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ABSTRACT
The state-of-the-art in machine learning has been achieved pri-
marily by deep learning artificial neural networks. These networks
are powerful but biologically implausible and energy intensive. In
parallel, a new paradigm of neural network is being researched that
can alleviate some of the computational and energy issues. These
networks, spiking neural networks (SNNs), have transformative
potential if the community is able to bridge the gap between deep
learning and SNNs. However, SNNs are notoriously difficult to train
and lack precision in their communication. In an effort to overcome
these limitations and retain the benefits of the learning process
in deep learning, we investigate novel ways to translate between
them. We construct several network designs with varying degrees
of biological plausibility. We then test our designs on an image clas-
sification task and demonstrate our designs allow for a customized
tradeoff between biological plausibility, power efficiency, inference
time, and accuracy.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
Modeling methodologies; • Hardware → Neural systems.

KEYWORDS
neuro-inspired artificial intelligence, machine learning, neuromor-
phic computing

1 INTRODUCTION
While artificial neural networks were originally inspired by the
form and function of the brain, the state-of-the-art deep learning
network is quite distinct from its biological counterpart. These deep
learning networks are highly engineered to achieve state-of-the art
results in a narrow range of tasks such as game play [33], image
recognition [37], and natural language processing[6].

∗Authors contributed equally to this research.

Despite these successes, deep neural networks have substantial
drawbacks such as requiring large amounts of power consumption
[36], biological implausibility [18], and slow inference times on
edge devices [27]. For example, if we examine one of the latest
language models, GPT-3, the amount of training required for this
model would have produced CO2 emissions equivalent to driving a
car to the Moon and back, approximately 480,000 miles. The power
consumption of this model is equivalent to the consumption of 126
Danish homes for an entire year [3].

One of the most notable differences between machine learning
models and biological neurons is their communication language.
Biological neurons communicate via electrical impulses, i.e. action
potentials or spikes in an efficient coding scheme. This means that
a high majority of neurons are not being activated simultaneously.
In fact, many neurons are silent most of the time, with a single
percent to a few percent of neurons spiking at any one time. Given
a specific stimulus, only a highly selective, small subset of neurons
will activate [32].

Thus, spiking neural networks (SNN) running on neuromorphic
hardware present an alternative learning paradigm that is more en-
ergy efficient and biologically plausible than deep neural networks
[34]. Training SNNs is difficult, so traditionally, learned weights
from an artificial neural network can be translated into spiking
rates for the SNN.

In this paper we describe multiple novel approaches to the con-
version from an ANN to an SNN. Specifically, we enable the replace-
ment of deep learning, ReLU activated nodes with spiking nodes of
varying precision, speed, efficiency and biological plausibility. Our
framework allows for neuromorphic systems that must maintain
strict biological plausibility, to hybrid systems that can introduce
additional bit precision or payloads that lead to both faster inference
and lower power consumption. In essence, our proposed architec-
ture controls inference time allowing for a tradeoff between model
speed and power usage and accuracy depending on the computing
resources available to the model user.
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2 BACKGROUND
2.1 Non-Spiking Neuron Models
Early development of artificial neural networks began in 1943 with
the introduction of non-spiking neuron models by McColloch and
Pitts [24]. Inspired by biology, this early research laid the ground-
work for neural networks, with neuron models based on threshold-
ing and weights. In 1958, psychologist Frank Rosenblatt introduced
the first trainable neural network, the Perceptron [28]. This network
computed a weighted sum of inputs, passed through the Heaviside
step function. Importantly, the weights of Rosenblatt’s Perceptron
could be learned through training, unlike the early neuron model
developed by McColloch and Pitts. The use of the Heaviside step
function in the Perceptron, however, presented a problem, as it is
non-differentiable. This model, thus, was limited in that it could
only handle linearly separable problems [26]. After a period of
stagnation in neural network and non-spiking neuron model re-
search, the field was revitalized in 2012. Aided by the computational
power of modern GPUs, the success of deep neural networks in
both speech [16] and large-scale image recognition tasks [21] thrust
these non-spiking artificial networks into the spotlight. Today, this
kind of feedforward continuous-valued neural network, often us-
ing the ReLU activation function in its hidden layers, is considered
state-of-the-art for many tasks. However, the community is facing
daunting headwinds of diminishing returns as these networks con-
tinue to scale. Thus, new paradigms of network models are needed
to achieve greater returns.

2.2 Spiking Neuron Models
Integrate-and-fire (IF) - The integrate-and-fire neuron model was
developed in 1907 by Louis Lapicque, far before the mechanisms of
neural communication through action potentials were fully under-
stood [22]. IF neurons model the membrane potential and voltage
behavior of a neuron as input is injected. Within this model, a
neuron’s voltage, 𝑉 , accumulates as an input current, 𝐼 (𝑡), is ap-
plied, charging up until it reaches a threshold value, 𝑉𝑡ℎ . Once this
threshold is reached, the IF neuron, with membrane capacitance 𝐶 ,
produces a spike and resets [7].

𝐼 (𝑡) = 𝐶
𝑑𝑉 (𝑡)
𝑑𝑡

(1)

Despite the simplicity of this model, it has been widely used in
neuroscience and modern neuromorphic computing, particularly
for rate-based ANN-SNN conversion. While sufficient for some
modeling tasks, the IF neuron model is largely simplified and leaves
out important features of biological neurons, like the leaky diffusion
of ions through a neuron’s membrane.

Leaky Integrate-and-fire (LIF) - The leaky integrate-and-fire
model extends the simple, deterministic IF model, incorporating
biologically critical features like leakage. Derived from the Hodgkin-
Huxley model [17, 41], LIF neurons were developed to better model
the behavior of biological neurons [20] with the addition of a leak-
age term, 𝑅.

𝐼 (𝑡) − 𝑉

𝑅
= 𝐶

𝑑𝑉 (𝑡)
𝑑𝑡

(2)

2.3 Hybrid Spiking Neuron Models
Accumulators for Discretization of Neuron Models - Intro-
duced to train hybrid SNNs with backpropogation, accumulator
neurons allow for a gradual transition from non-spiking to spik-
ing regimes [38]. These neurons are employed to gradually train a
network, converting non-spiking to spiking functions, through the
choice of a time-step like parameter,𝜔 > 0. In the context of spiking
neurons 𝜔 allows for multiple spikes to be emitted per timestep,
with 1

𝜔 denoting a spike’s height. In this context, multiple-spikes in
one timestep may also be considered a single spike with magnitude.
The most recent iteration of Intel’s neuromorphic chip, Loihi 2,
permits spikes to be communicated with magnitude as an integer
payload [39]. This capability permits functions to be matched to an
arbitrary degree of accuracy, dependent upon the parameter 𝜔 .

Our work takes inspiration from the recent development of this
accumulator model, expanding it to more biologically plausible
neuron models. We can vary the biological plausibility of the accu-
mulator i.e. leaky integrate and fire, to ensemble LIF, to rate cod-
ing neurons. Our work enables the implementation to work
on generalized neuromorphic hardware, where accumulator
data structures do not exist.

2.4 Advantages of Spiking Neural Networks
Communication through the language of spikes, in addition to ex-
pansive parallel processing and hierarchical organization, grants the
brain its incredible energy efficiency. The brain uses only slightly
over 20 W on average, not only for direct task-related communica-
tion, but also for resting metabolic consumption and maintaining
electrical homeostasis. The brain uses a remarkably low amount
of energy to perform the general tasks essential to keep it func-
tioning, along with more-specific tasks like near constant auditory
processing, object recognition, and dictionary learning tasks [40].
In contrast to the brain’s 20 W expenditure, a modern GPU will use
around 400 W to learn to perform object recognition on 1,000 cate-
gories [25, 29]. Guided by the communication principles of the brain,
spiking neural networks present a more energy efficient alternative
to standard artificial neural networks. By transmitting information
through single-bit spike events, rather than through continuous
values, spiking neural networks are able to process information at
a lower power cost than continuous-valued networks. Particularly
when implemented on neuromorphic hardware optimized for spik-
ing communication, spiking networks exhibit far greater energy
efficiency than their GPU executed analog counterparts. This has
resulted in work that attempts to convert traditional ANNs to SNNs.

Traditional ANN-SNN Conversion Continuous-valued artificial
neural networks may be converted to spiking neural networks in
order to take advantage of their improved power efficiency for in-
ference. Rate-based schemes are perhaps the most widely employed
method of ANN-SNN conversion. Rate-based conversion methods
rely on the ability of SNN neurons to match the firing rate of the
activation function used by an analog ANN. ANNs that employ
ReLU activation functions are particularly well suited to be con-
verted to SNNs composed of integrate-and-fire (IF) neurons. The
foundational principle for rate-based conversion was introduced
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by Cao et. al [8], who demonstrated the equivalency of ReLU acti-
vation and spiking rates of IF neurons. Significant constraints, such
as the removal of bias neurons and batch normalization, limit the
experimental relevancy of their method. Still, the equivalency of
spiking rates of IF neurons and ReLU activation function is a signif-
icant building block for rate-based ANN-SNN conversion. Deihl et.
al [13] improved upon this method, introducing model-based and
data-based normalization schemes to scale ANN weights based on
the maximum activation of neurons in each layer. This rescaling of
weights maps to SNN threshold balancing and prevents approxi-
mation error caused by too much or too little firing in converted
SNN neurons. Further work proposed a means for more robust
normalization using 99.9% of activation, rather than the maximum
activation values, to scale weights for more accurate ANN-SNN con-
version [30]. Rueckauer et. al additionally presented a "soft-reset"
mechanism to overcome the information loss caused by the more
biologically realistic "hard-reset" employed by earlier ANN-SNN
conversion methods [8, 13].

2.5 Neuromorphic Hardware
Neuromorphic hardware are brain-inspired computing architec-
tures that are designed to have advantages over the Von Neumann
architecture with respect to neural network performance. Schu-
man et al. provide a useful taxonomy of neuromorphic hardware
[31]. They note neuromorphic hardware can be partitioned into
analog, digital, or mixed implementations. The digital systems can
be further partitioned into field programmable gate arrays (FPGAs)
and full custom or application specific integrated circuit chips. FP-
GAs are useful to achieve speed improvements over software when
running neuromorphic software simulations, but are less effective
than custom chips for small and low-powered systems. Examples of
FPGAs include [10] [15] [1]. Examples of the chips include Intel’s
Loihi chip [11], SpiNNaker [4], and IBM’s TrueNorth chip [2]. The
Loihi chip has been shown to exhibit substantial energy savings
[11] and robust performance [9, 19] on certain benchmark machine
learning tasks [12].

Like digital systems, analog systems can be partitioned into pro-
grammable and custom chip designs [31]. The pros and cons of the
various systems are roughly analogous to their digital counterparts.
Mixed analog and digital systems have the biological plausibility
of analog systems but can use digit components to compensate for
analog weaknesses such as unreliability.

3 METHODOLOGY
Our objective is to utilize the strong learning capabilities of deep
learning neural networks, while also augmenting the ability of
spiking neural networks, see Figure 1 for a visualization of our
methodology. To acheive this task, we constructed a feedforward
neural network with one hidden layer for the task of MNIST image
classification [23]. While some methods of ANN-SNN conversion
transform analog input activations, such as pixel values, to Poisson
firing rates [8, 13], we interpret input pixel values as constant input
currents to avoid introducing further variability into the conversion
[30]. This constant charge is added to the membrane potential of a
neuron 𝑖 at each timestep.

3.1 Basic ReLU-IF Conversion
Our continuous-valued ANN was implemented with the ReLU acti-
vation function. For a network with 𝐿 layers and𝑀𝑙 units in each
layer, the ReLU activation of a neuron can be denoted as:

𝑎𝑙𝑖 =𝑚𝑎𝑥 (0,
𝑀𝑙−1∑︁
𝑗=1

𝑊 𝑙
𝑖 𝑗𝑎

𝑙−1
𝑗 + 𝑏𝑙𝑖 ) (3)

where𝑊 𝑙 is the weight matrix of between layers 𝑙 − 1 and 𝑙 , with
biases𝑏𝑙 , and𝑎𝑙−1

𝑗
denotes the output activation value of neuron 𝑗 in

layer 𝑙−1. The dynamics of the ReLU activation can be mimicked by
an IF neuron’s spike rate. At each timestep, the weighted spike input
is integrated into the neuron’s membrane potential, the dynamics
of which can be described by:

𝑉𝑚 (𝑡) = 𝑉𝑚 (𝑡 − 1) +
∑︁
𝑖

𝑤𝑖𝑋𝑖 (𝑡) + 𝑏𝑖 (4)

where𝑉𝑚 denotes the membrane potential, 𝑋𝑖 is the input spike
train of IF neuron 𝑖 , and𝑤𝑖 and 𝑏𝑖 are the transferred weights and
biases from the ANN [14].

3.2 Ensemble Neuron Models
Ensemble 1 - LIF Ensemble Neuron - Our LIF Ensemble Neu-
ron (LEN) model is based on the premise that a collection of LIF
neurons could be used to simulate the behavior of a ReLU neuron.
The architecture of our LEN model is illustrated in Figure 2. The
LEN takes the input and passes it to multiple LIF neurons, whose
intercepts indicate the values at which each LIF neuron begins to
fire. Our design allows for a variable number of LIF neurons. For
our simulations, we used 9 LIF neurons with intercepts increasing
in increments of .1 from .1 to .9 inclusive. The spike height of each
LIF neuron is 1. Each neuron has a connection to a node computing
a max function. The weight of the connection is identical to the
node’s intercept. At each timestep, the output of the max node is
returned.

To implement our LEN model, we used LIF neurons from the
Nengo software package [5]. Nengo uses the Neural Engineering
Framework to construct neural models [35]. In the framework, a
vector a of neurons is used to represent a stimulus vector x in a
distributed way. Each neuron element 𝑖 of a produces the following
output: 𝑎𝑖 = 𝐺 (𝛼𝑖 ei ·x+𝛽𝑖 ) where𝐺 is a neuronal model, ei is an
orientation vector that encodes neuron 𝑖’s preferred firing direction,
𝛼𝑖 is a gain parameter, and 𝛽𝑖 is a background bias current. For our
LEN model, all 𝐺 neuronal models are chosen to be the LIF neuron
model.

For each 𝑎𝑖 , its intercept can be set by adjusting its orientation,
gain, and bias parameters in the following way. Its orientation
parameter is set to a vector of 1s. The input to LIF neuron 𝑖 can now
be written as function 𝐽𝑖 of the raw stimulus x as well as the gain
and the bias, 𝐽𝑖 (x) = 𝛼𝑖x + 𝛽𝑖 . In Nengo, the threshold for the LIF
neuron is fixed at 1, so the firing rate for neuron 𝑖 can be written
as the following function of the stimulus:

𝑟𝑖 (x) =
1

𝜏
𝑟𝑒 𝑓

𝑖
− 𝜏𝑅𝐶

𝑖
(1 − 1

𝐽𝑖 (x) )
(5)
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Figure 1: General overview of our methodology. As a first step, we obtain trained weights from an offline artificial neural
network. These weights are then used in our framework, where we can replace the standard ANN nodes with our spiking
nodes and control for time and biological plausibility. At one end of the framework, we use a simple rate coded leaky integrate
and fire network that requires more time to achieve stable accuracy. On the other end, we can use accumulator integrate
and fire neurons to emulate the performance of an ANN with ReLU activation with nearly instantaneous time scales. In this
research effort, we describe this spectrum and provide implementation and experimental details for these states and everything
inbetween. An important note is that our accuracy is stable across all methods.

Input

0.2

0.4

0.6

0.8

max

Figure 2: LIF Ensemble Neuron architecture: 4 LIF neurons,
with intercepts increasing in increments of 0.2 from 0.2 to
0.8.

Where 𝜏𝑟𝑒 𝑓
𝑖

and 𝜏𝑅𝐶
𝑖

are neuron 𝑖’s refractory and time constants,
respectively. A plot of the firing rate as a function of the stimulus
vector is called a tuning curve. The plotted curves are characterized
by the intercept indicating where the neuron begins to fire and
the max-rate which is the maximum firing rate the neuron reaches
on the input interval. The input interval for the raw stimulus is
assumed to be in the range [-1,1]. Figure 3 shows tuning curves
for 4 LIF neurons of intercepts 0.2, 0.4, 0.6, and 0.8 composing a
hypothetical LEN model.

Using 𝐽𝑖 and 𝑟𝑖 , the parameters that result in the desired intercept
can be found by solving a system of 2 equations. Since we know
spiking begins when the neuron input 𝐽 exceeds the threshold of 1,
Equation 6 is one constraint that must hold for a desired intercept
value 𝑥𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1 = 𝛼𝑖𝑥𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑖 (6)

For an LIF neuron, the spiking frequency is an increasing func-
tion of the stimulus 𝑥 and the the largest value in the domain is 1,
so the max rate occurs at 𝑥 = 1. Therefore, Equation 7 must hold
for a desired maximum rate.

𝑚𝑎𝑥𝑟𝑎𝑡𝑒 = 𝛼𝑖 + 𝛽𝑖 (7)

Solving the two equations yields unique values for 𝛼𝑖 and 𝛽𝑖 .

Ensemble 2 - Interfering Offset Neurons - The Interfering Offset
Neurons (ION) model relies on multiple biased ternary IF neurons,
as illustrated in Figure 4. Let 𝐼𝐹𝑡 (𝑥) be a single IF neuron with input
𝑥 and threshold 𝑡 , and𝐴𝑐𝑐𝑡 (𝑥) be an accumulator with spike height
𝑡 . Note 𝐼𝐹𝑡 (𝑥) ≈ 𝐴𝑐𝑐𝑡 (𝑥) for input from −𝑡 to 𝑡 . Additionally, if
we introduce a bias to the input of a neuron 𝑏 = 2𝑡𝑖, 𝑖 ∈ Z, then
𝐼𝐹𝑡 (𝑥 − 𝑏) + 𝑏 ≈ 𝐴𝑐𝑐𝑡 (𝑥) from −𝑡 + 𝑏 to 𝑡 − 𝑏. Since an IF neuron
with threshold 𝑡 saturates for inputs outside −𝑡 to 𝑡 , its output is
given by Equation 8:
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Figure 3: Tuning curves for a 4-neuron LEN model. Firing
rates as functions of input voltage are shown for neurons
with intercepts of 0.2, 0.4, 0.6, and 0.8.

𝐼𝐹𝑡 (𝑥 − 𝑏) =


𝑡 𝑥 > 𝑏 + 𝑡

−𝑡 𝑥 < 𝑏 − 𝑡

𝐴𝑐𝑐𝑡 (𝑥) − 𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

For ION, we strategically bias the IF neurons so that the sum
of their output approximates an accumulator. For ION with 2𝑛 + 1
neurons we bias the neurons from −2𝑡𝑛 to 2𝑡𝑛 in multiples of 2𝑡 .
Note that with this spacing, for any input 𝑥 there is only 1 neuron
such that 𝑏− 𝑡 <= 𝑥 <= 𝑏 + 𝑡 . There are 𝑛− 𝑏

2𝑡 neurons biased more
than 𝑏, each outputting −𝑡 for a total output of −𝑛𝑡 + 𝑏

2 . Additionally
there are𝑛+ 𝑏

2𝑡 opposing neurons biased less than𝑏, each outputting
𝑡 for a total output of 𝑛 + 𝑏

2 . The sum of all IF neuron outputs is
then given by Equation 9:

𝐼𝑂𝑁 (𝑥) = 𝑛𝑡 + 𝑏

2
+ −𝑛𝑡 + 𝑏

2
+𝐴𝑐𝑐𝑡 (𝑥) − 𝑏 (9)

While all but one of the IF neurons fire at every timestep, the
summation of the neuron outputs can be performed locally, allowing
for implementation on neuromorphic hardware.

Figure 4: Interfering Offset Neuron model architecture with
3 IF neurons.

3.3 Accumulator Neurons
Accumulator neurons essentially represent a digital sampling of
analog signaling. Therefore, better approximation can be achieved
through more precise sampling. In the case of accumulator neu-
rons, sampling precision is determined by the maximum number
of spikes per timestep allowed. Figure 5 shows the performance
of the accumulator models as a function of maximum spikes per
timestep allotted. The non-leaky accumulator outperformed the
leaky accumulator – with a rate constant of 10 – for all values in
this comparison. It also achieved near peak performance far quicker
than the leaky accumulator. These results essentially show how
well these models can approximate a ReLU function, given that
weights were transferred directly from a ReLU ANN to these mod-
els. Therefore, the non-leaky accumulator is able to approximate
the ReLU better at peak performance, which it achieves with less
spikes per timestep than the leaky accumulator.
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Figure 5: MNIST classification performance of SNNs with
leaky and non-leaky accumulator nodes.

3.4 Custom Gradients
In addition to transferring the weights from the trained ANN with
ReLU activation function, we trained each SNN model individually
using their own gradients. The ION and LEN models approximated
the ReLU functions with their outputs, so their gradients were the
same as that of ReLU:

𝜕𝑉𝑜𝑢𝑡

𝜕𝑉𝑖𝑛
=

{
1 𝑉𝑖𝑛 ≥ 𝑉𝑡ℎ

0 𝑉𝑖𝑛 < 𝑉𝑡ℎ
(10)

Where 𝜕𝑉𝑜𝑢𝑡
𝜕𝑉𝑖𝑛

represents the change in output voltage as a func-
tion of input voltage, 𝑉𝑖𝑛 represents input voltage, 𝑉𝑜𝑢𝑡 represents
the output voltage, and 𝑉𝑡ℎ represents the threshold. For the other
models, the firing rate of an LIF neuron is given by:

𝜕𝑉𝑜𝑢𝑡

𝜕𝑡
=

{
𝑉𝑖𝑛
𝑅
𝑡 𝑉𝑖𝑛 ≥ 𝑉𝑡ℎ

0 𝑉𝑖𝑛 < 𝑉𝑡ℎ
(11)

Where 𝜕𝑉𝑜𝑢𝑡
𝜕𝑡 represents the firing rate given an input voltage, 𝑅

represents the leak rate constant, and 𝑡 represents a given timestep.
A non-leaky IF neuron would be one with a rate constant of 1.
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Differentiating Equation 11 with respect to input voltage gives the
gradient of LIF neuron firing rate:

𝜕2𝑉𝑜𝑢𝑡
𝜕𝑉𝑖𝑛𝜕𝑡

=

{
𝑡
𝑅

𝑉𝑖𝑛 ≥ 𝑉𝑡ℎ

0 𝑉𝑖𝑛 < 𝑉𝑡ℎ
(12)

Because the accumulator models output multiple spikes per
timestep, setting the value of 𝑡 in Equation 12 to 1, treating it as a
constant, and integrating with respect to input voltage gives the
gradient for the accumulator models:

𝜕𝑉𝑜𝑢𝑡

𝜕𝑉𝑖𝑛
=

{
𝑉𝑖𝑛
𝑅

𝑉𝑖𝑛 ≥ 𝑉𝑡ℎ

0 𝑉𝑖𝑛 < 𝑉𝑡ℎ
(13)

As with the rate code, a leak rate constant of 1 would make the
accumulator non-leaky, and a rate constant greater than 1 would
produce a leaky accumulator. Integrating Equation 13 with respect
to𝑉𝑖𝑛 gives the output of the accumulator neuron in terms of spikes
per timestep for a given input:

𝑉𝑜𝑢𝑡 =

{
𝑉 2
𝑖𝑛

2𝑅 𝑉𝑖𝑛 ≥ 𝑉𝑡ℎ

0 𝑉𝑖𝑛 < 𝑉𝑡ℎ

(14)

4 RESULTS
4.1 MNIST Classifier Performance
Training the ReLU 2-layer ANN MNIST classifier with stochastic
gradient descent with momentum produced test set accuracies rang-
ing from 98.08% to 98.25% over 10 iterations. Therefore, accuracies
that are within 0.17% of each other would be considered within the
margin of error. For reproducible results, we seeded the random
number generator to 0, resulting in a ReLU ANN MNIST classifi-
cation accuracy of 98.09%. The weights from this training regime
were then transferred to the other models and their accuracies are
shown in Table 1. The non-leaky models generally gave better per-
formance in this regime, with the non-leaky accumulator at 100
spikes per timestep achieving the best accuracy of 98.19%, the ION
model over 100 timesteps classifying with 96.93% accuracy, and
the non-leaky rate code over 100 timesteps performing at 97.03%
accuracy. The leaky accumulator with a rate constant of 10 at 100
spikes per timestep performed the best of the leaky models with
96.86% accuracy, followed by the LEN model with a rate constant
of 10 run over 100 timesteps at 95.42% accuracy, with the leaky rate
code with a rate constant of 10 run over 100 timesteps performing
the worst at 80.22%.

4.2 Time Control
Each network was evaluated to see how many timesteps it would
need to be run to match the performance of the leaky rate code
of 80.22% at 100 timesteps. The non-leaky models again generally
gave better results in this measure, having the shortest inference
times. The non-leaky accumulator was run for 2 timesteps, the ION
model was run for 8 timesteps, and the non-leaky rate code was run
for 17 timesteps. For the leaky models, each with a rate constant of
10, the leaky accumulator required 13 timesteps, the LEN model 20
timesteps, and finally the leaky rate code was run for 100 timesteps.

In addition, each non-accumulator model was compared for
performance as a function of number of timesteps run, as shown in
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Figure 6: MNIST classification performance of SNNs with
rate-coded nodes and ensemble nodes.

Figure 6. These models all showed accuracies at the level of chance
when run for less than 10 timesteps, so Figure 6 shows performance
for the range of 10 to 100 timesteps. The accumulator models are
not included in this comparison because they were able to achieve
their peak performance when run for less than 10 timesteps, and
their performance was more dependent on the maximum number of
spikes per timestep allotted. Figure 6 shows that non-leaky models
showed a much faster increase in performance at the lower timestep
values than the leaky models, which both have rate constants of
10 in this comparison. In addition, the ensemble models showed
quicker performance increases than the rate code models, with the
leaky rate code showing a very slow increase in performance, even
up to 100 timesteps.

4.3 Power Efficiency
Relative power consumption was determined by the number of
spikes per timestep required to achieve the same accuracy as men-
tioned in the previous section – 80.22%. This was done under the as-
sumption that each spike would require roughly the same amount of
energy to produce, with the accumulator output being represented
by single spikes with integer payloads. Better power efficiency was
generally achieved by leaky models. The leaky accumulator, leaky
rate code, and LEN models showed power consumptions of 0.08,
0.44, and 5.05 spikes per timestep, respectively. The non-leaky ac-
cumulator, non-leaky rate code, and ION models showed power
consumptions of 0.50, 0.41, and 6.88 spikes per timestep, respec-
tively. The ensemble models were able to achieve power values
with multiple spikes per timestep because they consist of multiple
neurons.

4.4 Custom Training
After analyzing the model performances from transferring ANN
weights to SNN models, each model was trained on its own to ana-
lyze performance with model-specific weights. Again, each model
was trained with a random seed of 0 to achieve reproducible re-
sults, but results within 0.17% of each other were considered to
be similar, based on our trainings of the ReLU ANN ranging from
98.08% to 98.25% accuracy. All models tested were within the range
of accuracy of the ReLU ANN. Therefore, each of the SNN models
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Model Weight Transfer
(Accuracy %)

Custom Training
(Accuracy %)

Inference Time
(Timesteps)

Power Consumption
(Spikes/Timestep)

ReLU-ANN 98.09 98.08-98.25 1 1
Non-leaky rate code 97.03 98.12 17 0.41
Leaky rate code 80.22 98.03 100 0.44
Non-leaky accumulator 98.19 98.15 2 0.50
Leaky accumulator 96.86 98.07 13 0.08
Interfering Offset Neurons 96.93 98.16 8 6.88
LIF Ensemble Neuron 95.42 98.25 20 5.05

Table 1: Classification accuracy, inference time, and power consumption of neural networks on MNIST.

presented here are capable of matching the accuracy of a ReLU
ANN. The only significant difference found from the custom train-
ing was that the LEN model achieved an accuracy of 98.25%, which
is greater than that achieved by the leaky rate code of 98.03%.
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Figure 7: MNIST classification performance of accumulator
and rate coded models as a function of leak rate constant.

4.5 Leakiness vs Performance
Figure 7 shows the MNIST classification performance of accumula-
tor and rate coded models as a function of leak rate constant; the
larger the rate constant, the leakier the model, with a rate constant
of 1 representing a non-leaky model. The accumulator model was
run with a maximum of 100 spikes per timestep and the rate coded
model was run for 100 timesteps. The rate coded model shows a
sharp decline in performance from the non-leaky model as the leak
rate constant is increased. In contrast, the accumulator model shows
a far more gradual decline in performance as leak rate constant
is increased. Its initial decrease from a rate constant of 1 to 2 is
similar to that seen in the rate coded model, however after this the
accumulator performance decays very slowly. As seen in Table 1,
increasing the accumulator rate constant from 1 (non-leaky) to 10
significantly increased the power efficiency from 0.50 to 0.08 spikes
per timestep. Therefore, Figure 7 shows how the accumulator model
power efficiency can be adjusted significantly by changing the rate
constant without sacrificing much performance.

5 CONCLUSION
In this paper, we put forward multiple methods for converting con-
tinuous valued artificial neural networks to spiking neural networks.
Taking inspiration from the brain, we implemented networks con-
sisting of spiking nodes with varying degrees of biological realism,
from rate-coded neurons to accumulator neurons to ensembles of
leaky integrate and fire neurons. We compared the performances
of these approaches in accuracy, speed, and power consumption
to the standard ReLU activated ANN. Along with evaluating how
these spiking architectures performed with weights transferred
from the ReLU activated ANN, we developed a novel, differentiable
activation function shown in Equation 14. Thus, we were able to
directly train SNN architectures consisting of our nodes with back-
propogation and similarly compare power consumption, speed, and
accuracy.

Our results display a trade-off in accuracy, speed, and power effi-
ciency across different leaky and non-leaky neuron models. While
non-leaky models outperform leaky models in both accuracy, with
ANN transferred weights, and time efficiency, this is to be expected.
Since these non-leaky models have no membrane leakage, they are
able to fire more rapidly and, thus, approximate functions more
quickly and accurately. These non-leaky models, however, are less
biologically plausible than our leaky implementations. The more
biologically plausible leaky accumulator implementation far out-
performs all other models in power efficiency. It is unsurprising
that our ensemble LEN and ION models require more power, as
they are comprised of sets of many neurons. Training with our
model-specific gradients yielded results within the standard ReLU
activated ANN’s margin of error for all neuron models. The LEN
model performs exceptionally well in this case and is of particular
interest for future work. For future work, we would like to use our
LEN implementation for on-chip unsupervised dictionary learning
based image classification tasks on neuromorphic hardware that
permits only single-bit spikes. We would also like to explore how
changing the number of neurons and leak rate constant in the LEN
implementation affects performance.

Taken in sum, our results display how our biologically plausible
frameworks, implementable on neuromorphic hardware, allow for
a user controllable trade-off between accuracy, power usage, and
speed.
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