+s+2u=—c;;
=P

(2) G #£7i): T k) =k Tk, "k

and for j #1, i,

—max(cjj,Cri,j) —Ci j—U —Crj j—U

SICTED D T S

u=0 s=0
(r) (= Cri,j—U— S) (s) (—cijj—r—u)=,
XBi Bri ! BjBT,‘ Bi ! k?i'

Proof By Theorem 6.4, Corollary 6.7, and the commutative diagram (6.27), we can
transfer the automorphism I'; and its properties (see Proposition 2.12) on :Hall algebra
to an automorphism T/  on U'. The formulas for T/ | then follow by (6.24)~(6.25)
and the formulas for F in Theorem 3.2 (fori = n) and Theorem 5.1 (fori # ti),
respectively. O

6.5 (Anti-)involutions on U

For quantum groups U, different variants of braid group symmetries are related to
each other via twisting by involutions and anti-involutions on U [30, 37.2.4]. We now
formulate analogous (anti-)involutions in the zquantum group setting. The following
lemma follows by inspection of the defining relations for U’ in Proposition 6.3; cf.

[9].
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Lemma 6.9 (a) There exists a Q-algebra involution v, : U - U (called a bar
involution) such that

Vi) =v, i) = vk, Yi(B) =B, Viel
(b) There exists a Q(v)-algebra anti-involution o, : U — U such that
o(Bi) = Bi, oi(ki) =kei, Viel (6.29)
It follows by definition that

o = V,0,. (6.30)

6.6 AutomorphismsT; ., T/, on U

We shall present 3 more variants of the automorphism T} | in Theorem 6.8.

Theorem 6.10 For i € I, and e € {£1)}, there are automorphisms T;’,e on U' such
that

T o, =T} (6.31)

i,—e*

Moreover,

(1) (xi=i): T/ (k) = (—v'*¢k;) "k}, and

T/ (B) = (—v' k) "' B,
T/, (B)= D (-DrUﬂBi(,rﬁ)B.iBi(%Jrﬁ

r+s=—cjj

+0 D (DB B BY) k)", for j # i
u>1 r+s+2u=—c;j
r=p

(2) G #£7i): T, k) =k Tk k;,

—%_IB', PN —E_-IB', e
(VBT D I e T/ (B = | KB VI=1
’ —Bik_~, ifj=ri, ’ —Bik; ", ifj=ri,
and for j # 1, ti,
—max(cij,Cri,j) —Ci j—U —Cri j—u

T:/’l(B]) — Z Z Z (_1)r—i—svr—s-i-(—q-j—r—s—u)u
u=0 r=0 s=0

(r) p(—Cri,j—u—s) (5) p(=cij—r—u)3
x B "By BjB;;'B; " ks

Ti?
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—max(cij,Cri,j) —Cij—U —Crij—u

T;/’,l(Bj) — Z Z Z (_1)r+sv—(r—s+(—ci/-—r—s—u)u)

s=0
B(r)B( Cri,j—U— S)B B.S) Bi(fci_/frfu)’];;,t.

Proof The formulas for T} | follows by Theorem 6.8. The map T} _, defined in (6.31)
as the ¥, -conjugate of T:/ | s clearly an automorphism of U'. Then the formulas

for T;’ _, can be verified readily by definition using formulas in Theorem 6.8 and
Lemma 6.9. O

Theorem 6.11 Fori € I, and e € {£1}, there are automorphisms T;,e on U' such
that

Moreover, T,,=oT/ 0. ¥T =T . (6.32)

(1) ri=i): T} (k)—( v~k ~Cik;, and

T, ,(B) = (—v' k) ' B;,
(B )= Z (- 1)r 7erBl(SC) - jB(r)

r+s=—cjj

+>0 Y DT BlL BB k)", for j # 1.
u>1 rs+2u=—c;;
F=p

(2) G #£7i): T, (k) =k "k,;"'kj, and

1 o . ~_1 o .
| (B)) = _f”k“’ vi=i T By =1 Sk V=1
—ki Bi, ifj=ri, —k.; Bi, ifj=r1i,

and for j #1, ti,

—max(cjj,Cri,j) —Ci j—U —Cri j—U
T I(Bi) — Z Z Z (_l)r+svr—s+(—cl‘j—r—s—u)u
i,— .
=0 s=0

( cij—r— u) —u—s)

s (=cei,j
x kB BY B;B,; "
7max(cl‘,,cu~,_,~) —Cj j—U —Crj j—U

Ti(B)) = Z Z Z (= 1) sy~ r=stH(=cij—r=s—uu)

Xku ( Cij—r— ”)B(S‘)B B( Cri,j—U— S)B(r)

(r)
B,

Proof The map T/ defined in (6.32) as the o,-conjugate of T:/ e
morphism of U. The formulas for T’ . acting on the generators of U' can be verified
readily by definition using formulas m Lemma 6.9 and Theorem 6.10. The second

formula in (6.32) follows from the first formula, (6.30) and (6.31). m|

is clearly an auto-
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Theorem 6.12 We have T; .= (T;/_e)*l,for anyi € I, and e = {£1}.

Proof 1t suffices to prove for ¢ = —1 by (6.32). Given an lqulver (Q, t) such that
i is a sink, we have two isomorphisms, I'; ’H(kQ 7) > ’H(ks 0Q,7) and I';

ﬂ(ks,- 0,71) = ﬁ(kQ, 7), which are inverses to each other; see Lemma 2.10 and its
proof.

By the same arguments as in §3-§5, one can obtain the explicit actions of I'; . In
particular, similar to §6.4, we have the following commutative diagram:

U (6.33)

CTi(s: 0. 1) = CH(0. 7)

Combining with (6.27), we conclude that T; _, and T | are inverses to each other. 0

Remark 6.13 The results in Theorems 6.10-6.11 verify substantially [8, Conjec-
ture 6.5] in case~i = ti and [9, Conjecture 3.7] in case i # i, for quasi-split
rquantum groups U* associated to symmetric generalized Cartan matrices with all ¢; 1;
even. Actually, the notations T/ ,and T/ used in Theorems 6.10-6.11 are swapped
from the corresponding notatlons T/, and T’ used in [8, Conjecture 6.5] for the
following reason. The leading terms (1 e., the u = 0 summands) in the formulas for
the symmetries Tl o T;’ . acting on B; (for j # i = ti) in Theorems 6.10-6.11 are
precisely the formulas for Lusztig’s symmetries Tl’e, Tl”e on Fj; hence this is most
compatible with the view that F; (not E) is a leading term for B

The formulas for the automorphlsms Tl .» T/, remain valid for quasi-split sym-

metrizable Kac-Moody type, when v is replaced by v; = v % in the formulas above and
also in the 1divided powers. They can be verified in the framework of 1Hall algebras
associated to valued :quivers (which are to be developed).

Remark 6.14 The operators Tl oo fori € I, are expected to satisfy the braid relations
of the restricted Weyl group W defined in (6.1) (extending the suggestion in [17]
for finite type). For U’ of rank 2, the only nontrivial braid relation appears in finite
type, and hence it holds by [26]. If one can show that T;’ . acts on module level in a
way compatible with its action on U', then the braid relation follows from the rank
2 results. Other than that, for various simply-laced locally finite Kac-Moody types
(including all affine types), the braid relations hold thanks again to the computations
in [26].

6.7 Symmetries of U’

Set ¢, = (Ss,i)iel, Where

—Citi

Coi=—v 2 ifi=1i, co;=v 2 ifi#Ti. (6.34)
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We call the parameters ¢, distinguished, for the corresponding :quantum groups U
and U'.

We shall use the index g, to indicate the algebras under consideration are associ-
ated to the distinguished parameters g.,. Let A’ be the 1quiver algebra associated to an
tquiver (Q, 7). Recall the reduced :Hall algebra Heq(kQ, t)~with a general param-
eter g; cf. (6.20). If follows that the reduced :Hall algebra Hieq(kQ, 7), with the

distinguished parameter g, is the quotient algebra of H(k Q, t) by the ideal generated
by

[Kil—1 (G elwithi =7i), and [K;]*[K;]—1 @G € Iwithi # ti). (6.35)

Proposition 6.15 ([26, Proposition 7.1].) For any sink i € Qy, the isomorphism T';
induces an isomorphism of algebras r;: ﬂred k0, 1)¢, S ’F[red (ks;i O, 7).,

Recall from Theorem 6.4 that the isomorphism W, : U"’_lezV — ﬂred k0, 1)¢,
sends

-1
Bj > —I;]. for j € B; > Ll[sj], for j € I\ I;
q- q-

kj— [K;], forjel\Il;.

Similarly, there exists an isomorphism of algebras Wy : U — ﬂred (ks; O, T)¢,

(where the [S;], [K;] above are replaced by [S;.], [K’j]).
Using the same argument of [26, Proposition 7.2], we obtain the following.
Proposition 6.16 Let (Q. 7) be an 1quiver. Then T}, : UL — UL _in (6.27) induces

an automorphism T} | on Ulgo, for each i € I;. Moreover, for any sink i in Qq, we
have the following commutative diagram of isomorphisms:

1
Solv=v

7
T[,l

U —U

1 1
Solv=v Solv=v

l\pg _ le,

~ I ~
CHrea(kQ, 77);<> — CHea(ks; Q, 'L')g<>

The explicit formulas for T} | : Uy — U are given as follows:

1) (G =7i): T;il(kj) =kj, and

T/ (B) = B,
(r) (s)
T/ |(B)) = Z (_l)r”rBi.rﬁB./Bi.S?ﬁﬁ
r+s=—cjj

") p pG) .
+ E E (_l)rvrBi,FBjBi,?_,'+F’ for j #i;
u>1 r+s+2u=—cl-j
r=p
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@) G #ti): T/ (k) = k& k;, and

kan’ ifj = i»

T/ (B;) =
i1(B)) Bk, if j =i,

and for j # i, 7i,

—max(cjj,Cri,j) —Cj j—U —Cri j—U
T//I(B )_ Z Z Z ( l)r—i-v r—s+(—cjj—r—s— u)u)

—r—u)

(r) ( Cri,j—U— S) 6) ( cij
Bi Bri ! BjBn‘ Bi ! k?i'

Below we write U' = U, to indicate its dependence on a parameter ¢. It is well
known that the Q(v)-algebras U (up to some field extension) are isomorphic for
different choices of parameters ¢ [19]; see Lemma 6.17 below.

Consider a field extension of Q(v)

F=Q@)(ali € I), wherea; = & i €. (6.36)

1

Denote by
[FUl; =TF ®qw) Ul; (6.37)

the [F-algebra obtained by a base change. By a direct computation a rescaling auto-
morphism on yU induces an isomorphism in the lemma below.

Lemma 6.17 ([26, Lemma 8.6]) There exists an isomorphism of F-algebras
¢u: ¥U,, — #U
B,’I—)Cl,‘B,’, kjl-)kj, (ViGH,jGI[\]IT).
Below we shall denote by To; : U — U the isomorphism T/, : U, — U,

obtained in Proposition 6.16. Let (Q, r) be an zqulver We now deﬁne a brald group
action T;/ ; on U’ from the T, ; on U’().Q via a conjugation by the isomorphism ¢y:

1= duToity . (6.38)

Proposition 6.18 Let (Q, t) be an iquiver. Then there is an automorphism T;”l on
rU, foreachi € ET.

Remark 6.19 By using the same argument, one can construct automorphisms T;’fl ,
T;y 41 for the iquantum group U¢ with general parameters g by considering different
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distinguished parameters. In fact, for T/ |, T} _,, the distinguished parameters are as
shown in (6.34); for T/ _,, T; |» the distinguished parameters are chosen to be

“CiTi

Goi = —1 ifi = 7i, Goi =v 2 ifi #Ti.

However, the relation (6.31) no longer holds in the setting of U*. In fact, there are some
strong constraints on the parameters ¢ (different from the distinguished parameters in
(6.34)) for the existence of the bar involution v, on U’; see [7, Proposition 3.7].

6.8 Symmetries of the Drinfeld double ]

Recall that the Drinfeld double U is the universal rquantum group of diagonal type;

see [27, Lemma 8.3]. Below we shall write down explicitly the automorphisms of the

Drinfeld double U following Theorems 6.10-6.11, for the convenience of the reader.
There exists a Q(v)-algebra anti-involution o : U — U such that

o(E))=E;, o(F)=F, o(K;)=K, Viel

i
There exists a Q-algebra automorphism v : U — U (called bar involution) such
that

y) =v', wK)=K/, WE)=E., y(F)=F, Viel

Proposition 6.20 For i € 1 and e € {£1}, there are automorphisms T , on U such
that

YT =T _,.
Moreover, we have
T// (K y=K L”Kj, T;/,e(E}):(Ez{)_CijE}’

T/ (F) =K 'Ei, T/ (E)=—F(K)™,
T/ (F) = —(K)™'Ei. T} _(E) = —FK,

e
- (=cij—r)
T, _(Fj) =Y () v FFF ",
r=0
e
T _J(Ep=Y (D E “TEED forj#i.
r=0

Proposition 6.21 Fori € [ and e € {£1}, there are automorphisms T;,e on U such
that

oTi,o=T_,, YT =T ..

e’
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Moreover, we have

T, (K=K K, T K)=EK) K,
T, _(F)=-E((&K)™". T, _(E)=-K'F,
T, (F)=-EK " T (E)=—K)F,

—Cij

LICHEDDECIE A T
r=0
T

T (Ep =Y D EPEE T forj #i.
r=0

Remark 6.22 The actions of T; ,, T/, on U factor through the quotient U =

ie’
U / (K/K; — 1]i €T to the corresponding automorphisms on U, and the formulas
in Propositions 6.20-6.21 are then reduced to Lusztig’s formulas [30, §37.1.3] upon
the identification K/ = K~ I
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Appendix A: Proof of Proposition 5.3

This appendix is devoted to a proof of Proposition 5.3, which concerns about the
computation of [(S)®"™ @ (S;,)®"1] % [S7] # [(SH®™2 & (S;,)®"2].

A.1 The setup

By definition, we have

[S2™M @ ST 1w 8,1 S22 @ 522 = s @ " [5; @ ST @ 527

— vc,-jml—&-c”-,jnl—mlmz—nlnz Z |Ext}\, (SiEDml ® 52’11, Sj ® S?}mz ® 32’12)L| . [L]
[L]elso(mod(A'))

For any [L] € Iso(mod(A')) such that
| Exth, (SP™" @ SE", 5, @ $P™ @ $&"), | £ 0, (A.1)

there exist a unique [M] € Iso(mod(kQ)) and d, e € Nsuch that [L] = [M & Kl@d ®
K?l."] in H(kQ, 7). In this case, M admits the following exact sequence

0—> §; @827 @ sErd Y s BT D g BT g,
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Fix [M] € Iso(mod(kQ)), 0 < d < min(ny, my) and 0 < e < min(ny, my). Then

M M
there exists a unique indecomposable kK Q-module N suchthat M = N & Sl.69 f @ SS?’3

for some unique th , t3M . Denote by

Cu = {[£] € Exth, (S @ $&" §; @ §2" @ §8"), | L admits

a short exact sequence 0 - M — L — Kde @ K?f — 0}.

In this way, we have

[s&m

i

® ST 15,1 157" @ 552
min(ny,mo) min(ny,my)
_ Z Z Z Vcijl111+(1i'j'll_mlmz_nln2|cM|-[M@K?‘I@K?f]

=0 d=0
¢ [MJEfm]+m2—d—e,n|+n2—d—e

min(ny,my) min(np,mj)
_ Z Z Z vcijm1+c”-'jn|7m1m27n1n2+(e7d)(m|+mzfn|7VL2)|CM|

0=() d=0
¢ [M]Gfml+m27d7e,n1+1127d75

(M (K14 (Ko 1. (A.2)
A.2 Computation of |Cy|

We shall compute |Cys|. Let Q' and Q” be the full subquivers of Q formed by the
vertices i, j and the vertices ti, j respectively. Then we have two restriction functors
res;; : mod(kQ) — mod(kQ’) and res,; j : mod(kQ) — mod(kQ"). Set

My :=res;j(M), Ni:=res;j(N), My :=rtes; j(M), Ny:=resg j(N).
(A3)

Denote by

Cy == {[€] € Exth, (S, S; @ SP™ @ S, | L admits a short

1
exact sequence 0 — M| — L — Ki@d ® SP @ Sg("z_d) — 0},
Cy = {[£] € Exth, (SE", S; @ ST @ "), | L, admits a short

exact sequence 0 — My — Ly — K% @ Sgd &) Sl.@(mz_e) — 0}.

Tl
Lemma A.1 Retain the notations as above. Then |Cpr| = |C1] - |Ca|.

Proof Applying Homu: (—, S; @ SfB "2 @ SS?”Z) to the split short exact sequence
0 —> S — g2 @ gEM g8 0, (A.4)
we have the following short exact sequence
0 — Ext! (58" 5, © 8™ @ 58) L, Bl (52" @ 521 5, @ 522 @ 5272
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5 Ext! (5P, 55 @ 57 @ 55" — 0. (A.5)

Then a(Cy) = Cy, and thus, Cyy = U[g]ecl (@le,) " (ED).
Since (A.4) is split, we have the following exact sequence

0 — Ext!(s®"1 s, @ s @ s212) 2 Bl (8™ @ 53" 5, @ sP @ 5212
L Exd (s8 55 0 5™ @ 58" — 0 (A.6)
such that y o § = Id and @ o § = Id. For any [n;], [72] € Cps such that a([n1]) =
a([n2]) = [£).if Y ([n1]) = y([n2]), then there exists a unique [£'] € Extl(Si@ml, S;®
58" @ §€"2) such that §([&']) = [m] — [12]. It follows that [£'] = « o §([&']) =
a([n]) —a([n2]) = [0]. So §([£']) = 0 and [n1] = [n2]. Therefore, we obtain that

V|(a‘CM)—1([E]) is injective for any [£] € Cj.
By the above calculations,

Cu = | | Ce. whereCe = y(ale,) ™" (€D. (A7)
One can show that C¢ %5 %1 which is independent of [£] € C;. Therefore, |Cyp| =
[C1] - ICal. O

A.3 Computation of |C1]| and |C;|

It remains to compute |C;| and |C3|.

Lemma A.2 Retain the notations as above. Then

—cjid 1 D(my—d) 1 Smy  Ony
IC1l =¢~ U | Exy o (S; .Sp) M [ [Exty, (57", 85 ©m| —d —a
DM feo— A i Ti ®d (my—d) _ ®ny—d)
Ny@s, | emm2) K es; o5
_,~CTi.j¢ 1 $(n|fe) ) . 1 33_"1 g)mz
IC2| =q |Exty (S, 2Sj) o @(,éw+d_n2)| [Exty, (85 ; )nges?‘mz‘e)e;sf(”l‘”“
Ti

Proof The 2 formulas are equivalent, and we only prove the first one. Let M| :=
M_
N1 @ S;B(t1 mz), and
| = {[£] € Ext, (Si@m‘, S; @ Sg"z)yl |L) admits a short
exact sequence 0 — M| — L} — K® @ §% @ Sg("z_d) — 0}.

Consider the 1quiver algebra with its quiver as in the right figure of (3.8) (the number
of arrows from i to j is @ = —c;j), which is denoted by * A’ to avoid confusions.
Then any s; A'-module L = (Lg, Ly, Lg,) supported at i, ti and j with L, = 0 for

any « : 7i — j can be viewed as a * A'-module G(L), that is, G(L); := L; @& L+,
G(L)j = Lj. Let

= {[£] € Ext) . (Sl-@m‘, S; ® S?"Z)L/I/IL’{ admits a short
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exact sequence 0 — G(M}) — L| — Ki@d @ Sl@("z_d”) — 0}.

Then |C}| = |C]|. By applying [24, Proposition 3.10] to compute [Sme1 1o[S;® Sl.@"Z]
in SDH( A"), one obtains that

—c;id 1 D(my—d) 1 dmy  Sny
1C71 =g~ U Extg s (5 ) oM temy) [ |Exts 00 (S 1, S; )K@d®s$(ml+”l_2d) |
GNpes; ! i ®5
Here QF is the quiver i —cij— j . Clearly, we have
1 S(my—d) . _ 1 S(m—d) .
| Extg s (S; »5j) oM re-my | = | EXtig(S; S M emy
G(N)®S s

i i
1 om bn
(-B(m1+n|—2d)| = |EXtA, (Si 1’Sri 2)

1 ®my Dny
|Extipe (S0 S )Kiead@si

od B (my—d) D (ny—d) |7
K &S, S

and then the desired formula follows. O
Recall the notation Ny, N, from (A.3).

Lemma A.3 Retain the notations as above. Then

1 S (m1—d) ®mi—e) ¢.
| Exth(S,' 5] Su' s S])N@Sﬂa(tware—mz) e}(ré\’1+d—n2)|

i Ti

1 ®(m1—d) 1 ®(n1—e)
= | Extz o (57! ,Sj)N S@(,{w+efm2)|-|Exth(Stil S My |

i 2 Ti

Proof Note that N, N1 and N, are indecomposable. Then the orders of their automor-
phism groups are g — 1. A direct computation shows that

NeaSiGB(tfw +e—my) 3(:§W+d_n2) | FN1®Sl‘$(th+e_m2) FNzeaSi(téw-%—d—nz)
®(m|—d)  Blmi—e) - B(m|—d) - ®(m—e) ’
S; DS :Sj S; »Sj Sei S
if they are nonzero.
We have
EB(IM+e—m2) @(IM+d—n2)
(@—D|Aut(N @ S, &S, "> )]
(! +e—m) & +d—ny)
= | Aut(N; & S, ! ) - [Aut(N2 & S 3 ).

Using the Riedtman-Peng formula, we have

1 ®(m1—d) ®(m1—e)
| EthQ(Si : ® Sy e, Sj) oM +e-my) @ +d—ny)
_ | AusP T @ 55T Aus))|

My, My g
|Aut(N @ SiEB(tl +e—my) @ Si(% +d nz))|
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|Aut(S@(m1 d))| |Aut(S@(m1—E))| . |Aut(S)|2
| Aut(V; @S2 Aut(Ny @ s2E HT))
®(m)—d) ®(mi—e)
= |EthQ(Si " ’ S]) EBLS,GB(thJrefmz)| : ’EthQ(Sri mee ’ S]) éB(té\/Ierfnz) :
The lemma is proved. O

A.4 The proof

Now we can complete the proof of Proposition 5.3. By Lemma A.3 we have

|EXt]1(Q(S®(ml_d) @ S@(”l_e)’ S ey Sl»@(mz_e) o SS(”Z_d))M|
= |Ext} o (52"~ @ 2179 5))

&M te— oM yd-

S,- (1" +e m2)®S,i(t3 + n2)|

_ 1 S(m1—d) ¢, ®(ni—e) ¢

- ’ EthQ(Sl ’ S]) @S.éB(tfwﬁwfmz)’ ‘ EthQ(S ’ S])N Q(t£4+d7n2) .
1 Tl

Together with Lemmas A.1 and A.2, we have

|CM|—qchd Cn]€|Ext (S@(rm d)®S®(n1 9] S 69SEB("lz 6)®S@(nz d)) |

@®m éan @Sny  bmy
|EXtAz (S S ) @deasea(ml d)@ eB(nz—d)| |EXtA1 (S S )K@g

@See(mz e)@SEB(nl e)|
(A.S)
By a standard computation (see e.g. [33]), we have
FM
S@(m]—d)®se)(n1 —e) S @S-@(mz (')@SG)(nZ d)
M M
— @' =(m—e)(ma—e) | 1 oy =)=y | 13 _
my—e|, ny)—d v

Using (2.25), one can obtain that

D —d D —e D — D —d
[Extho (57170 @ 52079 5, @ 5727 g 55027 |

mpy—e—1 ny—d—1
[T @=-d> J] @w"-4> [] @2-4¢) [] @27-4"
i=0 i=0 i=0

my—d—1 ny—e—1

i=0

o 21 =) (my—)+2(n ] —e)ny—d) (1} —(my =)y —e)+ (1} —(ny =) (my—d)

M M (-1
x 3
my —e| |2 —d v | Aut(M)|

_ V(nz] 7d)2+(m ]Z_d)+(n| o2+ (

>+ =02+ (" )ty —d)2+ ("2, 4

% v2(ml7d)(m276)+2(nl7e)(n27d)v(llM—(ﬂ12—l’))(ﬂ12—6)+(1§u—(nz—d))(nz d) (V

M M
B L e IS I B 41 1 (g—1
x [my —dly[ny — elylmy — ely[ny —dly |:m2 _ e:|v |:"2 . d:|v TAWD)|
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Furthermore, we have

| Ext), (52", s&") oty-a) |

_ %@ —aH 5 @™ — 4
150 (@ —4h
= ylomFm=D+() (y — y=1yd ["ﬂ [”2} [d]! (A.9)

K s®™" gy

d v
and

1 o®np dmy _ enp+my—e)+(5) —1ye | M2 ni !
|Exty, (571, 8:7"2) - _op| = vl Dv—v lely-

Al ’ o) D (my—e) D(n)—e) v
o ! K5 oS; ®S;; ¢ldylely

Plugging into (A.8), we have

ICu| = V72cijd72cr,-.jev(m1—d)2+("1127d)+(111—e)2+(“1;()+(n12—e)2+(”1227(’)+(n2—d)2+(”2;d)

x Vd(m1+n2*d)+(‘é)+e(nl+m2*€)+(§)v2(ml*d)(mzfe)+2(n1*e)(nz*d)
x y(t —ma=e)ma—e)+@ (=) (m2=d) (y _ y=lymi+motni+ny—d—e
. [ml]!v[mz]’v[m’v[nzl’v[ M ] [ M } (-1

v

[dTle], my—e], [ —d], [Aut(m)]
— V*ZC,-jd72cr,-yjeV2(m17d)(m2fe)+2(nlfe)(n27d) (V _ V*l)m1+mz+n1+nzfdfe

o P @ ) milylnady [ e oM e ma) [malylmly [ M (g—1 .
[dl, [m2—d], lely  [m2—e]; [Aut(M)]

The desired formula (5.7) follows from the above formula and (A.2). This completes
the proof of Proposition 5.3.

Appendix B: Proof of the formula (3.7)

In this appendix, we provide the details for the proof of the formula (3.7).
: r1(F) ’ 71(5)

B.1 Computation of [S;];” * [S]] = [5,-]1'_a

Let us first compute [S] ]%r) * [S}] * [S] ]%25, depending on the parity of r.
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B.1.1 ris even

For any s > O such that r + s + 2t = a with ¢+ > 0, we have by Lemma 3.1 and
Lemma 3.3

yR+D=(F) | (v— vy

5
79(r) a1 -
(ST # 871+ 875 =D TR TeNeT

I+a

[(r — 2k)S{1 % [K[1* =[]

vm(m+l)*(5722m) (v — vfl)m

[s — 2mly[2m]}

[(s —2m)S/] = [K}]"

3 kD Emn )= (=" (v — y=1yktm

== [r — 2k1,[s — 2m] [2k1E[2m ¥

X [(r = 2K)S{1% [S7] % [(s — 2m) /] 5 K[+

5 L3] min{r—2k,s—2m}

=22 X 2

! _ ! " "
k=0m=0  n=0 (MIET, 1oy | 2RI = 2m Iy 2K [2m]y

yE+DFmm+1)— ()= 3")

! !
x Vp(u,n,r72k,_s'72m)(v _ Vfl)r+x7k7m7n+l [r— 2k]v[Y - 2m]v

[n],
« [ ;M ] [M] % [K;]n+k+m.
s —=2m—n|_ | Aut(M)|
This can be simplified to be
5 L3l r—2k Za,r,s ko) +2k+2m (g o—1y\rbs—k—m—n-+1
[S J(') * [S/ ] [S/ (S) Z Z Z Z z [ ]! [2]37!![2V ]!!)
k=0 m=0 n=0 (M1, st -2m-2 iyl lEmly

un [M] * [Kj -
X L —m— n:| [ Aut(M)]|

B.1.2 ris even

For any s > O such that r + s + 2t = a with t > 0, we have by Lemma 3.1 and
Lemma 3.3

L2 k- (7 (v — vk

[r — 2k1, [2k1E

[S7]7 # IS;1* IS0 = [ — 2871 % [K[1* # [S]]

L5 1)~ (27 .
v 2 ) (v—=vT)
2 [s — 2ml. [2m]! [(s —2m) S]] [K]"
m=0 s mil2mf
~ L) L3) min{r—2k,s—2m} Z Gkl D4mn—1)— ("2~ (")
B 'Is — 2m]t [2k]Y T
k=0m=0 n=0 [MI€Z, 1 5—2k—2m—2n [r — 2kIy[s — 2m]y[2k]5[2m]y

! !
x Vp(u,n,r—Zk,s—Zm) (V _ V—l)r+s—k—m—n+1 [r — 2k]§7[s - 2m]i'
[nl}
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x |: um :| [(M] * [K;]n+k+m.
s —2m—n]_ |Aut(M)|

This can be simplified to be

L3] 3] r—2k

N ) I S

k=0 m=0 n=0 [M]€Z,4+5—2k—2m—2n
VZ(a,r,s,k,m,n) (v — v—l)r+s—k—m—n+1 n [M] * [K;]n+k+m
[n]} [2k15[2m]} | Aut(M)|

s—2m—n
v

B.2 Reduction for (3.7)

Summing up the above two cases, we obtain

7 % _
RHS(3.7) = Z Z 3 Z 3 (—1Y4(y — y—hy—k=m=nt1

r=0,2lr k=0 m=0 n=0 [M1€Zy_2k—2m—2n

vy t2(a.r,a—r.kmn)+2k+2m—a |: wy ] [M] * [K;]n+k+m
[n]y [2k1§ [2m1y a—r—=2m—n],  |Aut(M)|

a LBl L1SE )2k

22X X > (=D (v — vy hmm=ntl

r=0,2tr k=0 m=0 n=0 [M1€Z;_2%—2m—2n

vr+Z(a,r‘,afr,k,m,n)fa |: Uy :| W
[n1y[2k15 [2m1§ | Aut(M)]

a—2r L3l L5501 —2

_Z Z Z Z Z Z (=) (y — y—1y—k=—m—n+1

t>1r=0,2tr k=0 m=0 n=0 [M1€l, 2 _2k—2m—2n

a—r—2m—n v

vr+Z(a,r$a—2t—r,k,m.n)—a+21 wy [M] * [K;]n+k+m+t
[nly [2k14 [2m]¥ [a —2t—r—2m— n]v | Aut(M)] (B.1)
Fix
d=t+k+m+n.
We have reduced the proof of (3.7) to proving the coefficient of % of the
RHS of (B.1) is O for any given [M] € Z,_»4 if not both d and u , are zeros.
Set u = uyy, and set
a=2t L3 % -
Ala,d,u) = Z Z Z Z 80 <n<r—2k}
1>0r=0,2r k=0 m=0
5 Vr+Z(a,r,a—2t—r,k,m,n)—a+2t(V _ V—l)—k—m—n+l |: u ]
[nly[2K1 [2m)y a=2t—r=2m=nj,
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r=0,2lr k=0 m=0

Vr+Z(a,r,a—r,k,m,n)+2k+2m—a (v — V—l)—k—m—n-H |: u ]
X T .
[n1y[2k15 [2m1§ a—r=2m=n],
(B.2)
See (3.12) for Z(-, -, -, -, -, -) and also see (3.10) for p(, -, -, *)
/1d
Then the coefficient of Tl of the RHS of (B.1) is (—1)*A’(a. . up). Sum-

marizing, we have established the following (which is the counterpart of Proposition
3.4).

Proposition B.1 The formula (3.7) is equivalent to the following identity
A(a,d,u) =0, (B.3)
for non-negative integers a, d, u subject to the constraints:

0<dc< %, O0<u<a-—2d, dandu notboth zero. (B.4)

B.3 Reduction for the identity (B.3)
We shall denote the 2 summands in A" = A’(a, d, u) in (B.2) as A, A/, and thus

A=Ay — Al
Compare with (3.14). We also denote

w=r—2k—n. (B.5)
Set

d=k+m+n+t (B.6)

in the A, side, and d = k + m + n in the A] side. Using the same argument as in
§3.6, for d > 0, we see that the identity (B.3) for d > 0 is equivalent to the following

identity

2 =2d i+t 2ni 4+ (") ~2km—2m "1 2km+2k

v 2
(v—v = — =0
u;dd [} (261 [2m 1Y +Z [} [2k1 [2m 1Y
t+k+m+n=d k+m—+n=d
(B.7)

The identity (B.7) is clearly equivalent to the identity (3.23) (by switching the parity
of w), which was established in Sect. 4.
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The identity (B.3) for d = 0 holds exactly in the same way as for (3.24) (up to an

irrelevant overall sign). Therefore, the identity (B.3) is fully established, and then the
formula (3.7) follows by Proposition B.1.
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