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ABSTRACT

The SINDy algorithm has been successfully used to identify
the governing equations of dynamical systems from time se-
ries data. In this paper, we argue that this makes SINDy a
potentially useful tool for causal discovery and that existing
tools for causal discovery can be used to dramatically improve
the performance of SINDy as tool for robust sparse model-
ing and system identification. We then demonstrate empiri-
cally that augmenting the SINDy algorithm with tools from
causal discovery can provides engineers with a tool for learn-
ing causally robust governing equations.

Index Terms— Sparsity, causality, dynamical systems ,
SINDy

1. INTRODUCTION

The Sparse Identification of Nonlinear Dynamics (SINDy) al-
gorithm was proposed by Brunton et al. [1] as a tool for learn-
ing the governing equations of a dynamic system from data
collected from the system as it evolved through time. It has
been used extensively in the engineering and signal analyses
communities to recover governing equations in a diverse set
of circumstances[2] [3] [4] .

Within the artificial intelligence community, a related set
of problems related to causality have recently generated con-
siderable interest [5] [6] [7]. Among them is the ability to
take as input a data set and return as output the causal rela-
tions between variables in that data set is a central challenge
known as causal discovery. A wide variety of algorithms are
currently in use within the field [8].

Peters et al. [9] formalized the connection between learn-
ing a set of ordinary differential equations that govern a sys-
tem and identifying the causal relations between the variables
within a system. In their framework, a variable x can be said
to be a direct cause of a variable y if and only if x is present
in the ordinary differential equation governing the change in
y. Therefore, an algorithm can successfully learn the ordi-
nary differential equations governing a system only if it is
also learning the causal relations within a system. This makes
SINDy a potentially valuable and, to the best of our knowl-
edge, underexplored tool for causality researchers. The con-
nection should also open the door to scientists, engineers, and

signal process researchers to use the recently developed tools
of causal discovery to improve the performance of SINDy as
a system identification tool.

In this paper we compare SINDy’s ability to identify
causal relationships between variables against a sampling of
prominent causal discovery algorithms. We first show that
under the assumption that all included variables are part of
the same dynamical system, SINDy achieves similar perfor-
mance to the comparison algorithms. Once this assumption
is relaxed, we show the SINDy’s performance degrades sub-
stantially. Finally, we show that augmenting SINDy with a
comparison algorithm can make SINDy a state-of-the-art tool
for causal discovery and a substantially more robust tool for
engineers and signal process researchers performing sparse
modeling and system identification.

2. BACKGROUND

2.1. Sparse Regression

Regression is a branch of machine learning that takes some
data set {(Xi, Yi)}Ni=1 and some parameterized function
f(·, β) and attempts to use the data set to find a set of param-
eters β∗ such that f(Xi;β

∗) ≈ Yi. Typically Xi, β ∈ Rkx1

and Yi ∈ R. A common approach to regression is assuming
f is linear and trying to find the set of parameters that mini-
mize the l2 norm of the difference vector between the model
predictions and the ground truth. This approach is shown in
Equation 1 where the rows of X are the transpose of the Xi

data vectors and the elements of Y are the Yi scalars.

β∗ = argmin
β

(||XTβ − Y ||2) (1)

There are common problems with this approach [10]. If
the regression is under-determined, there are often multiple
solutions to Equation 1. In the high-dimensional case, β is of-
ten hard to interpret for stakeholders making use of the model
solutions. Finally, solutions with large amounts of parameters
frequently do not generalize well to out-of-sample data. All
of these problems can be solved by imposing an l0 sparseness
penalty to the optimization problem in Equation 1. In prac-
tice, it is difficult to perform this optimization directly so theIC
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l1 norm is used as a relaxation of the l0 norm as depicted in
Equation 2.

β∗ = argmin
β

(||Xβ − Y ||2 + λ||β||1) (2)

2.2. SINDy

The SINDy algorithm takes as input time series data and at-
tempts to reconstruct the dynamical system that generated the
data [1]. An autonomous dynamical system is formally de-
fined as d

dtx(t) = f(x(t);β) where t is the time, x(t) is the
state of the system at time t, β is a set of system parameters,
and f is a governing function describing how the system state
is changing at time t. Governing functions of dynamic sys-
tems are often sums of a few simple functions [11]. SINDy
treats learning these governing functions as a sparse regres-
sion problem.

Formally, the algorithm takes as input two matrices
X = [x(t1), ..., x(tm)]T and Ẋ = [ẋ(t1), ..., ẋ(tm)]T where
x(t1) ∈ Rnx1 is the measurement of the state of the system at
time t, ẋ(t1) ∈ Rnx1, is the measurement (or approximation)
of the derivative of the system at time t. From X, a library of
candidate functions is constructed and denoted by θ(X). The
optimization in Equation 3 is then performed for each of the
N columns of Ẋ .

ξk = argmin
ξ
′
k

(||Ẋk − θ(X)ξ
′

k||2 + λ||ξ
′

k||1) (3)

Brutnon et al. solve the optimization problem in Equation
3 using the sequential thresholding least squares (STLS) pro-
posed in [1]. The STLS algorithm works by first performing
a standard least squares regression of Ẋ on θ to get initial val-
ues for ξk. A threshold c is then chosen such that any element
of ξk less than c is set to 0. Then a least squares regression
is again performed of Ẋ onto the columns of θ(X) that have
non-zero coefficients in ξk. The process of least squares re-
gression and thresholding is continued until the values of ξk
converge.

2.3. Causality

The dominant causal framework in artificial intelligence con-
sists of a structural causal model (SCM) M and a correspond-
ing directed causal graph GM [12]. M = (U, V, F ) where
V is a set of endogenous variables, U is a set of exogenous
variables, and F is a set of assignment functions that assign
values to the variables in V using the values of the variables in
V and U . A probability distribution over U induces a proba-
bility distribution over V as well. For every element of U and
every element of V , there is a node in GM . There is a directed
edge from a node ni to a node nj if and only if variable i is
an argument of variable j’s assignment function fj . We say
that i is a direct cause of j if and only if i is a parent of j in
graph GM .

UX

X

Y

UY

Z

Fig. 1. The causal graph corresponding to the structural equa-
tions in Equation 4. Solid lines indicate causal relations be-
tween endogenous variables and dashed lines indicate causal
relations between an exogenous and an endogenous variable.

For illustrative purpose, consider the following simple ex-
ample. Imagine some system with variables X ,Y ,Z,UX , and
UY . UX and UY are exogenous variables with standard nor-
mal probability distributions. X’s value is a function of UX .
Y is a linear function of X and UY . Z is a linear func-
tion of Y and X . The following is a potential SCM, M =
(U, V, F ) where V = {X,Y, Z}, U = {UX , UY }, and F =
{fX , fY , fZ} such that

X := fX(UX) = 10 ∗ UX + 3, UX ∼ N(0, 1)

Y := fY (X,UY ) = 2X + UY , UY ∼ N(0, 1)

Z := fZ(X,Y ) = 5X + 4Y

(4)

The corresponding causal graph GM is given in Figure 2.
The causal framework can be extended to dynamical sys-

tems [9]. Consider a set of d ordinary differential equations
and initial values assignments. These can be written in as as-
signment equations with the form given in Equation 5. The
causal graph is defined analogously for the dynamical case.
This causal interpretation of dynamical systems allows for
a causal interpretation of the ordinary differential equations
learned by the SINDy algorithm and thus to construct a ca-
sual graph from them.

Causal discovery is the process of taking data generated
from the distribution defined by a SCM and inferring either
the model’s causal graph or the structural equations of that
model [6]. The problem is difficult because the SCM is under-
determined by the data. Many causal identification algorithms
attempt to solve this problem by making assumptions about
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the underlying SCM or causal graph and the algorithms can
be classified according to the kind of assumption they make
and how much they are trying to infer [8]. In causal iden-
tification with time series data, methods often assume either
that conditional independence in the data implies conditional
independence in the causal graph, the structural equations in
the SCM have a particular parametric form and the exogenous
variables have a particular probability distribution, or assume
that the structural equations are a dynamical system with a
reconstructable state space, [5] [13].

d

dt
xi
t := f i(xPAi

t ), xi
0 := αi

0 (5)

2.4. Comparison Algorithms

In our paper, we use several leading causal discovery algo-
rithms for comparison.

The Convergent Cross Mapping (CCM) algorithm [14]
starts by using Takens’s theorem [15] as a justification to re-
construct the system manifold, M, twice using time lags from
two system variables x(t) and y(t). The reconstructions using
x(t) lags and y(t) lags are denoted Mx and My respectively.
If the ability to predict My(t) from points on Mx(t) in some
neighborhood around t increases as the number of sampled
points increases, then y(t) is a cause of x(t).

The premise behind the Granger Causality (GC) algo-
rithm [16] is that a variable x(t) is a direct cause of y(t) if
and only if the past values of x(t) contain unique information
about y(t). In practice, bivariate Granger Causality is used
whereby if a linear regressive model using the time lags of
y(t) and x(t) can produce better predictive value than just the
lags of y(t) then x(t) is said to be a cause of y(t).

The PCMCI algorithm [17] is an extension of the PC algo-
rithm [18]. The PC algorithm assumes that conditional inde-
pendence in the data implies conditional independence in the
causal graph. This assumption is called causal faithfulness.
The central idea of the algorithm is that, under the assump-
tion of causal faithfulness, variables that are conditionally in-
dependent in the data set have no edge connecting them in the
graph. Therefore repeated conditional independence tests can
be used to ”prune” a complete directed graph.

The PCMCI algorithm discovers the causal graph from
time series data. It proceeds in two steps. First, it runs the
PC algorithm to learn the parent nodes of all the nodes in the
graph. Next, it runs an additional conditional independence
test to eliminate false positive edges.

The Linear Nongaussian Acyclic Model [19] assumes the
assignment functions in the SCM are linear and that the ex-
ogenous variables have a non-Gaussian probability distribu-
tion. Under these assumptions, it can be proven that there is
a unique SCM that corresponds to the probability distribution
that generated the data and it can be discovered by using in-
dependent component analysis.

3. METHODOLOGY

Two sets of experiments were run to test SINDy’s ability as
an algorithm for causal identification. A final experiment was
run to test the ability of existing causal identification tech-
niques to improve SINDy’s performance. For the first set
of experiments, a diverse set of 6 dynamical systems were
chosen which are described in table 1. For each dynamical
system, 10 simulations were run. For each simulation, the
Runge-Kutta algorithm [20] was used to simulate the system
for 1000 time steps. The SINDy algorithm and 4 causal iden-
tification algorithms were used to construct the causal graph
of the system from the data. The 4 comparison causal iden-
tification algorithms were chosen on the basis of diversity of
technique, breadth of use, and performance (Section 3.1).

The ground truth causal graph was constructed for the dy-
namical systems using the framework described in [9]. The
ground truth causal graph and learned causal graphs were
represented as adjacency matrices. The Hamming distance
between the learned adjacency matrix and the ground truth
matrix was used as the metric to measure the quality of the
learned causal graphs. The Hamming distance between the
ground truth causal graph and the learned graph is computed
for each algorithm after each simulation of the dynamical sys-
tem. The average Hamming distance for all 10 simulations is
computed for each of the six dynamical systems.

The second set of experiments are similar except Gaus-
sian noise variables are added to double the size of the sys-
tem. This represents the case in which the scientist using
these techniques is uncertain as to which variables are part
of the system.

For the third set of experiments, a causal discovery algo-
rithm, PCMCI, was first run as a preprocessing step. Miss-
ing edges in the the causal graph learned by PCMCI were
then encoded as a set of constraints the SINDy algorithm had
to observe. The new constraint augmented SINDy algorithm
was run on the same set of simulated dynamical systems as in
Experiment 1 and Experiment 2.

4. RESULTS & CONCLUSION

The results from Experiment 1 are described in Table 2. On
average, SINDy identified the correct graph as well or better
than 2.67 of the other four techniques. It had the best average
performance in two of the six systems. This is evidence that
SINDy is a strong tool for causal identification in dynamical
systems under the assumptions that all system variables and
only system variables have been measured.

In Experiment 2 (Table 3), SINDy performed much worse
relative to the other algorithms. It achieved the best average
performance on 0 systems and on average only performed as
well .67 comparison algorithms per dynamical system. To
the best of our knowledge, the degradation of SINDy’s per-
formance in the presence of non-system variables is a weak-
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System System Equations

Lorenz [21]

ẋ = 10(y − x)

ẏ = x(28− z)

ż = xy − 8
3z

Mankiw-Romer-Weil [22]
k̇ = .01(kh)

1
3 − .06k

ḣ = .01(kh)
1
3 − .06h

FitzHugh-Nagumo [23]
v̇ = v(.1− v)(v − 1)− w + 5

ẇ = .01v − .02w

Lotka-Volterra [24]

ṅ1 = n1(1− n1 − 1.09n2 − 1.52n3)

ṅ2 = .72n2(1− n2 − .44n3 − 1.36n4)

ṅ3 = 1.53n3(1− 2.33n1 − n3 − .47n4)

ṅ4 = 1.27n4(1− 1.21n1 − .52n2 − 1.53n3 − n4)

Pendulum [25]
u̇ = v

v̇ = −.76sin(u)

SIR[26]

ṡ = − .715
60 is

i̇ = .715
60 is− .285i

ṙ = .285i

Table 1. Dynamical systems used to test SINDy as a tool for
causal inference.

ness of the algorithm that is currently absent from the litera-
ture. It also suggests that engineering and signal processing
researchers could greatly improve the performance of SINDy
by first using established causal identification techniques as a
pruning step when unsure of the exact number of variables in
the system. Experiment 3 tested this and demonstrated that
the deficiency could be remedied using PCMCI as a prepro-
cesssing step. When preprocessing was done, (augmented)
SINDy achieved best performance on four of the six systems
and on average outperformed 3.67 of the four other methods.

This state-of-the art performance on causal identification
provides strong evidence that using SINDy with a preprocess-
ing step is a potentially very useful technique for artificial in-
telligence researchers in causal identification and engineers in
system identification.

This study used numerical experiments only. In the future,
data from real dynamic systems should be used.

PCMCI [17] LINGAM [19] GC [16] CCM [14] SINDy [1]
Lorenz .11 .34 .11 .11 .01
MRW .65 .70 .00 .35 .40

FN .00 .33 .00 .00 .03
LV .24 .41 .19 .19 .22

Pendulum .50 .88 .50 .50 .43
SIR .49 .40 .44 .44 .43

Table 2. Hamming distance for SINDy and comparison meth-
ods for each system

PCMCI [17] LINGAM [19] GC [16] CCM[14] SINDy [1]
Lorenz .06 .43 .35 .65 .64
MRW .19 .44 .43 .57 .73

FN .05 .52 .31 .65 .75
LV .11 .51 .34 .67 .80

Pendulum .21 .68 .43 .75 .88
SIR .62 .68 .44 .35 .42

Table 3. Hamming distance for SINDy and comparison meth-
ods for each system with noise variables

System Augmented SINDy
Lorenz .07
MRW .13

FN .14
LV .11

Pendulum .17
SIR .15

Table 4. Hamming distance for SINDy after PCMCI was run
as a pre-pruning step
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